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A BUNDLE METHOD FOR A CLASS OF BILEVEL NONSMOOTH
CONVEX MINIMIZATION PROBLEMS∗

MIKHAIL V. SOLODOV†

Abstract. We consider the bilevel problem of minimizing a nonsmooth convex function over the
set of minimizers of another nonsmooth convex function. Standard convex constrained optimization
is a particular case in this framework, corresponding to taking the lower level function as a penalty
of the feasible set. We develop an explicit bundle-type algorithm for solving the bilevel problem,
where each iteration consists of making one descent step for a weighted sum of the upper and lower
level functions, after which the weight can be updated immediately. Convergence is shown under
very mild assumptions. We note that in the case of standard constrained optimization, the method
does not require iterative solution of any penalization subproblems—not even approximately—and
does not assume any regularity of constraints (e.g., the Slater condition). We also present some
computational experiments for minimizing a nonsmooth convex function over a set defined by linear
complementarity constraints.
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1. Introduction. We consider a class of bilevel problems of the form

minimize f1(x)
subject to x ∈ S2 = arg min{f2(x) | x ∈ �n},(1.1)

where f1 : �n → � and f2 : �n → � are convex functions, in general nondifferentiable.
The above is a special case of the mathematical program with generalized equation

(or equilibrium) constraint [20, 7], which is

minimize f1(x)
subject to x ∈ {x ∈ �n | 0 ∈ T (x)},

where T is a set-valued mapping from �n to the subsets of �n. The bilevel problem
(1.1) is obtained by setting T (x) = ∂f2(x), x ∈ �n. In the formulation of the problem
considered here, there is only one (decision) variable x ∈ �n, and we are interested
in identifying specific solutions of the inclusion 0 ∈ T (x) (equivalently, of the lower
level minimization problem in (1.1)); see [7]. Problems of the form of (1.1) are also
sometimes referred to as hierarchical optimization; see, e.g., [12, 4].

Note that, as a special case, (1.1) contains the standard convex constrained opti-
mization problem

minimize f1(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m,

(1.2)
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where g : �n → �m is a (nonsmooth) convex function. Indeed, (1.2) is obtained from
(1.1) by taking f2(x) = p(x), where p : �n → �+ is some penalty of the constraints,
e.g.,

f2(x) = p(x) =

m∑
i=1

max{0, gi(x)}.(1.3)

In this paper, we show that the bilevel problem (1.1) can be solved by a properly
designed (proximal) bundle method [15, 11, 3], iteratively applied to the parametrized
family of functions

Fσ(x) = σf1(x) + f2(x), σ > 0,(1.4)

where σ varies along the iterations. Specifically, if xk ∈ �n is the current iterate
and σk > 0 is the current parameter, it is enough to make just one descent step for
Fσk

from the point xk, after which the parameter σk can be immediately updated.
We emphasize that at no iteration is the function Fσk

minimized to any prescribed
precision. Once the descent condition is achieved, the parameter can be updated
immediately and we can start working with the new function Fσk+1

. For convergence
of the resulting algorithm to the solution set of (1.1), parameters {σk} should be
chosen is such a way that

lim
k→∞

σk = 0,

∞∑
k=0

σk = +∞.(1.5)

The requirement that σk must tend to zero is natural and indispensable, as can
be seen from the case of standard optimization (1.2). To this end, it is interesting to
comment on the relation between our method and the classical penalty approximation
scheme [8, 23]. The penalty scheme consists of solving a sequence of unconstrained
subproblems

minimize Fσ(x), x ∈ �n,(1.6)

where Fσ is given by (1.4) with f2 being a penalty term p, such as (1.3). (In the
literature, it is more common to minimize σ−1Fσ(x) = f1(x) + σ−1p(x), but the
resulting subproblem is clearly equivalent to (1.6).) As is well known, under mild
assumptions optimal paths of solutions x(σ) of penalized problems (1.6) tend to the
solution set of (1.2) as σ → 0. We emphasize that the requirement that penalty
parameters should tend to zero is, in general, indispensable. To guarantee that a
solution of (1.6) is a solution of the original problem (1.2) for some fixed σ > 0 (i.e.,
exactness of the penalty function), some regularity assumptions on constraints are
needed (e.g., see [3, section 14.4]). No assumptions of this type are made in this paper.
The fundamental issue is approximating x(σk) for some sequence of parameters σk →
0. It is clear that approximating x(σk) with precision is computationally impractical.
It is therefore attractive to trace the optimal path in a loose (and computationally
cheap) manner, while still safeguarding convergence. In a sense, this is what our
method does: instead of solving subproblems (1.6) to some prescribed accuracy, it
makes just one descent step for Fσk

from the current iterate xk and immediately
updates the parameter. We emphasize that this results in meaningful progress (and
ultimately produces iterates converging to solutions of the problem) for arbitrary
points xk, and not just for points close to the optimal path, i.e., points close to x(σk).
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We therefore obtain an implementable algorithm for tracing optimal paths of penalty
schemes.

We next discuss the relationship of our algorithm to the existing literature. For
the bilevel setting of (1.1), we believe that our proposal is the first method which is
completely explicit. In some ways, it is related to [4], where a proximal point method
for (1.1) has been considered, and (1.5) is referred to as slow control. However, as
any proximal method, the method of [4] is implicit: it requires solving nontrivial
subproblems of minimizing regularizations of functions Fσk

at every iteration, even if
approximately. By contrast, the method proposed in this paper is completely explicit:
each iteration is a serious (or descent) step for the current Fσk

, constructed by a finite
number of null steps in a way which is essentially standard in nonsmooth optimization.

The special case of standard optimization deserves some further comments. We
next discuss bundle methods applicable to problems with nonlinear constraints, such
as (1.2) above. When the problem admits exact penalization, one can solve the
equivalent unconstrained problem of minimizing the exact penalty function; see [14,
18]. However, as already mentioned above, exact penalization requires regularity
assumptions on constraints, such as the Slater condition (existence of some x ∈ �n

such that gi(x) < 0 for all i = 1, . . . ,m). We stress that no assumptions of this type
are needed for our method. For example, our method is applicable to minimizing a
nonsmooth function subject to (monotone linear) complementarity constraints

(Qx + q)i ≥ 0, xi ≥ 0, xi(Qx + q)i = 0, i = 1, . . . , n,

where Q is an n× n positive semidefinite matrix. Those constraints can be modeled
in the form (1.2) as

−Qx− q ≤ 0, −x ≤ 0, 〈Qx + q, x〉 ≤ 0.

Complementarity constraints do not satisfy constraint qualifications, no matter how
they are modeled, which makes this class of problems particularly difficult. We shall
come back to problems with complementarity constraints in section 4, where some
computational experiments are presented.

The methods in [21, 22] and [15, Chap. 5] do not use penalization but enforce
feasibility of every serious iteration. In particular, they require a feasible starting
point, which is a difficult computational task (in the case of nonlinear constraints).
In addition, regularity of constraints is still needed for convergence. Bundle methods
which do not use penalty functions and do not enforce feasibility are [19, 9, 24, 13].
The methods in [24, 13] share one feature in common with the one proposed here: they
apply bundle techniques to a dynamically changing objective function, except that
the function is different (underlying [24, 13] is the so-called improvement function,
which goes back to [21, 15, 1]). The methods of [24, 13] require the Slater condition,
while those in [19, 9] do not. However, [19, 9] (as well as [21, 17, 18]) need a priori
boundedness assumptions on the iterates to prove convergence. For our method, we
assume only that the solution set of the problem is bounded.

For the standard optimization setting (1.2), this paper is also somewhat related to
[5], where interior penalty schemes are coupled with continuous-time steepest descent
to produce a family of paths converging to a solution set. However, concrete numerical
schemes in [5] arise from implicit discretization and, thus, result in implicit proximal-
point iterations, just as in [4]. Nevertheless, it was conjectured in [5] that an economic
algorithm performing a single iteration of some descent method for each value of σk

could be enough to generate a sequence of iterates converging to a solution of the
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problem. This is what the presented method does, although we use exterior rather
than interior penalties and consider the more general nonsmooth setting (as well as
the more general bilevel setting). A related explicit descent scheme for the smooth
case has been developed in [25].

Our notation is quite standard. By 〈x, y〉 we denote the inner product of x and
y, and by ‖ · ‖ the associated norm, where the space is always clear from the context.
For a convex function f : �n → �, its ε-subdifferential at the point x ∈ �n is denoted
by ∂εf(x) = {g ∈ �n | f(y) ≥ f(x) + 〈g, y − x〉 − ε for all y ∈ �n}, where ε ∈ �+.
Then the subdifferential of f at x is given by ∂f(x) = ∂0f(x). If S is a closed convex
set in �n, then PS(x) stands for the orthogonal projection of the point x ∈ �n onto
S, and dist(x, S) = ‖x− PS(x)‖ is the distance from x to S.

2. The algorithm. As already outlined above, the conceptual idea of the algo-
rithm is quite simple. If xk ∈ �n is the current approximation to a solution of (1.1)
and σk > 0 is the current parameter defining the function Fσk

in (1.4), an iteration
of the method consists of making a descent step for Fσk

relative to its value at xk.
After this, the value of σk can be changed immediately. Since the function Fσk

is
nonsmooth, the computationally implementable way to construct a descent step is
the bundle technique [15, 11, 3]. We next introduce the notation necessary for stating
our algorithm.

Bundle methods keep memory of the past in a bundle of information. Let xk be
the current approximation to a solution and let yi, i = 1, . . . , �− 1, be all the points
that have been produced by the method so far, including the ones which have not
been accepted as satisfactory (so-called “null steps”). Generally, {xk} is a particular
subsequence of {yi}. For an iteration index �, we shall denote by k(�) the index of
the last iteration preceding the iteration � at which xk and σk have been modified.
Whenever k and � appear in the same expression, we mean that k = k(�).

Let us denote the function and subgradient values of f1 at the points yi, i =
1, . . . , � − 1, by f i

1 = f1(y
i), gi1 ∈ ∂f1(y

i), and similarly for f2. Since (σkg
i
1 + gi2) ∈

∂Fσk
(yi), this information can be used to define a cutting-planes approximation Ψ�

of the function Fσk
, as follows:

Ψ�(y) := max
i<�

{
σkf

i
1 + f i

2 + 〈σkg
i
1 + gi2, y − yi〉

}
= σkf1(x

k) + f2(x
k)

+ max
i<�

{
−(σke

k,i
1 + ek,i2 ) + 〈σkg

i
1 + gi2, y − xk〉

}
,(2.1)

where the second expression is centered at xk and uses the linearization errors at yi

with respect to xk:

ek,ip := fp(x
k) − f i

p − 〈gip, xk − yi〉 ≥ 0, p = 1, 2.(2.2)

We note that the second representation of Ψ� in (2.1) is better suited for implemen-
tations, due to lower storage requirements. As is readily seen from the definition of
ε-subgradients, it holds that

gip ∈ ∂ek,i
p
fp(x

k), p = 1, 2,(2.3)

and

(σkg
i
1 + gi2) ∈ ∂(σkek,i

1 +ek,i
2 )Fσk

(xk).(2.4)
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The linearization errors in (2.2) have to be properly updated every time xk changes.
Choosing a proximal parameter μ� > 0, we generate the next candidate point y�

by solving a quadratic programming (QP) reformulation of the problem

min
y∈�n

{
Ψ�(y) +

1

2
μ�‖y − xk‖2

}
.(2.5)

We note that the resulting quadratic program possesses a certain special structure,
for which efficient software has been developed [16, 10]. The iterate y� is considered
good enough when Fσk

(y�) is sufficiently smaller than Fσk
(xk) (the so-called “serious

step”; this will be made precise later). If y� is acceptable, then we set xk+1 := y�,
choose new σk+1, and proceed to construct a descent step for Fσk+1

. Otherwise, a so-
called “null step” is declared and the procedure continues for Fσk

, using the enhanced
approximation Ψ�+1.

In order for the basic idea outlined above to be practical, some important details
have to be incorporated into the design of the method, as discussed next.

The number of constraints in the QP reformulation of (2.5) is precisely the number
of elements in the bundle. Obviously, one has to keep this number computationally
manageable. Thus, the bundle has to be compressed whenever the number of elements
reaches some chosen bound. Reducing the bundle amounts to replacing the cutting-
planes model (2.1) with another function, defined with a smaller number of cutting
planes, which we shall still denote by Ψ�. This has to be done without impairing
convergence of the algorithm. For this purpose, the so-called aggregate function is
fundamental [3, Chap. 9], which we shall introduce in what follows.

It is convenient to split the information kept at iteration � into two separate
parts. One is the “oracle” bundle containing subgradient values at (some of!) points
yi, i = 1, . . . , �− 1, and the associated linearization errors (recall (2.3) and (2.2)):

Boracle
� ⊂

⋃
i<�

{(
ek,ip ∈ �+, g

i
p ∈ ∂ek,i

p
fp(x

k), p = 1, 2
)}

.

Note that here, the bundle Boracle
� is not required to contain information at all the

previous points (this is reflected by the use of the inclusion, rather than equation,
in the definition above). The other part is the “aggregate” bundle, obtained from
solutions of the QP subproblems. This bundle contains certain special ε-subgradients
at xk, to be introduced in Lemma 2.1 below. For now, we formally set

Bagg
� ⊂

⋃
i<�

{(
ε̂k,ip ∈ �+, ĝ

i
p ∈ ∂ε̂k,i

p
fp(x

k), p = 1, 2
)}

,

without specifying how exactly those objects are obtained. Note that here there may
no longer exist any previous point yi, i < �, for which ĝip ∈ ∂fp(y

i), p = 1, 2.

The information in Boracle
� and Bagg

� defines a cutting-planes approximation of
Fσk

given by

Ψ�(y) = σkf1(x
k) + f2(x

k)

+ max

{
max

i∈Boracle
�

{
−(σke

k,i
1 + ek,i2 ) + 〈σkg

i
1 + gi2, y − xk〉

}
,

max
i∈Bagg

�

{
−(σkε̂

k,i
1 + ε̂k,i2 ) + 〈σkĝ

i
1 + ĝi2, y − xk〉

}}
,(2.6)
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where by i ∈ Boracle
� we mean that there exists an element in the set Boracle

� indexed by
i; and similarly for Bagg

� . Although this notation is formally improper (the bundles are
not sets of indices), it does not lead to any confusion while simplifying the formulas.

We next discuss properties of the solution of QP subproblem (2.5) with Ψ� given
by (2.6). The following characterization is an adaptation of [3, Lemma 9.8] for our
setting.

Lemma 2.1. For the unique solution y� of (2.5) with Ψ� given by (2.6), it holds
that

(i) y� = xk − 1
μ�

(σkĝ
�
1 + ĝ�2);

(ii) ĝ�p =
∑

i∈Boracle
�

λ�
ig

i
p +

∑
i∈Bagg

�
λ̂�
i ĝ

i
p, p = 1, 2,

where λ� ≥ 0, λ̂� ≥ 0 and
∑

i∈Boracle
�

λ�
i +

∑
i∈Bagg

�
λ̂�
i = 1;

(iii) (σkĝ
�
1 + ĝ�2) ∈ ∂Ψ�(y

�);

(iv) ĝ�p ∈ ∂ε̂k,�
p

fp(x
k), where ε̂k,�p =

∑
i∈Boracle

�
λ�
ie

k,i
p +

∑
i∈Bagg

�
λ̂�
i ε̂

k,i
p , p = 1, 2;

(v) (σkĝ
�
1 + ĝ�2) = ĝ� ∈ ∂ε̂k,�Fσk

(xk), where ε̂k,� = σkε̂
k,�
1 + ε̂k,�2 ;

(vi) ε̂k,� = Fσk
(xk) − Ψ�(y

�) − 1
μ�
‖ĝ�‖2 ≥ 0.

Proof. The assertions can be verified following the analysis in [3, Lemma 9.8], and
taking into account the special structure of the function Fσk

and of its approximation
Ψ�. We omit the details.

We note that λ� and λ̂� in Lemma 2.1 are the Lagrange multipliers associated
with y� in the quadratic program reformulation of (2.5) (or the problem variables, if

one solves the dual of this quadratic program, as in [16]). In any case, λ� and λ̂� are
available as part of the solution to (2.5). The quantities ĝ�p, ε̂k,�p , p = 1, 2, defined
in Lemma 2.1 are precisely the ones that appear in the definition of Bagg

� (except
that Bagg

� contains information computed at iterations previous to the �th; at the first
iteration we formally set Bagg

� = ∅). We are now ready to introduce the aggregate
function, already mentioned above:

lk,�(y) := σkf1(x
k) + f2(x

k) − (σkε̂
k,�
1 + ε̂k,�2 ) + 〈σkĝ

�
1 + ĝ�2, y − xk〉,

where

ĝ�p ∈ ∂ε̂k,�
p

fp(x
k), p = 1, 2,(2.7)

and consequently,

(σkĝ
�
1 + ĝ�2) ∈ ∂(σk ε̂

k,�
1 +ε̂k,�

2 )Fσk
(xk).(2.8)

As already noted above, this function is defined directly from the quantities available
after solving (2.5).

As pointed out in [6, eqs. (4.7)–(4.9)], to guarantee that a bundle technique would
be able to construct a descent step for Fσk

with respect to its value at xk (assuming
xk is not a minimizer of Fσk

) one can actually use any cutting-planes models Ψ�

satisfying (for all y ∈ �n) the following three conditions:

Ψ�(y) ≤ Fσk
(y) for all � ≥ 1 and all k ,

lk,�(y) ≤ Ψ�+1(y) for those � for which y� is a null step,
σkf

�
1 + f �

2 + 〈σkg
�
1 + g�2, y − y�〉 ≤ Ψ�+1(y) for those � for which y� is a null step.

The last two conditions mean that when defining the new bundles, it is enough for
Boracle
�+1 to contain the cutting plane computed at the new point y� (i.e., the subgradi-

ents g�1, g
�
2, and the associated linearization errors ek,�1 , ek,�2 ) and for Bagg

�+1 to contain
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the last aggregate function lk,� (i.e., the ε-subgradients ĝ�1, ĝ
�
2, and the associated ε̂k,�1 ,

ε̂k,�2 ). In particular, at any iteration, the bundle can contain as few elements as we
wish (as long as the two specified above are included). This fact is crucial for effective
control of the size of subproblems (2.5). Finally, to make sure that the first condition
above holds for all k, the linearization and aggregate errors have to be properly up-
dated every time xk changes to xk+1 (in particular, to ensure the key relations (2.4)
and (2.8)). As is readily seen, the following formulas do the job:

ek+1,i
p = ek,ip + fp(x

k+1) − fp(x
k) + 〈gip, xk − xk+1〉, p = 1, 2, for i ∈ Boracle

�+1 ,

ε̂k+1,i
p = ε̂k,ip + fp(x

k+1) − fp(x
k) + 〈ĝip, xk − xk+1〉, p = 1, 2, for i ∈ Bagg

�+1.

(2.9)

We are now ready to formally state the algorithm.
Algorithm 2.1 (bilevel bundle method).
Step 0. Initialization.

Choose parameter m ∈ (0, 1) and an integer |B|max ≥ 2.
Choose x0 ∈ �n and σ0 > 0, β0 > 0. Set y0 := x0 and compute f0

p , g
0
p,

p = 1, 2. Set k = 0, � = 1, e0,0
p := 0, p = 1, 2. Define the starting bundles

Boracle
1 := {(e0,0

p , g0
p, p = 1, 2)} and Bagg

1 := ∅.
Step 1. QP subproblem.

Choose μ� > 0 and compute y� as the solution of (2.5), where Ψ� is
defined by (2.6). Compute

ĝ� = μ�(x
k − y�), ε̂k,� = Fσk

(xk) − Ψ�(y
�) − 1

μ�
‖ĝ�‖2, δ� = ε̂k,� +

1

2μ�
‖ĝ�‖2.

Compute f �
p, g

�
p, p = 1, 2. Compute ek,�p , p = 1, 2, using (2.2) written with

i = �.
Step 2. Descent test. If

Fσk
(y�) ≤ Fσk

(xk) −mδ�,(2.10)

then declare a serious step. Otherwise, declare a null step.
Step 3. Bundle management.

Set Boracle
�+1 := Boracle

� and Bagg
�+1 := Bagg

� . If the bundle has reached the

maximum size (i.e., if |Boracle
�+1 ∪ Bagg

�+1| = |B|max), then delete at least

two elements from Boracle
�+1 ∪ Bagg

�+1 and append the aggregate information

(ε̂�,kp , ĝ�p, p = 1, 2) to Bagg
�+1.

In any case, append (ek,�p , g�p, p = 1, 2) to Boracle
�+1 .

Step 4. If Descent test was satisfied,
set xk+1 = y� and choose 0 < σk+1 ≤ σk and 0 < βk+1 ≤ βk.
Update the linearization and aggregate errors using (2.9).
Set k = k + 1 and go to Step 5.
If

max{ε̂k,�, ‖ĝ�‖} ≤ βkσk,(2.11)

choose 0 < σk+1 < σk and 0 < βk+1 < βk.
Set xk+1 = xk, k = k + 1 and go to Step 5.

Step 5. Set � = � + 1 and go to Step 1.
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The role of checking condition (2.11) is to detect the situation when the point xk

happens to be a minimizer of the function Fσk
(or is almost a minimizer; recall Lemma

2.1(v)). If it is so, we immediately update the parameter σk. This is reasonable, since
we are not interested in minimizing Fσk

. The case of xk being a minimizer of Fσk
,

however, is very unlikely to occur, since for no iteration k the function Fσk
is being

minimized with any prescribed precision. This is also confirmed by our numerical
experiments in section 4, where we ignored the safeguard (2.11) in our implementation.

The algorithm does not have an overall stopping test. In the unconstrained case,
a reliable stopping test is one of the important advantages of bundle methods (as
compared, for example, to subgradient methods). However, lack of a stopping test
in our setting cannot be considered to be a drawback of the algorithm. Indeed, a
bilevel problem does not admit an explicit optimality condition. Actually, the same is
in general already true for constrained optimization without a regularity assumption
on the constraints (except for some special cases, of course). As a result, there is no
explicit way to measure violation/satisfaction of optimality in (1.1), and, consequently,
lack of a stopping test is inherent in the nature of the problem.

We note that there is certain freedom in updating or not updating the parameter
σk after every iteration. While our goal is to show that we can update it after a
single descent step, note that, in principle, we are not obliged to do so (σk+1 = σk

is allowed, unless (2.11) holds; in the latter case, xk almost minimizes Fσk
and it

does not make sense to insist on further descent for this function). For convergence,
it would be required that σk not go to zero too fast, in the sense of condition (1.5)
stated above. In the case of the standard optimization problem (1.2), this condition
allows a natural interpretation. In order to be able to trace the optimal penalty path
x(σ) with such a relaxed precision (making just one descent step for each penalized
subproblem (1.6)), we should not be jumping too far from the target x(σk) on the path
to the next target x(σk+1) as we move along. On the other hand, if σk is kept constant
over a few descent iterations, this allows for a more rapid change in the parameter
for the next iteration, while still guaranteeing the second condition in (1.5). This is
intuitively reasonable: if we get closer to the optimal path, then the target can be
moved further. In our numerical experiments in section 4, we have used the simplest
generic choice of σk = σ0/(k+1). We have experimented with some other options (for
example, keeping the parameter unchanged for some iterations), but found that this
does not make much difference (for our test problems). We shall discuss this further
in section 4.

3. Convergence analysis. In our convergence analysis, we assume that the
objective function f1 is bounded below; i.e.,

−∞ < f̄1 = inf {f1(x) | x ∈ �n}.

Since we also assume that the problem is solvable, the function f2 is automatically
bounded below, and we define

−∞ < f̄2 = min {f2(x) | x ∈ �n}.

For the subsequent analysis, it is convenient to think of Algorithm 2.1 as “applied”
to the shifted function

Fσ(x) = σ(f1(x) − f̄1) + (f2(x) − f̄2),(3.1)

instead of the function Fσ given by (1.4), as stated originally. We can do this because
Algorithm 2.1 would generate the same iterates whether Fσ were given by (3.1) or
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(1.4). Indeed, the two functions have the same subgradients and the same difference
for function values at any two points. Hence, the cutting-planes models (2.6) for the
two functions would differ by a constant term (not dependent on y). This means that
solutions y� of QP subproblems (2.5) would be the same, as well as the quantities
ĝ� and ε̂k,�, which are defined by those solutions. Therefore, the relations in (2.10)
and (2.11), which are guiding the algorithm, also do not change. From now on, we
consider that the method is “applied” to function Fσ defined by (3.1) (even though the
function from (1.4) is used in reality, of course). This is convenient for the subsequent
analysis and should not lead to any confusion.

We proceed to prove convergence of the algorithm.
Proposition 3.1. Let f1 and f2 be convex functions.
If for consecutive null steps it holds that μ̄ ≥ μ�+1 ≥ μ� > 0, then Algorithm 2.1 is

well defined and either (2.10) or (2.11) (or both) hold infinitely often. In particular,
the parameter σk is updated infinitely often.

Proof. Let k be any iteration index and consider the sequence of null steps applied
to the current (fixed over those null steps) function Fσk

. By properties of standard
bundle methods (e.g., [3, Thm. 9.15]), it holds that either the descent test (2.10) is
satisfied after a finite number of null steps, or xk is a minimizer of Fσk

. In the latter
case, it further holds that δ� → 0 as � → ∞. Hence, ĝ� → 0 and ε̂k,� → 0 as � → ∞.
This means that the condition (2.11) would be satisfied after a finite number of null
steps.

We have therefore established that either (2.10) or (2.11) is guaranteed to be
satisfied after a finite number of null steps. This shows that the method is well
defined and updates σk infinitely often.

We next prove that the generated sequence {xk} is bounded and its accumulation
points are feasible for problem (1.1).

Proposition 3.2. Let f1 and f2 be convex functions such that f1 is bounded
below on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, that μ�+1 ≥ μ� on consecutive
null steps, and that σk → 0 as k → ∞.

Then any sequence {xk} generated by Algorithm 2.1 is bounded and all its accu-
mulation points are feasible for problem (1.1); i.e., they belong to S2.

Proof. If the serious step descent test (2.10) is satisfied only a finite number of
times, it is readily seen that there exists some iteration index k0 such that xk = xk0

for all k ≥ k0 (because xk is changed only at serious steps, i.e., when (2.10) holds).
Hence, in this case {xk} is trivially bounded.

Assume now that (2.10) is satisfied infinitely often. In what follows, we consider
the subsequence of indices k at which (2.10) holds, i.e., at which xk changes. But
to simplify the notation, we shall not introduce this subsequence explicitly. Here,
we can simply disregard all the iterations at which xk remained fixed. We can do
this within the current analysis of boundedness of {xk}, because those iterations
merely changed σk (and the only assumption for the latter used below is that it
should be nonincreasing—the property which holds for any subsequence of {σk} by
the construction of the method).

For each k, let �(k) be the index � for which (2.10) was satisfied (in particular,
xk+1 = y�(k)). By (2.10), it holds that

mδ�(k) ≤ Fσk
(xk) − Fσk

(xk+1)

= σk(f1(x
k) − f̄1) − σk(f1(x

k+1) − f̄1)

+ (f2(x
k) − f̄2) − (f2(x

k+1) − f̄2).
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Summing up the latter inequalities for k = 0, . . . , k1, we obtain that

m

k1∑
k=0

δ�(k) ≤ σ0(f1(x
0) − f̄1) +

k1−1∑
k=0

(σk+1 − σk)(f1(x
k+1) − f̄1)

−σk1(f1(x
k1+1) − f̄1) + (f2(x

0) − f̄2) − (f2(x
k1+1) − f̄2)

≤ σ0(f1(x
0) − f̄1) + (f2(x

0) − f̄2),

where we have used the facts that, for all k, f1(x
k) ≥ f̄1, f2(x

k) ≥ f̄2, and 0 < σk+1 ≤
σk. Letting k1 → ∞, we conclude that

∞∑
k=0

δ�(k) ≤ m−1(σ0(f1(x
0) − f̄1) + (f2(x

0) − f̄2)) < +∞.(3.2)

In particular,

δ�(k) → 0 as k → ∞.(3.3)

Take any x̄ ∈ S1 �= ∅. Using Lemma 2.1(i), we obtain that

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 − 2

μ�(k)
〈ĝ�(k), xk − x̄〉 +

1

μ2
�(k)

‖ĝ�(k)‖2

≤ ‖xk − x̄‖2 +
2

μ�(k)

(
Fσk

(x̄) − Fσk
(xk) + ε̂k,�(k) +

1

2μ�(k)
‖ĝ�(k)‖2

)

= ‖xk − x̄‖2 +
2

μ�(k)
δ�(k)

+
2

μ�(k)

(
σk(f1(x̄) − f1(x

k)) + f2(x̄) − f2(x
k)
)

≤ ‖xk − x̄‖2 +
2

μ�(k)
δ�(k) +

2σk

μ�(k)

(
f1(x̄) − f1(x

k)
)
,(3.4)

where the first inequality is by Lemma 2.1(v), and the last is by the fact that f2(x̄) ≤
f2(x

k), since x̄ ∈ S1 ⊂ S2.
We next consider separately the following two possible cases:

Case 1. There exists k2 such that f1(x̄) ≤ f1(x
k) for all k ≥ k2.

Case 2. For each k, there exists k3 ≥ k such that f1(x̄) > f1(x
k3).

Case 1. For k ≥ k2, we obtain from (3.4) that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�(k).(3.5)

Recalling (3.2), we conclude that {‖xk− x̄‖2} converges (see, e.g., [23, Lem. 2, p. 44]).
Hence, {xk} is bounded.

Case 2. For each k, define

ik = max{i ≤ k | f1(x̄) > f1(x
i)}.

In the case under consideration, it holds that ik → ∞ when k → ∞.
We first show that {xik} is bounded. Observe that

S1 = {x ∈ S2 | f1(x) ≤ f1(x̄)}
= {x ∈ �n | max{f2(x) − f̄2, f1(x) − f1(x̄)} ≤ 0}.
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By assumption, the set S1 is nonempty and bounded. Therefore, the convex function

φ : �n → �, φ(x) = max{f2(x) − f̄2, f1(x) − f1(x̄)}

has a particular level set {x ∈ �n | φ(x) ≤ 0} which is nonempty and bounded. It
follows that all level sets of φ are bounded (see, e.g., [2, Prop. 2.3.1]), i.e.,

Lφ(c) = {x ∈ �n | φ(x) ≤ c}

is bounded for any c ∈ �.
Since f1(x) − f̄1 ≥ 0 for all x ∈ �n and 0 < σk+1 ≤ σk, it holds that

Fσk+1
(x) ≤ Fσk

(x) for allx ∈ �n.

Hence,

0 ≤ Fσk+1
(xk+1) ≤ Fσk

(xk+1) ≤ Fσk
(xk),

where the third inequality follows from (2.10). The above relations show that {Fσk
(xk)}

is nonincreasing and bounded below. Hence, it converges. It then easily follows that
{f2(x

k)−f̄2} is bounded (because both terms in Fσk
(xk) = σk(f1(x

k)−f̄1)+(f2(x
k)−

f̄2) are nonnegative).
Fix any c ≥ 0 such that f2(x

k) − f̄2 ≤ c for all k. Since f1(x
ik) − f1(x̄) < 0 ≤ c

(by the definition of the index ik), we have that xik ∈ Lφ(c), which is a bounded set.
This shows that {xik} is bounded.

By the definition of ik, it further holds that

f1(x̄) ≤ f1(x
i), i = ik + 1, . . . , k (if k > ik).

Hence, from (3.4), we have that

‖xi+1 − x̄‖2 ≤ ‖xi − x̄‖2 +
2

μ̂
δ�(i), i = ik + 1, . . . , k.

Therefore, for any k, it holds that

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 +
2

μ̂

k−1∑
i=ik+1

δ�(i)

≤ ‖xik − x̄‖2 +
2

μ̂

∞∑
i=ik+1

δ�(i).(3.6)

Recalling that ik → ∞, by (3.2) we have that

∞∑
i=ik+1

δ�(i) → 0 as k → ∞.(3.7)

Taking also into account the boundedness of {xik}, the relation (3.6) implies that the
whole sequence {xk} is bounded.

We next show that all accumulation points of {xk} belong to S2. For each k,
either (2.10) or (2.11) holds. Regardless of whether both conditions hold infinitely
often or only one does, it is easy to see that

ĝ�(k) → 0 and ε̂k,�(k) → 0 as k → ∞,(3.8)
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where (3.3) is used if (2.10) holds infinitely often, and (2.11) is used directly.

Let x ∈ �n be arbitrary but fixed. By Lemma 2.1(v),

σkf1(x) + f2(x) ≥ σkf1(x
k) + f2(x

k) + 〈ĝ�(k), x− xk〉 − ε̂k,�(k).(3.9)

Let x∞ be any accumulation point of {xk}. Using boundedness of {xk}, the continuity
of f1 and f2, the fact that σk → 0 and (3.8), and passing onto the limit in (3.9) along
the subsequence which converges to x∞, we obtain that f2(x) ≥ f2(x

∞), where x ∈ �n

is arbitrary. Hence, x∞ ∈ S2.

The rest of the proof is done separately for the following two cases: the number
of serious steps when (2.10) is satisfied is either infinite or finite.

Theorem 3.3. Let f1 and f2 be convex functions such that f1 is bounded below
on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, and that μ�+1 ≥ μ� on consecu-
tive null steps.

If serious step descent test (2.10) is satisfied an infinite number of times and we
choose {σk} according to (1.5) and {βk} → 0 as k → ∞, then dist(xk, S1) → 0 as
k → ∞, and all accumulation points of {xk} are solutions of (1.1).

Proof. Take any x̄ ∈ S1. We again consider separately the two possible cases
introduced in the proof of Proposition 3.2:

Case 1. There exists k2 such that f1(x̄) ≤ f1(x
k) for all k ≥ k2.

Case 2. For each k, there exists k3 ≥ k such that f1(x̄) > f1(x
k3).

Case 2. Recalling that ik = max{i ≤ k | f1(x̄) > f1(x
i)} so that f1(x

ik) < f1(x̄),
by the continuity of f1 it holds that f1(x

∞) ≤ f1(x̄) for any accumulation point
x∞ of {xik}. Since all accumulation points of {xk} belong to S2 (as established in
Proposition 3.2), it must be the case that all accumulation points of {xik} are solutions
of the problem. In particular,

dist(xik , S1) → 0 as k → ∞.(3.10)

For each k, define x̄k = PS1(x
ik). Using (3.6) with x̄ = x̄k gives

dist(xk, S1)
2 ≤ ‖xk − x̄k‖2

≤ dist(xik , S1)
2 +

2

μ̂

∞∑
i=ik+1

δ�(i).

Passing onto the limit in the latter relation as k → ∞, and using (3.7) and (3.10), we
obtain that dist(xk, S1) → 0.

Case 1. As has been shown in Proposition 3.2, in this case the sequence {‖xk−x̄‖}
converges for any x̄ ∈ S1. Therefore, if we establish that {xk} has an accumulation
point x∞ ∈ S1, it would immediately follow that {‖xk − x∞‖} → 0; i.e., the whole
sequence {xk} converges to x∞ ∈ S1.

Suppose first that (2.11) is satisfied only a finite number of times. Suppose further
that there is no accumulation point of {xk} which solves (1.1). Since, by Proposition
3.2, all accumulation points are feasible for (1.1), the second assumption means that
lim infk→∞ f1(x

k) > f1(x̄), where x̄ ∈ S1. In particular, there exists t > 0 such that
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f1(x̄) ≤ f1(x
k) − t for all k ≥ k4. We then obtain from (3.4) that for k > k4, it holds

that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�(k) −

2t

μ̄
σk

≤ ‖xk4 − x̄‖2 +
2

μ̂

k∑
i=k4−1

δ�(i) −
2t

μ̄

k∑
i=k4−1

σi.

Passing onto the limit when k → ∞ in the latter relation, we obtain

2t

μ̄

∞∑
i=k4−1

σi ≤ ‖xk4 − x̄‖2 +
2

μ̂

∞∑
i=k4−1

δ�(i),

which is a contradiction, due to (3.2) and (1.5). Hence, lim infk→∞ f1(x
k) = f1(x̄).

Since {xk} is bounded, it must have an accumulation point x∞ such that f1(x
∞) =

f1(x̄). As x∞ ∈ S2, this means that x∞ ∈ S1.
Finally, suppose that (2.11) is satisfied an infinite number of times. Consider the

subsequence of indices k for which (2.11) holds (we shall not specify it explicitly) and
let �(k) denote the associated index � in (2.11). We have that

max{σ−1
k ε̂k,�(k) , σ−1

k ‖ĝ�(k)‖} ≤ βk, βk → 0.(3.11)

Taking any x ∈ S2 and using Lemma 2.1(v), we have that

σkf1(x) + f2(x) ≥ σkf1(x
k) + f2(x

k) + 〈ĝ�(k), x− xk〉 − ε̂k,�(k).

Since f2(x) ≤ f2(x
k) for any x ∈ S2, we obtain

f1(x) ≥ f1(x
k) + 〈σ−1

k ĝ�(k), x− xk〉 − σ−1
k ε̂k,�(k).(3.12)

Hence, passing onto the limit in (3.12) as k → ∞ along some subsequence converging
to x∞ and taking into account (3.11), we conclude that f1(x) ≥ f1(x

∞) for any
x ∈ S2. Therefore, x∞ ∈ S1 also in this case, which concludes the proof.

It remains to consider the case of a finite number of serious steps in Algorithm
2.1. As already discussed above, this is rather unlikely to occur. Actually, as the next
result shows, it can happen only if we hit an exact solution of the problem, which is
generally an exceptional situation.

Theorem 3.4. Let f1 and f2 be convex functions such that f1 is bounded below
on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, and that μ�+1 ≥ μ� on consecu-
tive null steps.

If the serious step descent test (2.10) is satisfied a finite number of times and we
choose {σk} → 0 and {βk} → 0 as k → ∞, then there exists an iteration index k0

such that xk = xk0 for all k ≥ k0 and xk0 ∈ S1.
Proof. Since xk is changed only when (2.10) holds, it is readily seen that xk = xk0

for all k ≥ k0. By Proposition 3.2, we have that xk0 ∈ S2.
By Proposition 3.1, we have that for all k ≥ k0, σk is updated when (2.11) holds.

For each k, let �(k) denote the index � for which (2.11) is satisfied. We have that

max{σ−1
k ε̂k,�(k) , σ−1

k ‖ĝ�(k)‖} ≤ βk, βk → 0.(3.13)



BUNDLE METHOD FOR BILEVEL NONSMOOTH MINIMIZATION 255

Taking any x ∈ S2 and using Lemma 2.1(v), we have that

σkf1(x) + f2(x) ≥ σkf1(x
k0) + f2(x

k0) + 〈ĝ�(k), x− xk0〉 − ε̂k,�(k).

Since f2(x) = f2(x
k0) for any x ∈ S2, we obtain

f1(x) ≥ f1(x
k0) + 〈σ−1

k ĝ�(k), x− xk0〉 − σ−1
k ε̂k,�(k).(3.14)

Hence, passing onto the limit in (3.14) as k → ∞ and taking into account (3.13), we
conclude that f1(x) ≥ f1(x

k0) for any x ∈ S2. Therefore, xk0 ∈ S1, as claimed.

4. Computational experiments. In this section, we report on some numerical
experiments for the problem of minimizing a piecewise quadratic convex function
over a set defined by monotone linear complementarity constraints. Specifically, we
consider the problem

minimize maxj=1,...,l{〈Ajx, x〉 + 〈bj , x〉 + cj}
subject to Qx + q ≥ 0, x ≥ 0, 〈x,Qx + q〉 ≤ 0,

(4.1)

where Q and Aj , j = 1, . . . , l, are n × n positive semidefinite matrices; q and bj ,
j = 1, . . . , l, are vectors in �n; and cj ∈ �, j = 1, . . . , l. This problem is converted to
the setting of the paper by choosing

f1(x) = max
j=1,...,l

{〈Ajx, x〉 + 〈bj , x〉 + cj},

f2(x) =

n∑
i=1

max{−xi, 0} +

n∑
i=1

max{−(Qx + q)i, 0} + max{〈Qx + q, x〉, 0}.

The code is written in MATLAB, essentially by making modifications to a more-or-less
standard unconstrained proximal bundle code. Runs are performed under MATLAB
Version 7.0.0.19901 (R14). The test problems were constructed by first generating a
feasible point x̄ of (4.1), and then a function f1 for which x̄ is optimal. Details are
presented next.

The process starts with defining an n×n positive semidefinite matrix Q of rank r <
n, whose entries are uniformly distributed in the interval [−5, 5]. We next generate a
point x̄, with each coordinate having equal probability of being zero or being uniformly
distributed in [0, 5]. Finally, we define q = −Qx̄+ ȳ, where a coordinate of ȳ is zero if
the corresponding coordinate of x̄ is positive, while other coordinates of ȳ have equal
probability of being zero or uniformly generated from [0, 5]. As can be easily seen,
such x̄ is a feasible point for problem (4.1). It does not satisfy strict complementarity
and, typically, is not an isolated feasible point (here, it is important that Q is a
degenerate matrix). Obviously, x̄ is an unconstrained minimizer of the function f2,
i.e., x̄ ∈ S2.

Next, we construct a function f1 such that x̄ is a minimizer of f1 over S2. As the
constraints in (4.1) do not satisfy a constraint qualification, we can only overestimate
the tangent cone TS2(x̄) to S2 at x̄, which gives underestimation of its dual:

(TS2
(x̄))∗ ⊃ K = cone

(
{−ei | x̄i = 0} ∪ {−Qi | ȳi = 0} ∪ {q + (Q + Q�)x̄}

)
,(4.2)

where ei is the ith element of the canonical basis of �n, Qi is the ith row of the matrix
Q, and cone(X) stands for the conic hull of the set X in �n.
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We shall construct the needed function f1 by defining antigradients of pieces of
f1 active at x̄ as some elements belonging to the right-hand side of (4.2). This would
guarantee the optimality condition

0 ∈ ∂f1(x̄) + (TS2
(x̄))∗,(4.3)

even though the set (TS2
(x̄))∗ is not fully known. First, we generate symmetric n×n

positive semidefinite matrices Aj , j = 1, . . . , l, with random entries distributed in
[−5, 5]. Choosing the number l0 ≤ l of pieces of f1 active at x̄, we next define

bj = −2Aj x̄− uj , uj ∈ K, j = 1, . . . , l0,

where elements uj of K are generated by taking random coefficients in [0, 1] for all
vectors in the right-hand side of (4.2). The elements bj , j = l0+1, . . . , l, are generated
randomly.

It remains to make sure that the first l0 pieces in the definition of f1 are active
at x̄. To this end, we compute

c̄ = 5 + max
j=1,...,l

{〈Aj x̄, x̄〉 + 〈bj , x̄〉},

and set

cj = c̄− 〈Aj x̄, x̄〉 − 〈bj , x̄〉, j = 1, . . . , l0,

cj = 0, j = l0 + 1, . . . , l.

It can be seen that for the point x̄, the maximum in the definition of f1 is attained
for indices j = 1, . . . , l0, and that f1(x̄) = c̄. By the previous constructions, we have
that (4.3) holds, and thus x̄ is a solution of (4.1). Furthermore, the optimal value of
this problem is c̄.

Our code is a slightly simplified version of Algorithm 2.1, in particular in the fol-
lowing two details. First, instead of an aggregation technique to control the bundle,
we use simple selection of active pieces; i.e., after every iteration we discard those
cutting planes which correspond to zero multipliers in the solution of the QP sub-
problem. Second, we ignore the safeguard (2.11) that detects when the current point
xk is almost a minimizer of Fσk

, and so σk needs to be reduced (even if a serious
step has not yet been constructed). As already discussed above, since at no iteration
Fσk

is being minimized to any specific precision, this situation is unlikely to occur
prematurely if σk is updated after each serious step. This intuition was confirmed by
our experiments. We observed that optimality is achieved only asymptotically, and
so the standard bundle stopping test,

ε̂k,� ≤ t1 and ‖ĝ�‖2 ≤ t2,(4.4)

can be used without any harm. But, of course, one has to be aware that this stopping
test cannot be fully reliable in our setting. In our experiments, we set t1 = 10−2 and
t2 = 10−4, as it is often difficult to get more precision from a nondifferentiable opti-
mization code in a simple MATLAB implementation. We start with x0 = (2, . . . , 2),
and set m = 10−1 in the descent test (2.10). The proximal parameter μ� in (2.5) is
changed at serious steps only by the safeguarded version of the reversal quasi-Newton
scalar update; see [3, section 9.3.3]. More precisely,

μk+1 = min {c1,max{μ̃k+1, c2}} ,
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Table 4.1

Summary of numerical experiments.

Convergence (out of 20) “Failures” (out of 20)
n = 5 18 cases 38.3 oracle calls 2 cases 100 oracle calls
rankQ = 4 R1 = 2.2 ∗ 10−5 R2 = 1.2 ∗ 10−5 R1 = 4.1 ∗ 10−4 R2 = 2.2 ∗ 10−4

n = 5 19 cases 32.2 oracle calls 1 case 100 oracle calls
rankQ = 2 R1 = 6.2 ∗ 10−4 R2 = 8.1 ∗ 10−5 R1 = 3.2 ∗ 10−4 R2 = 1.1 ∗ 10−5

n = 10 12 cases 109.5 oracle calls 8 cases 200 oracle calls
rankQ = 8 R1 = 2.8 ∗ 10−5 R2 = 1.4 ∗ 10−5 R1 = 2.2 ∗ 10−4 R2 = 3.3 ∗ 10−5

n = 10 14 cases 89.9 oracle calls 6 cases 200 oracle calls
rankQ = 5 R1 = 3.7 ∗ 10−4 R2 = 4.2 ∗ 10−5 R1 = 7.2 ∗ 10−4 R2 = 5.3 ∗ 10−4

n = 10 16 cases 60.6 oracle calls 4 cases 200 oracle calls
rankQ = 2 R1 = 9.8 ∗ 10−4 R2 = 5.4 ∗ 10−6 R1 = 2 ∗ 10−3 R2 = 3.1 ∗ 10−6

where μ̃k+1 is the value prescribed by [3, section 9.3.3], and c1 = 10, c2 = 10−1.
Subproblems (2.5) are solved by applying the MATLAB QP routine qp.m to the dual
formulation of (2.5).

For updating the weight parameter, we use the simple generic choice

σk = σ0/(k + 1).(4.5)

For lower dimensions (say, n = 5), when fewer iterations are expected, we start with
σ0 = 10. For higher dimensions (say, n = 10), when more iterations are typically
needed, we start with σ0 = 20. We have experimented with other possibilities, like
keeping σk fixed over some number of serious steps, as well as with some more involved
strategies. While improvements are possible, at this time we did not find them signifi-
cant enough, with respect to the simple (4.5), to warrant their description. Generally,
our experiments are intended for merely verifying that the proposed algorithm works
and in a reasonable way. We did not spend much time on tuning various parameters
to obtain an efficient code. To achieve this, as a first step, one should dispense with
the generic qp.m MATLAB QP solver, which is known to be problematic (and was ob-
served to be a limitation for our experiments as well). Instead, some good specialized
solver (e.g., based on [16, 10]) has to be employed.

Our results are summarized in Table 4.1. We report on problems of dimensions
n = 5 and n = 10, with various degrees of degeneracy of matrix Q, i.e., for different
values of rank Q = r < n. Note that the number of constraints in (4.1) is 2n + 1.
For each pair of n and r the results are averaged over 20 runs. For all the problems,
l = 5 and l0 = 3; i.e., f1 is defined by a maximum of five quadratic functions, with
three of them being active at x̄. We found that moderate variations of l and l0 do not
change much of the average behavior of the method. We thus keep them fixed in our
report, to simplify the table. We report the number of times (out of 20 runs) that
convergence had been declared according to the stopping rule (4.4), and the number
of times this did not happen (declared as a failure) after a maximum allowed number
of calls to the oracle (i.e., evaluations of f1, f2, and of their subgradients). In the case
of n = 5, the maximal number of oracle calls is 100, and in the case of n = 10, it is
200. For both outcomes, we report the average number of oracle calls at termination
(which is redundant in the case of failures) and the average of the relative accuracies
achieved with respect to the optimal value c̄ of problem (4.1) and of the (in)feasibility
measure (the optimal value of f1, which is zero). Specifically, in Table 4.1, we denote

R1 = |(f1(x
k) − c̄)/(f1(x

0) − c̄)|, R2 = f2(x
k)/f2(x

0),

where xk is the last serious iterate before termination.
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We note that even in the cases of “failure” the method actually makes reasonable
progress to the solution of the problem, as evidenced by the values of R1 and R2 in
Table 4.1. We believe that a more careful implementation, including a better QP
solver, should improve the accuracy (especially in higher dimensions) and eliminate
“failures” of nonsatisfaction of the stopping rule (4.4). To this end, we observed that
in most cases, the values of R1 and R2 (which measure actual proximity to solution)
are very satisfactory, and close to those reported at termination, well before the
stopping rule (4.4) is activated or the maximum number of oracle calls is reached. To
some extent, this is quite normal for bundle methods, as they have to generate enough
information in order to “recognize” optimality of the current point. For example, even
starting with x0 = x̄, about 20 oracle calls were required in our experiments before
the method stopped according to (4.4). But in some cases, even when the values in
the stopping test (4.4) are already quite close to the required tolerances relatively
early, it proves difficult to get more precision and satisfy (4.4). As already stated,
we believe that the QP solver used in our implementation is likely the main reason
we are not able to progress to higher accuracy with respect to stopping test (4.4).
In any case, we believe that Table 4.1 shows reasonable behavior of Algorithm 2.1,
even in our simple implementation, on problems with complementarity constraints
(which is a difficult class of problems). Finally, we observe that degeneracy of the
matrix Q defining complementarity constraints is not a problem for our algorithm at
all. Actually, problems with higher degeneracy of Q appear even easier to solve. We
conjecture that the reason for this is that, in the case of high degeneracy of Q, the
feasible set of (4.1) is larger and the function f2 is easier to minimize. This may make
the overall problem easier to deal with in our setting.

5. Concluding remarks. We have presented a bundle method for solving a
nonsmooth convex bilevel problem, which includes standard nonsmooth constrained
optimization as a special case. The attractive feature of the method is that it is
completely explicit. In particular, it does not require an iterative solution (not even
approximate) of any optimization subproblems with general structure. Moreover, in
the case of optimization, no constraint qualifications are required for convergence.

Acknowledgment. The author thanks Claudia Sagastizábal for her MATLAB
unconstrained bundle code, which served as the basis for the implementation of Al-
gorithm 2.1.
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