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Abstract. For the problem of solving maximal monotone inclusions, we present a rather general
class of algorithms, which contains hybrid inexact proximal point methods as a special case and
allows for the use of a variable metric in subproblems. The global convergence and local linear
rate of convergence are established under standard assumptions. We demonstrate the advantage of
variable metric implementation in the case of solving systems of smooth monotone equations by the
proximal Newton method.
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1. Introduction. Given a maximal monotone operator T : R
n ⇒ R

n, we con-
sider the classical problem of finding a zero of T , i.e., z ∈ R

n such that

(1.1) 0 ∈ T (z).

As is well known, many important problems can be cast in this framework. Some
examples are convex optimization, min-max problems, and monotone variational in-
equalities over convex sets; see, e.g., [23].

Given some zk ∈ R
n, the current approximation to a solution of (1.1), the proxi-

mal point iteration [19, 22] generates zk+1 as the solution of the regularized subprob-
lem

(1.2) 0 ∈ ckT (z) + z − zk,

where ck > 0 is the regularization parameter. As is well known, the proximal point
method serves as a basis for developing and analyzing various useful computational
techniques, such as splitting methods for variational problems (e.g., [18, 31, 13, 33,
34, 24]), the methods of multipliers (e.g., [21, 15]), and bundle methods for non-
smooth optimization (see, e.g., [16, 3]), to name a few. In computational context, it
is important to handle approximate solutions of subproblems; this will be discussed a
little further. Also, it is attractive to allow for the use of a variable metric (or precon-
ditioning). Motivated by the latter issue, we shall consider the following generalized
proximal subproblem:

(1.3) 0 ∈ ckMkT (z) + z − zk,
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where Mk is a symmetric positive definite matrix. The case of the classical (exact)
iteration (1.2) corresponds to taking Mk = I (the identity matrix) in (1.3). Given the
presence of the matrix Mk, we could in principle dispense with the scalar parameter ck
in (1.3). We prefer, however, to keep it because this appears convenient in some parts
of the convergence analysis and in our application to solving systems of monotone
equations, discussed in section 5.

To handle approximate solutions, we shall use an extension to the variable metric
setting of the rules proposed in [27, 26] and unified in [30]. In those algorithms,
the relative error in the approximation needs only to be bounded (above, by one),
which is a numerically sound requirement, and inexact values of the operator T are
allowed, which is useful in various applications [29, 28, 24]. Specifically, to solve (1.3)
approximately, the task would be to compute a triplet (ẑk, v̂k, εk) ∈ R

n × R
n × R+

such that {
v̂k ∈ T εk(ẑk),
ckMkv̂

k + ẑk − zk = δk,

‖δk‖2
M−1

k

+ 2ckεk ≤ σ2
k

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
,

where σk ∈ [0, 1) is the error tolerance (relaxation) parameter, by ‖ · ‖M we denote
the norm induced by a symmetric positive definite matrix M ∈ Mn

++, i.e.,

‖z‖M =
√
〈z,Mz〉,

and T ε : R
n ⇒ R

n is the ε-enlargement of a maximal monotone operator T [5, 6],
defined as

T ε(z) := {v ∈ R
n | 〈w − v, y − z〉 ≥ −ε ∀y ∈ R

n, ∀w ∈ T (y)}, ε ≥ 0.

We note that, to check the above criterion, one does not need to invert the matrix Mk,
as will be explained in what follows. The presented approximation rule is constructive
and has advantages in some situations, when compared to the original [22] (and its
variations, e.g., [32, 11, 7]), where essentially one has εk = 0 and

∑∞
k=0 ‖δk‖ < ∞ (in

the setting of Mk = I). We refer the reader to [26, 29, 28, 24] for some applications
where the relative-error criterion appears useful. It will also play a central role in the
method discussed in section 5.

Most proximal-related schemes in the literature that use variable metrics typically
deal only with the special case of optimization, i.e., the case where the operator T
is the subdifferential of a convex function [2, 20, 17, 10]. To our knowledge, the
exception is [7] and some of the subsequent results [8, 9]. We note that our use of a
variable metric is different from [7], where (exact) iteration is of the form

zk+1 = zk + Mk((I + ckT )−1 − I)zk.

The exact iteration of solving (1.3) can be written as

zk+1 = (I + ckMkT )−1zk,

and the two are the same only when Mk = I. It should be noted, however, that
[7] does not require Mk to be symmetric, and in this respect our development can
be more restrictive for some applications. On the other hand, global convergence
of the method of [7] requires a rather technical assumption about the matrices Mk.
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Specifically, the assumption of [7, Hypothesis (H2)] is that there exists a nonempty
bounded subset Ω of T−1(0) such that

‖(Mk − I)Dk(z
k)‖ ≤ γk‖Dk(z

k)‖ for all k,

where

Dk = (I + ckT )−1 − I,

γk =
‖Dk(z

k)‖
2tk + 3‖Dk(zk)‖

, with tk = sup
z∈Ω

‖z − zk‖.

This assumption essentially means that matrices Mk should not deviate from the
identity too much, in the given sense, and it is in general unverifiable (unless one
takes Mk = I) and globally quite restrictive. The only assumption we make in our
global convergence analysis is, by comparison, rather mild:

(1.4)
1

1 + ηk
Mk 
 Mk+1, ηk > 0 for all k,

∞∑
k=0

ηk < ∞,

where, for A,B ∈ Mn
++, by A 
 B we mean that B−A is a positive semidefinite ma-

trix. This condition does not introduce any essential restrictions on the choice of the
matrix Mk+1 for a given k (for a particular k, the choice of ηk is rather flexible), and
it is always satisfied if we take Mk 
 Mk+1. Also, [7] does not allow approximations
of the operator T and requires error terms to be summable, basically following [22].
In the aspect of inexact solution of subproblems, our conditions (already mentioned
above) are more flexible and constructive.

A few more words about our notation are in order. By Mn
++ we denote the space

of symmetric positive definite matrices. For M ∈ Mn
++, λmin(M) and λmax(M) stand

for the minimal and the maximal eigenvalues of M , respectively. For any A 
 B, it
holds that ‖z‖A ≤ ‖z‖B . In particular, if

0 < λl ≤ λmin(M) ≤ λmax(M) ≤ λu,

then for any x ∈ R
n it holds that

(1.5) λl‖x‖2 ≤ ‖x‖2
M ≤ λu‖x‖2,

1

λu
‖x‖2 ≤ ‖x‖2

M−1 ≤ 1

λl
‖x‖2.

By 〈x, y〉 we denote the usual inner product between x, y ∈ R
n. For a matrix M ∈

Mn
++, we denote 〈x, y〉M = 〈Mx, y〉. For a closed convex set Ω ⊆ R

n and a matrix
M ∈ Mn

++, the “skewed” projection operator onto Ω under the matrix M is given by

PΩ,M (z) = arg min
x∈Ω

1

2
〈x− z,M(x− z)〉 = arg min

x∈Ω

1

2
‖x− z‖2

M ;

i.e., it is the projection operator with respect to the norm ‖ · ‖M . Then the associated
distance from z ∈ R

n to Ω is defined as dist(z,Ω)M = ‖z − PΩ,M (z)‖.
2. Approximate solutions of the generalized proximal subproblem. Giv-

en a maximal monotone operator T : R
n ⇒ R

n, z ∈ R
n, c > 0, and M ∈ Mn

++,
consider the generalized proximal point subproblem

(2.1) 0 ∈ cMT (y) + y − z,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIABLE METRIC PROXIMAL POINT ALGORITHMS 243

with respect to y ∈ R
n. This is clearly equivalent to

0 ∈ cT (y) + M−1(y − z),

and the fact that the inclusion above has a solution follows, e.g., from [4, Proposition
3].

We next define the notion of approximate solutions of generalized proximal sub-
problems. Consider the system

(2.2)

{
v ∈ T (y),
0 = cMv + y − z,

which is equivalent to (2.1).
Definition 2.1. We say that a triplet (y, v, ε) ∈ R

n×R
n×R+ is an approximate

solution of the proximal system (2.2) with error tolerance σ ∈ [0, 1) if

v ∈ T ε(y)

and

(2.3) ‖cMv + y − z‖2
M−1 + 2cε ≤ σ2(‖cMv‖2

M−1 + ‖y − z‖2
M−1).

Note that the exact solution of (2.2) corresponds to taking ε = 0 = σ in the defini-
tion above. We next establish some properties of approximate solutions of generalized
proximal systems.

Lemma 2.2. Let z ∈ R
n, c > 0, and M ∈ Mn

++. A triplet (y, v, ε) ∈ R
n×R

n×R+

being an approximate solution of the proximal system (2.2) with error tolerance σ ∈
[0, 1) is equivalent to the conditions

(2.4) v ∈ T ε(y), 〈v, z − y〉 − ε ≥ 1 − σ2

2c

(
‖cMv‖2

M−1 + ‖y − z‖2
M−1

)
.

In addition, it holds that

(2.5)
c(1 − ρ)

1 − σ2
‖Mv‖M−1 ≤ ‖y − z‖M−1 ≤ c(1 + ρ)

1 − σ2
‖Mv‖M−1 ,

where ρ =
√

1 − (1 − σ2)2.
Furthermore, the three conditions
1. 0 ∈ T (z),
2. v = 0,
3. y = z

are equivalent and imply that ε = 0.
Proof. Rearranging terms in (2.3), we have

σ2(‖cMv‖2
M−1 + ‖y − z‖2

M−1) ≥ 2cε + ‖cMv‖2
M−1 + ‖y − z‖2

M−1 + 2〈cMv, y − z〉M−1

= 2cε + ‖cMv‖2
M−1 + ‖y − z‖2

M−1 − 2c〈v, z − y〉,

which gives the inequality in (2.4).
By using ε ≥ 0 and the Cauchy–Schwarz inequality, we obtain

1 − σ2

2c
(‖cMv‖2

M−1 + ‖y − z‖2
M−1) ≤ 〈v, z − y〉 − ε

≤ 〈Mv, z − y〉M−1 ≤ ‖Mv‖M−1‖y − z‖M−1 .
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By denoting t = ‖y − z‖M−1 and resolving the quadratic inequality

t2 − 2‖cMv‖M−1

1 − σ2
t + ‖cMv‖2

M−1 ≤ 0

with respect to t, we obtain (2.5).
Finally, suppose that 0 ∈ T (z). Since v ∈ T ε(y), we have

〈v − 0, y − z〉 ≥ −ε ⇒ 〈v, z − y〉 − ε ≤ 0.

By using now (2.4), we have cMv = 0 (so that v = 0) and y − z = 0.
If we assume that v = 0, then (2.4) implies that y = z and vice versa. In either

case, 0 ∈ T (z). From (2.4) it is also clear that all of these conditions imply that
ε = 0.

The next result shows how to make progress towards a solution of the original
problem (1.1), by using the obtained approximate solution of the generalized proximal
subproblem.

Lemma 2.3. Let z ∈ R
n, y ∈ R

n, ε ≥ 0, and v ∈ T ε(y). Suppose that

〈v, z − y〉 − ε > 0.

Then, for any z∗ ∈ T−1(0), any M ∈ Mn
++, and any τ ≥ 0, it holds that

‖z∗ − z+‖2
M−1 ≤ ‖z∗ − z‖2

M−1 − (1 − (1 − τ)2)a2‖Mv‖2
M−1 ,

where

z+ := z − τaMv

and

a :=
〈v, z − y〉 − ε

‖Mv‖2
M−1

.

Proof. Define the closed half-space

H = {w ∈ R
n | 〈v, w − y〉 − ε ≤ 0}.

By the assumption, z 
∈ H. Let z̄ be the skewed projection of z onto H, under the
matrix M−1. As is easily seen,

z̄ = PH,M−1(z) = z − aMv.

For any x ∈ H, it holds that

〈x− z̄, v〉 = 〈x− z + aMv, v〉 = 〈x− z, v〉+
〈v, z − y〉 − ε

‖Mv‖2
M−1

〈Mv, v〉 = 〈x− y, v〉− ε ≤ 0.

Hence,

〈x− z̄, z+ − z〉M−1 = 〈x− z̄,M−1(−τaMv)〉 = −τa〈x− z̄, v〉 ≥ 0.
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Observe that z̄ − z+ = (τ − 1)aMv. We then obtain

‖x− z‖2
M−1 = ‖x− z+‖2

M−1 + ‖z+ − z‖2
M−1 + 2〈x− z+, z+ − z〉M−1

= ‖x− z+‖2
M−1 + ‖z+ − z‖2

M−1 + 2〈z̄ − z+, z+ − z〉M−1

+2〈x− z̄, z+ − z〉M−1

≥ ‖x− z+‖2
M−1 + ‖z+ − z‖2

M−1 + 2〈z̄ − z+, z+ − z〉M−1

= ‖x− z+‖2
M−1 + (τa)2‖Mv‖2

M−1 + 2(τ − 1)a(−τa)‖Mv‖2
M−1

= ‖x− z+‖2
M−1 + (1 − (1 − τ)2)a2‖Mv‖2

M−1 .

Suppose that z∗ ∈ T−1(0). Since v ∈ T ε(y), we have

〈v − 0, y − z∗〉 ≥ −ε.

This shows that z∗ ∈ H. We can then set x = z∗ in the chain of inequalities above to
complete the proof.

3. The algorithm. Lemma 2.3 shows that, with a proper choice of parameters,
a step in the direction obtained from an approximate solution of the generalized
proximal system, scaled by the chosen metric, brings us closer to the solution set
of the original problem. This suggests the following scheme, which we shall call the
variable metric hybrid inexact proximal point method.

Algorithm 3.1. Initialization: Choose z0 ∈ R
n, c > 0, σ̄ ∈ (0, 1), θ ∈ (0, 1),

and 0 < λl < λu. Set k := 0.
Inexact proximal step: Choose ck ≥ c, a symmetric positive definite matrix

Mk satisfying λl ≤ λmin(Mk) ≤ λmax(Mk) ≤ λu, and the error tolerance parameter
σk ∈ [0, σ̄). Find ẑk ∈ R

n, v̂k ∈ R
n, and εk ≥ 0 such that

(3.1)

{
v̂k ∈ T εk(ẑk),
δk = ckMkv̂

k + ẑk − zk

and

(3.2) ‖δk‖2
M−1

k

+ 2ckεk ≤ σ2
k

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
.

Iterates update: If ẑk = zk, stop. Otherwise, choose τk ∈ [1− θ, 1+ θ], and set

zk+1 = zk − τkakMkv̂
k, ak =

〈v̂k, zk − ẑk〉 − εk
‖Mkv̂k‖2

M−1
k

.

Set k := k + 1, and go to the inexact proximal step.
We note that it is not necessary to calculate the inverse of Mk in order to im-

plement Algorithm 3.1 (in particular, for checking the condition (3.2) and computing
ak). Indeed, by (1.5), the condition (3.2) is satisfied if

‖δk‖2 + 2λuckεk ≤ λuσ
2
k

λl

(
‖ckMkv̂

k‖2 + ‖ẑk − zk‖2
)
.

Alternatively, in the latter relation, instead of λl and λu one can use any other (in
particular, tighter) lower and upper bounds for the eigenvalues of Mk. Also, the scalar
ak can be calculated as

ak =
〈v̂k, zk − ẑk〉 − εk

〈Mkv̂k, v̂k〉
.
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The next result shows that some specific realizations of Algorithm 3.1 allow for
the simple update

zk+1 = zk − ckMkv̂
k.

This is the update that we shall use for our application in section 5. Specifically, we
have the following.

Proposition 3.1. If the inequality in (3.2) is replaced by the stronger condition
‖δk‖2

M−1
k

+ 2ckεk ≤ σ2
k‖ẑk − zk‖2

M−1
k

, and we choose σk ≤ θ, then there exists τk ∈
(1 − σk, 1 + σk) ⊂ (0, 2) such that τkak = ck.

Proof. In the case of interest, v̂k 
= 0 and ẑk 
= zk. By using the triangle inequality,
from ‖δk‖M−1

k
≤ σk‖ẑk − zk‖M−1

k
we obtain

‖ẑk − zk‖M−1
k

− ck‖Mkv̂
k‖M−1

k
≤ σk‖ẑk − zk‖M−1

k

and

ck‖Mkv̂
k‖M−1

k
− ‖ẑk − zk‖M−1

k
≤ σk‖ẑk − zk‖M−1

k
,

implying that

(3.3) (1 − σk)
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

≤ ck ≤ (1 + σk)
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

.

Furthermore, by the Cauchy–Schwarz inequality, since εk ≥ 0 we have

ak =
〈v̂k, zk − ẑk〉 − εk

‖Mkv̂k‖2
M−1

k

≤
〈Mkv̂

k, zk − ẑk〉M−1
k

‖Mkv̂k‖2
M−1

k

≤
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

.

Finally, since

〈v̂k, ẑk − zk〉 = 〈Mkv̂
k, ẑk − zk〉M−1

k

=
‖ckMkv̂

k + ẑk − zk‖2
M−1

k

− ‖ẑk − zk‖2
M−1

k

− ‖ckMkv̂
k‖2

M−1
k

2ck
,

by using (2.5) and (3.3), we obtain

ak =
‖ẑk − zk‖2

M−1
k

+ ‖ckMkv̂
k‖2

M−1
k

−
(
‖ckMkv̂

k + ẑk − zk‖2
M−1

k

+ 2ckεk

)
2ck‖Mkv̂k‖2

M−1
k

≥ ck
2

+ (1 − σ2
k)

‖ẑk − zk‖2
M−1

k

‖ckMkv̂k‖2
M−1

k

≥ ck
2

(
1 +

1 − σ2
k

(1 + σk)2

)
=

ck
1 + σk

.

Hence,

(1 − σk)ak ≤ ck ≤ (1 + σk)ak,

which establishes the claim.
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4. Convergence analysis. If Algorithm 3.1 terminates at some iteration k,
then zk = ẑk, and, by Lemma 2.2, zk is a solution. We next consider the case when
infinite sequences {zk}, {ẑk}, {v̂k}, and {εk} are generated. For any k, we have v̂k 
= 0,
ẑk 
= zk, and by Lemma 2.2,

〈v̂k, zk − ẑk〉 − εk ≥ 1 − σ2
k

2ck

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
> 0.

By the definition of ak, we then conclude that

(4.1) ak ≥ 1 − σ2
k

2ck

⎛
⎝‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

‖Mkv̂k‖2
M−1

k

⎞
⎠ .

By the Cauchy–Schwarz inequality,

‖ckMkv̂
k‖2

M−1
k

+ ‖ẑk − zk‖2
M−1

k

≥ 2ck‖Mkv̂
k‖M−1

k
‖ẑk − zk‖M−1

k
.

By combining this relation with (4.1), we obtain

(4.2) ak‖Mkv̂
k‖M−1

k
≥ (1 − σ2

k)‖ẑk − zk‖M−1
k

.

Combining (4.1) and (2.5), and using the definition of ρk, gives the following lower
bound for ak:

ak ≥ (1 − σ2
k)ck

2

⎛
⎝1 +

‖ẑk − zk‖2
M−1

k

‖ckMkv̂k‖2
M−1

k

⎞
⎠

≥ (1 − σ2
k)ck

2

(
1 +

(
1 − ρk
1 − σ2

k

)2
)

=

ck

((
1 − σ2

k

)2
+
(
1 −

√
1 − (1 − σ2

k)
2
)2

)
2 (1 − σ2

k)

=
ck

(
1 −

√
1 − (1 − σ2

k)
2
)

1 − σ2
k

=
(1 − σ2

k)ck

1 +
√

1 − (1 − σ2
k)

2
.(4.3)

Hence, the parameter ak is bounded away from zero:

(4.4) ak ≥ (1 − σ̄2)c

1 +
√

1 − (1 − σ̄2)2
> 0.

We proceed to establish the global convergence of Algorithm 3.1.
Proposition 4.1. Suppose that T−1(0) 
= ∅ and condition (1.4) holds. Then any

sequences generated by Algorithm 3.1 have the following properties:
1. {zk} is bounded.
2.

∑∞
k=0 ‖akMkv̂

k‖2 < ∞.
3. limk→∞ ‖ẑk − zk‖ = limk→∞ ‖v̂k‖ = limk→∞ ‖εk‖ = 0.
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Proof. By condition (1.4), it holds that

∞∏
k=0

(1 + ηk) = p < ∞,

and, for all k,

M−1
k+1 
 (1 + ηk)M

−1
k .

By (1.5), for all k we have

λ−1
u ‖z‖2 ≤ λmin(M−1

k )‖z‖2 ≤ ‖z‖2
M−1

k

≤ λmax(M−1
k )‖z‖2 ≤ λ−1

l ‖z‖2 ∀ z ∈ R
n.

By using (4.1) and Lemma 2.3, we have that for any z∗ ∈ T−1(0) it holds that

‖z∗ − zk+1‖2
M−1

k

≤ ‖z∗ − zk‖2
M−1

k

− (1 − (1 − τk)
2)a2

k‖Mkv̂
k‖2

M−1
k

≤ ‖z∗ − zk‖2
M−1

k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

.

Hence,

λ−1
u ‖z∗ − zk+1‖2 ≤ ‖z∗ − zk+1‖2

M−1
k+1

≤ (1 + ηk)‖z∗ − zk+1‖2
M−1

k

≤ (1 + ηk)
(
‖z∗ − zk‖2

M−1
k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

)
≤ (1 + ηk)‖z∗ − zk‖2

M−1
k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

.

By applying this inequality consecutively, we obtain

(4.5) λ−1
u ‖z∗ − zk+1‖2 ≤

k∏
i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
− (1 − θ2)

k∑
i=0

‖aiMiv̂
i‖2

M−1
i

.

We therefore have, for any k,

(4.6) ‖z∗ − zk‖2 ≤ λu

k−1∏
i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
≤ pλu

λl
‖z∗ − z0‖2,

which shows that the sequence {zk} is bounded. From (4.5), we also have

(1 − θ2)

k∑
i=0

‖aiMiv̂
i‖2

M−1
i

≤
k∏

i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
.

By passing onto the limit when k → ∞ in this relation, we obtain

∞∑
k=0

‖akMkv̂
k‖2 ≤ λu

∞∑
k=0

‖akMkv̂
k‖2

M−1
k

≤ pλu

1 − θ2
‖z∗ − z0‖2

M−1
0

< ∞.

This proves the second item in the assertion and, as a consequence, that

lim
k→∞

‖akMkv̂
k‖ = 0.
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From (4.2) and Lemma 2.2, we then conclude that

lim
k→∞

‖Mkv̂
k‖ = 0 and lim

k→∞
‖ẑk − zk‖ = 0.

Since the matrices Mk are uniformly positive definite, we also have limk→∞ v̂k = 0.
Also, since εk ≤ 〈v̂k, zk − ẑk〉, it follows that limk→∞ εk = 0.

We are now in a position to complete the proof of global convergence of Algorithm
3.1. Given the properties established in Proposition 4.1, the argument is close to
standard; we include it mainly for completeness.

Theorem 4.2. Suppose that T−1(0) 
= ∅ and condition (1.4) holds. Then any
sequence {zk} generated by Algorithm 3.1 converges to an element of T−1(0).

Proof. By Proposition 4.1, the sequence {zk} is bounded. Therefore, it has some
accumulation point, say, z̄ ∈ R

n. Let {zkj} be any subsequence converging to this
accumulation point: limj→∞ zkj = z̄. Since limk→∞ ‖ẑk − zk‖ = 0, we have ẑkj → z̄.
For any z ∈ R

n and any u ∈ T (z), 〈u− vkj , z − ẑkj 〉 ≥ −εkj . Hence,

〈u− 0, z − ẑkj 〉 ≥ 〈vkj , z − ẑkj 〉 − εkj
.

Since vkj → 0, εkj → 0, and ẑkj → z̄, by passing onto the limit when j → ∞ we
obtain

〈u− 0, z − z̄〉 ≥ 0.

As z ∈ R
n and u ∈ T (z) were arbitrarily chosen, and T is maximal monotone, the

above relation shows that 0 ∈ T (z̄); i.e., z̄ is a solution.
Suppose that there exists another subsequence {zti} converging to z̃ 
= z̄. Fix

some d ∈ (0, ‖z̃ − z̄‖). Since z̃ and z̄ are limits of corresponding subsequences, there
exists an index i0 such that for all i ≥ i0

‖zti − z̃‖ <
d

2

√
λl

pλu
,

where p =
∏∞

k=0(1 + ηk), and there exists an index j0 such that for all j ≥ j0

kj > ti0 and ‖zkj − z̄‖ <
d

2
.

Therefore,

‖zkj − z̃‖ >
d

2
∀j ≥ j0.

Since, as already established above, z̃ ∈ T−1(0), the same reasoning used to obtain
(4.6) gives, for any j ≥ j0,

d

2
< ‖zkj − z̃‖ ≤

√
pλu

λl
‖zti0 − z̃‖ <

d

2
,

which is a contradiction.
Hence, {zk} has the unique accumulation point, which is a solution.
We proceed with a convergence rate analysis of Algorithm 3.1. To this end, we

first establish an error bound for the exact solution of the generalized proximal system

(4.7)

{
v ∈ T (y),
0 = cMv + y − z.
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We note that the obtained bound is for the distance both in terms of y and in terms of
v, and it does not involve any unknown constants. Specifically, we have the following.

Lemma 4.3. Let y∗, v∗ be the exact solution of the proximal system (4.7), with
some c > 0, z ∈ R

n, and M ∈ Mn
++. Then for any y ∈ R

n and any v ∈ T ε(y), it
holds that

‖y − y∗‖2
M−1 + c2‖Mv −Mv∗‖2

M−1 ≤ ‖cMv + y − z‖2
M−1 + 2cε.

Proof. By using cMv∗ + y∗ − z = 0, we obtain

‖cMv + y − z‖2
M−1 = ‖cMv + y − z − (cMv∗ + y∗ − z)‖2

M−1

= ‖cMv − cMv∗ + y − y∗‖2
M−1

= c2‖Mv −Mv∗‖2
M−1 + ‖y − y∗‖2

M−1 + 2c〈v − v∗, y − y∗〉
≥ c2‖Mv −Mv∗‖2

M−1 + ‖y − y∗‖2
M−1 − 2cε.

We shall show linear convergence of Algorithm 3.1 under the assumption that
T−1 has the following Lipschitzian property at zero: There exist some L1 > 0 and
L2 > 0 such that

T−1(v) ⊂ T−1(0) + L1‖v‖B ∀v ∈ L2B,

where B = {x ∈ R
n | ‖x‖ ≤ 1}. Note that this condition does not imply that the

solution set T−1(0) is a singleton. The equivalent form of this local Lipschitzian
property, used below, is

(4.8) dist(z, T−1(0)) ≤ L1 min
v∈T (z)

‖v‖ ∀ z ∈ {z′ ∈ domT | min
v∈T (z′)

‖v‖ ≤ L2}.

We shall prove the linear convergence rate under one of the following two alterna-
tive assumptions on algorithm parameters. One is that σ̄ is sufficiently small, while c
is sufficiently large (note that those are user-chosen parameters). The other is that

(4.9)
1

1 + ηk
Mk 
 Mk+1 
 (1 + ηk)Mk, ηk > 0 ∀ k,

∞∑
k=0

ηk < ∞,

which is a strengthening of the condition (1.4) used for global convergence. Asymp-
totically, (4.9) means that the matrices should not differ too much on subsequent
iterations (a natural requirement in a neighborhood of a solution).

Theorem 4.4. In addition to the assumptions of Theorem 4.2, suppose that
condition (4.8) is satisfied.

Then, for sufficiently small choices of σk and sufficiently large choices of ck, the
sequence {zk} generated by Algorithm 3.1 converges to an element of T−1(0) at a
linear rate. If ck → ∞ and σk → 0, the rate of convergence is superlinear.

If condition (4.9) holds, then for any choice of parameters σ̄ and c, there exists
k0 ∈ N such that the sequence {zk} converges at the linear rate in the norm induced
by M−1

k0
.

Proof. For each k, let τk, ak, z
k be as defined in Algorithm 3.1, and let xk, wk ∈

T (xk) be the exact solution of the proximal system{
w ∈ T (x),
0 = bkMkw + x− zk,
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where bk = τkak. Since v̂k ∈ T εk(ẑk), by Lemma 4.3 and the definition of ak, it
follows that

‖xk − ẑk‖2
M−1

k

+ b2k‖Mkv̂
k −Mkw

k‖2
M−1

k

≤ ‖bkMkv̂
k + ẑk − zk‖2

M−1
k

+ 2bkεk

= ‖bkMkv̂
k + ẑk − zk‖2

M−1
k

−2bk

(
ak‖Mkv̂

k‖2
M−1

k

+ 〈Mkv̂
k, zk − ẑk〉M−1

k

)
= ‖ẑk − zk‖2

M−1
k

+ (τ2
k − 2τk)‖akMkv̂

k‖2
M−1

k

.

By using (4.2), we then obtain

(4.10)

‖xk − ẑk‖2
M−1

k

+ b2k‖Mkv̂
k −Mkw

k‖2
M−1

k

≤
(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖2
M−1

k

.

By using further the definitions of wk and v̂k, this gives

(4.11) ‖xk − ẑk‖2
M−1

k

+ ‖xk − zk+1‖2
M−1

k

≤
(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖2
M−1

k

.

From (4.10), we also have

‖Mkv̂
k −Mkw

k‖2
M−1

k

≤
(

1 − 2

τk
+

1

τ2
k (1 − σ2

k)
2

)
‖Mkv̂

k‖2
M−1

k

.

Since v̂k → 0 (see Proposition 4.1), the last relation implies that wk → 0. Hence,
there exists k1 ∈ N such that ‖wk‖ < L2 for all k > k1. By (4.8), we then have

dist(xk, T−1(0)) ≤ L1‖wk‖ ∀k > k1.

Therefore, for k > k1,

dist(xk, T−1(0))2
M−1

k

≤ 1

λl
dist(xk, T−1(0))2 ≤ L2

1

λl
‖wk‖2

≤ L2
1

λ2
l

‖wk‖2
Mk

=
L2

1

λ2
l

‖Mkw
k‖2

M−1
k

=
L2

1

λ2
l b

2
k

‖zk − xk‖2
M−1

k

.(4.12)

Let x̄k be the skewed projection of xk onto T−1(0) under the norm induced by M−1
k ,

i.e.,

x̄k := PT−1(0),M−1
k

(xk).

Then, for k > k1, we have

dist(zk+1, T−1(0))M−1
k

≤ ‖zk+1 − x̄k‖M−1
k

≤ ‖zk+1 − xk‖M−1
k

+ dist(xk, T−1(0))M−1
k

≤ ‖zk+1 − xk‖M−1
k

+
L1

λlbk
‖zk − xk‖M−1

k

≤ ‖zk+1 − xk‖M−1
k

+
L1

λlbk
‖xk − ẑk‖M−1

k
+

L1

λlbk
‖ẑk − zk‖M−1

k
,
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where the third inequality is by (4.12). By the Cauchy–Schwarz inequality, it holds
that

L1

λlbk
‖xk − ẑk‖M−1

k
+ ‖xk − zk+1‖M−1

k

≤

√
1 +

L2
1

λ2
l b

2
k

√
‖xk − ẑk‖2

M−1
k

+ ‖xk − zk+1‖2
M−1

k

≤

√(
1 +

L2
1

λ2
l b

2
k

)(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖M−1
k

,

where the second inequality follows from (4.11). By combining the latter relation with
(4.13) and using also (4.2), we obtain

dist(zk+1, T−1(0))M−1
k

(4.13)

≤
(√(

1 +
L2

1

λ2
l b

2
k

)(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
+

L1

λlbk(1 − σ2
k)

)
‖akMkv̂

k‖M−1
k

.

Define

(4.14) μk :=
√

α2
k + 1

√
β2
k − 1 + αkβk,

where

(4.15) αk :=
L1

(
1 +

√
1 − (1 − σ2

k)
2
)

λlck(1 − σ2
k)(1 − θ)

≤
L1

(
1 +

√
1 − (1 − σ̄2)2

)
λlc(1 − σ̄2)(1 − θ)

=: α,

(4.16) βk :=
1

1 − σ2
k

≤ 1

1 − σ̄2
=: β.

With those definitions, by using (4.13) and (4.3), we conclude that

(4.17) dist(zk+1, T−1(0))M−1
k

≤ μk‖akMkv̂
k‖M−1

k
.

Let z̄k := PT−1(0),M−1
k

(zk). By Lemma 2.3, it holds that

dist(zk, T−1(0))2
M−1

k

≥ ‖z̄k − zk+1‖2
M−1

k

+ (1 − (1 − τk)
2)a2

k‖Mkv̂
k‖2

M−1
k

(4.18)

≥ dist(zk+1, T−1(0))2
M−1

k

+ (1 − θ2)a2
k‖Mkv̂

k‖2
M−1

k

.(4.19)

By using (4.17), we then conclude that

(4.20) dist(zk, T−1(0))2
M−1

k

≥
(

1 +
1 − θ2

μ2
k

)
dist(zk+1, T−1(0))2

M−1
k

.

Therefore,

(4.21) dist(zk+1, T−1(0)) ≤ μk

√
λu√

λl(μ2
k + 1 − θ2)

dist(zk, T−1(0)).

By the definitions (4.15) and (4.16), by taking ck sufficiently large we can make αk

arbitrarily small, and by taking σk sufficiently small we can make βk arbitrarily close
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to one. By the definition (4.14), this means that we can make μk arbitrarily small, so
that the scalar in the right-hand side of (4.21) is less than one. Then (4.21) shows that
the sequence {dist(zk, T−1(0))} converges linearly to zero. Also, the inequality (4.19)
shows that this sequence is Fejér-monotone with respect to the set T−1(0) (for the
given norm). For Fejér-monotone sequences, linear convergence of {dist(zk, T−1(0))}
is equivalent to the linear convergence rate of {zk} to its limit (see, e.g., [1]).

By the same argument as above, if ck → ∞ and σk → 0, then μk → 0, and (4.21)
shows a superlinear convergence rate.

Assume now that the condition (4.9) holds. Then

1

(1 + ηk)
dist(z, T−1(0))2

M−1
k

= inf
y∈T−1(0)

1

(1 + ηk)
‖z − y‖2

M−1
k

≤ inf
y∈T−1(0)

‖z − y‖2
M−1

k+1

= (1 + ηk) dist(z, T−1(0))2
M−1

k+1

≤ inf
y∈T−1(0)

(1 + ηk) ‖z − y‖2
M−1

k

= (1 + ηk) dist(z, T−1(0))2
M−1

k

.(4.22)

Define

μ =
√
α2 + 1

√
β2 − 1 + αβ,

with α and β given by (4.15) and (4.16), respectively. Note that μ > μk for all k.
Since

∏∞
i=0(1 + ηi) < ∞, there exists k2 ∈ N such that

∞∏
i=k2

(1 + ηi) <

√
μ2 + 1 − θ2

μ
.

From (4.20), by applying (4.22) consecutively, for any k ≥ k0 := max{k1, k2}, we have( ∞∏
i=k0

1

(1 + ηi)

)
dist(zk+1, T−1(0))2

M−1
k0

≤
(

k−1∏
i=k0

1

(1 + ηi)

)
dist(zk+1, T−1(0))2

M−1
k0

≤ dist(zk+1, T−1(0))2
M−1

k

≤ μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k

≤
(

k−1∏
i=k0

(1 + ηi)

)
μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k0

≤
( ∞∏

i=k0

(1 + ηi)

)
μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k0

.

In particular,

dist(zk+1, T−1(0))M−1
k0

≤ ν dist(zk, T−1(0))M−1
k0

,
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where

ν :=
μ√

μ2 + 1 − θ2

∞∏
i=k0

(1 + ηi) < 1,

as claimed.

5. A variable metric proximal Newton method. In this section, we show
how the proposed variable metric approach can be used to obtain a computational
advantage when solving a system of monotone differentiable equations

(5.1) F (x) = 0,

where F : R
n → R

n. Problems of this type appear, for example, in smooth multi-
plier methods for monotone complementarity problems [14]. We start with describing
the method and giving its theoretical justification and then report on our numerical
experiments.

5.1. Description and justification of the method. In [25, 29], it has been
shown that hybrid inexact proximal point schemes (with a fixed metric) can be used to
construct Newton methods for monotone problems with a very attractive combination
of global and local convergence properties. In particular, global convergence from
any starting point to a solution is guaranteed, regardless of any degeneracy along
the trajectory, which is not true in the case of more standard merit function-based
globalizations that can get stuck at stationary points of the function that are not global
minimizers. Fast local convergence for nondegenerate problems is also preserved, in
a natural way. We refer the reader to [25, 29] for more detailed discussion.

When the Newton step is computed for the proximal subproblem (with the fixed
metric Mk = I)

ckF (z) + (z − zk) = 0,

as in [25], one needs to solve the system of linear equations

(5.2) ckF (zk) + (ck∇F (zk) + I)d = 0,

with respect to d ∈ R
n. The crucial point is that, under natural assumptions, this

single Newton step is enough to obtain an acceptable approximate solution of the
proximal subproblem. Note that the above system is, in general, asymmetric. For
future comparison, note that to compute LU factorization of the matrix ck∇F (zk)+I
and then the solution dk, the number of arithmetic operations required is 2(n3/3+n2).
If to solve the linear system one uses instead of matrix factorization the conjugate
gradient method, calculation of (∇F (zk))�∇F (zk) is needed. Apart from extra com-
putational cost (which is not negligeable when n is large), the latter is in general a
dense matrix even when ∇F (zk) is sparse. In what follows, we show how choosing
a special variable metric can reduce the number of calculations in the case of using
matrix factorizations and can preserve sparsity if the conjugate gradient method is
used.

The idea is to choose a metric in such a way that, instead of solving a general
asymmetric linear system, we will have to solve one triangular system and one sym-
metric system (with a positive definite matrix). As we shall see, this has a number of
advantages.

Consider the proximal subproblem

(5.3) 0 = ckMkF (z) + (z − zk).
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We shall compute the Newton step for its equivalent formulation

0 = ckF (z) + Ak(z − zk),

where Ak plays the role of the inverse of Mk (no matrices are actually inverted, of
course; we simply choose Ak and work with it throughout, as explained next). The
Newton step for the latter equation is given by

(5.4) ckF (zk) + (ck∇F (zk) + Ak)d
k = 0.

In what follows, we shall show that, with proper choices of parameters, the point

(5.5) yk = zk + dk

is an acceptable approximate solution of (5.3), in the sense of Algorithm 3.1 (even
more specifically, in the sense of Proposition 3.1). Then the next iterate is given by

zk+1 = zk − ckMkF (yk),

which can be implemented as solving the system of linear equations

(5.6) ckF (yk) + Aks = 0,

with respect to s ∈ R
n, and setting

(5.7) zk+1 = zk + sk.

As Ak we suggest to take the symmetrization of the upper triangular part of the
matrix −ck∇F (zk) with appropriate diagonal elements, so that it is positive definite.
One choice is

(5.8) (Ak)i,j :=

⎧⎨
⎩

−ck(∇F (zk))i,j for i < j,
(Ak)j,i for i > j,

1 +
∑

i 	=j |(Ak)i,j | for i = j.

Since Ak is symmetric and strictly diagonally dominant, it is positive definite by the
Gerschgorin theorem [12, Theorem 3.5.9], and

(5.9) λmin(Ak) ≥ 1.

The proposed implementation, therefore, consists of solving the linear system
(5.4) with the triangular matrix ck∇F (zk) + Ak and the linear system (5.6) with
the symmetric positive definite matrix Ak. If the Cholesky factorization is used for
the latter, the total cost of the iteration is n3/3 + 2n2 + n2/2 arithmetic operations.
The savings compared to the fixed metric (asymmetric) implementation discussed
above amounts to n2(n/3− 1/2), which is significant for large n. If instead of matrix
factorization the conjugate gradient method is used to solve (5.6), it is important that
it works directly with the symmetric matrix Ak, which is sparse if ∇F (zk) is also.
Recall that, in the case of solving the asymmetric system, the method has to work
with (ck∇F (zk) + I)�(ck∇F (zk) + I), which is in general dense even when ∇F (zk)
is sparse.

To validate our proposal, it remains to show that the single Newton step defined by
(5.4) produces a point acceptable by the approximation criterion of Algorithm 3.1 and
that this strategy does not increase too much the overall number of iterations of the
method as compared to the asymmetric fixed metric implementation. We deal with the
first issue next and then present some numerical experiments to address the second.
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Let Mk = A−1
k . By (5.9), we have

(5.10) λmax(Mk) ≤ 1.

In particular, we can take λu = 1 in Algorithm 3.1. Since dk is the solution of the
linear system (5.4), we have

(5.11) dk = yk − zk = −ckMkF (zk) − ckMk∇F (zk)dk.

To prove the claim that this Newton step is sufficient to solve the proximal subproblem
within the required tolerance, we have to show that

(5.12) ‖ckMkF (yk) + dk‖2
M−1

k

≤ σ2
k

(
‖ckMkF (yk)‖2

M−1
k

+ ‖dk‖2
M−1

k

)
.

Let ∇F be Lipschitz-continuous with modulus γ > 0 (on the bounded set containing
the sequences {zk} and {yk}, whose boundedness has been already established). It
then holds that

‖F (yk) − F (zk) −∇F (zk)dk‖ ≤ γ

2
‖dk‖2.

Since it follows from (5.11) that

−ckF (zk) − ck∇F (zk)dk = M−1
k dk,

we obtain

(5.13) ‖ckF (yk) + M−1
k dk‖ ≤ γck

2
‖dk‖2.

Furthermore, by recalling (5.10), we have

(5.14) ‖ckF (yk) + M−1
k dk‖2 ≥ ‖ckF (yk) + M−1

k dk‖2
Mk

= ‖ckMkF (yk) + dk‖2
M−1

k

.

Also, by using (5.10) and (5.11), we obtain

‖dk‖2 ≤ ‖dk‖2
M−1

k

= 〈dk,M−1
k (−ckMkF (zk) − ckMk∇F (zk)dk)〉

= −ck〈dk, F (zk)〉 − ck〈dk,∇F (zk)dk〉
≤ ck‖dk‖‖F (zk)‖,

where we have used the fact that ∇F (zk) is positive semidefinite (by the monotonicity
of F ). Hence,

‖dk‖ ≤ ck‖F (zk)‖.

By combining this relation with (5.13) and (5.14), we conclude that

‖ckMkF (yk) + dk‖M−1
k

≤ γc2k‖F (zk)‖
2

‖dk‖ ≤ γc2k‖F (zk)‖
2

‖dk‖M−1
k

,

where (5.10) was also taken into account. Therefore, by choosing the regularization
parameter

0 < ck ≤
√

2σk√
γ‖F (zk)‖

,
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we obtain (5.12). This analysis also shows that we are in the setting of Proposition
3.1, so that the step zk+1 = zk + ckMkF (yk) is admissible (implemented above as
solving the linear system (5.6)).

If an estimate for the Lipschitz constant γ of ∇F is not available, ck can be
obtained by an Armijo-type line-search procedure. Alternatively, instead of making
one Newton step for each subproblem, we can make several, until the relative error
approximation criterion is satisfied. In our computational experience, however, one
Newton step was always enough. Moreover, by assuming the nonsingularity of ∇F

at the solution, for k large enough one can take ck =
√

2σk√
‖F (zk)‖

, without any line

search, and make a single Newton step. The superlinear rate of convergence can be
established by analysis analogous to [25].

5.2. Numerical experiments. We have compared the proximal Newton meth-
ods, with a fixed metric and a variable metric, on the following examples.

Let F : R
n → R

n be given by

F (z) = F̃ (z) + Hz,

where

F̃i(z) =
1 + (−1)i+1

2
f(zi),

f : R → R is a monotone function with a Lipschitz-continuous derivative, and H is
the n× n matrix given by

(H)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n/2 for i = j = 1,
5n for i = 1 and j = n,

−5n for i = n and j = 1,
n + i− 1 for i = j and i /∈ {1, n},

1 for j = n and i /∈ {1, n},
1 for j < i and i 
= n,

−1 for i = n and j /∈ {1, n},
0 elsewhere.

It can be seen that H is positive semidefinite (because (H + H�)/2 is diagonally
dominant), but it is not positive definite (because e�nHen = 0, where en is the nth
vector of the canonical basis). This fact and the monotonicity of f imply that F is
monotone. Note that, for n = 2k with k ∈ N, F is not strictly monotone, even if f is
strictly monotone.

It can be seen that its Jacobian ∇F (z) is Lipschitz-continuous with the same
Lipschitz constant as f ′, and, for any z ∈ R

n, ∇F (z) is a nonsymmetric matrix, with
a sparse upper triangular part.

We have coded both the Newton proximal method (NPM) and the variable met-
ric Newton proximal method (VMNPM) by using Scilab 4.0 (INRIA-ENPC, see
www.scilab.org). An iteration of NPM consists of solving the system of equations
(5.2), while VMNPM is the procedure given by (5.4)–(5.7), with Ak defined in (5.8).
For both methods, the regularization parameter is taken as ck =

√
2/‖F (zk)‖.

In the case of solving linear systems by matrix factorization, the comparison is
exactly as predicted by the arithmetic operations counts, mentioned above. The vari-
able metric approach requires more iterations, but already for moderate dimensions
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Table 5.1

f(x) = x + exp(−x2)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.16 3.98e-008 20 0.20 8.12e-008 0.77
300 4 1.34 3.40e-008 22 1.11 3.57e-008 1.21
500 4 4.16 4.04e-008 22 3.59 4.13e-008 1.16
700 4 9.06 4.32e-008 22 7.28 6.74e-008 1.24
900 4 16.22 4.88e-008 23 12.72 4.62e-008 1.28

1100 4 26.16 5.37e-008 23 19.06 5.10e-008 1.37
1300 4 39.00 6.81e-008 23 26.38 5.05e-008 1.48
1500 4 55.45 6.94e-008 23 35.13 4.65e-008 1.58
1700 4 75.94 9.14e-008 23 44.84 4.39e-008 1.69
1900 4 100.70 9.59e-008 23 55.91 5.12e-008 1.80

f(x) = 2 arctan(x + 1)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.13 7.42e-008 20 0.17 6.63e-008 0.73
300 4 1.36 4.80e-008 22 1.16 6.50e-008 1.18
500 4 4.38 5.77e-008 23 3.78 1.52e-008 1.16
700 4 9.22 6.42e-008 23 7.91 2.25e-008 1.17
900 4 16.45 6.51e-008 23 13.22 5.09e-008 1.24

1100 4 26.38 6.71e-008 23 19.66 9.95e-008 1.34
1300 4 39.27 7.14e-008 24 28.55 3.95e-008 1.38
1500 4 55.78 8.37e-008 24 37.89 3.18e-008 1.47
1700 4 76.92 9.02e-008 24 49.11 2.79e-008 1.57
1900 4 101.33 1.15e-007 24 60.64 3.97e-008 1.67

f(x) = 1
2
x
√
x2 + 5 + 5

2
ln(x +

√
x2 + 5)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.14 8.04e-008 20 0.20 9.22e-008 0.69
300 4 1.36 5.71e-008 23 1.19 1.78e-008 1.14
500 4 4.22 6.93e-008 23 3.80 5.05e-008 1.11
700 4 9.13 7.99e-008 24 8.08 5.35e-008 1.13
900 4 16.38 8.47e-008 24 13.30 4.05e-008 1.23

1100 4 26.31 8.51e-008 24 19.78 4.18e-008 1.33
1300 4 39.25 8.98e-008 24 27.94 9.05e-008 1.40
1500 4 55.73 9.75e-008 25 38.22 5.00e-008 1.46
1700 4 76.27 1.08e-007 25 48.89 3.49e-008 1.56
1900 4 101.08 1.18e-007 25 60.77 2.64e-008 1.66

(say, n = 500) the cheaper iteration cost starts to pay off, with the advantage growing
with n, as predicted by the operations counts. We shall not report this comparison
here, for the sake of brevity.

Instead, we shall report results for solving the linear systems by the conjugate
gradient method. The Scilab sparse utility is used to take advantage of structure. As
already pointed out, the matrix (ck∇F (zk) + I)�(ck∇F (zk) + I) in the fixed metric
approach is essentially dense, while the matrix Ak in the variable metric approach
preserves structure.

The comparison of the respective performances, for three different choices of f ,
on a 1.66 GHz, 512 MB RAM Intel Centrino processor PC is shown in Table 5.1. The
first column shows the dimension, then the number of iterations, the computation
time in seconds, and the norm of the residual at termination. The last column shows
the ratio between the computational times.

Figure 5.1 compares the computational time evolution for both methods. The
performance of the NPM is almost the same for the three functions involved, and
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Fig. 5.1. Performance comparison.

it is not distinguishable in the graphic scale, while the performance of the VMNPM
presents little variations for the three examples. As we have anticipated, the variable
metric proximal Newton method outperforms the Newton proximal method already
for moderate dimensions, with the advantage becoming more and more significant as
n grows.

REFERENCES

[1] H. H. Bauschke, Projection algorithms: Results and open problems, in Inherently Parallel
Algorithms in Feasibility and Optimization and their Applications, Stud. Comput. Math.
8, D. Butnariu, Y. Censor, and S. Reich, eds., Elsevier Science B. V., Amsterdam, 2001,
pp. 11–22.

[2] J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal, A family of variable
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