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Abstract We propose a bundle method for minimizing nonsmooth convex functions that
combines both the level and the proximal stabilizations. Most bundle algorithms use a
cutting-plane model of the objective function to formulatea subproblem whose solution
gives the next iterate. Proximal bundle methods employ the model in the objective function
of the subproblem, while level methods put the model in the subproblem’s constraints. The
proposed algorithm defines new iterates by solving a subproblem that employs the model
in both the objective function and in the constraints. One advantage when compared to the
proximal approach is that the level set constraint providesa certain Lagrange multiplier,
which is used to update the proximal parameter in a novel manner. We also show that in
the case of inexact function and subgradient evaluations, no additional procedure needs to
be performed by our variant to deal with inexactness (as opposed to the proximal bundle
methods that require special modifications). Numerical experiments on almost one thousand
instances of different types of problems are presented. Ourexperiments show that the dou-
bly stabilized bundle method inherits useful features of the level and the proximal versions,
and compares favorably to both of them.
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1 Introduction

In this work, we are interested in solving problems of the form

f inf := inf
x∈X

f (x) , (1)

where f : ℜn→ ℜ is a nonsmooth convex function andX ⊂ ℜn is a nonempty convex
and closed set, typically polyhedral. As is widely accepted, the most efficient optimization
techniques to solve such problems are the bundle methods, e.g., [15, Chap. XIV], [5, Part
II], and the analytic-center cutting-plane methods, e.g.,[12,13]. All bundle methods make
use of the following three ingredients:

(i) a convex modelf̌k of f (usually, f̌k is a cutting-plane approximation satisfyingf̌k 6 f );
(ii) a stability center ˆxk (some previous iterate, usually the “best” point generatedby the

iterative process so far);
(iii) a certain algorithmic parameter updated at each iteration (proximal, level, or trust-

region, depending on the variant of the method).

The new iteratexk+1 of a bundle method depends on the above three ingredients, whose
organization defines different methods. The main classes are the proximal, level, and trust-
region. We next discuss some details of the proximal and level variants, as these are the two
strategies relevant for our developments. The simplified conceptual versions can be stated
as follows.

Proximal bundle method e.g., [16,20,10,24],

xk+1 := argmin

{

f̌k(x)+
1

2τk
|x− x̂k|

2 : x∈X

}

, (2)

whereτk > 0 is the proximal parameter.
Level bundle method e.g., [19,17,6,22],

xk+1 := argmin

{

1
2
|x− x̂k|

2 : f̌k(x)≤ ℓk, x∈X

}

, (3)

whereℓk ∈ℜ is the level parameter.

As is well known, for the same modelf̌k and the same stability center ˆxk, one can find the
proximal and level parametersτk andℓk such that the two versions above generate the same
next iteratexk+1 (i.e., for some choice of parameters, the solution of the subproblems (2)
and (3) is the same). In this (formal, theoretical) sense thetwo approaches can be considered
equivalent. Details of the implementation and practical performance can be quite different,
however. In particular, because the parameters are updatedby strategies specific to each of
the methods, and the corresponding rules are not related in any direct way.

It is worth to mention that updating the stability center ˆxk in item (ii) above is mandatory
for (at least the most standard) versions of proximal bundlemethods, but it may not be
necessary for level methods. In some variants of level methods one can update ˆxk at each
iteration [19,9], or keep ˆxk = x̂ fixed for all iterations [3] (in which case ˆxk does not have the
role of the “best” point computed so far). See also [17,6,4] for various rules to manage the
stability center ˆxk in level methods.

It should be stressed that the choice of the parameterτk in the proximal variant is quite
a delicate task. Although the simplest choiceτk = τ > 0 (for all k) is enough to prove the-
oretical convergence, it is well understood that for practical efficiencyτk must be properly



Doubly stabilized bundle method 3

updated along iterations. We refer to [16] and [20] for some strategies that usually work
well in practice. However, the former has some heuristic features, while the latter (based on
quasi-Newton formulas) is designed for unconstrained problems and needs some safeguards
to fit the general convergence theory. Also, it was noticed during numerical experimenta-
tion in [26] that for constrained problems the rule of [20] does not work as well as for the
unconstrained.

Continuing the discussion of choosing parameters, a fixed level parameterℓk is not pos-
sible, of course, as this may give infeasible subproblems (3). But there exist strategies that
manageℓk by simple explicit calculations (whether the problem is unconstrained or con-
strained), and which are theoretically justified. As a somewhat more costly but very efficient
option, the level parameterℓk can be adjusted by solving a linear program (when the feasi-
ble setX is polyhedral, and is either bounded or there is a known lowerbound f low for the
optimal valuef inf); see [19,9] and (17) below.

Overall, there seems to be a consensus that for solving unconstrained problems proximal
bundle methods are very good choices, although the updatingrule for τk is somewhat of
an issue (at least from the viewpoint of combining theory andefficiency). On the other
hand, there is some evidence that for constrained problems level bundle methods might be
preferable. Also, strategies for updating the level parameterℓk are readily available. It is thus
appealing to try to combine the attractive features of both approaches in a single algorithm
that performs for unconstrained (respectively, constrained) problems as well as proximal
bundle methods (respectively, level bundle methods), or maybe even better in some cases.
To this end, we propose what we call adoubly stabilized bundle method, that combines both
proximal and level stabilizations in the same subproblem, namely:

xk+1 := argmin

{

f̌k(x)+
1

2τk
|x− x̂k|

2 : f̌k(x)≤ ℓk, x∈X

}

. (4)

We immediately comment that (4) can be reformulated as a quadratic program (ifX is
polyhedral), just like (2) or (3), with just one extra scalarbound constraint compared to (2),
or one extra scalar variable and scalar bound constraint compared to (3); see (8) below. The
dual for (4) is also very similar in structure to the duals of (2) or (3). Thus, the subproblem
(4) is no harder (or at least, cannot be much harder) to solve than (2) or (3). Moreover, it turns
out that the (unique) solution to problem (4) is also a solution to at least one of the problems
(2) or (3); see Lemma 1 below. This reveals that the proposed method indeed combines the
proximal and the level approaches, “automatically” choosing between the two at every step.

The advantages derived from (4) can be summarized as follows:
– the level parameterℓk is easily updated, and can take into account a lower bound forf inf

if it is available;
– the level constrainťfk(x)≤ ℓk provides:

– a Lagrange multiplier useful to update the proximal parameter τk;
– an additional useful stopping test, based on a certain optimality gap;

– the objective functioňfk(x)+ 1
2τk
|x− x̂k|

2 with proximal regularization allows for search-

ing for good pointsinside of the level set{x ∈ X : f̌k(x) ≤ ℓk}, and not only on its
boundary, as the level method does.

(It should be noted here that proximal bundle methods can also exploit known lower bounds
for f inf by adding certain associated linearizations [11].)

Among other things, our new variant aims at taking advantageof the simplicity of man-
aging the level parameterℓk to produce a simple and efficient rule to update the proximal
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parameterτk. In particular, this update depends on whether or not the level constraint is ac-
tive. In this sense, activity of this constraint (and the associated Lagrange multiplier) can be
seen as a tool indicating when and how to updateτk. Furthermore, depending on the feasible
setX (for example if it is bounded), the management of the level parameter can provide a
lower bound forf inf , giving an additional stopping test based on a certain optimality gap. It
will be shown in Section 2 that the lower bound can be updated in a computationally cheap
way.

The idea to combine proximal and level bundle methods was first suggested in [21] (giv-
ing some limited numerical experiment, without proof of convergence and without handling
inexact data). To the best of our knowledge, the only other bundle-type method which em-
ploys some kind of double stabilization is [2], where the proximal and trust-region features
are present for piecewise quadratic models off . However, the motivation for this and the
resulting algorithm are rather different from ours. For example, the subproblems in [2] are
that of minimizing a quadratic function subject toquadratic constraints.

The rest of this paper is organized as follows. Section 2 introduces the doubly stabi-
lized bundle algorithm more formally. Section 3 is devoted to convergence analysis of the
method. Inexactness of the function and subgradient evaluations is addressed in Section 4.
Section 5 contains numerical experiments comparing the proposed algorithm with: the prox-
imal bundle methods using the updating rules forτk based on [16] and [20]; and the level
method given in [6]. A variety of different types of problemsare used to validate our pro-
posal: the model unit-commitment problem in the energy sector, two-stage stochastic linear
programming, nonsmoothly-regularized maxima of quadratic functions, and some standard
nonsmooth optimization test problems. Finally, Section 6 gives some concluding comments
and remarks.

Our notation is standard. For any pointsx,y∈ℜn, 〈x,y〉 stands for the Euclidean inner
product, and| · | for the associated norm, i.e.,|x| =

√

〈x,x〉. For a setX ⊂ℜn, we denote
by iX its indicator function, i.e.,iX (x) = 0 if x ∈X and iX (x) = +∞ otherwise. For a
convex setX , riX stands for its relative interior, andNX (x) for its normal cone at the
pointx, i.e., the set{y : 〈y,z−x〉6 0∀z∈X } if x∈X and the empty set otherwise. Given
a convex functionf , we denote its subdifferential at the pointx by ∂ f (x) = {g : f (y) >
f (x)+ 〈g,y−x〉 ∀y}.

2 A doubly stabilized bundle method

The method generates a sequence of feasible iterates{xk} ⊂X . For each pointxk an oracle
(black-box) is called to compute the function valuef (xk) and one arbitrary subgradient
gk ∈ ∂ f (xk). With this information, the method creates the linearization

f̄k(x) := f (xk)+ 〈gk,x−xk〉 6 f (x) , (5)

where the inequality holds by the definition of the subgradient of f . At iterationk, a poly-
hedralcutting-planemodel of f is available:

f̌k(x) := max
j∈Bk

f̄ j(x)6 f (x) , (6)

where the setBk may index some of the linearizations̄f j , j 6 k, of the form in (5), but also
affine functions obtained as certain convex combinations ofsuch previous linearizations (the
so-called aggregate linearizations, defined below). Note that (5) implies that the inequality



Doubly stabilized bundle method 5

in (6) holds for such a construction. Some additional (standard) conditions on the model
f̌k will be imposed further below, when needed. Note finally thatin our notationBk simply
enumerates the affine functions comprisingf̌k, and thusBk need not be a subset of{1, . . . ,k}
even thoughf̌k is, of course, built with information computed on those previous iterations.
In particular, the aggregate linearization mentioned above may be indexed by somej 6∈
{1, . . . ,k} (this gives some notational convenience; for example, we donot have to worry
about assigning to an aggregate linearization an index already taken by the “usual” previous
cutting plane).

Let x̂k be the current stability center (the best past iterate), andlet vℓk be a nonnegative
scalar representing how much we aim to reduce the valuef (x̂k) at the current iteration.
Define the corresponding level parameter by

ℓk := f (x̂k)−vℓk .

Then the level set associated with the modelf̌k and the parameterℓk is given by

Xk := {x∈X : f̌k(x)6 ℓk} , (7)

which is polyhedral ifX is polyhedral.
We first observe that in the standard (via slack variable) reformulation of the doubly

stabilized subproblem (4) given by

min
(x,r)∈ℜn+1

{

r +
1

2τk
|x− x̂k|

2 : f̌k(x)6 r , f̌k(x)6 ℓk , x∈X

}

,

the first constraint must be active at the solution (f̌k(x) = r), as otherwise ther term in
the objective can be reduced maintaining feasibility (withthe samex part of the solution).
This observation implies that the solution to the latter problem, and thus to (4), can be
alternatively obtained by solving the simpler

min
(x,r)∈ℜn+1

{

r +
1

2τk
|x− x̂k|

2 : f̌k(x)6 r , r 6 ℓk , x∈X

}

. (8)

We now state some properties of the minimizerxk+1 in (4), or equivalently of thex part
of the solution in (8).

Proposition 1 If Xk 6= /0 then problem(4) has the unique solution xk+1.
In addition, if X is polyhedral orriX ∩{x ∈ ℜn : f̌k(x) 6 ℓk} 6= /0 then there exist

sk+1 ∈ ∂ f̌k(xk+1) and hk+1 ∈ NX (xk+1) = ∂ iX (xk+1), and (scalar) Lagrange multipliers
µk > 1 andλk > 0 such that

xk+1 = x̂k−τkµkĝk, with ĝk = sk+1+
1
µk

hk+1, µk =λk+1 and λk( f̌k(xk+1)−ℓk)=0. (9)

In addition, for all x∈X theaggregate linearization

f̄ a
k (·) := f̌k(xk+1)+ 〈ĝk, ·−xk+1〉 satisfies f̄ a

k (x)6 f̌k(x)6 f (x). (10)
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Proof The existence and uniqueness of solutionxk+1 to (4) follow from the assumption that
the problem is feasible and the fact that its objective function is strongly convex.

Next, under the stated assumptions, combining the results from [15] (specifically, Thm. 1.1.1
on p. 293, Prop. 5.3.1 and Remark 5.3.2 on p. 139, Prop. 2.2.2 on p. 308), the optimality
conditions for (8) assert that there existµk > 0 andλk > 0 such that

0∈
1
τk
(xk+1− x̂k)+µk ∂ f̌k(xk+1)+NX (xk+1),

0= 1−µk+λk,

µk( f̌k(xk+1)− rk+1) = 0, λk(rk+1− ℓk) = 0.

In particular,µk = 1+λk ≥ 1 and thusrk+1 = f̌k(xk+1), and there existsk+1 ∈ ∂ f̌k(xk+1)
andhk+1 ∈ NX (xk+1) such that

xk+1 = x̂k− τk(µksk+1+hk+1) = x̂k− τkµk(sk+1+
1
µk

hk+1),

which completes the proof of all the relations in (9).
To show (10), note that for allx∈X it holds that

f̄ a
k (x) = f̌k(xk+1)+ 〈sk+1,x−xk+1〉+

1
µk
〈hk+1,x−xk+1〉6 f̌k(x)6 f (x) ,

where the first inequality follows from the facts thatsk+1∈ ∂ f̌k(xk+1) andhk+1∈NX (xk+1).
⊓⊔

The next result shows that the solutionxk+1 of the doubly stabilized problem (4) solves
at least one of the “singly” stabilized problems: the proximal (2) or the level (3).

Lemma 1 For τk > 0 and ℓk ∈ ℜ, let xτ
k ∈ ℜn and xℓk ∈ ℜn be the (unique) solutions of

problems(2) and (3), respectively. Let xk+1 ∈ ℜn be the unique solution of problem(4).
Then it holds that

xk+1 =

{

xτ
k if µk = 1

xℓk if µk > 1,

whereµk is the Lagrange multiplier defined in Proposition 1.

Proof Let µk = 1. Similarly to the proof of Proposition 1, writing the optimality conditions
for (4) with µk = 1 gives

0∈
1
τk
(xk+1− x̂k)+∂ f̌k(xk+1)+NX (xk+1),

which shows thatxk+1 satisfies the optimality condition for (2). Since the solutions of the
respective problems are unique, it holds thatxk+1 = xτ

k.
If µk > 1 thenλk > 0, and hencěfk(xk+1) = ℓk by (9). Clearly, the solutionxℓk of (3) is

also the unique solution of

min

{

ℓk+
1

2τk
|x− x̂k|

2 : f̌k(x)6 ℓk, x∈X

}

. (11)

Observe that the optimal value of (11) is bounded below by theoptimal value of the problem
(4), due to the level constraintℓk > f̌k(x). As the solutionxk+1 of (4) is feasible in (11)
and achieves this lower bound (sinceℓk = f̌k(xk+1)), it follows thatxk+1 solves (11). Since
problems (11) and (4) have unique solutions, it holds thatxk+1 = xℓk.

⊓⊔
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According to Lemma 1, we shall callxk+1 a proximal iterateif µk = 1, and otherwise
(µk > 1), we shall call it alevel iterate. Similarly, an iterationk will be referred to as a
proximal or a level iteration. It is thus clear that each iteration of the doubly stabilized
algorithm makes either a step of the associated proximal bundle method, or of the level
method. At every iteration, the algorithm makes this choiceautomatically.

We now define thepredicted decreaseby the modelf̌k by

vτ
k := f (x̂k)− f̌k(xk+1)> 0, (12)

where the inequality follows fromxk+1 being the solution of (4) via

f (x̂k)> f̌k(x̂k)> f̌k(xk+1)+
1

2τk
|xk+1− x̂k|

2.

As discussed in [23], to define the predicted decrease quantity there are alternatives other
than (12). We have chosen (12) because of its direct connection with the level parameterℓk,
established in (15) below.

Once the iteratexk+1 is computed, the oracle provides the new function valuef (xk+1).
As is usual in bundle methods, we shall change the stability center when the new iterate
gives sufficient descent with respect to the predicted one. Namely, when

f (xk+1)6 f (x̂k)−mf v
τ
k , (13)

wheremf ∈ (0,1). Accordingly, each iteration results either
- in a descent stepwhen (13) holds, in which case ˆxk is moved toxk+1; or
- in a null stepwhen (13) does not hold, and the stability center is maintained.

We next provide useful connections between the predicted decreasevℓk = f (x̂k)− ℓk

related to the level parameterℓk, the predicted decreasevτ
k = f (x̂k)− f̌k(xk+1) related to the

solution of (4) and thus to the proximal parameterτk, and the aggregate linearization error
given by

êk := f (x̂k)− f̄ a
k (x̂k) . (14)

We also establish a key relation that would be the basis for the subsequent convergence
analysis.

Proposition 2 It holds that

êk > 0, êk+ τkµk|ĝk|
2 = vτ

k > f (x̂k)− ℓk = vℓk , (15)

where µk is the Lagrange multiplier defined in Proposition 1. Moreover, if µk > 1 then
vτ

k = vℓk.
Furthermore, for all x∈X it holds that

f (x̂k)+ 〈ĝk,x− x̂k〉− êk 6 f (x). (16)

(In other words,ĝk is êk-subgradient of the essential objective( f + iX ) at x̂k.)

Proof The fact that ˆek > 0 follows directly from (10). To show (15), note that

êk = f (x̂k)− f̄ a
k (x̂k)

= f (x̂k)− ( f̌k(xk+1)+ 〈ĝk, x̂k−xk+1〉)
= vτ

k−〈ĝk, x̂k−xk+1〉
= vτ

k− τkµk|ĝk|
2,
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where the last equality follows from (9). In addition, sincexk+1 is feasible in (4), we have
that f̌k(xk+1) 6 ℓk = f (x̂k)− vℓk, which impliesvℓk 6 vτ

k. This completes the proof of (15).
(Recall also that ifµk > 1 thenλk > 0, in which case (9) impliešfk(xk+1) = ℓk, so that
vℓk = vτ

k.)
The relation (16) follows from the fact that ˆgk is êk-subgradient of the essential objective

at x̂k, which is verified as follows. Using again (10), for allx∈X it holds that

f (x) > f̄ a
k (x)

= f̌k(xk+1)+ 〈ĝk,x−xk+1〉

= f (x̂k)− ( f (x̂k)− f̌k(xk+1))+ 〈ĝk,x− x̂k〉+ 〈ĝk, x̂k−xk+1〉

= f (x̂k)−vτ
k + 〈ĝk,x− x̂k〉+ τkµk|ĝk|

2,

and (16) follows taking into account (15). ⊓⊔

The relation (16) motivates one of the alternative stoppingtests for our algorithm, which
is in the spirit of standard bundle methods: stop the algorithm when both|ĝk| andêk are small
enough, i.e., an approximate optimality condition holds.

We now state the algorithm in full detail, and then comment onsome of its ingredients.

DOUBLY STABILIZED BUNDLE ALGORITHM

Step 0 (initialization) Choose parameters mℓ,mf ∈ (0,1), and stopping tolerances
Tol∆ ,Tole,Tolg > 0. Given x1 ∈ X , set x̂1← x1. Compute f(x1) and g1 ∈ ∂ f (x1).
If a lower bound flow

1 for f inf is available, set vℓ1← (1−mℓ)( f (x̂1)− f low
1 ); otherwise,

set flow
1 ←−∞ and choose vℓ1 > 0. Chooseτmin > 0, τ1 > τmin and set k= 1.

Step 1 (first stopping test)Set the optimality gap by∆k← f (x̂k)− f low
k .

If ∆k 6 Tol∆ , stop. Return̂xk and f(x̂k).
Step 2 (trial point finding)Define the level parameter byℓk← f (x̂k)−vℓk.

Step 2.1(feasibility detection)If the level setXk defined by(7) is detected to be empty,
set flow

k ← ℓk, vℓk← (1−mℓ)( f (x̂k)− f low
k ) and go back to Step 1.

Step 2.2(next iterate)Solve(8) to obtain (xk+1, rk+1) and a Lagrange multiplierλk

associated to the level constraint r6 ℓk. Setµk← λk +1, vτ
k ← f (x̂k)− rk+1, ĝk←

(x̂k−xk+1)/τkµk andêk← vτ
k− τkµk|ĝk|

2.
Step 3 (second stopping test)If êk 6 Tole and |ĝk|6 Tolg, stop. Return̂xk and f(x̂k).
Step 4 (oracle call)Compute f(xk+1) and gk+1 ∈ ∂ f (xk+1).
Step 5 (descent test)Choose flow

k+1 ∈ [ f low
k , f inf ].

If (13) holds, declare a descent step; otherwise a null step.
Step 5.1(descent step)Setx̂k+1← xk+1, τk+1← τkµk and

vℓk+1←min{vℓk,(1−mℓ)( f (x̂k+1)− f low
k+1)}.

Choose a modeľfk+1 satisfyingf̌k+1(·)6 f (·).
Step 5.2(null step)Setx̂k+1← x̂k and chooseτk+1 ∈ [τmin, τk].

If µk > 1 (level iterate), set vℓk+1←mℓvℓk; otherwise set vℓk+1← vℓk.
Choose a modeľfk+1 satisfyingmax{ f̄k+1(·), f̄ a

k (·)}6 f̌k+1(·)≤ f (·).
Step 6 (loop) Set k← k+1 and go back to Step 1.

Some comments are in order.
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(a) Observe that the lower boundf low
k is updated either when the level setXk is empty in

Step 2.1, or in Step 5. In the second case, it is explicit thatf low
k 6 f inf . In the first case,

Xk = /0 means thatℓk < f̌k(x)6 f (x) for all x∈X . And since the update setsf low
k ← ℓk,

it again holds thatf low
k 6 f inf . Therefore,f low

k 6 f inf for all k, and if the algorithm stops
at Step 1, we have that

Tol∆ > f (x̂k)− f low
k > f (x̂k)− f inf ,

i.e., x̂k is aTol∆ -approximate solution to problem (1).
Note that when the level setXk is empty, the update rules in the pass through Step 2.1

and back through Step 1, decrease the optimality gap∆k by the factor of(1−mℓ).
A simple update of the lower bound in Step 5 isf low

k+1← f low
k .

(b) To identify if the level set is empty, the most natural is probably to proceed as usual
with solving (4) and let the solver return with the infeasibility flag. Note that this is not a
wasteful computation, as it leads to adjusting the level parameter as well as improving the
lower boundf low

k . Alternatively, to detect infeasibility we can solve the linear program (if
X is a polyhedron)

min s s.t. f̄ j(x)+s6 ℓk ∀ j ∈Bk, x∈X , s> 0.

If its optimal value is positive thenXk = /0.
(c) If one prefers to avoid infeasible level setsXk, then whenX is bounded orf low

k is finite,
it is enough to updatef low

k in Step 5 as follows, solving the linear program:

set f low
k+1←min r s.t. f̄ j(x)6 r ∀ j ∈Bk , f low

k 6 r , x∈X , r ∈ℜ . (17)

This strategy is especially effective when solving LP is nottoo expensive relative to other
tasks of the algorithm (in particular, the oracle computations).

(d) If X is unbounded, the level setXk can be nonempty for allk, and f low
k will never be

updated (for example, for problem (1) withf (x) = e−x andX = [0,+∞)). In that case,
the algorithm will not stop at Step 1, unless the initial lower bound f low

1 is within the
Tol∆ -tolerance off inf .

(e) Step 5 increases the proximal parameterτk only after descent steps resulting from level
iterations (µk > 1). On the other hand,τk can be decreased only after null steps. A simple
rule used in the numerical experiments of Section 5 is

τk+1←max{τmin, τkv
ℓ
k/vτ

k} ,

which decreases the proximal parameter only after null steps resulting from proximal iter-
ations (vτ

k > vℓk is only possible whenµk = 1, see Proposition 2). In this manner, the level
parameterℓk and the multiplierµk indicate how to update the proximal parameterτk. This
is precisely the novel strategy to manage proximal parameter, proposed in this work.

(f) If at Step 2 (for allk) the ruleℓk = f (x̂k)− vℓk is replaced byℓk = +∞, Algorithm 2
becomes a proximal bundle algorithm (all iterations are proximal iterations).

(g) The QP formulation of subproblem (8) is given by

min
(x,r)∈ℜn+1

{

r +
1

2τk
|x− x̂k|

2 : f̄ j(x)6 r ∀ j ∈Bk , r 6 ℓk , x∈X

}

.

It can be seen that (ifX = ℜn) its dual has the number of variables equal to the number
of cutting-planes in the bundle.
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To keep the size of this QP (or of its dual) manageable, the number of elements in the
bundle (the cardinality of the setBk) should be kept bounded, without impairing con-
vergence. For this, the usual aggregation techniques of proximal bundle can be employed
here. After a serious step, the only requirement is that the model should be below the ob-
jective function (which means that elements from the bundlecan be deleted arbitrarily);
this is reflected in Step 5.1 of Algorithm 2. During a sequenceof consecutive nulls steps,
the modelf̌k can be composed of as few as only two cutting planes, corresponding to the
new linearizationf̄k+1 and the aggregate linearization̄f a

k (or any number of cutting planes,
as long as these two are included). This is reflected in the choice of the model specified
in Step 5.2 of Algorithm 2. If the next model contains all the linearizations for which the
constraint f̄ j(x) 6 r of the above QP is active at its solution(xk+1, rk+1), then there is no
need to include the aggregate linearizationf̄ a

k .

3 Convergence analysis

Convergence analysis of the doubly stabilized bundle method has to account for all the pos-
sible combinations of level and proximal steps, whether null or descent, and the possibility
of empty level sets. To that end, we consider the following three possible cases:

– The level setsXk are empty infinitely many times;
– The above does not happen, and infinitely many descent stepsare generated;
– In the same situation, finitely many descent steps are generated.

In what follows, we assume thatTol∆ = Tole = Tolg = 0 and that Algorithm 2 does
not stop. (If the algorithm stops for zero tolerance in Step 1, then the last descent step is,
by comment (a) above, a solution to the problem. The same conclusion holds, by (16),
if the method stops for zero tolerances in Step 3.) As a by-product of our convergence
analysis, it would also follow that if the stopping rules parameters are positive then the
method terminates in a finite number of iterations, with an appropriate approximate solution.

Lemma 2 Suppose the level setXk is empty infinitely many times.
Then∆k→ 0, { f (x̂k)}→ f inf , and every cluster point of the sequence{x̂k} (if any exists)

is a solution to problem(1); or the lastx̂k is a solution if this sequence is finite.

Proof It follows by Step 2 that for allk after the firstXk = /0 is encountered, we have
f low
k >−∞ and thus∆k <+∞. Also, by Steps 2 and 5,vℓk 6 (1−mℓ)∆k. Thus,

f (x̂k)− ℓk = f (x̂k)− ( f (x̂k)−vℓk) = vℓk 6 (1−mℓ)∆k ,

which shows that ifXk = /0 at iterationk, then the updatef low
k ← ℓk decreases the optimality

gap∆k by a factor of at least(1−mℓ). Hence, if this happens infinitely many times, we
have that∆k→ 0. Moreover, as no level set can be empty iff inf = −∞, in the case under
considerationf inf >−∞. We can then write∆k = f (x̂k)− f low

k > f (x̂k)− f inf, which implies
the assertion as∆k→ 0. ⊓⊔

From now on, we consider the case whenXk 6= /0 for all k large enough. Clearly, without
loss of generality, we can simply assume thatXk 6= /0 for all k.

Analysis in the case of infinitely many descent steps essentially follows the theory for
proximal bundle methods; in particular the argument in [7] can be readily applied.
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Lemma 3 Suppose Algorithm 2 generates infinitely many descent steps.
Then{ f (x̂k)} → f inf and every cluster point of the sequence{x̂k} (if any exist) is a

solution to problem(1).
In addition, if the solution set of(1) is nonempty and the sequence{τkµk} is bounded

above (for example, this is the case when there are finitely many level iterations) then the
sequence{x̂k} converges to a solution of(1).

Proof Let {x̂k( j)} be the subsequence of{x̂k} such thatk( j) corresponds to thej-th descent
step. Definei( j) = k( j +1)−1. Recalling (13), (15) and Prop. 2, we then have an iterative
sequence satisfying, for allj > 1, the relations

x̂k( j+1) = x̂k( j)− τi( j)µi( j)ĝi( j), ĝi( j) ∈ ∂ei( j)
( f + iX )(x̂k( j)), τi( j)µi( j) ≥ τmin,

f (x̂k( j))− f (x̂k( j+1)) > mf (ei( j)+ τi( j)µi( j)|ĝi( j)|
2).

We are thus in the setting of theε-subgradient method with an additional descent condition
along the iterations. The announced convergence properties follow from [7].

For the last assertion, recall thatτk can increase only on descent steps resulting from
level iterations (in the case ofµk > 1). Thus, if the number of such iterations is finite, the
sequence{µkτk} is bounded above. Then, [7, Prop. 2.2] withtk therein replaced byµkτk can
be invoked to obtain the stated assertion. ⊓⊔

Now we consider the last case, when ˆxk is eventually fixed and the last descent step is
followed by an infinite number of null steps (note also that inthis case the level setsXk are
nonempty).

Lemma 4 Suppose there exists an index k1 > 1 such that the descent test(13) is not satisfied
for all k > k1.

Then there is an infinite number of level iterations, and the last descent iteratêxk1 is a
solution to problem(1).

Proof Note that the sequence{vℓk} is nonincreasing. LetK be the set of indicesk such that
µk > 1 (level iterations), and so according to Step 5.2 of Algorithm 2,vℓk+1 = mℓvℓk. We then
have that the values in{vℓk} only reduce on indices inK and do not change otherwise.

Suppose first thatK is a finite set. Then, by Proposition 2, there exists an indexk2 ≥ k1

such thatµk = 1, λk = 0 andvℓk = vℓk2
> 0 for all k≥ k2. Thus, by (15),

vτ
k ≥ vℓk2

> 0 for all k≥ k2. (18)

Moreover, by Lemma 1, all such iterations are proximal iterations. Hence, all iterations of
Algorithm 2 indexed byk≥ k2 can be considered as those of the classical proximal bundle
method applied to the same problem. It then follows from [15][Chap. XV, Thm. 3.2.4] that
vτ

k→ 0, in contradiction with (18).
Hence,K must have infinitely many indices. But then the values ofvℓk are reduced by

the factor ofmℓ infinitely many times, so that{vℓk} → 0 ask→ ∞. Since fork∈ K it holds
thatvτ

k = vℓk (c.f. Proposition 2), we conclude that{vτ
k}→ 0 asK ∋ k→∞. As τk > τmin > 0

andµk > 1, it follows from (15) that

êk→ 0 and|ĝk| → 0 asK ∋ k→ ∞. (19)

As ĝk is êk-subgradient of the essential objective( f + iX ) at x̂k1, (19) implies that ˆxk1 is a
solution to (1). This completes the proof. ⊓⊔
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Summarizing Lemmas 2–4, we state the following convergenceproperties of Algo-
rithm 2.

Theorem 1 If for the sequence generated by Algorithm 2 it holds thatx̂k = x̂k1 for all k≥ k1,
thenx̂k1 is a solution to(1). Otherwise,{ f (x̂k)} → f inf as k→ ∞, and every cluster point
of {x̂k} (if any exist) is a solution to problem(1). In addition, if the solution set of(1) is
nonempty, and an infinite number of descent steps is generated among which the number of
level iterations is finite, then the sequence{x̂k} converges to a solution of(1).

An interesting question is whether the level bundle methods’ lower worst-case complex-
ity (when compared to the proximal versions) extends to the doubly stabilized algorithm. At
this time, we conjecture this is probably not the case, as there does not seem to be a way to
estimate the number of proximal iterations between level iterations.

We finish this section by considering a more general strategyof managing the level
parameter, which we found useful in our numerical experiments. Note that Step 5.2 of Al-
gorithm 2 reduces the predicted decreasevℓk by a factor ofmℓ on null level iterations (µk > 1),
and keeps it unchanged on null proximal ones. Decreasingvℓk implies increasing the level
parameterℓk (Step 2 in Algorithm 2). The idea is that it may be sometimes useful to keep
ℓk fixed for some null level iterations, because this can lead toinfeasible level sets which,
in turn, leads to updating the lower boundf low

k thus decreasing the optimality gap∆k. The
idea itself can be implemented in a number of different ways.For example, by decreasing
vℓk after some fixed number of consecutive null steps. Note, however, that the argument in
Lemma 4 would not apply (because not all null level iterations reducevℓk, which is an im-
portant ingredient in the proof). Thus the implementation should be such that convergence
can still be justified by other tools.

3.1 Managing the level parameter

Consider an additional parameterµmax≥ 1 as input for the algorithm, and replace the update
rule for vℓk in Step 5.2 of Algorithm 2 by the following:

If µk > µmax, setvℓk+1←mℓvℓk; otherwise setvℓk+1← vℓk. (20)

Note thatµmax = 1 recovers the original formulation of Algorithm 2. The parametervℓk
remains fixed for null level iterations that result in a multiplier µk not large enough; when it
is sufficiently large,vℓk is decreased and the level parameterℓk is increased. The motivation
for keepingvℓk fixed on some iterations is outlined above. The reason for updatingvℓk when
µk > µmax> 1 has to do with using [6, Thm. 3.7] to show convergence in the corresponding
case. Additionally, an intuition as to why it is reasonable that the update ofvℓk depends on
µk can be derived from Lemma 7 below. The arguments in the proof of Lemma 7 (it is not
important that it considers the more general case with inexact data) show that ifvℓk is fixed
over a sequence of null steps thenµk is increasing (tends to+∞ if the sequence is continued
infinitely). Thus, ifµmax is large enough, the rule (20) is likely to keepvℓk fixed, but only for
some iterations so that the parameter is eventually updated.

As the modified rule (20) plays a role only on null steps, to verify convergence of
this version of the algorithm we only have to consider the case when all the level sets are
nonempty and there is a finite number of descent steps, i.e., all iterations from some point
on are null steps. Apart from the conditionµmax > 1, we need the following stronger (but
not at all restrictive from the practical viewpoint) condition on managing the bundle during
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null steps. Letp(k) be the last proximal iteration performed up to iterationk. Choosef̌k+1

to satisfy
max{ f̄k+1(·), f̄ a

k (·), f̄p(k)+1(·), f̄ a
p(k)(·)}6 f̌k+1(·)6 f (·) . (21)

In particular, ifk is a null proximal iteration, thenp(k) = k and the above rule is the same
as for usual proximal bundle methods, [10,7]. However, (21)differs from standard rules in
the case of null level steps: during null level iterations information about the last proximal
iteration is kept in the bundle.

If there are infinitely many null proximal iterations, the algorithm can be interpreted
as a proximal bundle method in the case of a finite number of descent steps followed by
null steps, with level iterates seen as merely enriching thecutting-plane model. In par-
ticular, the key conditions (4.7)–(4.9) in [7] are satisfied. Convergence then follows from
[15][Chap. XV, Thm. 3.2.4]; see also [7] and [23].

On the other hand, if there are only finitely many proximal iterations, the algorithm
becomes essentially a level bundle method in the case of a finite number of descent steps
followed by null steps. In this case, [6, Thm. 3.7] provides the assertion on convergence (we
note that for this it is important thatµmax > 1, becauseλk in [6] is required to be bounded
by someλmax> 0, and we haveµk = λk+1 in (9)).

4 Handling inexact data

In various real-world applications, the objective function and/or its subgradient can be too
costly (sometimes, impossible) to compute. This is particularly true when f is given by
some optimization problem, e.g.,f (x) = maxu∈U ϕ(u,x), as in numerical experiments in
Section 5.2 for example. In such situations, approximate values must be used.

Various inexact bundle methods that use approximate function and subgradient evalua-
tions have been studied in [14,27,18,24,23]. The natural setting is to assume that, given any
x∈ ℜn, the oracle provides some approximate valuesfx ∈ ℜ andgx ∈ ℜn of the objective
function and its subgradient, respectively, such that

{

fx = f (x)−ηx and
f (·)> fx+ 〈gx, ·−x〉−ηg

x ,
(22)

whereηx ∈ ℜ andηg
x > 0 are some unknown but uniformly bounded errors. Specifically,

there existη > 0 andηg > 0 such that

|ηx|6 η and ηg
x 6 ηg for all x∈X . (23)

Remark 1Assumptions (22) and (23) are also present in [18] and [1]. They are weaker
than the assumptions employed by the level bundle methods given in [22], which require
ηg = 0, and further the boundη to be known, controllable, and asymptotically vanishing
in a suitable sense. Thus, the ingredients of our analysis concerning level iterations are
certainly applicable to the setting of [22], and lead to new results under the weaker oracle
assumptions. On the other hand, using stronger assumptions[22] is able to compute exact
solutions, rather than inexact as in our case.

In [1], nonlinearly constrained problems are considered, which require the use of non-
static merit functions (specifically, of improvement functions as in [26]). Thus, even consid-
ering level iterations only, [1] is very different from our case. Also, [1] requires boundedness
of the feasible setX for convergence analysis, and in fact for convergence itself (there are
examples which show that the method therein can fail for unboundedX ).
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With given oracle information, the inexact linearization of f at iterationk is defined accord-
ingly by

f̄k(x) := fxk + 〈gxk,x−xk〉 (6 f (x)+ηg) ,

and the inexact modeľfk is then defined as in (6). However, because of the inexactness, we
now have the weaker property̌fk(·)6 f (·)+ηg. The predicted decrease must now employ
only the available (inexact) information; the counterpartof (12) is thus given by

vτ
k := fx̂k− f̌k(xk+1) ,

and the level parameter is

ℓk := fx̂k−vℓk for a given vℓk > 0.

Solving the doubly stabilized bundle subproblem (4) for theinexact modelf̌k, the direc-
tion of change ˆgk and the aggregate linearization̄f a

k are defined exactly as before, i.e., by
(9) and (10), respectively. The aggregate linearization error is now given by

êk := fx̂k− f̄ a
k (x̂k) .

The first observation is that, unlike in the exact case (recall (15)), the aggregate linearization
errorêk can be negative due to inaccuracy in the data. However, giventhe oracle assumptions
(22), the following lower bound holds:

êk > f (x̂k)−η− f̄ a
k (x̂k)> f (x̂k)−η− ( f (x̂k)+ηg) =−(η +ηg) . (24)

Most inexact proximal bundle methods work the following way. In the proximal setting
the predicted decrease has the formvτ

k = êk+ τk|ĝk|
2 (recall Proposition 2, where the prox-

imal method corresponds toµk = 1). Thenvτ
k < 0 means that ˆek is too negative (the oracle

error is excessive). In such a case, the descent test

fxk+1 6 fx̂k−mf v
τ
k, (25)

mimicking (13), is not meaningful. The methods in [18,24,23] deal with this situation using
the following simple idea. To makevτ

k positive (when ˆgk 6= 0), the strategy is then to increase
the proximal parameterτk and solve again the QP with the same modelf̌k to get another
candidatexk+1. This procedure, callednoise attenuation[18], ensures that:
(i) the predicted decreasevτ

k is always nonnegative before testing for descent;
(ii) if the noise is persistently excessive (an infinite number of noise attenuation steps is
required) then the associated parameter is driven to infinity, which ensures in turn that ˆgk

tends to zero.
With exact oracles, the predicted decreasevτ

k can be seen as an optimality measure: if the
proximal parameterτk > 0 is bounded away from zero, (15) ensures that

vτ
k = 0 ⇐⇒ êk = 0 and ĝk = 0.

The above is no longer true for inexact oracles. For the proximal version (corresponding to
µk = 1 above), one has the following (much weaker) relation:

vτ
k ≤ 0 =⇒ τk|ĝk|

2 ≤−êk (≤ η +ηg) .

It then holds that

|ĝk|
2 ≤

(η +ηg)

τk
.
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And this is where the property (ii) above comes into play. To ensure that ˆgk goes to zero in
the case of excessive oracle errors, [18] drivesτk to infinity. In principle, a similar strategy
can be implemented in Algorithm 2. However, this clearly hassome disadvantages. To start
with, the QP has to be solved again with the same modelf̌k and (sharply) increased prox-
parameter, to obtain another candidatexk+1. And this may need to be done more than once
consecutively. Also, it may eventually turn out that this increase of the prox-parameter is
harmful, or at least unnecessary in some sense (note that there are only heuristic rules for
this update). It turns out that the doubly stabilized methoddoes not require such procedures
to ensure that ˆgk always tends to zero. Instead of “manually” increasingτk, the algorithm
controls the steps automatically and properly via the multipliers µk (as is revealed by the
analysis in Lemma 7 below). This is an interesting, and clearly desirable property. Another
interesting feature of the doubly stabilized method is thatthe predicted decreasevτ

k is always
positive, i.e., property (i) above holds true. To that end, first note that ifvℓk becomes nonpos-
itive at some iterationk due to the updates in Steps 2 and 5 of Algorithm 2, then so does the
inexact optimality gap∆k in Step 1 and the algorithm stops immediately (and it can be seen
that an appropriate approximate solution is obtained). We can thus consider thatvℓk > 0 for
all k. Then the same argument as that in Proposition 2 shows that

vτ
k = êk+ τkµk|ĝk|

2
> fx̂k− ℓk = vℓk > 0 ∀k. (26)

Therefore, a descent test like (25) is always meaningful, unlike for the proximal bundle
approach with inexact data. In conclusion, our doubly stabilized method does not require
the noise attenuation modification to handle inexact data: the property (i) is automatic, while
the assertion of (ii) is obtained as a consequence of the algorithm’s behavior (the iterates it
generates) rather than driving some parameter to extreme values by “brute-force”.

In what follows, we consider Algorithm 2 with the change of notation in that f̌k refers to
the inexact model with the data satisfying (22) and (23). Accordingly, f (x̂k) in Algorithm 2
is replaced byfx̂k, etc. The quantitiesvτ

k, ℓk and êk are as defined in this section above.
Finally, for the current inexact setting the bundle management rule given in (21) becomes

max{ f̄k+1(·), f̄ a
k (·), f̄p(k)+1(·), f̄ a

p(k)(·)}6 f̌k+1(·)6 f (·)+ηg , (27)

wherep(k) once again stands for the last proximal iteration performedup to iterationk.
As standard in inexact proximal bundle methods, the linearization error ˆek is declared

not too negative when the inequality

êk >−meτkµk|ĝk|
2 (28)

holds for some parameterme ∈ (0,1). This inequality, together with a parameterµmax≥ 1,
is employed to updatevℓk in Step 5.2 of Algorithm 2 as follows:

If µk > µmax and (28) holds, setvℓk+1←mℓvℓk; otherwise setvℓk+1← vℓk. (29)

Since our method does not use noise attenuation, we cannot invoke the results from
[18] and [23] for the case of infinitely many proximal iterations. For the case of finitely
many proximal iterations, we cannot invoke previous results on inexact level bundle methods
either; see comments in Remark 1. Therefore, convergence analysis largerly independent of
previous literature is in order (although, naturally, a fewingredients would be familiar). First
note that if the oracle errors do not vanish in the limit, of course only approximate solutions
to (1) can be expected in general. This is natural, and similar to [27,18,24,23].
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4.1 Convergence analysis for the inexact case

We can proceed as in Proposition 1 to show thatf̄ a
k (x) 6 f̌k(x) for all x∈X . Since by the

inexact oracle definition (22) we have thatf̄ j(·)6 f (·)+ηg for all j ∈Bk, we conclude that
for all x∈X it holds that

f (x)+ηg
> f̌k(x)> f̄ a

k (x) = f̌k(xk+1)+ 〈ĝk,x−xk+1〉 (30)

= fx̂k− ( fx̂k− f̌k(xk+1))+ 〈ĝk,x− x̂k〉+ 〈ĝk, x̂k−xk+1〉

= fx̂k−vτ
k + 〈ĝk,x− x̂k〉+ τkµk|ĝk|

2

= fx̂k− êk+ 〈ĝk,x− x̂k〉 (31)

> fx̂k−vτ
k + 〈ĝk,x− x̂k〉 . (32)

Note also that as in the exact case, iff̌k(xk+1) = ℓk (which holds ifµk > 1), then in (26)
we have thatvℓk = vτ

k.
As in Section 3, we consider separately the same three possible cases.

Lemma 5 Suppose the level setXk is empty infinitely many times.
Then∆k→ 0,

lim
k→∞

fx̂k 6 f inf +ηg, (33)

and every cluster point of the sequence{x̂k} (if any exist) is a(η+ηg)-approximate solution
to problem(1), or the lastx̂k is a (η +ηg)-approximate solution if this sequence is finite.

Proof Recall that in the case under considerationf inf > −∞. The same argument as that of
Lemma 2 shows that∆k→ 0. Also, on the iterations in question we have thatℓk < f̌k(x) for
all x∈X , and thus the update in Step 2 and (30) ensure thatf low

k 6 f inf +ηg. As { fx̂k} is
decreasing and bounded below (sincef inf >−∞), we conclude that

lim
k→∞

fx̂k− f inf−ηg
6 lim

k→∞
( fx̂k− f low

k ) = lim
k→∞

∆k = 0,

which gives (33).
Now let x̃ be any cluster point of{x̂k}, and let{x̂k j } be a subsequence converging to ˜x

as j → ∞. Then

f inf +ηg
> lim

j→∞
fx̂kj

= lim
j→∞

( f (x̂k j )−ηx̂kj
)> f (x̃)−η , (34)

which establishes the last assertion. ⊓⊔

Consider now the case whereXk 6= /0 for all k large enough, and there is an infinite
number of descent steps (for which (25) holds).

Lemma 6 Suppose Algorithm 2 generates infinitely many descent steps.
Then(33)holds and every cluster point of the sequence{x̂k} (if any exist) is a(η +ηg)-

approximate solution to problem(1).

Proof Let {x̂k( j)} be the subsequence of{x̂k} such thatk( j) corresponds to thej-th descent
step, and definei( j) = k( j +1)−1. It follows from (25) that{ fx̂k( j)

} is decreasing and either
{ fx̂k( j)

} → −∞, in which case (22), (23) imply that{ f (x̂k( j))} → −∞ and the conclusions
are obvious, or the limit of{ fx̂k( j)

} is finite. In the second case (25) implies that

lim
j→∞

vτ
i( j) = 0.



Doubly stabilized bundle method 17

Let x∈X be arbitrary. Using (32) and the fact that ˆxk( j) = x̂i( j), we then obtain that

|x̂k( j+1)−x|2 = |x̂k( j)−x|2+(τi( j)µi( j))
2|ĝi( j)|

2+2τi( j)µi( j)〈ĝi( j),x− x̂k( j)〉

6 |x̂k( j)−x|2+(τi( j)µi( j))
2|ĝi( j)|

2+2τi( j)µi( j)( f (x)+ηg− fx̂k( j)
+vτ

i( j)) .

Suppose that (33) does not hold. Then there existt > 0 andx̃ ∈X such thatfx̂k( j)
>

f (x̃)+ηg+ t for all j. Taking j large enough so thatvτ
i( j) 6 t/2, and choosingx= x̃ in the

chain of inequalities above, we obtain that

|x̂k( j+1)− x̃|2 6 |x̂k( j)− x̃|2− τi( j)µi( j)t

6 |x̂k(1)− x̃|2− t
j

∑
q=1

τi(q)µi(q)

6 |x̂k(1)− x̃|2− jtτmin,

where we used the fact thatτkµk ≥ τk≥ τmin. The above gives a contradiction whenj→ ∞.
We conclude that (33) holds. The last assertion then followsby the same argument as in
Lemma 5. ⊓⊔

We now consider the case of finitely many descent steps, with the level setXk nonempty
(for all k large enough).

Lemma 7 Suppose that for Algorithm 2, with the additional bundle management rule(27)
and Step 5 employing(29) with µmax> 1, there exists an index k1 > 1 such that the descent
test(25) is not satisfied for all k> k1.

Then the last descent iteratex̂k1 is a (η +ηg)-approximate solution to problem(1).

Proof The sequence{vℓk} is monotone and when its elements decrease, they decrease bya
fixed fractionme∈ (0,1). Thus eithervℓk→ 0 orvℓk = vℓ > 0 for all k large enough.

Consider first the case ofvℓk→ 0. Then by rule (29) there exists an infinite index setK
such thatµk > µmax and the inequality (28) is valid fork∈ K. For such indices, it then holds
that

06 (1−me)τmin|ĝk|
2
6 (1−me)τkµk|ĝk|

2
6 êk+ τkµk|ĝk|

2 = vτ
k = vℓk , (35)

where the last equality follows from Proposition 2, becauseµk > µmax > 1 for all k∈ K. It
follows from (35) that

τkµk|ĝk|
2→ 0, ĝk→ 0, êk→ 0 asK ∋ k→ ∞.

Now passing onto the limit in (31) asK ∋ k→∞, with x∈X fixed but arbitrary and ˆxk = x̂k1

fixed, implies the assertion.
We now consider the second case:vℓk = vℓ > 0 for all k> k2.
Suppose first that there exists an infinite subsequence of null proximal steps (µk = 1),

indexed by{k( j)}. “Ignoring” the possible null level steps inbetween, we canconsider the
sequence{xk( j)} as that generated by the proximal bundle method, where the model satisfies,
by the rule (27), the key conditions

max{ f̄k( j)(·), f̄ a
k( j)−1(·)}6 f̌i(·)6 f (·)+ηg, for k( j)6 i 6 k( j +1)−1.
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Of specific importance here is the relation fori = k( j+1)−1, which shows that on consecu-
tive null proximal steps the model satisfies the conditions which, together with{τk( j)} being
nonincreasing, guarantee the following property of the (inexact) proximal bundle method:

0> limsup
j→∞

( fxk( j)
− f̌k( j)−1(xk( j))) . (36)

(See [23, Theorem 6.4] and/or [18, Lemma 3.3 and Section 4.1].) On the other hand, as the
descent condition (25) does not hold,

fxk( j)
− f̌k( j)−1(xk( j))> fx̂k1

−mf v
τ
k( j)−1− f̌k( j)−1(xk( j)) = (1−mf )v

τ
k( j)−1 > (1−mf )v

ℓ > 0,

which gives a contradiction with (36).
Therefore, in the case under consideration, there can only be a finite number of null

proximal steps. Hence, all iterations indexed byk> k3 are of the null level type, and it holds
thatµk > 1, λk > 0, x̂k = x̂, vℓk = vℓ > 0 andℓk = ℓ for all k> k3.

Note that

ℓ> f̌k(xk+1)> f̄ a
k−1(xk+1) = f̌k−1(xk)+ 〈ĝk−1,xk+1−xk〉.

By Proposition 1, asλk−1 > 0 it holds thatf̌k−1(xk) = ℓ. Hence, 0> 〈ĝk−1,xk+1−xk〉, and
sincex̂−xk = τk−1µk−1ĝk−1, it holds that

0> 〈x̂−xk,xk+1−xk〉.

It then follows that
|xk+1− x̂|2 > |xk− x̂|2+ |xk+1−xk|

2 . (37)

Note that
ℓ> f̌k(xk+1)> f̄k(xk+1) = fxk + 〈gxk ,xk+1−xk〉 .

Using the Cauchy-Schwarz inequality, we obtain that

|gxk||xk+1−xk|> fxk− ℓ . (38)

Since this is a null step, it holds that

fxk > fx̂−mf v
τ
k−1,

and since it is a level step,vτ
k−1 = vℓk−1 = vℓ > 0. Using further the definitionℓ= fx̂−vℓ, we

conclude that
fxk− ℓ> (1−mf )v

ℓ > 0.

In view of (38) and the last inequality above, it holds thatgxk 6= 0 and we obtain that

|xk+1−xk|>
fxk− ℓ

|gxk|
>

(1−mf )vℓ

|gxk|
.

Using now (37), it follows that

|xk+1− x̂|2 > |xk− x̂|2+

(

(1−mf )vℓ

|gxk|

)2

. (39)

If the sequence{xk} were to be bounded, there would exist a constantC > 0 such that
|gxk|6C for all k (by boundedness of theε-subdifferential on bounded sets and (22), (23)).
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But then (39) would mean that the monotone sequence{|xk− x̂|2} is increasing at every
iteration by a fixed positive quantity((1−mf )vℓ/C)2, and thus{xk} cannot be bounded.
Hence,{xk} is unbounded. Since{|xk− x̂|2} is monotone by (39), it follows that|xk− x̂| →
+∞ ask→ ∞.

We next show that limsupk→∞ µk = +∞. Suppose the contrary, i.e., that there exists
µ̄ > 0 such thatµk 6 µ̄ for all k. As{τk} is nonincreasing fork> k3 andvτ

k = vℓk = vℓ, using
(24) we have that

τk3µ̄vℓ > τkµkvτ
k = τkµkêk+(τkµk)

2|ĝk|
2

>−τk3 µ̄(η +ηg)+ |xk+1− x̂|2 ,

in contradicton with|xk− x̂| →+∞. Hence, limsupk→∞ µk =+∞.
In the case under consideration, by rule (29) of Algorithm 2,êk <−meτkµk|ĝk|

2 for all
k > k3. In particular, limsupk→∞ êk 6 0. Also, using again (24), from ˆek < −meτkµk|ĝk|

2 it
follows that

(η +ηg)

τminµk
> me|ĝk|.

As limsupk→∞ µk = +∞, this implies that liminfk→∞ |ĝk| = 0. Now fixing an arbitraryx∈
X , and passing onto the limit in (31) along a subsequence for which the last relation above
holds (taking also into account that in the case under considerationêk 6 0), concludes the
proof. ⊓⊔

Combining all the cases considered above, we conclude the following.

Theorem 2 If Algorithm 2 (with the additional rules(29) and (27)) generates a sequence
such thatx̂k = x̂k1 for all k ≥ k1, thenx̂k1 is a (η +ηg)-approximate solution to(1). Oth-
erwise,(33) holds and every cluster point of the sequence{x̂k} (if any exist) is a(η +ηg)-
approximate solution to problem(1).

The analysis above also shows that in all the cases either∆k→ 0 or there exists a sub-
sequenceK ⊂ {1,2, . . .} such that limsupK∋k→∞ êk 6 0 and limK∋k→∞ |ĝk| = 0. This means
that, for positive tolerances, some stopping rule in Algorithm 2 is eventually satisfied (at
which time an appropriate approximate solution is obtained).

5 Numerical results

In this section we report computational experiments on different types of problems: two-
stage stochastic linear programming, nonsmoothly-regularized maxima of quadratic func-
tions, the model unit-commitment problem in the energy sector, and some standard nons-
mooth test problems (about 1000 instances overall). We compare the following four solvers:
– PBM-1 - proximal bundle method using a rule to updateτk based on [16];
– PBM-2 - proximal bundle method using a rule to updateτk based on [20];
– LBM - level bundle method of [6];
– DSBM - doubly stabilized bundle method (the algorithm described in this article).

The runs were performed on a computer with Intel(R) Core(TM), i3-3110M CPU @
2.40, 4G (RAM), under Windows 8, 64 Bits. The QPs (and also LPs) were solved by the
MOSEK 7 toolbox for MATLAB (http://www.mosek.com/). The MATLAB version is
R2012a.
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Our analysis of the outcomes reports success or failure (i.e., whether a stopping test was
eventually satisfied or the maximal number of iterations wasreached), the number of oracle
calls (here, the same as number of iterations), and CPU time to termination. We also compare
the quality of solutions obtained at termination. To get some further insight, we report the
numbers of descent steps for all the solvers, the number of empty level sets encountered
for LBM and DSBM, and for DSBM which has various possibilities – the number of level
iterations and which stopping criterion triggered termination.

We start with describing some details of implementations, tuning, and stopping rules of
the algorithms in question.

5.1 Implementations, tuning the parameters, and stopping criteria

Many parameters need to be set for the solvers: the constant for the descent testmf ∈ (0,1)
in (13) (used in all four solvers), the constantmℓ ∈ (0,1) for adjusting the level parameter
(for LBM and DSBM), and some further parameters for updatingτk in the proximal solvers
PBM-1, PBM2 and DSBM.

Some specific parameters of each solver are listed below.

5.1.1 The level bundle algorithm LBM

The algorithm is as described in [6]. The initial predicted decrease is given byvℓ1 = f (x1)−
f̌1(x̃), where ˜x is the solution of the QP (2) withk = 1 andτ1 given. When a lower bound
f low
k for the optimal valuef inf is found, the subsequent iterations solve the LP (17) to update

f low
k to f low

k+1.
As in the rule (20), the LBM method of [6] employs the parameter µmax > 0. For this

solver, we need to set mainly the parametersmℓ, µmax andτ1 (the latter definesvℓ1 as ex-
plained above).

5.1.2 The proximal bundle solvers PBM-1 and PBM-2

The rule to update the prox-parameterτk is as follows: leta> 1 andτmin > 0 be two given
parameters, andτk

aux be an auxiliary prox-parameter at iterationk (different for PBM-1 and
PBM-2).
– If null step, setτk+1←min

{

τk, max{τk
aux,τk/a,τmin}

}

– If descent step:
– if more than five consecutive descent steps, setτk

aux← aτk
aux

– setτk+1←min
{

τk
aux, 10τk

}

.
In PBM-1 [16], one sets

τk
aux← 2τk

(

1+
f (x̂k)− f (xk+1)

vτ
k

)

.

In PBM-2 [20], one sets

τk
aux← τk

(

1+
〈gk+1−gk,xk+1−xk〉

|gk+1−gk|2

)

,

under some safeguards [20, Section 4.2].



Doubly stabilized bundle method 21

The essential parameters to tune in the updates above area, τ1 and τmin. Parameters
taken as 10 and 2 in the setting ofτk could also be tuned, but we use here their standard
values.

5.1.3 The doubly stabilized DSBM solver

This is Algorithm 2 employing rule (20) in Step 5. The initialpredicted decrease is given
by vℓ1 = f (x1)− f̌1(x̃), where ˜x is the solution of the QP (2) (the same as for LBM). When a
lower boundf low

k for the optimal valuef inf is found, the subsequent iteration solves the LP
(17) to updatef low

k to f low
k+1 (the same as in LBM).

The essential parameters to tune in the updates above areµmax, mℓ, τ1 andτmin.

5.1.4 Tuning the parameters

The parameters were tuned for each problem class separately. To decide on the “best” set-
tings of parameters, we first ran each solver on representative instances (a subset of about
10%) of each considered family of problems, with various possible combinations of the
solvers’ parameters.

– Setting the stopping tolerances.Depending on the solver, the tolerances involved in stop-
ping tests are:Tole for the aggregate error ˆek, Tolg for the norm of the aggregate sub-
gradient ˆgk andTol∆ for the optimality gap∆k. As it is natural to have the optimality
measures ˆek and∆k of the same magnitude, we setTole= Tolg = Tol. On the other hand,
|ĝk| is a dimension-dependent measure, which can be different. To setTolg we performed
the following steps for each class of problems:

– first, the sample of problems was solved by Algorithm 2 with the stopping test ˆek ≤
10−8 (checking also that ˆgk is small enough at termination);

– at the last iterationki of the given method on problemi, we performed a linear regres-
sion on the data{êki} and{|ĝki |} to estimate the best constantρ > 0 that minimizes
the mean square error∑i(ρ êki −|ĝki |)

2;
– given toleranceTol for êk and∆k, we then setTolg := ρTol.

In the final experiments reported, the solvers terminate either if the number of oracle calls
reaches 1000 (considered a failure) or when

êk 6 Tol and |ĝk|6 Tolg, or ∆k 6 Tol with Tol = (1+ | f̄ |)10−8 . (40)

Here, f̄ is a good approximation of the optimal valuef inf , obtained by running one solver
in advance, and the stopping tolerances are set as describedabove. The last stopping test,
based on the optimality gap, is employed only by the solvers LBM and DSBM.

– Setting the initial prox-parameter.As mentioned, all the solvers employ an initial prox-
parameterτ1 (solvers LBM and DSBM useτ1 to definevℓ1). For each class of problems we
testedτ1 ∈ {1, 5, 10}.

– Lower bound for the prox-parameter.Except for solver LBM:τmin ∈ {10−6, 10−5, 10−3}.
– Parameter a to updateτk during null steps.Only for solvers PBM-1 and PBM-2:a ∈
{2, 4, 5}.

– Level parameter mℓ. Only for solvers LBM and DSBM:mℓ ∈ {0.2, 0.5, 0.7}.
– Descent parameter mf . All solvers:mf ∈ {0.1, 0.5, 0.7}.
– Parameterµmax in (20). Only for solvers LBM and DSBM:µmax∈ {1, 5, 10}.
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As expected, the standard choicemf = 0.1 for the descent test proved adequate for all
the solvers. Another adequate choice wasµmax = 5. Other parameters take different values
depending on the class of problems, as shown below.

In all the solvers, all linearizations are kept in the model until the bundle reaches its
maximal allowed size, which was set at 334 (approximately one third of the maximum num-
ber of iterations). When the maximal allowed size is reached, the solvers eliminate inactive
linearizations, if any exist. If there are no inactive linearizations, the bundle is compressed:
the two “less active” linearizations (with the smallest Lagrange multipliers) are replaced by
the latestf̄k+1 and by the aggregate linearization̄f a

k .

5.2 Two-stage stochastic linear programming problems

We consider ten families of problems available athttp://web.uni-corvinus.hu/~ideak1/

kut_en.htm, by I. Deák. They result in convex linearly-constrained nonsmooth problems,
of the form (1). Specifically,

f (x) := 〈c,x〉+
N

∑
i=1

piQ(x,hi) and X := {x∈ℜn
+ : Ax= b} ,

where
Q(x,hi) := min

y∈ℜn2
+

〈q,y〉 s.t. Tx+Wy= hi

is the recourse function corresponding to thei-th scenariohi ∈ ℜm2 with probability pi >
0 (W and T above are matrices of appropriate dimensions);c ∈ ℜn, matrix A ∈ ℜm1×n

and vectorb ∈ ℜm1 are such that the setX is bounded. We consider twenty instances
corresponding to scenarios

N ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}.

The best configuration found for the parameters is the following: PBM-1 and PBM-2:
τ1 = 10,τmin = 10−6 anda= 2; LBM: τ1 = 10, andmℓ = 0.2; DSBM:τ1 = 1, τmin = 10−6

andmℓ = 0.2. All the solvers employed the tolerancesTolg = 100Tol andTol as in (40).
Table 1 shows the total number of oracle calls and CPU times for solving (successively)

all the twenty instances of each of the 10 problems (in total,200) by the four methods.
DSBM is the fastest solver, followed by LBM. There were no failures in this benchmark.

PBM-1 PBM-2 LBM DSBM
CPU Time (m) 139 118 86 84
# Oracle calls 18007 15168 10521 11125
# Descent steps 4030 4234 4638 4649
# Level steps 0 0 10521 3643

Table 1 Total number of oracle calls and CPU time: sum over 200 instances.

DSBM solver stopped by the relative optimality gap in 93% of the instances, whereas LBM
in around 96%.

Optimality measures are reported in Table 2, for a subset of the instances. Ideally, both
measures ˆek/(1+ | f̄ |) andĝk/(1+ | f̄ |), or the measure∆k/(1+ | f̄ |), should be zero. Table
2 presents the number of digits of accuracy for these quantities. For instance, the number
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êk/(1+ | f̄ |) ĝk/(1+ | f̄ |) ∆k/(1+ | f̄ |)

n PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM
5 09 09 08 08 13 10 08 08 09 09
10 09 09 08 09 13 10 06 10 09 08
15 09 09 08 06 13 11 05 05 09 09
20 09 09 09 09 13 09 06 08 09 08
25 09 09 09 07 14 10 04 06 09 09
30 09 09 09 06 13 07 05 05 09 09
35 09 09 13 08 12 09 05 06 09 09
40 09 10 08 08 14 08 06 10 09 10
45 09 09 08 07 08 08 06 05 09 09
50 09 09 08 08 11 08 07 09 09 08
55 09 09 08 08 10 08 06 08 09 09
60 09 09 09 09 08 07 06 07 09 08
65 09 08 10 08 08 07 05 07 09 09
70 08 09 09 07 07 08 05 06 09 09
75 09 09 10 09 08 07 06 08 09 08
80 09 09 09 09 12 08 06 09 09 09
85 09 09 09 09 11 07 08 07 09 08
90 09 09 08 08 11 09 06 07 09 09
95 10 07 09 09 08 08 07 06 08 09
100 09 08 10 08 08 07 05 07 09 09

Table 2 Comparison of the optimality measures: digits of accuracy

09 for êk/(1+ | f̄ |) means that the quantity in question has the valuec10−09, with some
c∈ (1, 10).

In Figure 1 we give performance profiles [8] of the four solvers over the 200 instances.
The top graphic considers the number of oracle calls (iterations), and the bottom one con-
siders the CPU time. For example, let the criterion be CPU time. For each algorithm, we
plot the proportion of problems that it solved within a factor of the time required by the best
algorithm. In other words, denoting byts(p) the time spent by solvers to solve problemp
and byt∗(p) the best time for the same problem among all the solvers, the proportion of
problems solved bys within a factorγ is

φs(γ) =
number of problemsp such thatts(p)≤ γ t∗(p)

total number of problems
.

Therefore, the valueφs(1) gives the probability of the solvers to be the best by a given
criterion. Furthermore, unlessts(p) = ∞ (which means that solvers failed to solve problem
p), it follows that limγ→∞ φs(γ) = 1. Thus, the higher is the line, the better is the solver (by
this criterion).

We conclude from Figure 1 that among the four solvers, LBM used less oracle calls (and
CPU time) in approximately 60% (58%) of the 200 different instances, followed by DSBM
(40%) that was better than both solvers PBM-1 and PBM-2.

5.3 RandMaxQuad problems

In this subsection we consider a family of randomly generated problems of the form (1) with
the objective function given by

f (x) = max
i=1,...,10

{

〈Qix,x〉+ 〈qi ,x〉
}

+α |x|1 and f (x) = max
i=1,...,10

{

〈Qix,x〉+ 〈qi ,x〉
}

+α |x|∞ ,
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Fig. 1 Performance profile: 200 instances of two-stage stochasticproblems.

whereQi ∈ℜn×n andqi ∈ℜn are randomly generated,Qi being symmetric positive semidef-
inite, i = 1, . . . ,10. The problem’s dimensionn varies according to

n∈ {10,20,30,40,50,60,70,80,90,100,150,200,250,300,500} .

Parameterα runs through the valuesα ∈ {0.1,0.5,1}. Two settings were considered for the
feasible setX in (1): X = ℜn (unconstrained setting) andX = {x ∈ ℜn

+ : ∑n
i=1 x = 1}

(simplex setting). In total, 708 different instances of problem (1) were obtained by using
different seeds for the MATLAB random number generator: 354unconstrained and 354
constrained.

5.3.1 UnconstrainedRandMaxQuad: 354 instances

The best configurations found for the parameters were: PBM-1: τ1 = 1, τmin = 10−6 and
a= 5; PBM-2:τ1 = 1, τmin = 10−6 anda= 2; LBM: τ1 = 1, andmℓ = 0.2; DSBM:τ1 = 1,
τmin = 10−6 andmℓ = 0.2. Tolerances were set asTolg = 1000Tol, with Tol given in (40).

Among other information, Table 3 shows the total number of CPU time (in minutes)
and oracles calls required to solve all the 354 unconstrained instances. Notice that the less

PBM-1 PBM-2 LBM DSBM
CPU Time (m) 302 154 462 143
# Oracle calls 121155 80261 202922 77741
# Descent steps 14320 18324 15786 19237
# Level steps 0 0 202922 58452
# Empty level sets 0 0 143 106
% Failure 2 1 25 0

Table 3 Total number of oracle calls and CPU time: sum over 354 instances.

demanding with respect to oracle calls and CPU time is the DSBM solver, followed by
PBM-2. Table 3 also shows that around 75% of the DSBM iterations were of the level type.

Table 4 presents optimality measures at termination for each solver on some instances.
DSBM stopped by the relative optimality gap in 29% of the instances, whereas LBM trig-
gered this additional stopping test in 38%.



Doubly stabilized bundle method 25

êk/(1+ | f̄ |) ĝk/(1+ | f̄ |) ∆k/(1+ | f̄ |)

n PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM
10 09 09 09 09 08 06 05 05 09 09
20 09 09 09 09 06 06 05 05 09 09
30 09 09 09 10 06 06 05 06 09 -
40 09 09 09 09 06 06 06 06 - -
50 09 09 09 09 06 06 06 06 - -
60 09 09 09 10 06 06 06 06 - -
70 09 09 09 09 06 06 06 06 - -
80 09 09 09 09 06 06 06 06 - -
90 09 09 09 09 06 06 06 06 - -
100 09 09 09 09 06 06 06 06 - -
150 09 10 07 09 06 06 06 05 - -
200 09 09 07* 09 06 06 05* 06 - -
250 08 09 06* 09 06 06 05* 06 - -
300 09 09 06* 09 06 06 04* 06 - -
500 10 09 05* 09 06 06 05* 06 - -

Table 4 Comparison of the optimality measures: digits of accuracy (“*” means failure; “-” means thatf low
k =

−∞).

Figure 2 gives performance profiles [8] of the four solvers over 354 instances of the
unconstrainedRandMaxQuad problem.
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Fig. 2 Performance profile of the four solvers over 354 instances ofMaxQuad.

We observe that DSBM required less oracle calls in approximately 48% of the 354
instances, followed by PBM-2 and PBM-1 (around 40% and 10%, respectively). Besides,
DSBM is more robust in terms of oracle calls: it achievesφ(γ) = 1 for lower values ofγ .
For this type of problems, both PBM-1 and PBM-2 are more robust than LBM, that failed
to satisfy the stopping test in around 25% of the instances, as reported in Table 3.

5.3.2 ConstrainedRandMaxQuad: 354 instances

We now consider problems with the same 354 objective functions, but constrained on a
simplex. The employed solver parameters are the following:PBM-1: τ1 = 1, τmin = 10−3

anda = 5; PBM-2: τ1 = 1, τmin = 10−5 anda = 2; LBM: τ1 = 1, andmℓ = 0.7; DSBM:
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τ1 = 1, τmin = 10−6 andmℓ = 0.7. Tolerances were set asTolg = 1000Tol, with Tol given
in (40).

Table 5 shows the total number of oracle calls, CPU time, descent steps and level steps
required to solve all the constrained instances. We observethat the solvers LBM and DSBM
are much more effective on the constrained problems than PBM-1 and PBM-2. Around 45%

PBM-1 PBM-2 LBM DSBM
CPU Time (m) 319 309 35 31
# Oracle calls 110495 103494 35892 31617
# Descent steps 11206 11599 15586 11263
# Level steps 0 0 35892 14607
# Empty level sets 0 0 355 358
% Failure 2 0 0 0

Table 5 Total number of oracle calls and CPU time: sum over 354 instances.

of the DSBM iterations were of the level type.
LBM triggered the optimality gap stopping test in 62% of the instances, while DSBM

in 72%. Note that these percentages were smaller for the unconstrained instances: 38% and
29%, respectively. Table 6 reports (for some selected instances) the optimality measures at
the last iteration.

êk/(1+ | f̄ |) ĝk/(1+ | f̄ |) ∆k/(1+ | f̄ |)

n PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM
10 09 10 09 09 15 09 05 06 09 08
20 09 09 09 09 07 06 05 05 09 09
30 09 09 09 09 06 06 05 05 09 09
40 09 09 09 09 10 06 05 05 09 09
50 09 07 09 09 09 06 05 05 09 09
60 09 09 09 09 06 06 05 05 09 09
70 09 09 09 09 07 06 05 05 09 09
80 09 09 09 09 06 06 05 05 09 09
90 09 09 09 09 06 06 05 06 09 08
100 09 09 09 09 06 05 05 05 09 09
150 09 09 09 09 06 06 06 06 08 08
200 09 09 09 09 06 06 07 06 08 08
250 09 09 09 09 06 06 06 06 08 08
300 09 09 09 09 06 06 06 06 08 08
500 07 09 09 09 06 06 06 06 08 08

Table 6 Comparison of the optimality measures: digits of accuracy

Performance profiles of the four solvers on these 354 constrained instances are presented
in Figure 3. Among the considered solvers, we notice that DSBM is both the fastest and the
most robust one, followed by LBM.

5.4 Unit-commitment energy problems

In this subsection we consider a unit-commitment problem for a power system operation
model with four power plants. For each given pointx, an oracle must solve four mixed-
integer linear programming problems to computef (x) andg∈ ∂ f (x). The feasible set for
this problem is the positive orthantX = ℜn

+. In our configuration, the problem’s dimension
ranges inn∈ {12,24,36,48,60} . The electricity demands for the unit-commitment problem
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Fig. 3 Performance profile of the four solvers over 354 instances ofconstrainedMaxQuad.

were chosen randomly, using 10 different seeds for the random number generator. In total,
50 instances of the problem were considered.

The employed solver parameters are the following: PBM-1:τ1 = 10, τmin = 10−6 and
a= 2; PBM-2:τ1 = 1, τmin = 10−5 anda= 4; LBM: τ1 = 1, andmℓ = 0.7; DSBM:τ1 = 1,
τmin = 10−6 andmℓ = 0.2. Tolerances were set asTolg = Tol, with Tol given in (40).

In this battery of problems, all the runs were successful, i.e., a stopping test was satisfied
before the maximal number of iterations was reached. Table 7shows the total number of
oracle calls and CPU times required to stop the four solvers over all instances of the problem.

PBM-1 PBM-2 LBM DSBM
CPU Time (m) 78 69 91 77
# Oracle calls 4540 4050 3976 3087
# Descent steps 1052 1381 2274 1526
# Level steps 0 0 3976 1807
# Empty level sets 0 0 50 50

Table 7 Total number of oracle calls and CPU times: sum over 50 instances.

PBM-2 was the fasted solver on these problems, followed by DSBM. DSBM terminated
by the optimality gap in 98% of the instances, whereas LBM in 96%. Moreover, around 58%
of the DSBM’s iterations were of the level type. In Table 8 we present (for some instances)
the optimality measures at the last iteration.

êk/(1+ | f̄ |) ĝk/(1+ | f̄ |) ∆k/(1+ | f̄ |)

n PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM
12 11 10 09 05 11 10 08 05 09 10
24 12 09 09 06 12 11 06 06 09 09
36 09 09 09 07 10 10 08 06 09 09
48 09 09 09 08 11 09 08 09 09 09
60 09 09 09 06 11 10 07 06 09 09

Table 8 Comparison of the optimality measures: digits of accuracy
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Figure 4 gives performance profiles of the four solvers over 50 instances of the problem.
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Fig. 4 Performance profile of the four solvers over 40 instances.

We observe that DSBM required less oracle calls in approximately 90% of cases, while
PBM-2 was the fastest solver in 20% of the instances.

5.5 Classical unconstrained nonsmooth test problems

In this subsection we consider some typical functions for nonsmooth optimization bench-
marking, such asMaxQuad [5, p. 153],TR48 [15, p. 21, Vol. II] and others. All the problems
are unconstrained and have known optimal values. We refer to[25] for more information on
these test problems.

Tables 9-10 report on results obtained by the four solvers onthis type of problems, using
default dimensions and starting points.

# oracle calls CPU time in seconds
Problem LBM PBM-1 PBM-2 DSBM LBM PBM-1 PBM-2 DSBM
TR48 260 157 127 139 30.399 9.986 6.873 8.669

MaxQuad 78 231 111 96 4.834 16.767 5.074 3.595
Ury 65 64 58 60 3.361 2.224 1.981 2.214
CPS 183 63 83 65 31.812 1.910 2.794 2.546

TiltedMax 50 14 18 15 2.285 0.434 0.601 0.461
Check 50 61 72 44 2.954 1.913 2.818 1.803
NK 58 62 81 61 2.938 1.754 2.543 3.053
Sum 744 652 550 480 78.583 34.988 22.684 22.341

Table 9 Total number of oracle calls and CPU time.

Table 10 shows the true optimal value of each problem (columnf inf) and the number of
digits of accuracy in the differencef (x̂)− f inf for the four solvers at termination, where ˆx is
the obtained solution.

We can conclude from Table 10 that the quality of solutions obtained by the doubly
stabilized method is as good as the other solvers.
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Problem LBM PBM-1 PBM-2 DSBM f inf

TR48 1 5 3 3 -638565
MaxQuad 6 9 9 7 -0.84140833459641

Ury 4 4 5 5 500
CPS 8 7 9 7 0

TiltedMax 8 9 7 9 0

Table 10 Digits of accuracy in the differencef (x̂)− f inf .

6 Concluding remarks

We proposed a new algorithm for nonsmooth convex minimization, called doubly stabilized
bundle method. It combines the level and proximal stabilizations in a single subproblem,
and at each iteration automatically “chooses” between a proximal and a level step. The aim
is to take advantage of good properties of both, depending onthe problem at hand, and also
use the simplicity of updating the level parameter to produce a simple and efficient rule to
update the proximal parameter, thus speeding up the optimization process. In addition, the
method provides a useful stopping test based on the optimality gap.

The algorithm appears to perform well in computation, as validated in Section 5, where
almost one thousand instances of various types of problems were considered. Numerical
results show that the proposed method compares favorably with both the proximal and level
bundle methods.

The new doubly stabilized algorithm can also handle inexactness of data in a natural
way, without introducing special modifications to the iterative procedure (such as noise at-
tenuation).
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