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The nonlinear complementarity problem is cast as an unconstrained minimization problem that is obtained from 
an augmented Lagrangian formulation. The dimensionality of the unconstrained problem is the same as that of 
the original problem, and the penalty parameter need only be greater than one. Another feature of the unconstrained 
problem is that it has global minima of zero at precisely all the solution points of the complementarity problem 
without any monotonicity assumption. If the mapping of the complementarity problem is differentiable, then so 
is the objective of the unconstrained problem, and its gradient vanishes at all solution points of the complementarity 
problem. Under assumptions of nondegeneracy and linear independence of gradients of active constraints at a 
complementarity problem solution, the corresponding global unconstrained minimum point is locally unique. A 
Wolfe dual to a standard constrained optimization problem associated with the nonlinear complementarity problem 
is also formulated under a monotonicity and differentiability assumption. Most of the standard duality results are 
established even though the underlying constrained optimization problem may be nonconvex. Preliminary numer- 
ical tests on two small nonmonotone problems from the published literature converged to degenerate or nonde- 
generate solutions from all attempted starting points in 7 to 28 steps of a BFGS quasi-Newton method for 
unconstrained optimization. 

1. Introduction 

We consider the classical nonlinear complementarity problem [ 3, 4, 5, 15 ] of finding an x 
in the n-dimensional real space ~" such that 

(NCP) F(x)>~O, x>~O, xF(x)=O (1.1) 

w h e r e  F : ~ "  --* R n. A n  o b v i o u s l y  r e l a t e d  c o n s t r a i n e d  m i n i m i z a t i o n  p r o b l e m  is t he  f o l l o w i n g  

( M P )  min{xF(x)  I F ( x )  >~0, x>~0} ( 1 . 2 )  
x 
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Our principal concern here is twofold: conversion of MP to an unconstrained minimization 

problem on ~= and establishing duality properties of  MP. Because of  the special structure 

of  MP, at a solution ~ such that YF(2) = 0, Y plays the role of  a multiplier for the constraints 

F(x)  > 0, while F(R) plays a similar role for the constraints x >~ 0. This is most easily seen 

if we assume that F is monotone (an assumption that will not be made in general for this 

paper, but only in Section 4 on the duality properties of MP). Thus, the following Kuhn-  
Tucker saddlepoint condition for MP with t /= y and g = F(~) ,  

2F(x~ - uF( x~ - vY <~ YF( x-) - ffF(x~) - g2 <~ xF(x )  - ffF(x) - lTx 

V(u, v ) ~ _  X ~ + ,  V x ~  =, (1.3) 

follows directly from )?F(;?) = 0 and the monotonicity of  F. The fact that the pair (Y, F (y)  ) 

can be used as an optimal multiplier for MP, was first observed for the monotone differen- 

tiable case by Cottle [ 3, Chapter IV, Theorem 4] and Dantzig and Cottle [ 5, Theorem 1 ] 

to show that every constraint-qualification-satisfying local solution of MP (which inciden- 

tally is not a convex program, since neither its objective is convex nor the constraint function 

F(x)  is concave) is a global solution of (1.2) with a minimum value of  zero and hence 

solves NCP. Motivated by this fact we were led to investigating an augmented Lagrangian 

formulation [30, 21, 2] for MP 

1 
L(x,  u, v, oO : = x f ( x )  +~-~a(I ( - a N ( x )  +u)  + II = -  lutl 2 

+ I1( - a x +  v)+ II 2 -  Ilvl 2) (1.4) 

where the norm is the 2-norm and (z)+ denotes (z +)i = max{zi, 0}, i =  1 . . . . .  n. With u 

replaced by x and v by F(x)  this led to the following unusual but very interesting implicit 

Lagrangian function 

1 
M(x,  o~) :=xF(x)  + ~ a  ([l( - oN(x)  +x)  + 12 _ I[xl 2 

+ [l( - a x + F ( x ) )  + I[ 2_  iF (x  ) II 2) (1.5) 

It turns out that this function is nonnegative on N= × ( 1, w), and is zero if and only i fx  is 

a solution of the NCP without regard to whether F is monotone or not (Theorem 2.1 below). 

If F is differentiable on N n, then so is M ( . ,  a ) ,  and its gradient vanishes at all solutions of 

NCP for a > 1 (Corollary 2.2). Furthermore, at nondegenerate solution points of  NCP at 

which the gradients of  the active constraints are linearly independent, M(x,  a)  has a locally 

unique global minimum solution (Theorem 2.3). In a neighborhood of such points locally 

superlinearly convergent Newton Methods [ 6 ] can be applied (Remark 2.4). We note that 
in a similar vein, Di Pillo and Grippo [7, 8] solved for the multipliers in terms of  the 
original variables of a constrained optimization problem to obtain exact penalty functions. 

We wish to state at the outset that the principal objective of the present work is not an 
algorithmic one, even though preliminary test results using an off-the-shelf unconstrained 
minimization routine on two small test problems from the literature are quite encouraging 
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(see Section 5). Simply stated, we wish to cast the classical NCP as an unconstrained 

minimization of tile smooth function (1.5), and investigate the properties of this problem, 

as well as those of the constrained problem MP (1.2) with particular reference to its dual 

(see Section 4). To put the present approach in the perspective of recent achievements, we 
cite some related work. Most recently Fukushima [ 10] formulated asymmetric variational 

inequality problems as differentiable optimization problems, with one of his formulations 
being equivalent to our nonnegatively constrained implicit Lagrangian (2.13). In [ 1 ], 

Auchmuty gives variational principles for variational inequalities. Another somewhat 

related and promising approach is that of formulating the NCP (t .1)  as a system of 
equations. This goes back to [ 20] for smooth equations which have been recently utilized 

algorithmically [ 31 ]. Nonsmooth equation formulation of the NCP has recently become a 

viable method of solution as exemplified by the work of Kojima and Shindo [ 16], Harker 

and Xiao [13], Pang [27, 28] and Pang and Gabriel [29]. A classical local Newton 
approach to the NCP as a generalized equation is contained in Josephy's unpublished work 

[ 14], where the subproblems are linear complementarity problems. A recent survey of 

theory, algorithms and applications of the NCP is given by Harker and Pang [ 12]. 
The paper is organized as follows. In Section 2 we establish the above results for the 

implicit Lagrangian M(x,  ~) .  In Section 3 we point out three other functions which also 
have zeros or unconstrained minima at solutions of NCP. One function P(x,  ~) (see (3.1) ) 

is simply an asymptotic exterior penalty which merely has zeros at such points but not 
necessarily minimum points. Another function E(x,  ~) (see (3.2)) is an exact penalty, 

which, however, is nondifferentiable and is valid only for monotone F. The third is a simple 

function Q (x, a)  (see (3.3)) based on the residuals of the NCP. Numerical comparisons 

of these three functions are made with M(x,  ~) on a simple one-dimensional nonmonotone 
complementarity problem and appear to favor M(x,  ~) .  In Section 4 we state a Wolfe dual 

(4.1) to MP (1.2) and derive most of the standard duality results, Theorems 4.2-4.4, for it 

under monotonicity and differentiability assumptions. It is interesting to note that these 
duality results, which in general require convexity of the primal problem, hold here despite 

the fact that MP (1.2) may have a nonconvex objective function and a nonconvex feasible 

region. Section 5 contains some encouraging computational results on two 4-dimensional 
test problems taken from the literature [ 16, 29] using a BFGS quasi-Newton method with 

line search for unconstrained minimization. It is interesting to note that one of the examples 

has a degenerate as well as a nondegenerate solution. The BFGS converged to either solution 

depending on the starting point and the choice of the parameter a in the definition (1.5) of 
M(x,  c~). Section 6 contains some concluding remarks and some open questions. 

We now describe notation and some concepts employed in the paper. Components of a 
row or column vector x in the n-dimensional space ~n will be denoted by xi, i = 1 . . . . .  n. 

The norm II'll will denote the 2-norm (xx)1/2. Other norms will be subscripted such as 
, _  n X . Ilxll= := max l ~<i~, [xi [ and Ilxl[ 1 . - E i =  i I i l A function F" ~n--* ~n is said to be mono- 

tone on R n if 

( y - x ) ( F ( y )  - F ( x ) )  >~0, Vx, y in ~n. (1.6) 

The slightly unusual, but convenient, notation F(x)  ~ will denote (F(x )  - 1) ~ = 1/Fe(x),  
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i = 1 . . . . .  n. If  F is differentiable at x, then VF(x)  denotes the n X n Jacobian matrix, with 

rows VFi(x), i= 1 . . . . .  n, where VF~(x) is the 1 × n  gradient vector (OFi(x)/Oxt . . . . .  
OF~(x)/Ox, ), and VF(x)  T will denote the transpose of  VF(x) .  For an m × n matrix A, Ai 
denotes the ith row, i = 1 . . . . .  m. For M(x, c0: ~n × ~ ~ ~,  

OM(x, c 0 OM(x, cO_) 
VM(x, cO : = \  ~ . . . . .  Ox. 

and 

V 2m(x, OL) := 10 2m(x' -c¢).1 
\ Ox~Oxj 1' 

ForL(x,u,  v): ~ n X ~ n X ~  R, 

:=(OL(x, u, ~) 
7~L(x, u, v) \ Oxl . . . . .  

and 

i , j = l  . . . . .  n. 

aL(x, oxnU'V)) 

V~L(x,u,v):=lOZL(x'u'v)J{] i , j = l  . . . . .  n. 
\ OxiOxj ' 

For f :  X c  ~ ~ ~,  arg minx~xf(x) denotes the set of minimizers o f f (x )  in X. The identity 

matrix of  any order will be denoted by /. If  J c { 1  . . . . .  n}, then Fs(x):=Fi~j(x) ,  
VFj(x) := VFi~s(x) and 1j=Ii~j.  

Finally, we note that by elementary arguments (just consider the individual cases 

- crFi(x) + xi >1 0 and - c~Fi(x) + x~ < 0 separately, etc.) we have for a > 0 that 

F(x)>~O, x>~O, xF(x)=O ~, x = ( - c ~ F ( x ) + x ) +  
(1.7) 

F ( x )  = ( - a x  + F ( x )  ) +. 

2. Properties of the implicit Lagrangian M ( x ,  oO 

We first establish the nonnegativity of  the implicit  Lagrangian M(x, c¢) and show that it 

vanishes only at solution points of the NCP. For convenience in the proofs we decompose 

M(x, cO as follows: 

n 
M(x, a ) =  ~ M i ( x ,  cO (2.1a) 

i=1 

where 

1 
mi(x , oL):=xiFi(x ) q-~- ( ( -c~Fi(x)  + xi) 2 - x  2 

+ ( - ~xi +Fi(x) )2+ _Fi(x)Z).  (2.1b) 
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We state and prove our first principal result. 

T h e o r e m  2.1. The implici t  Lagrangian M ( x ,  ~)  def ined in (1 .5)  is nonnegat ive  on 

~ n  X ( 1, ~ ) .  For  ~ ~ ( 1, ~ ) ,  M ( x ,  a )  vanishes i f  and only i f  x solves  the N C P  ( 1.1 ). 

Proof .  Let x ~ ~ n, a ~ ( 1, ~ )  and let Fi := Fi (x ) .  Consider four cases: 

Case 1: - o~Fi + xi >~ O, - axi + F~ >~ O. It follows that 

xi>~aFi>~c~Zxi and Fi~¢:~.xi >/ol2Fi . 

Since a 2 ~ 1 we have xi~< 0 and F i 4  0 and hence from (2.1b) ,  

2aM~(x, a )  = 2ax~F~ + ( a 2 F  2 - 2o~xiF i + x 2) --  xZi + ( aZX2i - 2axiF~ + F ~) - F 2~ 

=a2F~ + o~2x~ - 2~x~Fi 

= (aFi  - a x i ) 2  + 2c~(c~- 1)xiFi  >~0. (2.2) 

Case 2: - aF~ + xi >~ O, - a x i + F ~ < 0 .  

2aM~(x, a )  = ( a  2 -  1)F+ 2/>0. (2.3) 

Case 3: - ~Fi + xi < O, - axi + Fi >~ O. 

2aM~(x, a )  = ( ~ 2 _  1)x 2 >~0. (2.4) 

Case 4: - olFi +x~ < 0 ,  - ax~ +F~ <0 .  It follows that 

xi < aFi < ol2xi and Fi < ~Xi < a Z F i  • 

Since a 2 > 1 we have x i> 0 and Fi>  0 and hence 

2 2 2 2 2 \ 
2aMi(x,  a )  = 2o~xiF i - x  2 - F  2 >>+/2xi - x i  - F  , = x i  - F  i / 2 2 2 2 2 \ 2 F i  - x i  - F i  = F i  - x i  

>/Ix 2 - F 2 1  >/0. (2.5) 

OL n Since these four cases exhaust all possibilities, it follows that M ( x ,  ) = ~ =  ~M~(x, a )  is 

nonnegative on ~ n X  (1, ~ ) .  

Suppose now that x solves NCP ( 1.1 ) and let c~ ~ (0, oo). Hence by (1.7) ,  

x F ( x )  = O, x = ( - a F ( x )  + x )  +, F ( x )  = ( - ax  + F ( x )  ) +. (2 .6)  

It immediately follows that M ( x ,  a )  = 0 for such x and c~ ~ (0, w). This establishes the 

" i f "  part of the theorem. We now establish the "on ly  i f"  part. 

Suppose now that M ( x ,  a )  = 0  for some x ~  ~n and a ~  ( 1, co). It follows from the four 

cases above, since Mr(x,  a )  >~ 0, i = 1 . . . . .  n, that 

M~(x, a )  = 0 ,  i =  1 . . . . .  n. (2.7) 

We again look at four cases 1 ', 2 ' ,  3'  and 4'  corresponding to the four cases 1, 2, 3, 4 above. 

Case 1': It follows from x~<~O, Fi<~O, (2.2) ,  a >  1 and M~(x, c~) = 0 ,  that F~=x~ and 

xiF~ = 0. Hence x~ = Fi = 0. 
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Case 2': It follows from (2.3), c~ > 1 and Mi(x, or) = 0 that 

Fi=O, xi>0.  

Case 3': It follows from (2.4), c~ > 1 and Mi(x, c~) = 0, that 

x i=0 ,  F i>0 .  

Case 4': It follows from (2.5) and Mi(x, c~) =0,  that x~ = F ~ .  Sincexi> 0 and F~>0 we 
also get that xi=Fi.  Using all these facts in (2.5) again we get that xe=F~=0 which 

contradicts the assumption of Case 4 that -c~Fi +xi < 0. Hence this case is vacuous when 
M(x,  c~) = 0 and c~ > 1. 

Combining the outcomes of Cases 1', 2' and 3' we have that x solves NCP ( 1.1 ) and the 

theorem is established. [] 

Theorem 2.1 establishes a one-to-one correspondence between solutions of the NCP 

( 1.1 ) and global unconstrained minima of the implicit Lagrangian (1.5), all of which are 

zero in value. Note that no monotonicity or differentiability of F was assumed here. How- 
ever, M(x,  ~) is differentiable if F(x)  is differentiable. We thus obtain the following 

immediate consequence of Theorem 2.1. 

Corollary 2.2. I f  F is differentiable at a solution Y of  NCP ( 1.1 ), then VM(Y, ce) = O for  

a ~  (1, ~) .  [] 

In fact, Corollary 2.2 holds for ce ~ (0, ~)  as can be easily seen by evaluating VM(2, c~) 

(see (2.9) below) and noting by (1.7) and c~>0 that 2 = ( - a F ( Y ) + y ) +  and 

F(2)  = ( -crN + F(Y)  ) +. 

We now establish the local uniqueness of global minimum solutions of M(x,  a) at all 

nondegenerate solutions of the NCP at which the active constraints have linearly independ- 

ent gradients. 

Theorem 2.3. Let 2 be a nondegenerate solution of  NCP ( l. 1 ), that is Y + F( 2) > O, let F 

be twice differentiable at 2, and let { VF(Y) j  ~ j, Ik~ K} be linearly independent, where 

J:= {j l Fj(x~ =O}, K:= {k I Z~ =0}. (2.8) 

Then M(Y,  a)  = 0 and Y is a locally unique global minimum solution o f  M(x ,  or) for  

c ~  (1, ~) .  

Proof. By Theorem 2.1, M(2, c~) = 0 and 2 is a global minimum solution of M(x,  ~) for 
c ~  (1, ~) .  We shall establish that Y is a strict local minimum solution by showing that 
V 2M(2, a)  is positive definite. Note that nondegeneracy (or strict complementarity) is used 
only to enable us to evaluate the Hessian of M(x,  ce) at Y. We first evaluate the gradient of 

M(x,  ~) at 2. 

a r M ( Y ,  or) = a( F(x-) + VF(x~)Tx~ + ( - -  ozVF(x~ T + I) ( -- aF(x-) + x-) + - -2  

+ ( -- cd + VF(x-)T) ( __ ~ _ } _  F(x-) ) + - V F ( ~  T F ( x ~  
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= ( - aVF(x-)W + I) ( ( - c~F(x-) +x-) + -x-)  

+ ( - c~l+ VF(x-) T) ( ( - aY+  F(x~ ) + - F ( x - )  ). (2.9) 

In order to evaluate the Hessian, note the following as a consequence of nondegeneracy: 

V ( - a F ( x O + x - ) +  = { -  aVFj( x-) + , (2.10a) 

( ] Oj 
V ( -  aY+ F(x-))+ = ~ _ O d K + V F K ( x _ ) f .  (2.10b) 

Utilizing (2.10) in differentiating (2.9) and noting that 2 =  ( - a F ( 2 )  + 2 )  + and 

F(.~) = ( - cr_~ + FC~) ) + for a >  0 we have, 

aV2M(£, a )  = ( - aVF(x-) T + I  T) ( - c~VF/x-) + I j )  + c~VF(x-)T- I 

+ ( - s i  T + VFK(X-) T) ( -- a lK + VFx(x- )  ) 

+ aVF(x - )  - VF(x-) TVF(x-) 

= o~2VF(x- )TVFj(x~  - o~VF(x-)fflz - a l T V F j ( x  -) + l f f l z  

+ ceVF(x-)Tl - I +  a2ITIi~ -- a l T V F K ( X  -) -- c~VFK(X~ TI~ 

+ VFK(X~ TVFK(x -) + cdVF(x-) - VV(x-) TVF(x -) 

= ( a  2 - 1 ) ( V F j ( x - ) T V F j ( x  -) + I T I K ) .  

Hence 

V2M()~, OL)=(OL--I)(vFj(x-)TITK)(VF/(KX-) 1. (2.11) 

Since ol> 1 and [VFj(x~ t~ ) is nonsingular, it follows that V2M(y, c~) is positive definite and Y 

is a strict local minimum solution o fM(x ,  c~). [] 

R e m a r k  2.4. Under the assumptions of  Theorem 2.3, and if VF(x)  is continuous in a 

neighborhood of Y, then the Newton method 

VM(x  i, a) q- V2M( x i, o/)(x i+1 - x i) =0  (2.12) 

is well defined in a neighborhood of a nondegenerate solution $ and converges superlinearty 
to y [26, Theorem 8.1.10]. 

We note that when the implicit Lagrangian ( 1.5) is restricted to the nonnegative orthant, 
where nonnegativity o f x  is explicitly ~nforced, the last two terms can be dropped. We thus 

have 

+~-d(,,(--olF(x) + x ) +  II 2 -  [,xl, =]./ (2.13) N ( x ,  Ol ) :~xF(x) 
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For N(x, a) ,  the following result is easily established in an entirely analogous, and in fact 

simpler, manner to Theorem 2.1. 

Theorem 2.5. The restricted implicit Lagrangian N(x, a) is nonnegative on ~+ × 

(0, oo). For a ~ (0, c~), N ( x, a) vanishes if and only if x solves the NCP ( 1.1 ). [] 

When a = 1, it turns out that N(x, a) is equivalent to Fukushima's function (5.2) for the 

NCP ( 1.1 ) [ 10] which he minimizes over the nonnegative orthant to solve the NCP ( 1.1 ). 

However, Fukushima's arguments are entirely different and are based on projection ideas. 

We turn our attention now to other possible functions that may also have minima or zeros 

at solution points of NCP. 

3. Other unconstrained minimization equivalents of NCP 

We consider now the following functions that can also be related to NCP ( 1.1 ) through 

unconstrained minimization or through their zeros: 

P(x, a) :=xF(x) + ½ a l l ( - F ( x ) , - x )  + I[ 2, 

E(x, a) :=xF(x) + all( - F(x),  - x )  + Ill, 

Q(x, a) := (xF(x))2 +a[l( - F(x) ,  - x )  + II 2 

(3.1) 

(3.2) 

(3.3) 

P(x, a) is an exterior penalty function [9] for MP (1.2) and as such will not have a 

global minimum at solutions of  the NCP, but its global minimum solutions will approach 

NCP solutions as a tends to infinity. In fact, for a > 0 we can summarize the properties of  

P(x, a) as follows: 

£ s o l v e s N C P  ~ P(£, c 0 = 0 ,  (3.4a) 

£ s o l v e s N C P  ~ VP(£, a ) = 0 ,  (3.4b) 

;7solves NCP =~ £ ~ a r g  rain P(x, a), (3.4c) 

;?solves NCP <~ P(£, a)  =0 .  (3.4d) 

In view of  the failed implications (3 .4b)- (3 .4d) ,  P(x, a) does not appear as an attractive 

unconstrained minimization reformulation of NCP. Some of  these shortcomings c a n b e  

alleviated by considering the exact penalty function [ 11 ] E(x, a), which has global minima 

of  zero at solutions of NCP, provided F is monotone and a is sufficiently large as can be 

seen from the following simple result. 

Theorem 3.1. Let F(x) be monotone on Nn and let £ solve NCP ( 1.1 ). Then 

2 ~  arg min E(x, a) for a >~ d := [I (£, F(xD ) [I ~. 
x ~ n  
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Proof .  For any x in ~n and a >~ ~ := [1 (2, F(x-) II=, 

E(.~, a)=2F(xD 

= -2F(x-) (since 2 solves NCP) 

<~xF(x) -2F(x )  -xF(xD (by monotonicity of F) 

<~xF(x)+Y(-F(x))+ +F(x- ) ( -x )+ (s incez~<(z)+) 

<~xF(x) + 11(2, F(x~)I1~ " l l ( - F ( x ) , - x )  + II1 

(by generalized Cauchy-Schwarz inequality) 

<~E(x, a). [] 

Note that the monotonicity of F plays a key role in the above theorem, which is unlike 

the situation with M(x, a) where no monotonicity is required. Furthermore, E(x, a) is not 
differentiable. We summarize the properties of E(x, a) below: 

YsolvesNCP ~ E(Y, c 0 = 0 ,  (3.5a) 

2 solves NCP ~ ;?~ arg min E(x, a) for a~> ~, F monotone, (3.5b) 
X ~  n 

£so lvesNCP ¢~ E(2, a ) = 0 .  (3.5c) 

Finally we consider an obvious function which minimizes the residuals of NCP ( 1.1 ), that 

is Q(x, a). The motivation behind considering Q(x, a) is to obtain a function, besides 

M(x, a) ,  for which there is a one-to-one correspondence between its zeros and solutions of 

NCP. In fact, Q(x, a) has many of the desirable properties ofM(x,  a) ,  except that it tends 

to grow faster than M(x, a) because of the somewhat artificial squaring of the objective 

xF(x). To get a sense of the magnitude of difference between Q(x, a) and M(x, a) ,  as 

well as the other functions E(x, a) and P(x, a) we compared them on the following simple 
one-dimensional nonmonotone problem. 

Example 3.2. F(x) = ( x -  1)2>~0, x>~O, x ( x -  1) 2 =0.  Solution points: 0, 1. 

Figures l (a )  to l (d)  depict M(x, 2), P(x, 10), E(x, 2), and Q(x, 2) respectively. The 

penalty parameter a for P(x, a) was taken to be 10, large enough for P(x, a) to have a 
local minimum close enough to zero and to have another zero value on the negative x-axis 
close to zero. No essential changes in the other plots result in taking larger values of a. 
Figure 1 (a) depicts two zeros of the function M(x, 2) at the two solution points 0 and 1 of 
Example 3.2, while Figure 1 (b) depicts all the failed implications of (3.4): nonvanishing 
of the derivative at the solution point x = 0 of Example 3.2, the solution point x = 0 of 

Example 3.2 not being even a local minimum point, and the zero at x =  -0.381966 not 
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Fig. 1. The functions M(x, 2),  P(x, 10), E(x, 2) and Q (x, 2) on the interval [ - 0.5, 1.5 ] for the NCP: (x - 1 ) 2 >~ 0, 

x>~O,x(x- 1)~=0.  
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Fig. 2. The functions M(x, 2), P(x, 10), E(x, 2) and Q(x, 2) on the interval [ - 10, 10] for the NCP: ( x -  l ) 2 >/0, 
x>~O,x(x- 1)2=0.  
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being a solution of Example 3.2. P(x, 10), however, does have zeros at both solution points 

0 and 1 as asserted in implication (3.4a). Figure 1 (c) shows similar shortcomings for 
E(x,2) as well as its nondifferentiability at x = 0. Figure 1 (d) depicts Q(x,2) which exhibits 

similar characteristics to M(x,2), however, it grows more steeply over the same interval 
and thus appears considerably flatter than M(x,2) over the interval [0,1 ]. It is interesting 

to compare the two functions M(x,2) and Q(x,2) over a slightly larger interval. This is 

done in Figures 2 (a) and 2 (d). Both functions appear flat over [ 0,1 ] because of the increase 

in the range of the functions, but what is most striking is the actual range of the two functions 

over the interval [ - 10, 10]. The function M(x,2) ~< 100 on this interval whereas Q(x,2) 
exceeds 106 on the same interval. This is likely to cause computational difficulties if Q(x, 

a) were minimized to solve the NCP (1.1). Figures 2(b) and 2(c) indicate that both 

P(x,10) and E(x,2) tend to - m as x tends to - w, which would again be computationally 

unstable. 

The purpose of these comparisons of the four functions on this very simple example is 
not to make sweeping generalizations, but to point out the possible shortcomings of some 

of these functions. These comparisons together with the results contained in Section 2, 
regarding the implicit Lagrangian M(x, o0, make this function a worthy candidate for 

further study both in error bound analysis (as in [23, 24], for example) and the computa- 

tional algorithms for solving the nonlinear complementarity problem. 

4. A dual to the monotone nonlinear complementarity problem 

In this section we shall relate the monotone NCP (1.1) with differentiable F(x) to the 
following Wolfe dual [32, 19] of MP (1.2). 

(DP) m a x { - u F ( x ) - x V F ( x ) V ( x - u )  [F(x)+VF(x)W(x-u)>~O,  u~>0}. (4.1) 
x ,  u 

It is somewhat curious that the standard duality results [ 19] go through despite the fact that 

neither the objective function xF(x) of MP (1.2) is convex in general under the monoton- 

icity assumption on F(x),  nor is the feasible region of the same problem necessarily convex. 
These duality results depend critically on the monotonicity of F and the structure of MP 
(1.2) and make use of Cottle' s theorem [ 3, 5 ] which was referred to in Section 1. We state 
below Cottle's theorem in a slightly modified form and give its simple proof for complete- 
ness. 

Theorem 4.1 (Cottle [ 3, Chapter IV, Theorem 4 ], Dantzig and Cottle [ 5, Theorem 1 ] ). 
Let F(x)  be differentiable and monotone on some open set containing ~"+. If  the point 
( Y, a, (:) satisfies the Karush-Kuhn-Tucker conditions for MP ( 1.2), 

(KKT) F(xD +VF(x-)T(x--ff) --/7=0, 

F(x-)>~0, ffF(x-)=0, ff>~0, £>~0, 172=0, tT~>0, (4.2) 
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then 2 solves the NCP (1.1).  Conversely if  Y~ solves the NCP (1.1) then (2, ff = Y, 5 = F( Y) ) 

satisfy KKT conditions (4.2). 

Proofi  If (4.2) hold then premultiplying the first equality by (Y - a) and utilizing aF($) = 0, 
~Y = 0 gives 

0=  ( 2 -  ff)F(x-) + (X-- ff)VF(x--)T(2-- t~) -- (2-- if)/7 

=2F(2)  + ( 2 -  ff)VF(2)T(2 - a) + a~. 

Since each of three terms in the last sum is nonnegative and add up to zero, it follows that 
$F($) = 0 and Y solves NCP ( 1.1 ). The converse is obvious. [] 

We establish Wolfe's weak duality theorem [32, 19] for the generally nonconvex MP 
(1.2) and its dual DP (4.1). 

Weak Duality Theorem 4.2. Let F be differentiable and monotone on R n. I f  x is primal 

feasible, and (y, u) is dual feasible then 

xF(x )  >~ - uF(y)  -- y V F ( y )  T(y--  u). (4.3) 

Proof.  

xF(x )  + uF(y)  + y V F ( y ) Z ( y  - U) 

= x f ( x )  + u ( F ( y )  + V F ( y ) T ( y - - u )  ) + ( y - - u ) V F ( y ) T ( y - - u )  >10. 

The last inequality follows from primal feasibility of x, dual feasibility of (y, u) and 
monotonicity of F. [] 

Wolfe's strong duality now easily follows from Theorems 4.1 and 4.2. 

Strong Duali ty  T h e o r e m  4.3. Let F be differentiable and monotone. I f  $ solves NCP (1.1) 

then the point (x=Y, u =Y) solves the dual problem DP (4.1) and the dual maximum is 

zero. 

Proof.  The point (x=Y, u =9~) is dual feasible for (4.1), and since it achieves the upper 
bound of zero obtained by the Weak Duality Theorem 4.2 using the primal feasible point 
Y, the point (x=~,  u =y )  is dual optimal.: [] 

We derive now a converse duality theorem [ 19] under a nonsingularity assumption on 
the following Hessian matrix, for any local solution (~, ti) of the dual problem DP (4.1), 

n 

H(2, if) := rE(x-) + VF(x-) T -[- E (2-- ff)iV2fi(x-). (4.4) 
i = 1  
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Converse Duality Theorem 4.4. Let F be monotone and twice continuously differentiable 

on ~ ' .  I f  (Y, ~) is a local solution o f  the dual probIem DP (4.1) such that the Hessian 

H(y, ti) of  (4.4) is nonsingular, then Y solves the primal MP (1.2) with a zero minimum 

value and hence also the NCP ( I. 1 ). 

Proof. Since (2, ti) is a local solution of DP (4.1) it satisfies, with some g, the Fritz John 
conditions [ 19, Theorem 11.2.3 ] for the equivalent maximization problem 

(DPa) max{L(x, u, v) I VxL(x,  u, v) =0,  (u, v)/>0} (4.la) 
x , u , v  

where the Lagrangian L(x, u, v) is that o fMP (1.2) and is defined by 

L(x,  u, v ) := ( x - u ) F ( x )  - v x .  (4.5) 

By the Fritz John conditions of (4.1a), (L ~, g) and some (fo, r) ~ ~+  × N', such that 

(fo, r) =gO, satisfy 

FoVxL(2,/2, ~7) + FV~L(2, tLtT) =0,  

foVuL(£,/2, v~ + F Vx~,L( £, tL ~) <~ 0, 

/2(foV, L(£, g, v~ + f Vx, L(£,/2, ~7)) =0,  (4.6) 

FoV~L(2, if, c-) +FVx~.L(2, /2, ~) ~ 0 ,  

d(~ZoV~L(£, t], tT) + F Vx,.L(£,/7, v-)) =0,  

V~L(2, if, vD =0. 

Since V~L(~, ti, g) =H(£,  ti), it follows from the last and first equalities of (4.6) and the 
nonsingularity of H(2, a), that ~= 0 and fo > 0. The remaining conditions of (4.6) degen- 
erate to the KKT conditions (4.2) for MP (1.2) and hence by Theorem 4.1 :f solves NCP 
( 1.1 ) and MP (1.2) with minimum value zero. [] 

The following elementary properties of the dual problem are very simple to prove and 
their proofs are omitted. 

Dual Problem DP (4.1) Properties 4.5. Let F be differentiable and monotone on ~' .  
(i) The dual objective is nonpositive on the dual feasible region. 

(ii) If (2, t~) is a solution of DP (4.1) such that the dual objective is zero and VF(Y)  is 
positive definite, then Y solves NCP ( 1.1 ). 

(iii) inf MP(1.2) >~ - s u p  DP(4.1) ~>0>~ - i n f  MP(1.2). 
(iv) inf MP (1.2) = sup DP (4.1) if and only if NCP ( 1.1 ) is solvable. 

We conclude this section with a simple bound on the complementarity error in an interior 
point penalty solution to NCP ( 1.1 ). 

Proposition 4.6. Let F be differentiable and monotone on ~ n, let a > 0 and 
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Then 

x ( a ) ~ a r g m i n  F ( x ) - a ~ _ l o g F i ( x )  F(x)>O,x>~O . 
i ~ t  

an >~x( a ) F ( x (  a) ) >~0. 

(4.7) 

(4.8) 

Proof. The last inequality of (4.8) follows from F ( x ( a ) )  > 0 and x(a )  >~ 0. Since x (a )  
satisfies the optimality conditions 

~,2, VFi(x ( a) ) 
F(  x( a) ) + VF(x (  a) ) Tx( a) - - a  2." >~0, 

F~(x(c0) i=l (4.9) 

a ~VFi(x(°z ) ) '~  O, 
x ( a ) ~ F ( x ( a ) ) +  V F ( x ( a ) ) T x ( a ) -  i~l" ~ ~ J :  X(O~) ) 0 ,  

it follows that the point ( x = x ( a ) ,  ui = ~ /Fi (x (  a) ), i= 1 . . . . .  n) is dual feasible for DP 
(4.1) and by Property 4,4(i) above, 

0 > / -  an - x (a )  VF(x(a)  ) T(X(C~) -- c~F(x(a) ) - 1 ) 

= - a n + x ( a ) F ( x ( ~ ) )  (by (4.9)),  

from which the first inequality of (4.8) follows. [] 

5. Preliminary numerical results 

Two small numerical examples from the literature were used in conjunction with a BFGS 
quasi-Newton unconstrained minimization package in MINOS 5.3 [ 25 ]. Example 5,1 below 
was chosen at the suggestion of a referee because it has both a degenerate solution as well 
as a nondegenerate solution. 

Example 5.1 [ 16, 29]. 

Fl(x )  =3x 2 q2xtx2  + 2x 2 -~-x 3 +3x4 --6, 

F2(X ) =2x~ +x~ +x  2 + 10X 3 +2X 4 - 2 ,  

F3(x) = 3x~ +XlX2 + 2x~ + 2x3 q- 9x4 - 9, 

F4(x) =X~l + 3 4  -I- 2x3 "t- 3x4 - 3 .  

The degenerate solution 21 and the nondegenerate solution 22 are 

: f l=  ( ~ / 2 ,  0, 0, 1/2), F ( 2 ~ ) = ( 0 , 2 + ~ / 6 / 2 , 0 , 0 )  

22 = ( 1, O, 3, 0),  F(22) = (0, 33, 0, 4). 
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Table 1 
Numerical test results for Example 5.1 on DECstation 3100 minimizing M(x, a) using BFGS 

Initial Solution a No. of No. of Time 
point obtained iter. M(x, a) ( sec. ) 

eval. 

Residual 

(2, 2, 2, 2) yl 1.1 15 52 0.33 8 E - 0 7  
(2, 2, 2, 2) 22 2.0 19 47 0.52 8 E -  10 
(2, 2, 2 ,2)  21 20.0 18 60 0.42 2 E - 0 9  

( 1 , -  1 , -  1, 1) 22 1.1 18 43 0.37 3 E -  08 
( 1 , -  1 , -  1, 1) y2 2.0 16 37 0.35 7 E - 0 9  
( 1 , -  1 , -  1, 1) y ~ 20.0 18 50 0.48 9 E - 0 7  

( -  1,1, 1 , -  1) 2 ~ 20 28 77 0.45 2 E - 0 8  
( - 1, 1, 1 , -  I)  21 90 22 71 0.53 4 E - 0 9  

( - 2 , -  2 , - 2 , -  2) £2 20 20 48 0.51 2 E - 0 8  
( - 2 , - 2 , - 2 , - 2 )  ~ 120 18 67 0.54 3 E - 0 9  

(200, 200,200, 200) ~1 1.1 19 55 0.50 7 E - 0 7  
(200, 200, 200, 200) ~ 20 18 55 0.41 4 E - 0 9  

Degenerate .~l = ( 1.224744, 0, 0, 0.5) (7-figure accurate) 
Nonegenerate 22 = ( 1, 0, 3, 0) (7-figure accurate) 
Residual := []x- ( x - F ( x ) )  + [[~ 

Table 2 
Numerical test results for Example 5.2 on DECstation 3100 minimizing M(x, a) using BFGS 

/3 Initial point Solution a No. of No. of Time 
obtained iter. M(x, a) (sec.) 

eval. 

Residual 

0.5 (1, 1, 1, 1) (0.5, 1.356739, 1.1 9 18 0.40 2 E - 0 6  
0.452246, 0.904494) 

0.5 (200, 200,200, 200) (0.5,262.233976, 1.1 10 39 
87.411823, 
174.822156) 

0.33 4 E - 0 6  

2 (1, 1, 1, 1) (075, 1.289097, 1.1 7 13 0.38 2 E - 0 7  
1.289097, 0) 

0.5 (200, 200,200, 200) (0.75, 295.473266, 30 12 57 0.55 
295.473266,0) 

2 E - 1 3  

Residual := [Ix- ( x -  F(x) ) + l] 

T a b l e  1 s u m m a r i z e s  the  n u m e r i c a l  resu l t s .  I n t e r e s t i n g  p o i n t s  to  n o t e  are:  

( i )  B F G S  c o n v e r g e d  f r o m  al l  a t t e m p t e d  s t a r t i n g  p o i n t s  fo r  a p p r o p r i a t e l y  c h o s e n  a .  T h e  

c h o i c e  o f  a is  n o t  c r i t i ca l ,  b u t  a f f ec t s  t he  n u m b e r  o f  i t e r a t i o n s  a n d  s o l u t i o n  o b t a i n e d .  
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(ii) For three starting points the method converged to either of the two solutions, 

depending on the value of the parameter a. 

(iii) The number of iterations, each consisting of a rank-2 update and a line search, was 

28 or less for all runs. This compares favorably with the 7 quadratic programs needed to 

solve the same problem in [29]. 

Example 5.2 [29]. 

F l ( x )  = --x2 +x3 +x4, 

F2(x) --Xl - 0.75(x3 +/3x4)/x2, 

F3(x) = 1 - xl -0.25(x3 + /3X4) /X3, 

F4(x) = / 3 - x  1 • 

This problem has multiple nondegenerate solutions. Table 2 summarizes the results for 

/3 = 0.5, 2, and two starting points including the one used in [ 29]. Again our iteration count 
compares quite favorably with that of [29]: 9 BFGS steps versus 11 quadratic programs 

for/3 = 0.5, and 7 BFGS steps versus 3 quadratic programs for/3 = 2. 

6. Concluding remarks  

The nonlinear complementarity problem has been reformulated as an unconstrained mini- 

mization of an implicit Lagrangian function in the same space as the original problem. The 

zero global minima of the implicit Lagrangian are in one-to-one correspondence with the 

nonlinear complementarity problem solution points. The correspondence is valid without 

any assumptions. When the nonlinear complementarity problem is differentiable so is the 
implicit Lagrangian. Thus the implicit Lagrangian appears to be a useful reformulation of 

the nonlinear complementarity problem that can be minimized to obtain solutions of the 

latter. Preliminary numerical results are encouraging and further computational experiments 
are planned to test the effectiveness of this unconstrained minimization approach. Some 
interesting open questions that remain are: 

Question 6.1. Under what assumptions is every (strict or nonstrict) local minimum solution 
of M(x ,  a) a global minimum solution of M(x,  a )?  Are monotonicity and differentiability 

of F ( x )  sufficient? 

Question 6.2. When is a stationary point of M(x ,  c~) a solution of the NCP ( 1.1 ) ? 

Question 6.3. Under what assumption is M(x ,  a)  convex or pseudoconvex on Nn? 

A Wolfe dual of a standard constrained minimization problem (associated with the 
nonlinear complementarity problem) is shown to be related through essentially all the 
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standard duality results to the constrained minimization problem under monotonicity and 
differentiability (twice continuous differentiability) assumptions on the nonlinear comple- 
mentarity problem. It would be interesting to investigate the computational potential of this 
dual problem, as well as the potential of both the implicit Lagrangian and the dual problem 
in generating residual bounds for the nonlinear complementarity problem in the spirit of 
[23, 24, 22, 17, 18]. 

Note added in proof 

Recently [ 33 ] the square root of the implicit Lagrangian (1.5) was shown to bound locally 
the distance to the solution set of an LCP under no assumptions other than solvability. This 
bound is global if the LCP matrix is nondegenerate. Other error bounds using the implicit 
Lagrangian are also given in [34]. 
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