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Abstract. We discuss assumptions on the constraint functions that allow constructive descrip-
tion of the geometry of a given set around a given point in terms of the constraints derivatives.
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Roughly speaking, (first-order) constraint qualifications are properties of the analytical de-
scription of a set which ensure that the structure of the set around a given feasible point can be
constructively captured by (first-order) approximations of the constraint functions defining the set.
If it is so, the consequences are far reaching. Constraint qualifications are essential for deriving
primal and primal-dual characterizations of solutions of optimization and variational problems, for
duality relations, sensitivity and stability analysis, and for convergence and rate of convergence of
computational methods for solving optimization and variational problems.

Let D be any set in Rn. An appropriate object to describe the geometry of D around a feasible
point x̄ ∈ D is the tangent (or contingent) cone

TD(x̄) =

{
d ∈ Rn

∣∣∣∣∣ ∃ {tk} ⊂ R+ \ {0}, {tk} → 0, ∃ {dk} ⊂ Rn, {dk} → d,

such that x̄+ tkd
k ∈ D for all k

}
.

The tangent cone includes all the feasible directions, if there are any, as well as “almost-feasible”
ones in the stated sense. Suppose further that D is defined by a finite number of equality and
inequality constraints, as is common in applications:

D = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, (1)

where h : Rn → Rl and g : Rn → Rm are given functions, which we assume to be continuously
differentiable in the region of interest. Then constraint qualifications can be thought of as conditions

1



imposed on the functions h, g and/or their derivatives at or around the point x̄, that guarantee
that the tangent cone TD(x̄) has an explicit algebraic representation in terms of the derivatives of
the constraint functions. This is crucial for developing optimality conditions in optimization, since
whenever a point x̄ is a local solution of the problem

minimize f(x) subject to x ∈ D, (2)

where f : Rn → R is differentiable at x̄, it holds that

〈f ′(x̄), x− x̄〉 ≥ 0 ∀ x ∈ x̄+ TD(x̄). (3)

Or equivalently,
−f ′(x̄) ∈ (TD(x̄))◦, (4)

where K◦ = {z ∈ Rn | 〈z, y〉 ≤ 0 ∀ y ∈ K} stands for the dual (negative polar) cone of a cone K in
Rn. Constraint qualifications allow explicit characterization of the tangent cone in (3) and of its
dual in (4), which makes these abstract optimality conditions tractable.

For the same reasons, constraint qualifications are important for solving the more general vari-
ational problems of the form

find x̄ ∈ D such that 〈F (x̄), x− x̄〉 ≥ 0 ∀ x ∈ x̄+ TD(x̄), (5)

or equivalently,
−F (x̄) ∈ (TD(x̄))◦, (6)

where F : Rn → Rn. When for some function f : Rn → R it holds that F (x) = f ′(x), x ∈ Rn, then
(5) represents the primal optimality conditions for the optimization problem (2), while (6) leads
to the primal-dual optimality conditions. But in the variational setting F need not be integrable
in general. When the feasible set D is convex, (5) becomes equivalent to the classical variational
inequality

find x̄ ∈ D such that 〈F (x̄), x− x̄〉 ≥ 0 ∀ x ∈ D.

Derivation of tractable first-order primal and primal-dual necessary optimality conditions via
computing the tangent cone in (3) and its dual in (4) is perhaps the most important role of constraint
qualifications. The term “constraint qualification” (CQ) was coined in [1]. Alternatively, the term
regularity is also sometimes used in the literature to refer to (some of the) constraint qualifications.
Constraint qualifications also appear in second-order necessary optimality conditions. And, as
already mentioned, they play an important role in deriving duality relations, sensitivity/stability
analysis, error bound estimates, and convergence and rate of convergence of computational methods.

1 Tangent cone and first-order primal-dual optimality conditions

Consider a set D defined by a finite number of equality and inequality constraints, as in (1). Let
x̄ ∈ D be any feasible point. If gi(x̄) < 0 for some i ∈ {1, . . . ,m}, by continuity gi(x) < 0 for all
x ∈ Rn close to x̄, and it is clear that such constraints (inactive at x̄) do not influence the geometry
of the set D around the point x̄. Let

A(x̄) = {i = 1, . . . ,m | gi(x̄) = 0}
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be the set of inequality constraints active at x̄. All the equality constraints are, of course, active at
any feasible point. Consider now the cone of directions obtained by linearizing all the constraints
active at x̄:

LD(x̄) = {d ∈ Rn | h′(x̄)d = 0, 〈g′i(x̄), d〉 ≤ 0 ∀ i ∈ A(x̄)},

which is an intuitively natural candidate to represent directions tangent to D at the point x̄. It is
easy to see that TD(x̄) ⊂ LD(x̄) always. The fundamental question is when in fact it holds that

TD(x̄) = LD(x̄). (7)

When the latter is the case, applying a theorem of the alternatives [2] to compute the dual of
LD(x̄), we have that

(TD(x̄))◦ = {z ∈ Rn | z =
l∑

i=1

λih
′
i(x̄) +

∑
i∈A(x̄)

µig
′
i(x̄), λ ∈ Rl, µi ≥ 0 ∀ i ∈ A(x̄)}. (8)

Then the characterization (6) of solutions of the variational problem (5) immediately translates
into the following: there exists (λ, µ) ∈ Rl ×Rm such that

−F (x̄) =
l∑

i=1

λih
′
i(x̄) +

m∑
i=1

µig
′
i(x̄),

h(x̄) = 0,
g(x̄) ≤ 0, µ ≥ 0, µi = 0 ∀ i 6∈ A(x̄).

(9)

In the case of F (x) = f ′(x), x ∈ Rn, corresponding to the optimization problem, (9) are the
Karush-Kuhn-Tucker optimality conditions

∂L

∂x
(x̄, λ, µ) = 0,

h(x̄) = 0,
g(x̄) ≤ 0, µ ≥ 0, µi = 0 ∀ i 6∈ A(x̄),

(10)

where
L : Rn ×Rl ×Rm → R, L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉

is the Lagrangian of the problem.
The key question, therefore, is when (7) or more generally (8) are guaranteed to hold. Obviously,

(7) is sufficient for (8) but not necessary. Condition (7) is called Abadie CQ [3], and condition (8)
is called Guignard CQ [4]. Guignard CQ is in a sense the weakest CQ that ensures that KKT
conditions (10) are necessary optimality conditions for the associated optimization problem [5]. It
should be emphasized though that neither Abadie CQ nor Guignard CQ is verifiable directly in
general, since they require the knowledge of the tangent cone or its dual. They are more akin the
desired properties we would like to ensure than CQs as such.

Before proceeding with the presentation of CQs, we make one final observation. CQs and
the desired equality (7) depend not only on the geometry of the set D but also on its analytic
representation, i.e., on the choice of the constraint functions h and g in (1). For example, consider
the set D = {0} which has the unique feasible point x̄ = 0, so that TD(x̄) = {0}. If this set is
represented by the equality constraint with h(x) = x, then in (1) we get LD(x̄) = {0} which gives
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the correct tangent cone, i.e., (7) holds. If, on the other hand, the set is represented by the equality
constraint with h(x) = ‖x‖2, then in (1) we get LD(x̄) = Rn and (7) is no longer valid.

Probably the most obvious CQ that guarantees (7) is linearity of constraints around the point
in question. Specifically, if there exists a neighborhood U of x̄ such that

h and gi ∀ i ∈ A(x̄) are affine in U,

then (7) holds. Moreover, in that case the tangent cone is the set of feasible directions at x̄.
The linear independence constraint qualification (LICQ) consists of saying that the gradients

of equality and active inequality constraints are linearly independent at x̄:

the set {h′i(x̄), i = 1, . . . , l} ∪ {g′i(x), i ∈ A(x̄)} is linearly independent. (11)

Apart from the characterization (7) of the tangent cone, LICQ further implies that the multiplier
(λ, µ) satisfying primal-dual conditions (9) is actually unique.

The Mangasarian-Fromovitz constraint qualification (MFCQ, [6]) assumes that

the set {h′i(x̄), i = 1, . . . , l} is linearly independent and
∃ d ∈ Rn such that h′(x̄)d = 0, 〈g′i(x̄), d〉 < 0 ∀ i ∈ A(x̄).

(12)

Applying a theorem of the alternatives [2], the equivalent dual form of MFCQ states that

zero is the unique solution of the linear system
l∑

i=1

λih
′
i(x̄) +

∑
i∈A(x̄)

µig
′
i(x̄) = 0, µi ≥ 0 ∀ i ∈ A(x̄). (13)

MFCQ (12) also implies the characterization (7) of the tangent cone, while being evidently weaker
than LICQ (11). Also, using the dual form (13), it is not difficult to see that at solutions of the
variational problem (5) MFCQ is equivalent to the property of the multiplier set of (λ, µ) satisfying
the primal-dual conditions (9) being nonempty and bounded [7]. If x̄ satisfies the primal-dual
conditions (9) with some (λ, µ), then the stronger property of uniqueness of Lagrange multipliers
is called the strict Mangasarian-Fromovitz constraint qualification (SMFCQ, [8]). MFCQ is stable
in the following sense. If MFCQ holds at x̄ ∈ D then there exists a neighborhood U of x̄ such that
MFCQ holds at each x ∈ D ∩ U .

Slater constraint qualification consists of the following assumptions:

h is an affine function, each gi is a convex function, and
∃ x̂ ∈ Rn such that h(x̂) = 0, gi(x̂) < 0 ∀ i ∈ {1, . . . ,m}.

If g is convex differentiable and no equations appear, then Slater CQ is equivalent to MFCQ (12)
holding at every point x̄ ∈ D [9, 10].

In the case when the description (1) of the set D does not contain inequality constraints LICQ,
MFCQ and SMFCQ all reduce to the classical regularity condition

rankh′(x̄) = l.

The fact that under this assumption TD(x̄) is the tangent subspace kerh′(x̄) is a consequence
of the Lyusternik-Graves Theorem [11, 12]; see also [13]. Furthermore, KKT conditions (10) for
optimization reduce in this case to the classical Lagrange optimality conditions.
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The constant rank constraint qualification (CRCQ, [14]) holds at x̄ ∈ D if there exists a neigh-
borhood U of x̄ such that

for every pair of index sets I ⊂ {1, . . . , l} and J ⊂ A(x̄)
the set {h′i(x), i ∈ I} ∪ {g′i(x), i ∈ J} has the same rank for all x ∈ D ∩ U .

(14)

In (14) the rank in question depends on the choice of I and J but not on the point x ∈ D ∩ U .
Clearly, LICQ (11) implies CRCQ (14). Linearity of constraints also implies CRCQ. Under CRCQ
it holds that the tangent cone TD(x̄) has the form (7) [14]. CRCQ is neither weaker nor stronger
than MFCQ (12). Thus nothing can be said about the multiplier set in KKT conditions (9), except
that it is nonempty. Note also that unlike MFCQ, if CRCQ holds at x̄ ∈ D, it will continue to hold
if any of the equality constraints hi(x) = 0 were to be replaced by the two inequalities hi(x) ≤ 0
and −hi(x) ≤ 0. MFCQ and CRCQ are related, however, in the following sense: it can be shown
that under CRCQ there exists an alternative representation of the feasible set for which MFCQ
holds [15].

The relaxed constant rank constraint qualification (rCRCQ, [16]) holds at x̄ ∈ D if there exists
a neighborhood U of x̄ such that

for every index set J ⊂ A(x̄)
the set {h′i(x), i = 1, . . . , l} ∪ {g′i(x), i ∈ J} has the same rank for all x ∈ U .

(15)

It is clear that CRCQ (14) implies rCRCQ (15). It can be seen from the following example [16]
that the reverse implication is not valid: D = {x ∈ R2 | x1 − x2 = 0, −x1 ≤ 0, −x1 − x2

2 ≤ 0},
x̄ = 0. It holds that rCRCQ is still sufficient for the tangent cone TD(x̄) to have the desired form (7)
[16]. When there are no inequality constraints, rCRCQ reduces to the weak constant rank condition
introduced in [17].

The point x̄ ∈ D satisfies the constant positive linear dependence condition (CPLD, [19]) if there
exists a neighborhood U of x̄ such that

whenever for some index sets I ⊂ {1, . . . , l} and J ⊂ A(x̄) the system∑
i∈I

λih
′
i(x̄) +

∑
i∈J

µig
′
i(x̄) = 0, µi ≥ 0 ∀ i ∈ J

has a nonzero solution,
the set {h′i(x), i ∈ I} ∪ {g′i(x), i ∈ J} is linearly dependent for all x ∈ U .

(16)

Comparing the dual form (13) of MFCQ with (16), it is immediate that MFCQ implies CPLD but
not vice versa. It can be seen that CPLD is also weaker than CRCQ [20]. Nevertheless, CPLD still
guarantees that the tangent cone has the desired representation (7); this follows from the results
in [20, 21]; and also from the error bound in [16], see Section 3. Hence, KKT conditions (10)
are necessary optimality conditions, which had also been shown in [20]. Finally, CPLD is neither
weaker nor stronger than rCRCQ, as can be seen from the following example [16]: D = {x ∈ R2 |
x2 = 0, x1 − x2

2 ≤ 0, −x1 − x2
2 ≤ 0}, x̄ = 0.

The point x̄ ∈ D is said to be quasinormal [22] (see also [21, 23]) if

there exist no nonzero (λ, µ) ∈ Rl ×Rm
+ and no sequence {xk} → x̄ such that

l∑
i=1

λih
′
i(x̄) +

m∑
i=1

µig
′
i(x̄) = 0,

and for all k, λihi(xk) > 0 for all i with λi 6= 0, µigi(xk) > 0 for all i with µi 6= 0.

(17)
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Quasinormality implies that the tangent cone has the desired representation (7) [22]. Quasinor-
mality is implied by CPLD [20].

The main relationships discussed above can be summarized as follows:

LICQ MFCQ quasinormality TD(x̄) = LD(x̄) (TD(x̄))◦ = (LD(x̄))◦

linearity CRCQ CPLD Slater CQ
? ?

- - - -

- -

6 6

rCRCQ-

6

When comparing different constraint qualifications, it should also be kept in mind that condi-
tions like CPLD (16) and rCRCQ (15) depend not only on the properties of the problem data at
the point x̄ but also on their properties in some neighborhood of this point. They require more in-
formation and, unless some stronger sufficient conditions hold, they are usually much more difficult
to verify directly than, say, the classical MFCQ (12).

The more general format of constraints is given by

D = {x ∈ Rn | S(x) ∈ Q}, (18)

where Q is a subset of Rs and S : Rn → Rs. The set (1) defined by a finite number of equality
and inequality constraints is clearly a special case of (18) given by s = l + m, S(x) = (h(x), g(x))
and Q = {0} × (−Rm

+ ). When Q is a closed convex set, the Robinson CQ [10] holds at x̄ ∈ D if

0 ∈ int {S(x̄) + imS′(x̄)−Q}. (19)

Robinson CQ ensures that

TD(x̄) = {d ∈ Rn | S′(x̄)d ∈ TQ(S(x̄))}. (20)

Furthermore, if Q is a closed convex cone and x̄ is a local solution of the optimization problem (2)
then there exists ν ∈ Rs such that

f ′(x̄) + (S′(x̄))>ν = 0, S(x̄) ∈ Q, ν ∈ Q◦, 〈ν, S(x̄)〉 = 0. (21)

In the case of equality and inequality constraints (1), Robinson CQ (19) reduces to MFCQ (12),
characterization of the tangent cone (20) reduces to (7), and optimality conditions (21) reduce to
the KKT conditions (10).

2 Second-order necessary optimality conditions

Constraint qualifications are also important for deriving second-order necessary optimality condi-
tions. But not all CQs discussed in Section 1 are suitable for this purpose.

In this section the problem data is assumed to be twice continuously differentiable. Let x̄ ∈ D
be a local minimizer of f in D. We shall denote byM(x̄) the set of Lagrange multipliers at x̄, i.e.,
all (λ, µ) ∈ Rl ×Rm satisfying the KKT conditions (10). Denote by

C(x̄) = {d ∈ Rn | 〈f ′(x̄), d〉 ≤ 0, h′(x̄)d = 0, 〈g′i(x̄), d〉 ≤ 0 ∀ i ∈ A(x̄)}
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the critical cone of the optimization problem at x̄ ∈ D. Then under MFCQ (12) it holds that

∀ d ∈ C(x̄) ∃ (λ, µ) ∈M(x̄) such that

〈
∂2L

∂x2
(x̄, λ, µ)d, d

〉
≥ 0. (22)

It is known [24] that when SMFCQ does not hold (i.e.,M(x̄) is not a singleton) the stronger version

∃ (λ̄, µ̄) ∈M(x̄) such that

〈
∂2L

∂x2
(x̄, λ̄, µ̄)d, d

〉
≥ 0 ∀ d ∈ C(x̄) (23)

is not a necessary optimality condition in general. At the same time, under CRCQ (14) even a
stronger property than (23) is valid [25]:

∀ (λ, µ) ∈M(x̄)

〈
∂2L

∂x2
(x̄, λ, µ)d, d

〉
≥ 0 ∀ d ∈ C(x̄).

Weaker forms of second-order conditions make use of the subspace

C+(x̄) = {d ∈ Rn | h′(x̄)d = 0, 〈g′i(x̄), d〉 = 0 ∀ i ∈ A(x̄)},

which is in general smaller than the critical cone C(x̄). The two cones coincide when the strict
complementarity condition µ̄i > 0 ∀ i ∈ A(x̄) holds. The following result had been established in
[25]. If x̄ is a local minimizer satisfying KKT conditions (i.e., M(x̄) 6= ∅) and the weak constant
rank condition holds, i.e., there is a neighborhood U of x̄ such that

the set {h′i(x), i = 1, . . . , l} ∪ {g′i(x), i ∈ A(x̄)} has the same rank for all x ∈ U,

then

∀ (λ, µ) ∈M(x̄)

〈
∂2L

∂x2
(x̄, λ, µ)d, d

〉
≥ 0 ∀ d ∈ C+(x̄). (24)

In particular, any CQ that ensures that M(x̄) 6= ∅ (see Section 1) in combination with the weak
constant rank condition guarantees that (24) holds at a local minimizer x̄. For example, (24) holds
under rCRCQ (15), as the latter implies both M(x̄) 6= ∅ and the weak constant rank condition.

3 Error bounds and metric regularity

Describing local structure of a set D defined by a finite number of equality and inequality constraints
(1) is also closely related to the so-called error bounds, which are estimates of the distance from a
given point to the set D in terms of computable quantities measuring violation of its constraints.
Specifically, one would like to know when there exist a neighborhood U of x̄ ∈ D and a constant
c > 0 such that

dist(x,D) ≤ c(‖h(x)‖+ ‖max{0, g(x)}‖) ∀x ∈ U. (25)

Indeed, if the estimate (25) is valid then the consequences for the characterization of the tangent
cone as in (7) are immediate. It is enough to observe that for d ∈ LD(x̄) and t > 0 small enough
it holds that h(x̄ + td) = h(x̄) + th′(x̄)d + o(t) = o(t), gi(x̄ + td) < 0 for all i 6∈ A(x̄) and
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gi(x̄ + td) = gi(x̄) + t〈g′i(x̄), d〉 + o(t) ≤ o(t) for all i ∈ A(x̄). Then (25) immediately implies that
dist(x+ td,D) = o(t) so that d ∈ TD(x̄).

In the case of linear constraints the error bound (25) (with U = Rn) is the classical Hoffman’s
Lemma [26]. More generally, (25) is valid under rCRCQ (15) [16, 18]. The error bound is also valid
assuming MFCQ (12) [10] or, more generally, CPLD (16) [16].

A stronger property than the error bound (25) is that of metric regularity [9, 27]. Consider the
right-hand side perturbation of the set D, i.e.,

D(p, q) = {x ∈ Rn | h(x) = p, g(x) ≤ q}, p ∈ Rl, q ∈ Rm. (26)

Let x̄ ∈ D(0, 0). Then the system in (26) is metrically regular at (x̄, 0, 0) if there exist a neighbor-
hood V of (x̄, 0, 0) and a constant C > 0 such that

dist(x,D(p, q)) ≤ C(‖h(x)− p‖+ ‖max{0, g(x)− q}‖) ∀ (x, p, q) ∈ V.

For smooth constraint systems, metric regularity holds if, and only if, MFCQ (12) holds for the
unperturbed set D defined in (1) [10, 28]. This is an important stability property that highlights
the special role of MFCQ among all the other CQs.

Robinson CQ (19) for the more general smooth constraints (18) is also equivalent to metric
regularity in the following sense. Defining the perturbed set

D(p) = {x ∈ Rn | S(x) + p ∈ Q}, p ∈ Rs,

with x̄ ∈ D(0), metric regularity holds at (x̄, 0) if there exist a neighborhood V of (x̄, 0) and a
constant C > 0 such that

dist(x,D(p)) ≤ C dist(S(x) + p,Q) ∀ (x, p) ∈ V.

4 Second-order regularity

Constraint qualifications discussed until now were based on at most first-order information about
the constraint functions. Sometimes, in particular when classical CQs are violated, second deriva-
tives need to be employed.

One line of analysis is concerned with deriving second-order necessary optimality conditions of
the type (22) under assumptions weaker than MFCQ (12). For a feasible set defined by (1), the
second-order regularity condition holds at x̄ ∈ D in a direction d ∈ Rn if

the set {h′i(x̄), i = 1, . . . , l} is linearly independent and
∃ ξ ∈ Rn such that h′(x̄)ξ + h′′(x̄)[d, d] = 0, 〈g′i(x̄), ξ〉+ 〈g′′i (x̄)d, d〉 < 0 ∀ i ∈ A(x̄).

(27)

(see [29] for a different but equivalent statement of this property). It can be easily seen that (27)
holds automatically in any direction d ∈ Rn provided MFCQ (12) holds at x̄. But (27) may hold
for a given d ∈ Rn when MFCQ is violated. When second-order regularity condition holds at x̄ in
a direction d ∈ LD(x̄), one can constructively characterize the so-called second-order tangent set in
a direction d, defined by

T2(x̄, d) =

{
ξ ∈ Rn

∣∣∣∣∣ ∃ {tk} ⊂ R+ \ {0}, {tk} → 0,∃ {ξk} ⊂ Rn, {ξk} → ξ,
such that x̄+ tkd+ 1

2 t
2
kξ

k ∈ D for all k

}
.
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Furthermore, for d ∈ C(x̄), this characterization allows to establish the second-order necessary
optimality condition of the form

∃ (λ, µ) ∈M(x̄) such that

〈
∂2L

∂x2
(x̄, λ, µ)d, d

〉
≥ 0. (28)

Note that the latter subsumes thatM(x̄) is nonempty, which means that the KKT conditions (10)
hold as well.

Another important concept of second-order regularity was developed in [30, 31] for the case
when there are no inequality constraints, under the name of 2-regularity. In somewhat different
terms, we say that this condition holds at x̄ ∈ D in a direction d ∈ Rn if

imh′(x̄) + h′′(x̄)[d, kerh′(x̄)] = Rl.

The counterpart of this concept for problems with no equality constraints and the related theory
were developed in [32]. An extension of these works to the case of equality and inequality con-
straints, as in (1), was derived in [33]. Specifically, according to [33], 2-regularity holds at x̄ ∈ D
in a direction d ∈ Rn if

imh′(x̄) + h′′(x̄)[d, LD(x̄)] = Rl and
∃ ξ1 ∈ Rn, ∃ ξ2 ∈ LD(x̄) such that

h′(x̄)ξ1 + h′′(x̄)[d, ξ2] = 0, 〈g′i(x̄), ξ1〉+ 〈g′′i (x̄)d, ξ2〉 < 0 ∀ i ∈ A(x̄).
(29)

As in the case of second-order regularity (27), 2-regularity (29) holds automatically in any direction
d ∈ Rn provided MFCQ (12) holds at x̄. But (29) may hold for a given d ∈ Rn when MFCQ is
violated. The role of 2-regularity is to characterize those directions d ∈ LD(x̄) that actually belong
to T (x̄) in the cases when (7) does not hold. See [33] for the detailed exposition of the related theory
of first- and second-order necessary optimality conditions, and in particular, for combinations of
2-regularity with second-order regularity and its relevant extensions. It is important to emphasize
that, unlike second-order regularity, 2-regularity does not imply that (10) is necessary for optimality:
M(x̄) can be empty, and the first- and second-order necessary optimality conditions that can be
established under 2-regularity are generally weaker than (10) and (28), respectively.

Finally, in [34] the 2-regularity theory was extended to the general constraints, as in (18). The
corresponding condition of 2-regularity at x̄ ∈ D in a direction d ∈ Rn has the form

0 ∈ int {S(x̄) + imS′(x̄) + S′′(x̄)[d, (S′(x̄))−1(Q− S(x̄))]−Q}.

It is clear that this condition is implied by Robinson CQ (19).
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[25] Andreani, R, Echagüe, CE, Schuverdt, ML. Constant rank condition and second-order con-
straint qualification. Optimization 2010.

[26] Hoffman, AJ. On approximate solutions of systems of linear inequalities. J. Research of the
National Bureau of Standards. 1952; 49:263–265.

[27] Borwein, JM. Stability and regular points of inequality systems. J. Optim. Theory Appl. 1986;
48:9–52.

[28] Cominetti, R. Metric regularity, tangent sets and second-order optimality conditions. Appl.
Math. Optim. 1990; 21:265–287.

[29] Ben-Tal, JF. Second-order and related extremality conditions in nonlinear programming. J.
Optim. Theory Appl. 1980; 31:143–165.

[30] Tretyakov, AA. Necessary and sufficient conditions for optimality of p-th order. USSR Comput.
Math. Math. Phys. 1984; 24:123–127.

[31] Avakov, ER. Extremum conditions for smooth problems with equality-type constraints. USSR
Comput. Math. Math. Phys. 1985; 25:24–32.

[32] Izmailov, AF, Solodov, MV. Optimality conditions for irregular inequality-constrained prob-
lems. SIAM J. Control. Optim. 2001; 40:1280–1295.

[33] Arutyunov, AV, Avakov ER, Izmailov, AF. Necessary conditions for an extremum in a math-
ematical programming problem. Proceedings of the Steklov Institute of Mathematics. 2007;
256:2–25.

[34] Arutyunov, AV, Avakov ER, Izmailov, AF. Necessary optimality conditions for constrained
optimization problems under relaxed constrained qualifications. Math. Program. 2008; 114:37–
68.

Further reading list

For extensions to infinite-dimensional spaces and nonsmooth data, applications in duality and
sensitivity, see:

Rockafellar, RT, Wets, JB. Variational Analysis. Springer–Verlag, New York. 1997.

11



Bonnans, JF, Shapiro, A. Perturbation Analysis of Optimization Problems. Springer–Verlag,
New York. 2000.

Klatte, D, Kummer, B. Nonsmooth Equations in Optimization: Regularity, Calculus, Meth-
ods, and Applications. Kluwer Academic Publishers, Dordrecht. 2002.

Facchinei, F, Pang, JS. Finite-Dimensional Variational Inequalities and Complementarity
Problems. Springer–Verlag, New York. 2003.

Mordukhovich, BS. Variational Analysis and Differentiation. Springer–Verlag, New York.
2006.

12


