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An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of min-
imizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints,
followed by a line search in the obtained direction. Methods of this class are receiving attention due to the devel-
opment of efficient interior point techniques for solving subproblems with this structure, via formulating them as
second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimiza-
tion with twice continuously differentiable data. Their method possesses global and locally quadratic convergence,
and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching
between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly
feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of
subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume
convexity of the objective function or twice differentiability of the problem data. While our method has all the
desirable convergence properties, it is easier to implement. Among other things, it does not require computing a
strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions.
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1. Introduction. We consider the problem

(1)
minimize

x
f �x��

subject to gi�x�≤ 0� i= 1� � � � �m�

where f 
�n →� and g 
�n →�m are differentiable functions with Lipschitz continuous
derivatives. We further assume that g is convex and that the Slater constraint qualification
(Mangasarian 1969) is satisfied:

(2) ∃x̂ ∈�n such that gi�x̂� < 0� i= 1� � � � �m


For local rate of convergence results, f � g will further be assumed to be twice continuously
differentiable, and f will also be assumed to be convex. We emphasize that those additional
assumptions will not be needed for global convergence of our algorithm.
For the case where both f and g are convex twice continuously differentiable functions,

Fukushima et al. (2003) proposed an SQCQP method based on solving the subproblems of
the following structure:

(3)
minimize

d
�f ′�xk��d
+ 1

2
�Hkd�d
�

subject to gi�x
k�+�g′

i �x
k��d
+ �k

i

2
�g′′

i �x
k�d�d
 ≤ 0� i= 1� � � � �m�

where xk ∈ �n is the current iterate, Hk is an n× n symmetric positive definite matrix,
and �k

i ∈ �0�1� are parameters which control the feasibility of (3) according to the rules
described below. Subproblem (3) is a convex quadratically constrained quadratic program,
which can be cast as a second-order cone program (Lobo et al. 1998, Nesterov and
Nemirovskii 1993). The latter can be efficiently solved by interior point algorithms (such
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as Monteiro and Tsuchiya 2000, Tsuchiya 1999), which justifies the interest in methods
based on second-order approximation of the constraints. In fact, in Anitescu (2002b) non-
convex QCQPs were also handled quite efficiently by using other nonlinear programming
techniques.
Let dk ∈�n be the solution of (3), and let �k ∈�m

+ be some associated Lagrange multi-
plier. The next iterate in the method of Fukushima et al. (2003) is given by xk+1 = xk+�kd

k,
where the step size �k > 0 is computed using an Armijo-type linesearch procedure for the
standard l1-penalty function f �x�+ �k

∑m
i=1�gi�x��+, with �k > 
�k
� being the penalty

parameter and �·�+ =max�0� ·�. In Fukushima et al. (2003), the method outlined above is
shown to be globally convergent to a solution of (1) under certain natural assumptions.
Local quadratic rate of convergence is established under the assumption of positive def-
initeness of the Hessian of the Lagrangian of (1) at the KKT points. As discussed in
Fukushima et al. (2003), one attractive feature of this SQCQP method is that it is free from
the Maratos effect. The Maratos effect (Maratos 1978, Powell 1983) is a notorious difficulty
for sequential quadratic programming methods (SQP) (Bertsekas 1995, Boggs and Tolle
1996, Bonnans et al. 2003), which can be thought of as a special case of SQCQP with
�k

i = 0 for all i and k. It refers to the situation where, even though conditions for local
superlinear convergence of the pure SQP iterations are satisfied, the linesearch procedure
based on a nonsmooth penalty function (such as l1) does not accept the unit step size. As
a result, superlinear convergence is not achieved. Known remedies to avoid the Maratos
effect in SQP methods are quite complex and require careful implementation (Mayne and
Polak 1982, Fukushima 1986, Bonnans 1989, Bonnans et al. 2003). By contrast, no special
care is needed in the SQCQP method of Fukushima et al. (2003). In particular, the unit
step size is always accepted under the assumptions required for the local superlinear rate of
convergence.
One important detail which may not be so easy in the implementation of the method of

Fukushima et al. (2003) concerns the control of parameters �k
i in (3). Note that quadratic

approximation of constraints can be “too optimistic,” in the sense that the feasible set in (3)
can be empty if �k

i = 1 for all i. By contrast, the linear approximation corresponding to
�k

i = 0 for all i, is guaranteed to yield feasible subproblems (in the case of convex g). The
following rule is proposed in Fukushima et al. (2003) to take care of the feasibility problem:

Compute x̂ ∈�n satsifying the Slater condition (2). Choose � ∈ �0�1� and � ∈ ���1�.
(This is done once, to initialize the algorithm.)

Compute �k
i 
= �g′′

i �x
k��xk − x̂�� xk − x̂
� i= 1� � � � �m� and

K1�x
k� 
= �i � gi�xk� > 0�� K2�x

k� 
= �i � �gi�x̂�≤ gi�x
k���

s1�x
k� 
= max

i∈K1�xk�
gi�x

k�

gi�x
k�− �gi�x̂�

�s1�x
k� 
=−� if K1�x

k�=���

s2�x
k� 
=min

{
1� min

i∈K2�xk�
gi�x

k�− �gi�x̂�

�k
i

}
�

s3�x
k� 
=min

{
s2�x

k�� min
i �∈K2�xk�

−2��− ��gi�x̂�

�k
i

}



If s2�x
k�≤ 2s1�xk� then set �k

i = 0 for all i.
If s3�x

k� > 2s1�x
k� then set �k

i = 1 for all i.
If s3�x

k�≤ 2s1�xk� < s2�x
k�, then �k

i = 1 for i ∈K2�x
k� and �k

i = 0 for i �K2�x
k�.

The above rule for choosing �k
i is based on testing constraints violation and curvature at

the current iterate, and it guarantees that the subproblem (3) is feasible. Another potentially
useful feature of this rule is that it allows to balance the numbers of quadratic and linear
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constraints in the subproblem at the early stages of the algorithm (subproblems with fewer
quadratic constraints are in general easier to solve). But it is guaranteed that eventually,
�k

i = 1 for all i, so that all the second-order information is being used. As discussed in
Fukushima et al. (2003), many other rules are possible, including the continuous choice
in the interval �0�1�. Furthermore, there are some choices to be made even for the given
rule, namely the parameters �� � and, especially, x̂. The implementation is therefore not
straightforward, and may require a fair bit of fine-tuning. Most importantly, computing x̂ is
a general convex feasibility problem, which is a computationally nontrivial task. Essentially,
the method of Fukushima et al. (2003) is a “Phase I-Phase II” method. Phase I corresponds
to computing a Slater point, while Phase II is the SQCQP method for solving problem (1).
Computing a Slater point can be done in a finite number of iterations by various means, see
Fukushima et al. (2003). Nevertheless, this Phase I problem has complexity comparable to
the original problem itself, and so it increases the computational burden considerably. As
an alternative, Fukushima et al. (2003) propose to use in the rule for choosing �k

i some esti-
mates c1 and c2 such that 0> c1 ≥maxi gi�x̂�� c2 ≥maxi�g′′

i �x
k��xk − x̂�� xk − x̂
 for some

(unknown) Slater point x̂. However, this requires either essentially heuristic considerations
or computing the estimates iteratively (if c1 and c2 are not adequate and the subproblems
are still infeasible, one has to increase c1 and c2 and try again).
In this paper, we propose to deal with the feasibility of subproblems by introducing a slack

variable, which simplifies the implementation considerably. Among other things, computing
a strictly feasible point is no longer necessary. In addition, for the global convergence result
we do not assume the convexity of f or twice differentiability of f and g. In fact, our
global convergence result appears to be stronger than that in Fukushima et al. (2003) also
in a number of other ways (see the comments preceding Theorem 6).
Our proposal is to consider, instead of (3), the subproblem

(4)
minimize

�d� t�
�f ′�xk��d
+ 1

2
�Hkd�d
+�kt�

subject to gi�x
k�+�g′

i �x
k��d
+ 1

2
�Gk

i d�d
 ≤ t� i ∈ Ik� t ≥ 0�

where �k > 0 is a penalty parameter, G
k
i � i ∈ Ik, are n× n symmetric positive semidefinite

matrices (possibly different from g′′
i �x

k� even when the latter exists), and Ik is any index
set that satisfies

(5)
I�xk�⊂ Ik ⊂ �1� � � � �m��

I�xk�= �i � gi�xk�= p�xk��� p�xk�= max
i=1� � � � �m

�gi�x
k��+


Note that the possibility to choose the index set Ik smaller than �1� � � � �m� is very useful
(especially at the early stages of the algorithm), because it reduces the number of constraints
thus leading to simpler subproblems. This effect can be considered similar to setting �k

i = 0
for some i in (3), but can have a further advantage of removing altogether the constraints
which are locally irrelevant.
As suggested by a referee, instead of (4) we could also consider subproblems with a

different slack and a different penalty parameter for each of the constraints:

minimize
�d� t�

�f ′�xk��d
+ 1
2
�Hkd�d
+∑

i∈Ik
�i

kti�

subject to gi�x
k�+�g′

i �x
k��d
+ 1

2
�Gk

i d�d
 ≤ ti� ti ≥ 0� i ∈ Ik


Numerically, this can be advantageous in some situations. For the subsequent analysis we
prefer the simpler form of (4). It can be seen that the analysis extends to the case of different
slacks and penalty parameters after simple modifications.
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Let �dk� tk� ∈�n×� be the solution of (4), which is easily seen to be unique (§2). Then
the next iterate of our method is given by xk+1 = xk + �kd

k, where the step size �k > 0 is
computed using an Armijo-type linesearch procedure (see Algorithm 1) for the l�-penalty
function

%�k
�x�= f �x�+�kp�x�


The idea of using a slack variable to ensure feasibility comes from a similar strategy for
SQP (Bertsekas 1995). In general SQP methods, removing the feasibility concerns using
this strategy comes at the expense of the difficulty in choosing the penalty parameter �k.
(Essentially, one needs to ensure that eventually �k > 
�k
1, where �k is a Lagrange multi-
plier associated with dk. But �k has to be chosen before the new multiplier �

k is computed,
which leads to certain difficulties. See, for example, the the last comment in §3 of Anitescu
2002a.) For our algorithm, we are able to give a novel rule for updating the penalty param-
eter �k (see Algorithm 1), which guarantees convergence.
To conclude this section, we cite some previous work on SQCQP and related methods.

For the first time methods of this class were probably considered in Panin (1979, 1981),
where strong convexity of f and g is assumed. In Anitescu (2002b), local superlinear rate
of convergence of a trust-region SQCQP method is obtained without the convexity assump-
tions, under the Mangasarian-Fromovitz constraint qualification and a certain quadratic
growth condition. This reference also provides some numerical testing, which highlights
the following fact. Although SQCQP subproblems are more computationally difficult than
subproblems in SQP, they can be solved reasonably efficiently even in the nonconvex case
(in the nonconvex case, subproblems have to be solved by approaches other than the interior
point methods). Moreover, because SQCQP subproblems are a better approximation of the
original problem, fewer subproblems have to be solved. Thus this extra effort (compared
to SQP) may be well worth it. However, global convergence is not discussed in Anitescu
(2002b). For some other SQCQP-related work, we mention Wiest and Polak (1992) and
Kruk and Wolkowicz (2000).
Some final words about our notation. For a directionally differentiable function

% 
�n →�, by %′�x&d� we denote the usual directional derivative of % at the point x ∈�n

in the direction d ∈�n. By 
·
 we denote the 2-norm, by 
·
1 we denote the l1-norm, and
by 
·
� the l�-norm. The space is always clear from the context, and will not be specified.
For two symmetric positive semidefinite matrices A and B, we write A � B if the matrix
A−B is positive semidefinite. By E we denote the identity matrix and by O the zero matrix.
Finally, the operation t/0, where t > 0 is considered well defined, with the result being
+�.

2. SQCQP method and its global convergence. First, note that (4) is always feasible
and has unique solution. Indeed, as is easy to see, for each d ∈�n fixed, the minimum with
respect to t in (4) is attained at

(6) tk�d�=max
i∈Ik

[
gi�x

k�+�g′
i �x

k��d
+ 1
2
�Gk

i d�d

]
+



Hence, (4) is equivalent to

minimize
d

�f ′�xk��d
+ 1
2
�Hkd�d
+�kt

k�d�


Because Hk is positive definite, the objective function of this program is strongly convex and
has the unique minimizer dk. It follows that �dk� tk� with tk = tk�dk� is the unique solution
of (4). Furthermore, because the constraints in (4) obviously satisfy the Slater constraint
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qualification, the Karush-Kuhn-Tucker (KKT) optimality conditions (Mangasarian 1969)
hold: there exist some �k

i ∈�� i ∈ Ik, and �k ∈� such that

f ′�xk�+Hkdk +∑
i∈Ik

�k
i �g

′
i �x

k�+Gk
i d

k�= 0�(7)

�k −
∑
i∈Ik

�k
i − �k = 0�(8)

gi�x
k�+�g′

i �x
k��dk
+ 1

2
�Gk

i d
k�dk
 ≤ tk� �k

i ≥ 0� i ∈ Ik�(9)

�k
i

(
gi�x

k�+�g′
i �x

k��dk
+ 1
2
�Gk

i d
k�dk
− tk

)
= 0� i ∈ Ik�(10)

tk ≥ 0� �k ≥ 0� tk�k = 0
(11)

We proceed to formally state our algorithm.
Algorithm 1 (SQCQP). Choose some x0 ∈�n, �0� +1� +2 ∈ �0�+�� and ,�� ∈ �0�1�.

Set k 
= 0.
1. QCQP subproblem.
Choose an index set Ik according to (5). Choose n×n symmetric matrices Hk (positive
definite) and Gk

i � i ∈ Ik (positive semidefinite). Compute �d
k� tk� as the solution of (4),

and the associated Lagrange multipliers ��k� �k�.
2. Stopping test.
Stop if dk = 0 and tk = 0.

3. Linesearch.
If dk = 0 (but tk > 0), set jk 
= 0 and go to Step 4.
Otherwise, find jk, the smallest nonnegative integer j , such that

(12) %�k
�xk + �jdk�≤ %�k

�xk�+,�j.k�

where

(13) .k 
= �f ′�xk��dk
+ 1
2
�Hkdk�dk
+�k�t

k −p�xk��


4. Variable update.
Set �k 
= �jk and xk+1 
= xk +�kd

k.
5. Penalty parameter update.
Compute rk 
=min�
dk
−1�
�k
1+ +1�. Set

(14) �k+1 
=
{
�k� if �k ≥ rk
�k + +2� if �k < rk




6. Set k 
= k+ 1 and go to Step 1.
Note that our penalty parameter rule is somewhat different from the usual strategies in

SQP (where typically rk = 
�k
1 + +1 is used). As already mentioned above, choosing
this parameter in the framework where feasibility is controlled using slacks is problematic
(Bertsekas 1995) (see also the last comment in §3 of Anitescu 2002a). In the specific setting
of this paper, we are able to give the novel rule that guarantees convergence. The idea is to
ensure that if ��k� were to be unbounded, then necessarily two things happen: 
�k
→+�
and dk → 0. As will be established (see Proposition 5), this situation cannot occur, thus
leading to boundedness of ��k�.
The following simple lemma will be used several times in the sequel.
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Lemma 1. Let �x � gi�x� ≤ 0� i = 1� � � � �m� �= �, where g 
 �n → �m is convex and
continuously differentiable. Then for any x ∈�n such that

J �x� 
= �i � gi�x� > 0� �= ��

it holds that ∑
i∈J �x�

�ig
′
i �x�= 0� �i ≥ 0� i ∈ J �x� ⇔ �i = 0� i ∈ J �x�


Proof. By Gordan Theorem of the Alternatives (Mangasarian 1969), the assertion fol-
lows if we establish that

∃d ∈�n such that �g′
i �x��d
< 0� i ∈ J �x�


We proceed to exhibit this d. Take any y such that gi�y�≤ 0� i= 1� � � � �m. By the convexity
of g, we have that

0> gi�y�− gi�x�≥ �g′
i �x�� y− x
� i ∈ J �x��

thus establishing the claim. �
We start by showing that the method is well defined. This is done in two steps: for the

case where dk = 0 (but tk > 0), and when dk �= 0.
Proposition 2. Let �x � gi�x� ≤ 0� i = 1� � � � �m� �= �, where g 
 �n → �m is convex

and continuously differentiable.
If in Algorithm 1 we have dk = 0 and tk = 0, then �xk��k� is a KKT point of (1).
If dk = 0 and tk > 0, then there exists a finite integer q such that Algorithm 1 generates

dk+q �= 0.
Proof. Suppose that dk = 0 and tk = 0. Then (9) and (5) imply that gi�xk�≤ 0 for i ∈

I�xk�⊂ Ik. Hence, p�x
k�= 0. Using again (5), it is easy to see that gi�xk� < 0 for all i � Ik.

With this observation, setting dk = 0 and tk = 0 in (7)–(11), and further �k
i = 0 for i � Ik,

we obtain KKT conditions for (1).
Suppose now that dk = 0, tk > 0, and dk+q = 0, tk+q > 0 for all integers q. Obviously, we

then have xk+q = xk, by Step 4 of Algorithm 1. By (6), p�xk+q�= tk+q�0�= tk+q = p�xk�=
tk > 0. Then (11) implies that �k+q = 0. Using further (8), we have that
(15) �k+q =

∑
i∈Ik+q

�
k+q
i 


In Step 5 of Algorithm 1, because 
dk+q
−1 =+�, (15) implies that �k+q < rk+q . Hence,
by (14),

�k+q+1 = �k+q + +2


This shows that �k+q →+� as q →�, and by (15),
+�= lim

q→�
�k+q



Observe that because tk+q = p�xk+q�, (9) and (10) imply that �k+q
i = 0 for i ∈ Ik+q\I�xk+q�.

Because I�xk�= I�xk+q�⊂ Ik+q , (7) reduces to

f ′�xk�+ ∑
i∈I�xk�

�
k+q
i g′

i �x
k�= 0


Dividing both sides of the above equality by 
�k+q
 and passing onto the limit as q →�,
we conclude that ∑

i∈I�xk�
�̃ig

′
i �x

k�= 0� �̃i ≥ 0� i ∈ I�xk�� 
�̃
 = 1


Because p�xk� > 0 implies that � �= I�xk�⊂ J �xk�, the latter contradicts Lemma 1, com-
pleting the proof. �



Solodov: Sequential Quadratically Constrained Quadratic Programming Methods
70 Mathematics of Operations Research 29(1), pp. 64–79, © 2004 INFORMS

The following result shows that whenever dk �= 0, it is a descent direction for %�k
at

xk. This, in turn, implies that the linesearch step is well defined. Combining this fact with
Proposition 2, it follows that the whole Algorithm 1 is well defined.

Proposition 3. Let f � gi 
�
n →�� i= 1� � � � �m, be continuously differentiable. Then

in Algorithm 1 it holds that

%′
�k
�xk&dk� ≤ .k −

1
2
�Hkdk�dk
(16)

≤ −�Hkdk�dk
− 1
2

∑
i∈Ik

�k
i �Gk

i d
k�dk
− �kp�xk�


As a consequence, Step 3 of Algorithm 1 is well defined and terminates with some finite
integer jk.

Proof. As is well known and easy to see,

%′
�k
�xk&dk�(17)

= �f ′�xk��dk
+�k



0� if I�xk�=�
maxi∈I�xk��g′

i �x
k��dk
� if p�xk� > 0

maxi∈I�xk���g′
i �x

k��dk
�+� if p�xk�= 0� I�xk� �= �



Consider the three possible cases in (17):
If I�xk�=�, then it must hold that p�xk�= 0 (and gi�x

k� < 0 for all i). Thus 0≤ tk =
tk −p�xk�.
If I�xk� �= �, by 9, for all i ∈ I�xk�⊂ Ik it holds that

�g′
i �x

k��dk
 ≤ tk − gi�x
k�− 1

2
�Gk

i d
k�dk


≤ tk −p�xk��

where the second inequality follows from gi�x
k�= p�xk� for i ∈ I�xk�, and Gk

i �O.
If further p�xk�= 0, then �g′

i �x
k��dk
 ≤ tk. Then by the monotonicity of �·�+,

��g′
i �x

k��dk
�+ ≤ �tk�+ = tk −p�xk�


Combining the three cases, (17) gives that

(18) %′
�k
�xk&dk�≤ �f ′�xk��dk
+�k�t

k −p�xk���

which is the first inequality in the assertion (recalling the definition of .k in (13)).
Multiplying both sides of (7) by dk, we have that

(19) �f ′�xk��dk
 =−�Hkdk�dk
−∑
i∈Ik

�k
i ��g′

i �x
k��dk
+ �Gk

i d
k�dk
�


We further obtain

−∑
i∈Ik

�k
i �g′

i �x
k��dk
 = ∑

i∈Ik
�k

i

(
gi�x

k�+ 1
2
�Gk

i d
k�dk
− tk

)

≤ �p�xk�− tk�
∑
i∈Ik

�k
i +

1
2

∑
i∈Ik

�k
i �Gk

i d
k�dk


= ��k − �k��p�xk�− tk�+ 1
2

∑
i∈Ik

�k
i �Gk

i d
k�dk


= �k�p�x
k�− tk�− �kp�xk�+ 1

2

∑
i∈Ik

�k
i �Gk

i d
k�dk
�
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where (10) was used in the first equality, (8) was used in the second equality, and (11) in
the last. Combining the latter relation with (19) and (18), we obtain (16).
If dk = 0, Step 3 of Algorithm 1 returns jk = 0. If dk �= 0, for � ∈ �0�1� we have that

%�k
�xk +�dk� = %�k

�xk�+�%′
�k
�xk&dk�+ o���

≤ %�k
�xk�+�.k + o����

where the inequality is by (16). It follows that (12) is guaranteed to hold whenever
� = �j > 0 satisfies

�1−,��.k ≤ o���


Because .k < 0 when dk �= 0, the inequality above clearly holds for all � = �j sufficiently
small (i.e., all j sufficiently large). Hence, Step 3 of Algorithm 1 terminates with some
finite integer jk. �
We next establish that when close to the feasible region of (1), the solution of subprob-

lem (4) is given by the solution of the subproblem without the slack variable:

(20)
minimize

d
�f ′�xk��d
+ 1

2
�Hkd�d
�

subject to gi�x
k�+�g′

i �x
k��d
+ 1

2
�Gk

i d�d
 ≤ 0� i ∈Ak�

where Ak ⊂ �1� � � � �m�. This fact will be used later to establish that the penalty parameters
��k� stay fixed from some point on, as well as for the local rate of convergence analysis.
The part of Proposition 4 concerning boundedness of solutions and Lagrange multipliers of
(20) is closely related to Fukushima et al. (2003, Lemma 3.3). However, we consider the
case where possibly Gk

i �= g′′
i �x

k� and Ak �= �1� � � � �m�.

Proposition 4. Let f � gi 
�
n →�� i= 1� � � � �m, be continuously differentiable. Sup-

pose that g is convex and the Slater condition (2) is satisfied.
Let �xk� be any sequence converging to some x̄ ∈ �n such that p�x̄� = 0, and let the

matrices in (20) satisfy 52E � Hk � 51E and 52E � Gk
i � O� i ∈ �1� � � � �m�, for all k,

where 52 ≥ 51 > 0.
Then problem (20) is feasible (hence, solvable) for all k sufficiently large and any Ak ⊂

�1� � � � �m�. Moreover, if �sk�6k� is a KKT point of (20), then for any �k ≥ 
6k
1, �sk�0�
is the unique solution of (4) with Ik = Ak. Conversely, if �dk�0��k� �k� is a KKT point of
(4), then �dk��k� is a KKT point of (20).

Furthermore, the sequences �sk� and �6k� are bounded.

Proof. Because p�x̄�= 0, we have that gi�x̄�= 0 for i ∈ I�x̄�. By the convexity of g
and (2), it then holds that

(21) 0> gi�x̂�− gi�x̄�≥ �g′
i �x̄�� x̂− x̄
� i ∈ I�x̄�


Taking d���= ��x̂− x̄�, � ∈ �0�1�, and using 52E �Gk
i , we have that

gi�x
k�+��g′

i �x
k�� x̂− x̄
+ �2

2
�Gk

i �x̂− x̄�� x̂− x̄
(22)

≤ �

(
�g′

i �x̄�� x̂− x̄
+ �52
x̂− x̄
2
2

)
+ 7ki �

where, as k→�,

(23) 7ki = gi�x
k�+��g′

i �x
k�− g′

i �x̄�� x̂− x̄
→
{
gi�x̄�= 0� i ∈ I�x̄�

gi�x̄� < 0� i �∈ I�x̄�
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For each i ∈ �1� � � � �m� there exists �i > 0, and for i ∈ I�x̄� also some ci > 0, such that

�i

(
�g′

i �x̄�� x̂− x̄
+ �i52
x̂− x̄
2
2

)
≤
{
−2ci� i ∈ I�x̄�

−gi�x̄�/4� i � I�x̄�
�

where (21) was used for i ∈ I�x̄�. Given those choices, for each i ∈ �1� � � � �m� there further
exists an index ki such that

7ki ≤
{
ci� i ∈ I�x̄�

gi�x̄�/2� i � I�x̄�
� ∀ k≥ ki


Denoting

k̄= max
i=1� � � � �m

ki� �= min
i=1� � � � �m

�i� c=min
{
min
i∈I�x̄�

ci�−max
i�I�x̄�

gi�x̄�/4
}
�

and using the two relations above and (22), we have that d= ��x̂− x̄� satisfies

(24) gi�x
k�+�g′

i �x
k��d
+ 1

2
�Gk

i d�d
 ≤−c < 0 ∀k≥ k̄� i= 1� � � � �m


In particular, this shows that this d is (strictly) feasible in (20) for any choice of Ak ⊂
�1� � � � �m� and all k≥ k̄.
Therefore, (20) is a feasible strongly convex program. Hence, it is (uniquely) solvable.

Furthermore, by (24), it satisfies the Slater constraint qualification. Hence, there exist some
6k
i ∈�� i ∈Ak, such that

f ′�xk�+Hksk + ∑
i∈Ak

6k
i �g

′
i �x

k�+Gk
i s

k�= 0�(25)

gi�x
k�+�g′

i �x
k�� sk
+ 1

2
�Gk

i s
k� sk
 ≤ 0� 6k

i ≥ 0� i ∈Ak�(26)

6k
i

(
gi�x

k�+�g′
i �x

k�� sk
+ 1
2
�Gk

i s
k� sk


)
= 0� i ∈Ak
(27)

If �k ≥ 
6k
1, then Conditions (25)–(27) imply that dk = sk, tk = 0, �k = �k − 
6k
1 and
�k

i = 6k
i � i ∈Ak = Ik, satisfy KKT conditions (7)–(11). Hence, �s

k�0� is the solution of (4).
Conversely, if �dk�0��k� �k� is a KKT point of (4), then �dk��k� is a KKT point of (20)
for Ak = Ik, by direct inspection.
Next, note that because d= ��x̂− x̄� is feasible in (20) for all k≥ k̄, we have that

�f ′�xk��d
+ 1
2
�Hkd�d
 ≥ �f ′�xk�� sk
+ 1

2
�Hksk� sk


≥ 
sk

(
51
sk

2

−
f ′�xk�

)
�

where the second inequality is by Hk � 51E. Because �f ′�xk�� is bounded and 52E �Hk,
the above relation implies that �sk� must be bounded.
Suppose now that �6k� is unbounded. We augment (25) by formally setting 6k

i = 0 for
i ∈ �1� � � � �m�\Ak. Passing onto a subsequence, if necessary, we can assume that 
6k
→�
and �sk� → s̄, �Hk� → H , �Gk

i � → Gi. Dividing both sides of (25) by 
6k
 and passing
onto the limit as k→�, we obtain that

0=
m∑
i=1

6̄i�g
′
i �x̄�+Gis̄�� 6̄≥ 0� 
6̄
 = 1
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By Gordan Theorem of the Alternatives (Mangasarian 1969), the latter is equivalent to

(28) �s ∈�n such that �g′
i �x̄�+Gis̄� s
< 0 for i ∈ �i � 6̄i > 0�


Clearly, 6̄i > 0 means that there exists an infinite subsequence of indices �kj� such that

i ∈Akj
and 6

kj
i > 0. For such i, (27) implies that

gi�x
kj �+�g′

i �x
kj �� skj 
+ 1

2
�Gkj

i s
kj � skj 
 = 0 ∀j


Passing onto the limit as j →�, we obtain that

(29) gi�x̄�+�g′
i �x̄�� s̄
+

1
2
�Gis̄� s̄
 = 0� i ∈ �i � 6̄i > 0�


Passing onto the limit as k→� in (24), we also have that

gi�x̄�+�g′
i �x̄�� d
+

1
2
�Gid�d
 ≤−c < 0


Substracting (29) from the latter inequality, we have that

0 > �g′
i �x̄�� d− s̄
+ 1

2
�Gid�d
−

1
2
�Gis̄� s̄


= �g′
i �x̄�+Gis̄� d− s̄
� i ∈ �i � 6̄i > 0��

which contradicts (28). We conclude that �6k� is bounded. �
By (14), either �k is constant starting from some iteration index k0 or it diverges to +�.

We next show that the latter case cannot occur.

Proposition 5. Let f � gi 
 �
n →�� i= 1� � � � �m, be continuously differentiable. Sup-

pose that g is convex and that the Slater condition (2) is satisfied.
Let the sequence �xk� generated by Algorithm 1 be bounded, and 52E � Hk � 51E,

52E �Gk
i �O� i ∈ Ik� for all k, where 52 ≥ 51 > 0.

Then there exists some iteration index k0 such that

�k = �k0
∀k≥ k0


Proof. Suppose the opposite, i.e., �k →+� as k →�. Then (14) implies that �k <
rk =min�
dk
−1�
�k
1+ +1� happens an infinite number of times. It then further follows
that there exists a subsequence of iteration indices �kj�, such that

(30) 0= lim
j→�

dkj and +�= lim
j→�


�kj



Taking a further subsequence, if necessary, we can assume that �xkj �→ x̃ as j →�. We
next consider the two possible cases: p�x̃� > 0 and p�x̃�= 0.
Let p�x̃� > 0, and denote

J �x̃� 
= �i � gi�x̃� > 0� �= �


Note that by the continuity of g, J �x̃�∩ Ikj �= � for all j large enough. By (9),

gi�x
kj �+�g′

i �x
kj �� dkj 
+ 1

2
�Gkj

i d
kj � dkj 
 ≤ tkj � i ∈ Ikj 


For i ∈ Ikj\J �x̃�, as j →� the left-hand side of the inequality above tends to gi�x̃� ≤ 0
(taking into account (30) and 52E �Gk

i �O), while the right-hand side tends to p�x̃� > 0
(recall (6)). Hence, such constraints are inactive for all j large enough, and by (10),

�
kj
i = 0� i ∈ Ikj \ J �x̃�
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Formally setting �
kj
i = 0 and G

kj
i = 0 for i ∈ J �x̃�\Ikj , we can write (7) as

f ′�xkj �+Hkjdkj + ∑
i∈J �x̃�

�
kj
i �g

′
i �x

kj �+G
kj
i d

kj �= 0


Dividing both sides of this equality by 
�kj
 and passing onto the limit as j →�, by (30)
and 52E �Hk�Gk

i �O, we obtain that

0= ∑
i∈J �x̃�

�̃g′
i �x̃�� �̃i ≥ 0� i ∈ J �x̃�� 
�̃i
 = 1�

which contradicts Lemma 1.
Suppose now that p�x̃� = 0. By Proposition 4, subproblems (20) with Akj

= Ikj are
solvable for all indices j large enough. Let �skj � 6kj � be a KKT point of (20). In particular,
by Proposition 4, �6kj � is bounded. Since �k →+�, we have that �kj

> 
6kj
1 and, again
by Proposition 4, the unique solution of (4) is dkj = skj , tkj = 0, with multipliers ��kj � �kj �
generated by Algorithm 1. But then �skj ��kj � is a KKT point of (20), again by Proposition 4.
However, unboundedness of ��kj � (see (30)) contradicts Proposition 4.
The proof is complete. �
We are now ready to establish global convergence of Algorithm 1. Our results are stronger

than Fukushima et al. (2003, Theorem 3.4) in some respects. First, we do not assume the
convexity of f or twice differentiability of f and g. Second, we prove that the step sizes
stay bounded away from zero, which is a desirable property not established in Fukushima
et al. (2003). Additionally, even if the data are twice differentiable, we do not assume that
Gk

i = g′′
i �x

k� and/or that the matrices 2Hk − f ′′�xk�+∑m
i=1�

k
i g

′′
i �x

k� are uniformly positive
definite, as required in Fukushima et al. (2003, Theorem 3.4). Both Theorem 6 below
and Fukushima et al. (2003, Theorem 3.4), assume the uniform boundedness and positive
definiteness of Hk, and boundedness of the sequence �xk�.

Theorem 6. Let f � gi� i = 1� � � � �m, be differentiable functions with Lipschitz-contin-
uous derivatives. Let g be convex, and the Slater condition (2) be satisfied.

Suppose further that in Algorithm 1 we have 52E �Hk � 51E and 52E �Gk
i �O� i ∈ Ik�

for all k, where 52 ≥ 51 > 0, and that Ik = �1� � � � �m� for k≥ k1.
If the sequence �xk� generated by Algorithm 1 is bounded, then the sequence ��k� is

also bounded and every accumulation point of ��xk��k�� is a KKT point for problem (1).
In particular, if f is convex then every accumulation point of �xk� is a solution of (1).

Proof. We first show that the sequence of step sizes ��k� is bounded away from zero.
Let L> 0 be the Lipschitz constant of f ′� g′

i � i= 1� � � � �m. For all � ∈ �0�1� and any i, we
have that

�gi�x
k +�dk��+ − �gi�x

k�+��g′
i �x

k��dk
�+(31)

≤ �gi�x
k +�dk�− gi�x

k�−��g′
i �x

k��dk
�+
≤ �gi�xk +�dk�− gi�x

k�−��g′
i �x

k��dk
�
≤ L

2
�2
dk
2�

where the first inequality follows from the fact that �a− b�+ ≥ �a�+ − �b�+∀ a�b ∈�; and
the last inequality is by the Lipschitz-continuity of g′

i (e.g., Bertsekas 1995, Proposi-
tion A.24). For i ∈ Ik, we further obtain

�gi�x
k�+��g′

i �x
k��dk
�+(32)

= ���gi�x
k�+�g′

i �x
k��dk
�+ �1−��gi�x

k��+
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≤ ��gi�x
k�+�g′

i �x
k��dk
�+ + �1−���gi�x

k��+

≤ ��gi�x
k�+�g′

i �x
k��dk
+ 1

2
�Gk

i d
k�dk
�+ + �1−���gi�x

k��+

≤ �tk + �1−���gi�x
k��+�

where the second inequality is by the convexity of �·�+; and the last two are by the mono-
tonicity of �·�+ (taking also into account Gk

i �O and (9), (11)). Combining (31) and (32),
we conclude that

�gi�x
k +�dk��+ ≤ �tk + �1−���gi�x

k��+ + L

2
�2
dk
2� i ∈ Ik


By the Lipschitz-continuity of f ′, it also holds that

f �xk +�dk�≤ f �xk�+��f ′�xk��dk
+ L

2
�2
dk
2


For k≥ k1, we then have that

%�k
�xk +�dk� = f �xk +�dk�+�kp�x

k +�dk�

≤ f �xk�+��f ′�xk��dk
+�k�1−��p�xk�+��kt
k + L�1+�k�

2
�2
dk
2

= %�k
�xk�+�

(
.k −

1
2
�Hkdk�dk


)
+ L�1+�k�

2
�2
dk
2

≤ %�k
�xk�+�.k +

L�1+�k�

2
�2
dk
2�

where Ik = �1� � � � �m� was used in the first inequality, the second equality is by (13), and
the last inequality is by Hk �O.
By a direct comparison of the latter relation with (12), we conclude that (12) is guaranteed

to be satisfied once j is large enough, so that � = �j falls within the set of �, satisfying

L�1+�k�

2
�
dk
2 ≤−�1−,�.k


In particular, because Step 3 of Algorithm 1 did not accept the stepsize value �kj−1 > �kj ,
it must be the case that

kj = 0 or �k/�= �kj−1 >
−2�1−,�.k

L�1+�k�
dk
2 


Hence,

�k ≥min
{
1�

−2��1−,�.k

L�1+�k�
dk
2
}
� k≥ k1


By Proposition 5, �k = �k0
for all k ≥ k0 and some iteration index k0. Furthermore, by

(16) and Hk � 51E,

(33) −.k ≥
1
2
�Hkdk�dk
 ≥ 51
dk
2/2


We conclude that

(34) �k ≥min
{
1�

�1−,��51
L�1+�k0

�

}
= �̄ > 0 ∀ k≥ k2 
=max�k0� k1�
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Now taking into account (12), (33), and (34), for k≥ k2 we obtain that

%�k0
�xk�−%�k0

�xk+1� ≥ −,�k.k(35)

≥ ,�̄51
dk
2/2

Because �xk� is bounded, �%�k0

�xk�� is also bounded, by continuity. By (35), it is also
nonincreasing. Hence, it converges. Then (35) further implies that

(36) 0= lim
k→�

dk


Furthermore, by Step 5 of Algorithm 1, the fact that �k+1 = �k = �k0
implies that

�k0
≥ rk =min�
dk
−1�
�k
1+ +1�


Taking into account (36), we conclude that there exists some k3 ≥ k0 such that

�k0
>
∑
i∈Ik

�k ∀ k≥ k3


In particular, this means that ��k� is bounded and, using (8), that

�k > 0 ∀ k≥ k3


By (11), we then also have that

(37) tk = 0 ∀ k≥ k3


Now passing onto the limit as k→� in (7)–(11) (where Ik = �1� � � � �m�), we obtain that
every accumulation point of ��xk��k�� satisfies the KKT conditions for problem (1). If f
is further convex, then every accumulation point of �xk� is a solution of (1). �
As an immediate consequence of Theorem 6, we have the following fact.

Corollary 7. Suppose that the assumptions of Theorem 6 are satisfied (except for the
boundedness of �xk�). If problem (1) has no KKT points, then the sequence �xk� generated
by Algorithm 1 must be unbounded.

3. Local convergence. We next show that if the matrices Hk and Gk
i are (in a cer-

tain sense) asymptotically good approximations of f ′′�xk� and g′′
i �x

k�, respectively, then in
Algorithm 1 we have �k = 1 for all k sufficiently large. This implies that the Maratos effect
does not occur. Then, under certain further assumptions, the quadratic rate of convergence
is achieved.
Note that given the assumptions on Hk needed for global convergence, the first condition

in (38) implicitly subsumes that f ′′�xk� is positive definite for k sufficiently large (unless
some further analysis involving dk is performed). The latter is consistent with the assump-
tions of Theorem 6 below on the quadratic rate of convergence. In Algorithm 1, we can
take the positive definite regularization Hk = f ′′�xk�+5kE, decreasing 5k ≥ 0 appropriately
as xk enters the region where f ′′�x� is positive definite. This strategy is consistent with both
the global and local convergence theory.
Approximation conditions (38) also resemble the quasi-Newton conditions of Dennis-

Moré, but specific update rules are beyond the scope of this paper. Here, we can mention
the situation where computing the second derivatives involves some numerical work (e.g.,
the approximation is done by finite differences). In that case, (38) imposes the natural
requirement on the accuracy of such approximation.
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Proposition 8. Let the assumptions of Theorem 6 be satisfied. Suppose, in addition,
that f and g are twice continuously differentiable, and

(38) ��f ′′�xk�−Hk�dk�dk
=o�
dk
2�� ��g′′
i �x

k�−Gk
i �d

k�dk
=o�
dk
2��i∈ Ik


Then there exists an iteration index k4 such that

�k = 1 ∀ k≥ k4


Proof. By Theorem 6, �k = �k0
� tk = 0 for k ≥ k3 (where k3 is defined above), and

dk → 0.
For i ∈ Ik and k≥ k3, we have that

�gi�x
k +dk��+ = �gi�x

k +dk��+ −
[
gi�x

k�+�g′
i �x

k��dk
+ 1
2
�Gk

i d
k�dk


]
+

(39)

≤
∣∣∣∣gi�xk +dk�− gi�x

k�−�g′
i �x

k��dk
− 1
2
�g′′

i �x
k�dk�dk


∣∣∣∣
+ 1
2
���g′′

i �x
k�−Gk

i �d
k�dk
�

= o�
dk
2��
where the first equality follows from (9), where tk = 0, and the inequality follows from the
fact that �a�+ − �b�+ ≤ �a− b� for any a�b ∈�. Because Ik = �1� � � � �m� for k ≥ k3, we
further obtain that

%�k0
�xk +dk� = f �xk +dk�+�k0

p�xk +dk�

= f �xk +dk�+ o�
dk
2�
= f �xk�+�f ′�xk��dk
+ 1

2
�f ′′�xk�dk�dk
+ o�
dk
2�

= %�k0
�xk�−�k0

p�xk�+�f ′�xk��dk
+ 1
2
�Hkdk�dk
+ o�
dk
2�

= %�k0
�xk�+.k + o�
dk
2��

where the second equality is by (39), the fourth equality is by (38), and the last is by the
definition of .k given in (13) and tk = 0.
In view of the last relation and (12), to establish that �k = 1 in Algorithm 1, it is enough

to show that

(40) �1−,�.k + o�
dk
2�≤ 0
for all k sufficiently large. By (16) and Hk � 51E, we have that

.k ≤−1
2
�Hkdk�dk
 ≤−51
dk
2

2
�

which verifies (40). �
Remark 9. If we assume that the method converges, then some of the assumptions

in Proposition 8 can be relaxed. First, one no longer has to ask that Ik = �1� � � � �m� for
k large enough. This is easy to see, because dk → 0, and for i � I�xk� we then have
gi�x

k�+�g′
i �x

k��dk
+ 1
2�Gk

i d
k�dk
< 0 for k large enough. Hence, the first equality leading

to (39) is then valid also for i ∈ �1� � � � �m� \ Ik. Then the rest of the proof applies.
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Additionally, instead of Hk � 51E, we could assume that H
k+∑

i∈Ik �
k
i G

k
i � 51E. Indeed,

(16) implies

.k ≤−1
2

〈
�Hk +∑

i∈Ik
�k

i G
k
i �d

k�dk
〉
�

from which then (40) also follows.
Theorem 6 (recall in particular (37)) and Proposition 4 imply that Algorithm 1 even-

tually reduces to SQCQP method based on subproblems (20) without the slack variable.
Furthermore, by Proposition 8, the unit step size is always accepted from some point on.
The local quadratic rate of convergence now follows essentially from Fukushima et al.
(2003, Theorem 4.7).

Theorem 10. Let f � gi� i= 1� � � � �m, be convex twice continuously differentiable func-
tions with Lipschitz-continuous second derivatives, and suppose that the Slater condition (2)
holds. Let x̄ ∈�n be the (unique) solution of (1) such that f ′′�x̄�+∑m

i=1 �̄g
′′
i �x̄� is positive

definite for any �̄ ∈M , where M ⊂�m is the set of Lagrange multipliers assiciated with x̄.
Then there exists a neighbourhood X of x̄ such that the sequence �xk� generated by

Algorithm 1 with x0 ∈ X and Hk = f ′′�xk�� Gk
i = g′′

i �x
k� for all k, converges to x̄ at a

quadratic rate. Furthermore, dist��k�M�→ 0 at a quadratic rate.

4. Concluding remarks. We presented a sequential quadratically constrained quadratic
programming algorithm with a number of desirable convergence and implementation fea-
tures. Specifically:
—The feasibility of subproblems is automatic.
—Convexity of the objective function is not needed for global convergence.
—Twice differentiability of the problem data is not needed for global convergence.
—The step size in the linesearch procedure is always bounded away from zero.
—If the problem data are twice continuously differentiable and the method uses asymp-

totically good approximations of second-order derivatives, then the unit step size is eventu-
ally always accepted.
—Thus the Maratos effect does not occur, and quadratic convergence is achieved under

certain assumptions.
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