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Abstract Usual global convergence results for sequential quadratic programming
(SQP) algorithms with linesearch rely on some a priori assumptions about the genera-
ted sequences, such as boundedness of the primal sequence and/or of the dual sequence
and/or of the sequence of values of a penalty function used in the linesearch proce-
dure. Different convergence statements use different combinations of assumptions, but
they all assume boundedness of at least one of the sequences mentioned above. In the
given context boundedness assumptions are particularly undesirable, because even for
non-pathological and well-behaved problems the associated penalty functions (whose
descent is used to produce primal iterates) may not be bounded below for any value of
the penalty parameter. Consequently, boundedness assumptions on the iterates are not
easily justifiable. By introducing a very simple and computationally cheap safeguard
in the linesearch procedure, we prove boundedness of the primal sequence in the case
when the feasible set is nonempty, convex, and bounded. If, in addition, the Slater
condition holds, we obtain a complete global convergence result without any a priori
assumptions on the iterative sequences. The safeguard consists of not accepting a fur-
ther increase of constraints violation at iterates which are infeasible beyond a chosen
threshold, which can always be ensured by the proposed modified SQP linesearch
criterion.
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1 Introduction

Consider the nonlinear programming problem

minimize f (x)
subject to x ∈ D = {x ∈ �n | gi (x) ≤ 0, i = 1, . . . ,m}, (1)

where f : �n → � and g : �n → �m are differentiable. One of the classical, yet
practically efficient, approaches to solving (1) is the sequential quadratic programming
(SQP) method (see, e.g., [1, Chap. 4] and [4, Part III]). The development and analysis
of the method go back to [12] and to [5,6,8–11], as well as numerous subsequent
references.

Given some current primal iterate xk ∈ �n , SQP computes the primal direction of
change dk ∈ �n as the solution of

minimize 〈 f (xk), d〉 + 1
2 〈Hkd, d〉

subject to d ∈ Dk = {d ∈ �n | gi (xk)+ 〈g′
i (x

k), d〉 ≤ 0, i = 1, . . . ,m}, (2)

where Hk is an n × n symmetric positive definite matrix (For the purposes of this
discussion, we assume that Dk �= ∅. We note that this is always the case when g is
convex and D �= ∅. Also, having in mind global convergence properties, we shall not
discuss any specifics concerning the choice of Hk . Those specifics are much more
relevant for local convergence rates). In one of the most common classes of SQP
methods, the next iterate xk+1 is computed by a linesearch procedure in the obtained
direction dk , in order to decrease the value (with respect to xk) of some nonsmooth
penalty function

ψβk : �n → �, ψβk (x) = f (x)+ βk p(x), βk > 0, (3)

where βk is the current penalty parameter and the measure p of constraints violation
can be given, for example, by

p : �n → �+, p(x) =
m∑

i=1

max {0, gi (x)}. (4)

To ensure that dk is a direction of descent for ψβk at xk , the standard way is to choose

βk ≥ ‖µk‖∞ + δ, δ > 0, (5)

where µk ∈ �m+ is a Lagrange multiplier associated to the solution dk of (2).
Ideally (and to be really satisfactory from the mathematical standpoint), a global

convergence result should show that the iterates approach stationary points of the
problem under reasonable assumptions on the problem data (perhaps boundedness
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Global convergence of an SQP method 3

of some level sets or of the feasible set, perhaps some convexity, etc.). Despite rich
literature and widely acknowledged practical usefulness, this is not the case for SQP.
To prove global convergence of the method outlined above, some of the following a
priori assumptions on the iterative sequences, in this or that combination, are made in
the literature:

(A1) βk = β > 0 for all k ≥ k0 (or equivalently, {µk} is bounded);
(A2) limk→∞ ψβ(xk) > −∞;
(A3) {xk} is bounded.

Assuming (A3), the assumption (A2) becomes automatic, of course (for β fixed).
Furthermore, (A3) goes a long way to help justify (A1) in some situations, as will be
discussed below. However, assuming (A2) or (A3) cannot be regarded really satisfac-
tory in the context of SQP for the following reason. It is perfectly possible that for
non-pathological and well-behaved problems,

inf
x∈�n

ψβ(x) = −∞,

no matter what β > 0 is. Therefore, as {xk} is constructed by descent steps for ψβk ,
assuming (A2) or (A3) cannot be considered justifiable in this context. Consider, for
example, the problem

minimize x3 subject to x2 ≤ 1. (6)

Evidently,ψβ(x) = x3 +β max{0, x2 −1} is unbounded below for any β > 0. Hence,
given that each SQP iteration is a descent step for ψβk , one cannot take the possibility
of limk→∞ ψβk (x

k) = −∞ lightly. This is quite disturbing, since the problem above
satisfies just about any reasonable assumption one may want: we would like to compute
a stationary point of a polynomial function on a feasible set which is compact, convex
and satisfies the Slater condition. Hardly anything more could be asked. However,
to the best of our knowledge, there is no result in the literature which could claim
convergence of SQP for the presented example by looking at the problem data only, at
least when it comes to the basic SQP scheme outlined above. We shall give a theoretical
justification of why SQP works for problems like (6).

Before proceeding, we survey some of the typical global convergence statements
for basic (i.e., without complex modifications) SQP methods.

In [4, Theorem 15.2], the following situations are listed as possible for global
behaviour of SQP (we simplify the statement by assuming that the problem data is
defined on the whole space and that (1) has stationary points):

(i) {βk} is unbounded, in which case so is {µk};
(ii) βk = β > 0 for all k ≥ k0, and one of the following holds

(a) limk→∞ ψβ(xk) = −∞,
(b) limk→∞ L ′

x (x
k, µk) = 0 and limk→∞ max{µk

i ,−gi (xk)} = 0 for all i =
1, . . . ,m.

Clearly, out of all the possibilities, only the last one is satisfactory: it means that the
residual of the Karush-Kuhn-Tucker (KKT) optimality conditions for problem (1)
goes to zero, i.e., the iterates approach the set of stationary points of (1). Therefore,
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to claim convergence, (A1) and (A2) need to be assumed or established, in order to
eliminate the situations (i) and (ii a).

There are many other SQP global convergence statements in the literature, but it
seems that all of them (again, at least for simple schemes) use some of (A1)–(A3),
perhaps proving the rest, in order to eliminate the unsatisfactory outcomes (i) and (ii a).
We shall cite only a few more. In [1, Proposition 4.14(a)], (A1) is assumed and the
statement deals with accumulation points of {xk} without proving their existence
(therefore, (A3) is needed for the result not to become vacuous). As already mentioned,
(A1) is actually not difficult to guarantee under reasonable assumptions, if (A3) is
assumed. An example of this is [1, Proposition 4.14(b)], where g is convex and satisfies
the Slater condition

∃ x̂ ∈ �n such that gi (x̂) < 0, i = 1, . . . ,m. (7)

Under convexity of g, (7) and (A3), convergence follows. When, in addition to
convexity of g and the Slater condition (7), the feasible set D is compact and f
is bounded below on �n , (A3) had been established in [6, Theorem 3.3] (assuming
also (A1) and using approximate minimization of ψβ in the direction dk instead of
an implementable linesearch). Of course, boundedness below of f on �n is just ano-
ther way of assuming (A2). It should be noted here that while boundedness below of
f on the feasible set D is a natural assumption necessary for existence of solutions
of the problem, boundedness of f on �n is a completely artificial requirement for a
constrained problem. Summarizing, (A2) is still needed as an assumption even in the
presence of (A1).

Let us go back to example (6). The possible trouble, of course, could come from
points xk < −1. Observe, however, that if xk < −1 then dk ≥ (1−(xk)2)/(2xk) > 0.
In particular, from the point xk < −1 the direction dk points to the feasible set D of
(1). It can be further seen that for xk+1 = xk + αkdk with any αk ∈ (0, 1], it holds
that p(xk+1) < p(xk). We note that the latter property is independent of the value of
the stepsize αk which produced xk+1, and in particular, independent of the value of βk

chosen for the penalty function ψβk . The above observation indicates that the primal
iterates are getting closer to the bounded feasible set D, which makes the iterates
bounded. And this is just due to the structure of SQP constraints and regardless of
any other details of the method. From this, convergence of SQP when applied to the
example (6) comes as no surprise.

What has been observed for the example (6) is not accidental, of course. As is easily
seen, the directional derivative of p in the SQP direction dk ∈ Dk is strictly negative
at any infeasible point xk �∈ D. Indeed, for arbitrary x ∈ �n and d ∈ �n , we have that

p′(x; d) =
∑

i∈I+(x)
〈g′

i (x), d〉 +
∑

i∈I0(x)

max{0, 〈g′
i (x), d〉},

where I+(x) = {i = 1, . . . ,m | gi (x) > 0}, I0(x) = {i = 1, . . . ,m | gi (x) = 0}.
Since for any xk ∈ �n and dk ∈ Dk it holds that 〈g′

i (x
k), dk〉 ≤ −gi (xk) = 0,
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Global convergence of an SQP method 5

∀ i ∈ I0(xk), we have that

p′(xk; dk) =
{∑

i∈I+(xk )〈g′
i (x

k), dk〉, if xk �∈ D,
0, if xk ∈ D (I+(xk) = ∅). (8)

Furthermore, for xk �∈ D and dk ∈ Dk , we obtain that 〈g′
i (x

k), dk〉 ≤ −gi (xk) < 0,
∀ i ∈ I+(xk), so that

p′(xk; dk) ≤ −
∑

i∈I+(xk)

gi (x
k) = −p(xk) < 0. (9)

This indicates that when we make a reasonably small step in the direction dk from an
infeasible point, then the measure of infeasibility p is “likely” to decrease [because of
(9)]. Of course, the latter is not quite automatic if we ignore in the course of linesearch
the values of p and look at ψβk only. But we can guarantee the needed property by
combining the linesearch forψβk with the linesearch for p. Actually, the only essential
modification we shall make to the standard SQP method consists in ensuring that

p(xk+1) ≤ p(xk) when p(xk) > p̄,

where the infeasibility threshold p̄ ≥ 0 is a user-chosen parameter. Descent is not even
required. The idea is that this safeguard of not accepting an increase of constraints
violation at points which are already infeasible beyond a chosen (could be large)
threshold, should be enough to make {xk} bounded under reasonable assumptions
about the problem.

We should mention that the idea of limiting infeasibility of SQP iterates is certainly
not new. Related conditions with similar goals can be found, e.g., in [7], and possibly
other publications as well, but in the context of significantly modified SQP schemes.
Our goal here is to produce a complete global convergence result for the classical SQP
method, perhaps very slightly modified.

Recall that assuming regularity of constraints (e.g., the Slater condition (7) in the
case when g is convex), stationary points of (1) are characterized by the KKT conditions
in variables (x, µ) ∈ �n × �m , which are

f ′(x)+ ∑m
i=1 µi g′

i (x) = 0,
µi ≥ 0, gi (x) ≤ 0, µi gi (x) = 0, i = 1, . . . ,m.

}
(10)

2 SQP algorithm and its global convergence

We shall now proceed to formally describe the algorithm details. The unique solution
dk of (2) and an associated Lagrange multiplier µk are characterized by the KKT
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optimality conditions

f ′(xk)+ Hkdk +
m∑

i=1

µk
i g′

i (x
k) = 0, (11)

µk
i ≥ 0, gi (x

k)+ 〈g′
i (x

k), dk〉 ≤ 0, (12)

µk
i (gi (x

k)+ 〈g′
i (x

k), dk〉) = 0, i = 1, . . . ,m. (13)

Define

∆k = 〈 f ′(xk), dk〉 − βk p(xk)+ 1

2
〈Hkdk, dk〉, (14)

which is an upper bound for the derivative ofψβk at xk in the direction dk ; specifically:

ψ ′
βk
(xk; dk) = 〈 f ′(xk), dk〉 + βk

∑

i∈I+(xk )

〈g′
i (x

k), dk〉

≤ ∆k − 1

2
〈Hkdk, dk〉, (15)

where the first equality follows from (8) and the inequality follows from (12) and (14).
Algorithm 1 below is the same as a standard SQP method, except for the update

rule of the penalty parameter and the linesearch procedure. We shall discuss those
differences after stating the method.

Algorithm 1 (SQP with an infeasibility safeguard)
Choose some x0 ∈ �n, p̄ ≥ 0, δ > 0, β−1 = 0, σ ∈ (0, 1) and θ ∈ (0, 1). Set k := 0.

1. Choose an n × n positive definite matrix Hk and compute
(
dk, µk

) ∈ �n × �m as
the solution of (2) and an associated Lagrange multiplier.
Stop if dk = 0. Otherwise,

2. Set

γk =
{

maxi∈I+(xk) µ
k
i , if xk �∈ D,

0, if xk ∈ D
(
I+

(
xk

) = ∅)
.

(16)

If βk−1 ≤ γk then set βk := γk + δ; otherwise set βk := βk−1.
3. Compute ∆k by (14). Find jk , the smallest nonnegative integer j , such that

ψβk (x
k + θ j dk) ≤ ψβk (x

k)+ σθ j∆k, if p(xk) ≤ p̄, (17)

ψβk (x
k + θ j dk) ≤ ψβk (x

k)+ σθ j∆k

p(xk + θ j dk) ≤ p(xk)

}
if p(xk) > p̄. (18)

4. Set xk+1 = xk + αkdk , where αk = θ jk . Set k := k + 1 and got to Step 1.

We note that the rule presented in Step 2 of Algorithm 1 for the choice of the penalty
parameter βk is somewhat different from the common requirement based on (5) and
‖µk‖∞. We cannot be completely sure whether our rule is new, but we were not able
to find it in the literature. The advantage of the rule based on ensuring that βk > γk ,
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Global convergence of an SQP method 7

instead of βk > ‖µk‖∞, is that it may increase βk−1 by a smaller value, when it
increases it at all. Since γk ≤ ‖µk‖∞, quite possibly strictly, if the increase is needed
it may be smaller. For example, at feasible points γk = 0 and βk−1 is not increased
(except on the first iteration, if it is feasible), while the standard rule may produce an
increase. Since keeping the penalty parameter as small as possible is a well-known
requirement for good numerical performance of SQP, the rule used in our algorithm
appears to be preferable to the standard one.

The main difference that shall allow us to prove stronger-than-usual convergence
results is the modification (18) of the standard linesearch procedure. Including the
second inequality in (18) is a necessary safeguard for our analysis. But as a practical
matter, choosing p̄ > 0 very large one may expect/hope that p(xk) > p̄ will not occur
and the method would therefore work just as the usual SQP. Even if p(xk) > p̄ does
occur, one can still expect that when the first inequality in (18) would be satisfied, very
likely so would be the second. This is because dk is a direction of “strong” descent for
p at xk �∈ D (the directional derivative is smaller than the value −p(xk), see (9), which
is in turn smaller than − p̄, which can be chosen as a very negative number), while (18)
does not even require strict descent for p. Thus the interval of acceptable stepsizes
for the second inequality in (18) should typically be quite large. One can therefore
expect that (18) would often result in the same stepsize value as standard SQP. This is
why, even though our convergence results are established for the (slightly) modified
SQP method, we believe they are relevant for the usual SQP as well. For example, our
results certainly explain convergence of SQP for problems like (6), where the second
inequality in (18) always holds automatically, as discussed above.

We next show that Algorithm 1 is well-defined.

Proposition 1 Let f : �n → � and g : �n → �m be continuously differentiable in a
neighbourhood of xk ∈ �n. Assume that the subproblem (2) is feasible (In particular,
this holds if g is convex and D �= ∅).

If dk = 0 then Algorithm 1 terminates at a KKT point of (1).
If dk �= 0 then the linesearch procedure in Step 3 of Algorithm 1 terminates finitely

with some integer jk . In particular, the k-th iteration of Algorithm 1 is well defined.

Proof Since Hk is positive definite, whenever the subproblem (2) is feasible it has the
unique solution dk . If dk = 0 then (11)–(13) show that the point (xk, µk) satisfies the
KKT conditions (10) for problem (1).

Suppose that dk �= 0. Using (14), we have that

∆k = −〈Hkdk, dk〉 −
m∑

i=1

µk
i 〈g′

i (x
k), dk〉 − βk p(xk)+ 1

2
〈Hkdk, dk〉

≤ −1

2
〈Hkdk, dk〉 −

∑

i∈I+(xk )

(βk − µk
i )gi (x

k),

where the first equality follows from (11), and the inequality follows from (13) and
the fact that µk

i gi
(
xk

) ≤ 0 for all i �∈ I+(xk).
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8 M. V. Solodov

Furthermore, by Step 2 of Algorithm 1, either I+
(
xk

) = ∅ or βk ≥ µk
i for all

i ∈ I+
(
xk

)
. Hence,

∆k ≤ −1

2

〈
Hkdk, dk

〉
. (19)

By (15), we further have that

ψ ′
βk
(xk; dk) ≤ ∆k − 1

2
〈Hkdk, dk〉 ≤ ∆k < 0, (20)

where the last inequality holds whenever dk �= 0, due to (19).
By standard argument (20) implies that there exists ak > 0 such that (17) would

hold once j is such that θ j ≤ ak . If xk �∈ D, by (9) there exists bk > 0 such that
the second inequality in (18) would hold once j is large enough to satisfy θ j ≤ bk .
Consequently, in this case (18) holds for θ j ≤ min {ak, bk}. ��

We assume from now on that dk �= 0 for all k, so that an infinite sequence of iterates
is generated. We next prove that the primal sequence is bounded.

Proposition 2 Let f : �n → � and g : �n → �m be continuously differentiable
on �n.

In the case of p̄ = 0, suppose that the subproblems (2) are feasible for all k and
that the level sets of the function p are bounded (In particular, those assumptions hold
when g is convex and D is nonempty and bounded).

In the case of p̄ > 0, suppose that g is convex and D is nonempty and bounded.
Suppose that in Algorithm 1 the matrices Hk are chosen uniformly bounded and

uniformly positive definite, i.e.,

c1‖d‖2 ≤ 〈Hkd, d〉 ≤ c2‖d‖2 ∀ d ∈ �n (21)

for all k, where c2 ≥ c1 > 0.
Then any sequence

{
xk

}
generated by Algorithm 1 is bounded.

Proof Denote the level sets of p by L(c) = {x ∈ �n | p(x) ≤ c}, c ∈ �. Obviously,
D = L(0). Note that when g is convex, the subproblems (2) are feasible automatically.
Also, in this case p is convex. If we assume that the level set D = L(0)of p is nonempty
and bounded, it follows that all the level sets of p are bounded (e.g., [3, Proposition
2.3.1]).

If there exists some iteration index k1 such that p(xk) ≤ p̄ for all k ≥ k1, then {xk}
is bounded by the boundedness of L( p̄).

If there exists some iteration index k1 such that p(xk) > p̄ for all k ≥ k1, then (18)
implies that p(xk) ≤ p(xk1) for all k > k1. Hence, it holds that xk ∈ L(p(xk1)) for
all k ≥ k1. Since the level sets of p are bounded, we conclude that {xk} is bounded.

Suppose now that there is an infinite number of iterates such that p(xk) ≤ p̄ and
such that p(xk) > p̄. Then we can define an infinite subsequence {k j }, consisting of
all iteration indices such that

p(xk j ) ≤ p̄, p(xk j +1) > p̄. (22)
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Global convergence of an SQP method 9

Since the subsequence {xk j } ⊂ L( p̄) is bounded, so is { f ′(xk j )}. Take M > 0 such
that ‖ f ′(xk j )‖ ≤ M for all j . We next show that {dk j } is bounded, separately for the
cases of p̄ = 0 and p̄ > 0.

Consider first the case of p̄ = 0. The fact that xk j ∈ L(0) = D means that
g(xk j ) ≤ 0. Hence, d = 0 is feasible in subproblem (2). Using the optimality of
dk j in this subproblem, we obtain that 〈 f ′(xk j ), dk j 〉 + 1

2 〈Hkdk j , dk j 〉 < 0. Hence,
c1
2 ‖dk j ‖ ≤ ‖ f ′(xk j )‖ ≤ M , where the Cauchy-Schwarz inequality and (21) have

been used. We conclude that {dk j } is bounded.
Consider now p̄ > 0, in which case g is assumed to be convex. Let x̃ ∈ D be

any fixed feasible point. By the convexity of gi , for all i = 1, . . . ,m, we have that
0 ≥ gi (x̃) ≥ gi (xk j ) + 〈g′

i (x
k j ), x̃ − xk j 〉, so that (x̃ − xk j ) ∈ Dk j . Hence, by the

optimality of dk j in subproblem (2), we obtain that

M‖x̃ − xk j ‖ + 1

2
c2‖x̃−xk j ‖2 ≥ 〈 f ′(xk j ), x̃−xk j 〉 + 1

2
〈Hk j (x̃ − xk j ), x̃−xk j 〉

≥ 〈 f ′(xk j ), dk j 〉 + 1

2
〈Hk j d

k j , dk j 〉
≥ ‖dk j ‖(c1‖dk j ‖/2 − M), (23)

where the Cauchy–Schwarz inequality has been used twice, in the first and last inequa-
lities, together with (21). Taking into account the boundedness of {xk j }, this shows
that {dk j } must be bounded.

We next consider the cases of p̄ = 0 and p̄ > 0 again together. Since xk j +1 =
xk j + αk j d

k j , where αk j ∈ (0, 1] and {xk j } ⊂ L( p̄) and {dk j } are bounded, the
subsequence {xk j +1} is also bounded. Then by the continuity of p, {p(xk j +1)} is
bounded. Take C > 0 such that p(xk j +1) ≤ C for all j .

In addition to {k j }, define also an infinite subsequence {kl}, consisting of all iteration
indices such that

p(xkl ) > p̄, p(xkl+1) ≤ p̄. (24)

By the definitions of {k j } and of {kl}, it holds that

C ≥ p(xk j +1) ≥ p(xk j +2) ≥ · · · ≥ p(xk) > p̄, k j + 1 ≤ k ≤ kl ,

p̄ ≥ p(xk), kl + 1 ≤ k ≤ k j+1,
(25)

where we have used the facts that p is nonincreasing on iterations with xk �∈ L( p̄)
[recall (18)] until the iterates enter L( p̄), after which they stay in L( p̄) until the k j+1-st
iterate leaves this set (xk j+1 ∈ L( p̄) and xk j+1+1 �∈ L( p̄)). This iterate xk j+1+1 again
satisfies p(xk j+1+1) ≤ C and, by induction, the chain of inequalities (25) holds for
any j . This means that {xk} ⊂ L(C), so that {xk} is bounded. ��

We next show that the penalty parameter is fixed from some iteration on. The key
to the proof is boundedness of the primal sequence established in Proposition 2.

Proposition 3 Let f : �n → � and g : �n → �m be continuously differentiable on
�n. Let g be convex, D bounded and the Slater condition (7) be satisfied.
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10 M. V. Solodov

Then any sequence {µk} generated by Algorithm 1 is bounded, and it holds that
βk = βk0 = β for all k ≥ k0.

Proof By Proposition 2, under the stated assumptions {xk} is bounded. Let M > 0
be such that ‖ f ′(xk)‖ ≤ M for all k. Similarly to the proof of Proposition 2, we can
now deduce that the whole sequence {dk} is bounded, by writing relations analogous
to (23), for (x̂ − xk) ∈ Dk and dk .

We next show that the sequence {µk} is bounded. Suppose the opposite, i.e., that
there exists {k j } such that ‖µk j ‖ → ∞ as j → ∞. Taking into account the boun-
dedness of {xk} and of {‖µk j ‖−1µk j }, and taking a further subsequence, if necessary,
we can assume that {xk j } → x̃ and {‖µk j ‖−1µk j } → µ̃ �= 0. Dividing (11) by
‖µk j ‖ > 0, we have that

‖µk j ‖−1( f ′(xk j )+ Hk j d
k j )+

m∑

i=1

‖µk j ‖−1µk j g′
i (x

k j ) = 0.

Now taking into account the boundedness of {Hk} and of {dk} when passing onto the
limit as j → ∞, we obtain that

0 =
m∑

i=1

µ̃i g
′
i (x̃), µ̃ ∈ �m+\{0}. (26)

Define J = {i = 1, . . . ,m | µ̃i > 0}. Evidently, it must hold that µ
k j
i > 0 for all

i ∈ J and all j sufficiently large. By (13) we then have that

gi (x
k j )+ 〈g′

i (x
k j ), dk j 〉 = 0 ∀ i ∈ J. (27)

By the Slater condition (7), we have that 0 > gi (x̂) ≥ gi (xk j ) + 〈g′
i (x

k j ), x̂ − xk j 〉
∀ i ∈ J . Subtracting (27) from the latter relation, we conclude that 0 > gi (x̂) ≥
〈g′

i (x
k j ), x̂ − xk j − dk j 〉 ∀ i ∈ J . Taking possibly a further subsequence of {k j } so

that {dk j } → d̃ , and passing onto the limit as j → ∞, we obtain 0 > gi (x̂) ≥
〈g′

i (x̃), x̂ − x̃ − d̃〉 ∀ i ∈ J . But then, using that µ̃i > 0 for all i ∈ J , that µ̃i = 0 for
all i ∈ {1, . . . ,m}\J , and (26), we obtain

0 >
∑

i∈J

µ̃i gi (x̂) ≥
∑

i∈J

µ̃i

〈
g′

i (x̃), x̂ − x̃ − d̃
〉
=

m∑

i=1

〈
µ̃i g

′
i (x̃), x̂ − x̃ − d̃

〉
= 0,

which is a contradiction.
We have therefore established that {µk} is bounded. This obviously implies that {γk}

given by (16) is also bounded. Consequently, {βk} is bounded. It then easily follows
from the construction of Step 2 of Algorithm 1 that βk is modified only a finite number
of times, i.e., βk = βk0 = β for all k ≥ k0. ��
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Global convergence of an SQP method 11

We next give the final convergence result, not assuming boundedness of any
algorithmic sequences. Here, we have to choose p̄ strictly positive in Algorithm 1,
which was not important in previous results.

Theorem 1 Let f : �n → � and g : �n → �m be continuously differentiable on
�n, with derivatives which are Lipschitz-continuous on bounded sets. Let g be convex,
D bounded and the Slater condition (7) be satisfied.

Then any sequence {xk} generated by Algorithm 1, where p̄ > 0, is bounded and
each of its accumulation points is a KKT point of problem (1).

Proof Having established the preceding results, the remaining argument is close to
standard, but we need to take into account the modified stepsize rule.

We first show that the sequence of stepsizes {αk} is bounded away from zero. From
now on, let k ≥ k0 (so that βk = β, by Proposition 3). Since the sequences {xk} and
{dk} are bounded (by Proposition 2 and by the proof of Proposition 3, respectively), all
the functions involved are Lipschitz-continuous (with modulus L > 0) on the relevant
bounded set. Let also M > 0 be such that ‖dk‖ ≤ M for all k.

For all α ∈ [0, 1] and i = 1, . . . ,m, we have that

max {0, gi (x
k + αdk)} − max {0, gi (x

k)+ α〈g′
i (x

k), dk〉}
≤ max {0, gi (x

k + αdk)− gi (x
k)− α〈g′

i (x
k), dk〉}

≤ |gi (x
k + αdk)− gi (x

k)− α〈g′
i (x

k), dk〉|
≤ L

2
α2‖dk‖2, (28)

where the first inequality follows from the fact that max {0, a − b} ≥ max {0, a} −
max {0, b} ∀ a, b ∈ �; and the last inequality is by the Lipschitz-continuity of g′

i (e.g.,
[2, Proposition A.24]). We further have that

max {0, gi (x
k)+ α〈g′

i (x
k), dk〉}

= max {0, α(gi (x
k)+ 〈g′

i (x
k), dk〉)+ (1 − α)gi (x

k)}
≤ αmax {0, gi (x

k)+ 〈g′
i (x

k), dk〉} + (1 − α)max {0, gi (x
k)}

= (1 − α)max {0, gi (x
k)}, (29)

where the inequality is by the convexity of max{0, ·}, and the last equality is by (12).
Combining (28) and (29), and summing them up for i = 1, . . . ,m, we conclude that

p(xk + αdk) ≤ (1 − α)p(xk)+ Lm

2
α2‖dk‖2.

It follows that for iterations k such that p(xk) > p̄, the second relation in (18) is gua-
ranteed to be satisfied for α = θ j such that Lmα‖dk‖2/2 ≤ p(xk), and in particular,
for α such that α ≤ 2 p̄/(L M2m) (note that p̄ > 0 is important here). It is also well
known that there exists α̂ > 0 such that the inequality (17) is satisfied for α = θ j such

123



12 M. V. Solodov

that α ≤ α̂. From here, by standard argument, we obtain that Step 3 of Algorithm 1
generates αk ≥ ᾱ > 0 for all k.

Therefore, using also (19) and (21), for k ≥ k0, we obtain that

ψβ(x
k)− ψβ(x

k+1) ≥ −σαk∆k ≥ σ ᾱc1‖dk‖2/2.

This implies that 0 = limk→∞ dk , and the assertion follows by passing onto the limit
in (11)–(13) along appropriately chosen convergent subsequences. ��
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