
Understanding, Detecting, and Diagnosing
Real-World Performance Bugs

by

Linhai Song

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 10/16/2015

The dissertation is approved by the following members of the Final Oral Committee:
Shan Lu, Associate Professor, Computer Science (at the University of Chicago)
Benjamin Liblit, Associate Professor, Computer Sciences
Aws Albarghouthi, Assistant Professor, Computer Sciences
Remzi Arpaci-Dusseau, Professor, Computer Sciences
Xinyu Zhang, Assistant Professor, Electrical and Computer Engineering
Darko Marinov, Associate Professor, Computer Science (at the University of Illinois at

Urbana-Champaign)

© Copyright by Linhai Song 2015
All Rights Reserved

i

To my parents, Zuoyu Song and Cuihua Fu.

ii

Acknowledgments

First and foremost, I would like to express my wholehearted gratitude to my
advisor, Professor Shan Lu, for her generous support and guidance during my
PhD.

The first email I sent to Shan was to ask whether I could provide her
name as my potential advisor when I applied for my student visa. Shan
kindly approved this. I was lucky to begin my independent study with her
immediately after I came to the U.S.. I can still remember the joy in my heart
when she told me that she would pick me as her student after we submitted
AFix.

Throughout my PhD, Shan gave me numerous invaluable academic advice,
ranging from the details of how to present data in my paper to the broad vision
of how to explore an initial research idea. Besides research, Shan also taught
me how to better communicate with other people, how to manage my time,
and how to be confident. Shan has served as my role model for the past five
years. I am fortunate to have been able to observe and learn how she obtains
new knowledge, conducts research, and succeeds in her career. The PhD
journey is tough. I feel extremely thankful for Shan’s patience, support, and
actionable suggestions at each stage. I do not think I can reach the destination
without her encouragement.

I gratefully thank Professor Ben Liblit and Professor Darko Marinov for
their kind help during and after our collaboration. Ben and Darko are al-
ways encouraging and helpful whenever I encounter research problems. Ben
also helped me go through all the paperwork and payment after Shan left to
UChicago. I worked in Illinois for around one week, and it was an exciting
experience to learn technical skills closely from Darko.

iii

I would like to thank all the other committee members, Professor Remzi
Arpaci-Dusseau, Professor Aws Albarghouthi, and Professor Xinyu Zhang, for
their priceless comments and constructive criticism on my thesis. It is really
my honor to have all these professors on my committee. I would also thank
Professor Loris D’Antoni for coming to my defense and leaving invaluable
feedback.

Thanks also go to every student in Shan’s group and fellow students I
worked with for the opportunity to learn together. I worked with Guoliang
Jin on my first two research projects, and I want to thank him for helping me
through my junior years. I want to thank Adrian Nistor for treating me to so
many lunches and solving so many of the weird problems I encountered in
Illinois. I want to thank Wei Zhang, Po-Chun Chang, Xiaoming Shi, Dongdong
Deng, Rui Gu, Joy Arulraj, Joel Sherpelz, Haopeng Liu, and Yuxi Chen for
making our group fun and exciting.

I also want to thank many other people at UWisconsin. Thanks to Professor
David Page, Professor Michael Swift, Professor Susan Horwitz, Professor Jerry
Zhu, and Professor Eric Bach for the knowledge I gained from their courses.
Thanks to Angela Thorp for helping me through various administration stuff.
Thanks to Peter Ohmann for suggestions about how to polish my talk. Thanks
to my great roommates, Hao Wang, Ce Zhang, Jia Xu, and Huan Wang, for
giving me such great company. Thanks to all the other good friends, Lanyue
Lu, Wenfei Wu, Suli Yang, Yupu Zhang, Yiying Zhang, Jie Liu, Wentao Wu,
Wenbin Fang, Weiyan Wang, Xiaozhu Meng, Junming Xu, Yimin Tan, Yizheng
Chen, Ji Liu, Jun He, and Ao Ma for their help and support in different ways.

I benefit a lot from my summer internship at NEC Labs America. I want
to thank the company as well as my mentor, Dr. Min Feng, for providing a
terrific internship experience.

Last but not least, I want to thank my parents back in China for their
unconditional love and trust. Whenever I struggle with my PhD life, my
parents are always supportive and encouraging. My work would not be nearly
as meaningful without them. No words can express my gratitude and love to
them. I dedicate the whole thesis to the two most important persons in my
life.

iv

Contents

Contents iv

List of Tables vii

List of Figures x

NOMENCLATURE xii

Abstract xiii

1 Introduction 1
1.1 Motivation 1
1.2 Thesis Philosophy 4
1.3 Dissertation Contribution 5
1.4 Dissertation Outline 8

2 Background and Previous Work 9
2.1 Empirical Studies on Performance Bugs 9
2.2 Performance-bug Detection 10
2.3 Performance Failure Diagnosis 12
2.4 Other Techniques to Fight Performance Bugs 15

3 Real-World Performance-Bug Understanding 16
3.1 Introduction 16
3.2 Methodology 19
3.3 Case Studies 20
3.4 Root Causes of Performance Bugs 25

v

3.5 How Performance Bugs Are Introduced 27
3.6 How Performance Bugs Are Exposed 28
3.7 How Performance Bugs Are Fixed 29
3.8 Other Characteristics 30
3.9 Guidance for My Thesis Work 33
3.10 Guidance for Future Work 33
3.11 Conclusions 35

4 Rule-Based Performance-Bug Detection 36
4.1 Introduction 36
4.2 Efficiency Rules in Patches 37
4.3 Building Rule Checkers 38
4.4 Rule-Checking Methodology 39
4.5 Rule-Checking Results 40
4.6 Conclusions 47

5 Statistical Debugging for Real-World Performance Bugs 48
5.1 Introduction 49
5.2 Understanding Real-World Performance Problem Reporting and Di-

agnosis 53
5.3 In-house Statistical Debugging 60
5.4 Production-run Statistical Debugging 74
5.5 Conclusion 81

6 LDoctor: Hybrid Analysis Routines for Inefficient Loops 82
6.1 Introduction 82
6.2 Root-Cause Taxonomy 85
6.3 LDoctor Design 92
6.4 Evaluation 104
6.5 Conclusion 111

7 Conclusion 112
7.1 Summary 112
7.2 Lessons Learned 115

vi

7.3 Future Work 116
7.4 Closing Words 117

References 118

vii

List of Tables

1.1 Techniques employed in this thesis. 4

3.1 Applications and bugs used in the study. 19
3.2 Root cause categorization in Section 3.4. 25
3.3 How performance bugs are introduced in Sections 3.5. 27
3.4 How performance bugs are exposed in Section 3.6. 29
3.5 How to fix performance bugs in Section 3.7. 30

4.1 Typical conditions in function rules. 38
4.2 Checking results. BadPr: bad practice; F.P.: false positives; GoodPr:

good practices. More detailed definitions are presented in Sec-
tion 4.4. ‘-’: not applicable. ‘/’: good-practice checker does not
exist. 41

5.1 Applications and bugs used in the study. 54
5.2 How performance problems are observed by end users. There are

overlaps among different comparison-based categories; there is no
overlap between non-comparison and comparison-based categories. 55

5.3 Inputs provided in users’ bug reports. n: developers provide a way
to generate a large number of inputs. 57

5.4 Benchmark information. N/A: since our statistical debugging tools
only work for C/C++ programs, we have reimplemented the four
Java benchmarks in C programs. *: we have no tools to collect scalar-
pair predicates in C++ programs. The 1s and ns in the “Reported
Inputs” column indicate how many bad/good inputs are reported
by users. 62

viii

5.5 Experimental results for in-house diagnosis. Xx(y): the x-th ranked
failure predictor is highly related to the root cause, and is y lines of
code away from the patch. (.): the failure predictor and the patch
are more than 50 lines of code away from each other or are from
different files. Xx[y]: a y-th level caller of the x-th ranked function
in a profiler result is related to the root cause; x[0] means it is the
function itself that is related to the root cause. -: none of the top
five predictors are related to the root cause or no predicates reach
the threshold of the statistical model. 67

5.6 How different predicates work for diagnosing user-reported perfor-
mance bugs. In this manual inspection, if more than one predicate
can help diagnose a problem, we only count the predicate that is
most directly related to the root cause. 72

5.7 Runtime overhead and diagnosis capability evaluated with the
default sampling rate (1 out of 10000); 10, 100, 500, 1000 represents
the different numbers of success/failure runs used for diagnosis. 78

5.8 Diagnosis capability, overhead, and average number of samples in
each run under different sampling rates by using 1000 success/-
failure runs. *: no results are available, because hardware-based
sampling cannot be as frequent as 1/100 and software-based CBI
sampling does not apply for these C++ benchmarks. 79

6.1 Applications and bugs used in the study. 90
6.2 Number of bugs in each root-cause category. B, M, S, C, and O rep-

resent different fix strategies: B(atching), M(emoization), S(kipping
the loop), C(hange the data structure), and O(thers). The numbers
in the parentheses denote the number of problems that are fixed
using specific fix strategies. 91

6.3 Benchmark information. N/A: we skip the size of benchmarks
that are extracted from real-world applications. Root cause “C-I”
is short for cross-iteration redundancy. Root cause “C-L” is short
for cross-loop redundancy. C, B, M, and S represent different fix
strategies, as discussed in Table 6.2. 105

ix

6.4 Coverage Results. 106
6.5 False positives of LDoctor, when applying to top 5 loops reported by

statistical performance diagnosis for each benchmark. ‘-’ represents
zero false positive. Other cells report real false positives and benign
false positives, which is in the subscript. 108

6.6 Runtime overhead of applying LDoctor to the buggy loop, with
and without optimizations. Only results from non-extracted bench-
marks are shown. -: static analysis can figure out the results and
hence no dynamic analysis is conducted. /: not applicable. . . . 110

x

List of Figures

1.1 A real-world performance bug in GCC (The ‘-’ and ‘+’ demonstrate
the patch.) . 2

1.2 Interactions among the four components in this dissertation . . . 6

3.1 An Apache-HTTPD bug retrieving more than necessary data . . . 21
3.2 A Mozilla bug drawing transparent figures 21
3.3 A Mozilla bug doing intensive GCs 22
3.4 A Mozilla bug with un-batched DB operations 23
3.5 A MySQL bug with over synchronization 23
3.6 A MySQL bug without using cache 24

4.1 A PPP we found in latest versions of original software (ismbchar
checks whether a string (2nd parameter) is coded by a specific
character-set (1st parameter). Since ismbchar only checks the first
CHARSET::mbmaxlen characters of a string, calculating the exact
length and range of a string is unnecessary.) 42

4.2 A PPP we found in latest versions of different software (String::indexOf (String
sub) looks for sub-string sub from the beginning of a string s. If
program has already compared the first N characters of s with sub,
it is better not to repeat this. The Struts PPP is already confirmed
and patched by Struts developers based on our report.) 42

5.1 An Apache bug diagnosed by Return 68
5.2 A MySQL bug diagnosed by Branch 69

6.1 A resultless 0*1? bug in Mozilla . 86

xi

6.2 A resultless [0|1]* bug in GCC . 87
6.3 A cross-loop redundant bug in Mozilla 88
6.4 A cross-loop redundant bug in Apache 96
6.5 A cross-iteration redundant bug in Apache 99

xii

Nomenclature

1. Performance bug: performance bugs are software implementation mis-
takes that can cause inefficient execution. We will use “performance bugs”
and “performance problems” interchangeably in this thesis, following
previous work in this area [49, 75].

2. Functional bug: functional bugs are software defects that lead to func-
tional misbehavior, such as incorrect outputs, crashes, and hangs. Func-
tional bugs include semantic bugs, memory bugs, and concurrency
bugs [54].

3. Efficiency rule: efficiency rules are principles inside programs, violations
of which will lead to inefficient execution. Efficiency rules usually con-
tain two components, which indicate where and how a particular code
transformation can be conducted to improve performance while preserv-
ing original functionality.

4. Root-cause information: for a particular failure, root-cause information
includes a static code region causing the failure, an explanation of why
the failure happens, and potential fix suggestions.

5. Inefficient loop: inefficient loops are loops that conduct inefficient compu-
tation because of performance bugs.

6. Diagnosis latency: diagnosis latency is the time it takes to figure out the
root cause of a failure. It is measured by how many failure runs are
needed to conduct failure diagnosis.

7. Runtime overhead: runtime overhead is measured by comparing normal
execution with monitored execution.

xiii

Abstract

Everyone wants software to run fast. Slow and inefficient software can easily
frustrate end users and cause economic loss. The software-inefficiency prob-
lem has already caused several highly publicized failures. One major source
of software’s slowness is performance bug. Performance bugs are software
implementation mistakes that can cause inefficient execution. Performance
bugs cannot be optimized away by state-of-practice compilers. Many of them
escape from in-house testing and manifest in front of end users, causing severe
performance degradation and huge energy waste in the field. Performance
bugs are becoming more critical, with the increasing complexity of modern
software and workload, the meager increases of single-core hardware perfor-
mance, and pressing energy concerns. It is urgent to combat performance
bugs.

This thesis works on three directions to fight performance bugs: perfor-
mance bug understanding, rule-based performance-bug detection, and perfor-
mance failure diagnosis.

Building better tools requires a better understanding of performance bugs.
To improve the understanding of performance bugs, we randomly sample
110 real-world performance bugs from five large open-source software suites
(Apache, Chrome, GCC, Mozilla, and MySQL) and conduct the first empirical
study on performance bugs. Our study is mainly performed to understand the
common root causes of performance bugs, how performance bugs are intro-
duced, how to expose them, and how to fix them. Important findings include
that there are dominating root causes and fix strategies for performance bugs
and root causes are highly correlated with fix strategies; that workload and
API issues are two major reasons causing performance bugs to be introduced;

xiv

and that performance bugs require inputs with both special features and large
scales to be exposed effectively. Our empirical study can guide future research
on performance bugs, and it has already inspired our own performance-bug
detection and performance failure diagnosis projects.

Rule-based bug detection is widely used to detect functional bugs and
security vulnerabilities. Inspired by our empirical study, we hypothesize that
there are also statically checkable efficiency-related rules for performance
bugs, the violation of which will lead to inefficient execution. These rules
can be used to detect previously unknown performance bugs. To test our
hypothesis, we manually examine fixed performance bugs, extract efficiency
rules from performance bugs’ patches, and implement static checkers to detect
rule violations. Our checkers find 332 previously unknown performance bugs.
Some of found bugs have already been confirmed and fixed by developers. Our
results demonstrate that rule-based performance-bug detection is a promising
direction.

Effectively diagnosing user-reported performance bugs is another key as-
pect of fighting performance bugs. Statistical debugging is one of the most
effective failure diagnosis techniques designed for functional bugs. We ex-
plore the feasibility and design spaces to apply statistical debugging to per-
formance failure diagnosis. We find that statistical debugging is a natural
fit for diagnosing performance problems, which are often observed through
comparison-based approaches, and reported together with both good and
bad inputs, statistical debugging can effectively identify coarse-grained root
causes for performance bugs under the right types of design points, and one
special nature of performance bugs allows sampling to lower the overhead of
runtime performance diagnosis without extending the diagnosis latency.

Performance bugs caused by inefficient loops account for two-thirds of
user-reported performance bugs in our study. For them, coarse-grained root-
cause information is not enough. To solve this problem, we first conduct an
empirical study to understand the fine-grained root causes of inefficient loops
in the real world. We then design LDoctor, which is a series of static-dynamic
hybrid analysis routines that can help identify accurate fine-grained root-
cause information. Sampling is leveraged to further lower diagnosis overhead

xv

without hurting diagnosis accuracy or latency. The evaluation results show
that LDoctor can cover most root-cause categories with good accuracy and
small runtime overhead.

Our bug-detection technique and performance failure diagnosis techniques,
guided by our empirical study, complement each other to significantly improve
software performance.

1

Chapter 1

Introduction

We all want software to run fast and efficiently. Software performance severely
affects the usability of software systems, and it is one of the most important
problems in computer science research. Performance bugs are one major
source of software’s slowness and inefficiency. Performance bugs are software
implementation mistakes that can cause inefficient execution. Due to their non
fail-stop symptoms, performance bugs are easy to escape from in-house testing
and are difficult to diagnose. Nowadays, the urgency to address performance
bugs is becoming even more important with new hardware and software
trends and increasing concerns about energy constraints.

Facing the challenge of performance bugs, this dissertation proposes effec-
tive performance-bug detection and performance-bug diagnosis approaches
based on a comprehensive characteristics study of real-world performance
bugs.

1.1 Motivation

Slow and inefficient software can easily frustrate users and cause financial
losses. Although researchers have devoted decades to transparently improv-
ing software performance, performance bugs continue to pervasively degrade
performance and waste computation resources in the field [67]. Meanwhile,
current support for combating performance bugs is preliminary due to the
poor understanding of real-world performance bugs.

Following the convention of developers and researchers on this topic [13, 49,
67, 89], we refer to performance bugs as software defects that can slow down the

2

//GCC27733 & Patch
//expmed.c

struct alg_hash_entry
{
− unsigned int t;
+ unsigned HOST_WIDE_INT t;
}

void synth_mult(...unsigned HOST_WIDE_INT t, ...)
{

hash_index = t ...;
if (alg_hash[hash_index].t == t ...)
{

...
return ;

}
...
//recursive computation

}

Figure 1.1: A real-world performance bug in GCC (The ‘-’ and ‘+’ demonstrate
the patch.)

program. Relatively simple source-code changes can fix performance bugs and
significantly speed up software while preserving functionality. These defects
cannot be optimized away by state-of-practice compilers, thus bothering end
users.

Figure 1.1 shows an example of a real-world performance bug. A small
mistake in the type declaration of hash-table entry alg_hash_entry causes
the designed memoization for synth_mult not to work when t is larger than
the maximum value that type-int can represent. As a result, under certain
workloads, synth_mult conducts a lot of redundant computation for the same
t values repeatedly, leading to 50 times slowdown.

Performance bugs exist widely in released software. For example, Mozilla
developers have fixed 5–60 performance bugs reported by users every month
over the past 10 years. The prevalence of performance bugs is inevitable
because little work has been done to help developers avoid performance-
related mistakes. In addition, performance testing mainly relies on ineffective

3

black-box random testing and manual input design, which allows the majority
of performance bugs to escape [67].

Performance bugs lead to reduced throughput, increased latency, and
wasted resources in the field. In the past, they have caused several highly
publicized failures, causing hundred-million dollar software projects to be
abandoned [68, 83].

Worse still, performance problems are costly to diagnose due to their non
fail-stop symptoms. Software companies may need several months of effort
by experts to find a couple of performance bugs that cause a few hundred-
millisecond delay in the 99th percentile latency of their service [88].

The following trends will make the performance-bug problem more critical
in the future:

Hardware: For many years, Moore’s law ensured that hardware would
make software faster over time with no software development effort. In the
multi-core era, when each core is unlikely to become faster, performance bugs
are particularly harmful.

Software: The increasing complexity of software systems and rapidly
changing workloads provide new opportunities for performance waste and
new challenges in diagnosis [22]. Facing the increasing pressure on produc-
tivity, developers cannot combat performance bugs without automated tool
support.

Energy efficiency: Increasing energy costs provide a powerful economic
argument for avoiding performance bugs. When one is willing to sacrifice
service quality to reduce energy consumption [7, 58], ignoring performance
bugs is unforgivable. For example, by fixing bugs that have doubled the
execution time, one may potentially halve the carbon footprint of buying and
operating computers.

Performance bugs may not have been reported as often as functional bugs,
because they do not cause fail-stop failures. However, considering the prelimi-
nary support for combating performance bugs, it is time to pay more attention
to them, as we enter a new resource-constrained computing world.

4

Techniques in this thesis Functional Bug Performance Bug

Rule-based bug detection X X

Statistical debugging X X

Sampling-based approach X XX

LDoctor 7 X

Table 1.1: Techniques employed in this thesis.

1.2 Thesis Philosophy

The topic of this thesis is to provide better tool support to combat performance
bugs. The philosophy of this thesis is to investigate existing approaches origi-
nally designed for functional bugs and try to apply, adapt, and extend them
for performance bugs.

This philosophy is promising, because many advanced techniques have
been proposed for functional bugs in each stage of software development. For
example, many detection tools [14, 27, 38, 55, 69] can help point out previously
unknown functional bugs, automated testing tools [11, 13] can exercise soft-
ware under different setting or inputs and expose functional problems, and
there are also diagnosis [43, 56, 57] and fixing tools [29, 42, 44] for reported
functional bugs.

There are also uncertainties behind this philosophy. For example, to build
effective performance-bug detection techniques, we need to know the common
root causes of performance bugs, which are not obvious, due to the poor
understanding of real-world performance bugs. For example, many functional
failure diagnosis techniques highly depend on failure symptoms, such as
crashes. Unfortunately, performance bugs have non fail-stop symptoms, and
it is even unclear how to identify failure runs for performance bugs.

The following techniques are explored and extended for performance bugs
in this thesis. All of these techniques were previously designed for functional
bugs.

Rule-base bug detection: There are many correctness rules inside software.
For instance, a lock has to be followed by an unlock, opened files must be closed,
and allocated memory must be freed. Violations of these rules may lead to

5

critical system failures. Many techniques [14, 18, 27, 38, 55, 69] have been
designed to detect rule violations and identify previously unknown bugs. In
this thesis, we find that there are also statically checkable efficiency-related
rules in software, and violating them would lead to inefficient computation.
These rules can be leveraged to detect previously unknown performance bugs,
as shown by the first row in Table 1.1.

Statistical debugging: Statistical debugging [3, 5, 43, 45, 56, 57, 86] is one
of the most effective failure diagnosis techniques. It usually works in two steps.
First, a set of runtime events, referred to as predicates, is collected from both
success runs and failure runs. Second, statistical models are used to identify
predicates that are highly correlated with failure. In this thesis, we find that
after selecting the right types of predicates and statistical models, statistical
debugging is effective for providing coarse-grained root-cause information for
performance bugs, as shown by the second row in Table 1.1. This finding also
motivates us to develop a tool, LDoctor, dedicated to identifying fine-grained
root causes for performance bugs, as shown by the fourth row in Table 1.1.

Sampling-based approach: Sampling-based techniques [5, 43, 56, 57] col-
lect predicates from production runs in a low overhead. Since less information
is collected in one single run, sampling-based approaches usually rely on
multiple runs to achieve the same diagnosis capability, sacrificing diagnosis
latency. In this thesis, we find that sampling can keep the capability of statisti-
cal performance diagnosis while lowering the runtime overhead. Since root
cause related predicates usually appear multiple times in one performance
failure run, sampling works better for performance bugs than functional bugs,
as shown by the third row in Table 1.1.

1.3 Dissertation Contribution

This dissertation works on three directions to address performance-bug prob-
lems: real-world performance-bug understanding, performance-bug detection,
and performance failure diagnosis. The components in this dissertation inter-
act and complement each other, as shown in Figure 1.2.

6

Understanding	
Performance	 	 Bugs	

Detec4ng	 	
Performance	 Bugs	

Sta4s4cal	
Debugging	

LDoctor	

Diagnosing	
Performance	 Bugs	

Input	

Fi
ne

-‐g
ra
in
ed

	 In
fo
.	

Figure 1.2: Interactions among the four components in this dissertation

1.3.1 Understanding performance bugs

Addressing performance-bug problems requires approaches from different
aspects, and all these aspects will benefit from a better understanding of
performance bugs.

This dissertation conducts a comprehensive characteristics study on a large
number of real-world performance bugs collected from five widely used large
open-source applications: Apache, Chrome, GCC, Mozilla, and MySQL [41].
This study reveals many interesting findings about performance bugs’ root-
cause patterns, how performance bugs are introduced, performance bugs’ man-
ifestation conditions, and fix strategies. It directly motivates the performance-
bug detection work and performance-bug diagnosis work in this thesis.

7

1.3.2 Rule-based performance-bug detection

Guided by our characteristics study, we hypothesize that (1) efficiency-related
rules exist; (2) we can extract rules from performance-bug patches; and (3)
we can use the extracted rules to discover previously unknown performance
bugs. To test these hypotheses, we collect rules from 25 Apache, Mozilla, and
MySQL bug patches and build static checkers to look for violations of these
rules [41].

Our checkers find 332 previously unknown Potential Performance Prob-
lems (PPPs) in the latest versions of Apache, Mozilla, and MySQL. These
include 219 PPPs found by checking an application using rules extracted from
a different application. Our thorough code reviews and unit testings confirm
that each PPP runs significantly slower than its functionality-preserving alter-
nate suggested by the checker. We report some of found PPPs to developers.
77 PPPs have already been confirmed by developers, and 15 PPPs have been
fixed.

The main contribution of our bug-detection work is that it confirms the
existence and value of efficiency rules: efficiency rules in our study are usually
violated at more than one place, by more than one developer, and sometimes in
more than one program. Rule-based performance-bug detection is a promising
direction.

1.3.3 Statistical debugging for real-world performance bugs

Statistical debugging is one of the most effective failure diagnosis techniques
proposed for functional bugs. We explore whether it is possible to apply statis-
tical debugging to performance bugs and how to apply statistical debugging
to performance bugs [90].

We first conduct an empirical study to understand how performance prob-
lems are observed and reported by real-world users. Our study shows that
statistical debugging is a natural fit for diagnosing performance bugs, which
are often observed through comparison-based approaches and reported to-
gether with both good and bad inputs. We then thoroughly investigate differ-
ent design points in statistical debugging, including three different types of
predicates and two different statistical models, to understand which design

8

point works the best for performance diagnosis. Finally, we study how one
unique nature of performance bugs allows sampling techniques to lower the
overhead of runtime performance diagnosis without extending the diagnosis
latency.

1.3.4 Performance diagnosis for inefficient loops

Statistical debugging can accurately identify control-flow constructs, such as
branches or loops, that are most correlated with the performance problem by
comparing problematic runs and regular runs. Unfortunately, for loop-related
performance bugs, which contribute to two-thirds of real-world user-perceived
performance bugs in our study, this coarse-grained root-cause information is
not enough. Although statistical debugging can identify the root-cause loop,
it does not provide any information regarding why the loop is inefficient and
hence is not very helpful in fixing the performance bug.

In order to provide fine-grained root-cause information, we design LDoctor,
which is a series of static-dynamic hybrid analysis, for inefficient loops. We
build LDoctor through two steps. The first step is to figure out a taxonomy
of the root causes for common inefficient loops. The second step is to follow
the taxonomy and design analysis for each root-cause subcategory. To balance
accuracy and performance, we hybridize static and dynamic analysis. We
further use sampling to lower the runtime overhead. Evaluation using real-
world performance bugs shows that LDoctor can provide good coverage and
accuracy with small runtime overhead.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes
previous work on characteristics study of performance bugs, performance-bug
detection, performance failure diagnosis, and other related topics. Chapter 3
presents our characteristics study of real-world performance bugs. Chapter 4
focuses on our rule-based performance-bug detection work. Chapter 5 explains
our work on exploring how to apply statistical debugging to performance
failure diagnosis. Chapter 6 discusses LDoctor, which can effectively diagnose
inefficient loops.

9

Chapter 2

Background and Previous Work

This chapter discusses previous work on performance bugs related to this the-
sis, including empirical studies on performance bugs (Section 2.1), performance-
bug detection (Section 2.2), performance failure diagnosis (Section 2.3), and
other techniques to fight performance bugs (Section 2.4).

2.1 Empirical Studies on Performance Bugs

Recently, several empirical studies have been conducted on real-world perfor-
mance bugs. They all have different focuses.

Zaman et al. [107] compare the qualitative difference between performance
bugs and non-performance bugs across impact, context, fix and fix validation
through studying 400 bugs from Mozilla Firefox and Google Chrome. Their
study is conducted on different aspects of performance bugs from our study.
For example, in their fix study, they focus on how many discussions occur
among developers, whether the bug depends on other bugs, and whether the
reporter provides some hints or patches during reporting. In our fix study, we
focus on the fix strategies used in the final patches.

Liu et al. [60] randomly collect 70 performance bugs from smartphone
applications to study the characteristics of these bugs. Similar to our study,
they also find that there are common patterns for performance bugs and that
these patterns can be used to detect previously unknown bugs. Since their
performance bugs are collected from smartphone applications, they have some
findings unique to mobile performance bugs. For example, the three most
common types of performance bugs in their study are GUI lagging, energy

10

leak, and memory bloat. They also have some findings that conflict with those
of our study. For example, they find that inputs with a small scale are sufficient
to expose performance bugs.

The empirical study conducted by Nistor et al. [74] is similar to our bug
characteristics study in Chapter 5 in that it also finds that performance prob-
lems take a long time to get diagnosed and the help from profilers is very
limited. However, the similarity ends here. Different from our study in Chap-
ter 3, this work does not investigate the root causes of performance bugs.
Different from our study in Chapter 5, this work does not study how perfor-
mance problems are observed and reported by end users. Its bug set includes
many problems that are not perceived by end users and are instead discovered
through developers’ code inspection.

Huang et al. [39] study 100 performance regression issues to understand
what types of changes are more likely to introduce performance regressions.
Similar to our study, they find that performance regressions are more likely to
happen inside a loop and that many performance regressions involve invoking
expensive function calls. Unlike our work, their study focuses on performance
regression.

2.2 Performance-bug Detection

Many performance-bug detection tools have been proposed recently. Each
aims to find a specific type of hidden performance bugs before the bugs lead
to performance problems observed by end users.

Some tools [22, 25, 100, 103] detect runtime bloat, a common performance
problem in object-oriented applications. Some tools [101, 104] detect unneces-
sary references leading to memory leak. Xu et al. [102] target low-utility data
structures with unbalanced costs and benefits. Cachetor [72] detects cacheable
computation through dynamic dependence profiling and value profiling. A
series of abstracts is proposed to reduce the detection overhead. Xu [98] detects
reusable objects, data structures, or data contained in the data structures. In a
follow-up work [99], a new object lifetime profiling technique is proposed to im-
prove the reusability detection results. Chen et al. [12] detect database-related
performance anti-patterns, such as fetching excessive data from database and

11

issuing queries that could have been aggregated. WAIT [2] focuses on bugs
that block the application from making progress. Liu and Berger [59] build
two tools to attack the false sharing problem in multi-threaded software.

Similar to our detection work in Chapter 4, Liu et al. [60] extract two rules
from studied performance bugs, and detect violations to report unknown
performance bugs. The bug patterns they can detect are lengthy operations in
main thread and frequently invoked heavy-weight callback. Unlike our work,
their bug detection technique focuses on performance bugs inside Android
applications.

There are techniques targeting inefficient loops. Toddler [75] detects ineffi-
cient nested loops by monitoring memory read instructions. Given a nested
loop, read value sequences from the same instructions inside the inner loop
are compared across different iterations of the outer loop, and the nested loops
will be reported as inefficiency when repetitive value sequences are found.
Caramel [73] presents four static checkers to detect performance bugs with
Cond-Break fixes. Every detected bug is associated with a loop and a condition.
When the condition becomes true, the loop will not generate any results visible
after the loop terminates. Therefore, the loop can be sped up by adding an
extra break statement. Xiao et al. [97] profile programs to calculate complexity
for each basic block, and identify a loop as an input-dependent loop, if the
loop can cause complexity change between outside the loop and inside the
loop. CLARITY [76] can statically detect asymptotic performance bugs caused
by traversing a data structure repeatedly.

These tools are all useful in improving software performance, but they
target different types of performance bugs from the performance-bug detec-
tion technique (Chapter 4) in this thesis. With different design goals, these
performance-bug detection tools are not guided by any specific performance
symptoms. Consequently, they take different coverage-accuracy trade-offs
from performance diagnosis techniques (Chapter 6). Performance diagnosis
techniques try to cover a wide variety of root-cause categories and are more
aggressive in identifying root-cause categories, because they are only applied
to a small number of places that are known to be highly correlated with the
specific performance symptom under study. Performance-bug detection tools

12

have to be more conservative and try hard to lower false positive rates, because
they need to apply their analysis to the whole program.

2.3 Performance Failure Diagnosis

Diagnosis tools aim to identify root causes and possibly suggest fix strategies
when software failures happen.

2.3.1 Profilers

Profilers are widely used by developers to diagnose performance problems.
For example, both gprof [1] and oprofile [77] are widely used profilers. To
use gprof, programs must be compiled by using “-pg” option. For each call
instance, gprof will record its caller. For each static function, gprof will record
how many times it is called. At run time, gprof will look at program counter for
every 0.01 second and record which function is being executed right now. gprof
provides two types of profiling results: flat profile, which will rank executed
functions based on how much time is spent on them, and call graph, which
shows how much time is spent on each function and its children. Oprofile
does not instrument programs. Oprofile asks users to specify hardware events
and sampling frequency. Every time the specified number of events occur,
oprofile will record the value of program counter and call stack. Similar to
gprof, oprofile can also provide flat profile and call-graph information.

Research progress has also been made on profilers. Both AlgoProf [108]
and aprof [16, 17] try to associate complexity information to bottleneck func-
tions. The difference between AlgoProf and aprof is that AlgoProf considers
the size of recursive data structure as the input size, while aprof estimates
the input size by using the amount of distinct memory first accessed by a
routine or its descendants with memory read. Calling Context Tree (CCT)
is a compact representation of calling contexts encountered during program
execution. Each node on a CCT corresponds a routine, and the path from
the root to the node represents a unique calling context. Zhuang et al. [110]
optimize the runtime overhead of building CCT through adaptive bursting.
D’Elia et al. [19] optimize the space overhead by building Hot Calling Context
Tree (HCCT) through mining frequent items in the calling context stream.

13

LagHunter [46] tries to provide lag information for interactive systems when
they are handling user events. AppInsight [82] is built to monitor mobile
applications that are asynchronized and multi-threaded. AppInsight can auto-
matically instrument mobile binary codes and figure out critical path in each
user-transaction across asynchronous-call boundaries. Changing the critical
path will change the user-perceived latency. Leveraging critical-path infor-
mation, developers can identify code regions to optimize and improve user
experience. After evaluating four commonly used Java profilers, Mytkowicz
et al. [70] find that these profilers often do not agree with each other, and do
not always produce actionable profiles. There are two reasons causing this
problem: first, the four profilers take samples only at yield points, and this
is not randomly taking samples from program execution; second, compiler
optimizations are affected by these profilers, and program performance and
the placement of yield points are changed under profiling. The authors design
and implement a new profiler, which does not suffer from the two problems.

Unlike our work, profiling aims to tell where computation resources are
spent, not where and why computation resources are wasted. The root-cause
code region of a performance problem often is not inside the top-ranked
functions in the profiling result (Chapter 5). Even if it is, developers still need
to spend a lot of effort to understand whether and what type of computation
inefficiency exists.

2.3.2 Automated performance diagnosis tools

There are also tools proposed to diagnose certain types of performance prob-
lems.

X-ray [6] aims to diagnose performance problems caused by end users.
The root causes discussed in the X-ray paper are unexpected inputs or con-
figurations that can be changed by end users. X-ray pinpoints the inputs or
configuration entries that are most responsible for performance problems and
helps users to solve performance issues themselves (by changing the inputs or
configuration entries). The main technique used in X-ray is called performance
summarization, which first attributes a performance cost to each basic block,
and then estimates the possibility that each block will be executed due to

14

certain input entry, and finally ranks all input entries. The diagnosis tech-
niques discussed in this thesis aim to help developers. We want to provide
information to help developers change inefficient codes and fix performance
bugs.

Some diagnosis techniques are built through analyzing system log. IntroP-
erf [50] automatically infers latency of calling contexts, composed of user-level
and kernel-level function calls, based on operating system tracers. After com-
pared with normal runs, calling contexts from buggy runs will be ranked to
help diagnose performance problems. StackMine [35] mines costly-maximal-
pattern from stack traces collected from event handlers, whose response time
is longer than a predefined threshold. Identified patterns will be clustered to
help developers effectively analyze impactful performance bugs. A two-step
technique proposed by Yu et al. [106] analyzes system traces to understand per-
formance impact propagation and the causality relationship among different
system components. In the impact analysis step, performance measurement
is conducted for each component. In the causality analysis step, wait graphs
are built for both slow and fast executions, and contrast data mining is used
to identify special path segments on the slow wait graph. Too much log-
ging would incur a large runtime overhead and cause an extra burden for log
analysis. Log2 [20] tries to control the overhead of logging, while keeping
its performance diagnosis capability. Log2 achieves this goal by making a
“whether to log” decision for each log request through a two-phase filtering
mechanism. During the local filter, log requests, whose utility scores lower
than a global threshold, are discarded. In the global filter, all log requests are
ranked, and only top-ranked requests are flushed to disk to meet the logging
budget request. All these diagnosis tools are very useful in practice, but they
have different focus from the diagnosis work in this thesis. They do not aim
to identify source-code fine-grained root causes of performance problems
reported by end users.

Many techniques have been proposed to diagnose performance problems
in distributed systems [26, 48, 85, 105]. These techniques often focus on identi-
fying the faulty components/nodes or faulty interactions that lead to perfor-
mance problems, which are different from the diagnosis work in this thesis.

15

2.4 Other Techniques to Fight Performance Bugs

There are many test input generation techniques to improve performance
testing process. Wise [10] learns how to restrict conditional branches from
small inputs, and uses the learned policy to generate larger inputs with worst-
case complexity. EventBreak [81] generates test inputs for web applications.
SpeedGun [80] generates tests for changed concurrent classes.

Some techniques aim to improve the test selection or prioritize test targets
during performance testing. Forepost [32] is a test-selection framework toward
exposing more performance bottlenecks. It run applications under a small set
of randomly selected test inputs to learn rules about which types of inputs
are more likely to trigger intensive computation. Then it uses learned rules
to pick remaining test inputs in order to expose performance bottlenecks
quickly. Huang et al. [39] study 100 performance regression issues. Based on
the studying results, they design a performance risk analysis, which can help
developers prioritize performance testing targets.

Big data systems are mainly written in managed languages. They suffer
from two performance issues [9, 71]: the excessive use of pointers or object
reference will lead to a high space overhead, and frequent garbage collection
(GC) will prevent the systems from making progress. To address these prob-
lems, Bu et al. [9] propose a design paradigm, which includes two components:
merging small data record objects into a large buffer, and conducting data ma-
nipulation directly on the buffer. In a follow-up work, Facade [71], a compiler
solution, is proposed to separate data store from data manipulation. After the
transformation enforced by Facade, data is stored in off-heap native memory,
and heap objects are only created for control purposes.

All these techniques combat performance bugs in different aspects from
this thesis.

16

Chapter 3

Real-World Performance-Bug Understanding

Empirical studies on functional bugs have successfully guided the design of
functional software testing, bug detection, and failure diagnosis. Poor under-
standing of performance bugs is part of the causes of today’s performance-bug
problems. The lack of empirical studies on performance bugs has severely
limited the design of performance-bug avoidance, testing, detection, and fixing
tools.

This chapter presents our comprehensive study of real-world performance
bugs, based on 110 bugs randomly collected from the bug databases of five
representative open-source software suites (Apache, Chrome, GCC, Mozilla,
and MySQL). Following the lifetime of performance bugs, our empirical study
is performed in 4 dimensions: the root-cause of performance bugs, how perfor-
mance bugs are introduced, how to expose performance bugs, and how to fix
performance bugs. Our findings and implications can guide future research
in this area, and have already inspired our own performance-bug detection
and performance failure diagnosis work.

3.1 Introduction

Performance bugs [13, 49, 67, 89] are software implementation mistakes that
can cause slow execution. The patches for performance bugs are often not
too complex. These patches can preserve the same functionality and achieve
significant performance improvement. Performance bugs cannot be optimized
away by compiler optimization. Many of them escape from testing process
and manifest in front of end users [97]. Performance bugs are common and

17

severe. Mozilla developers have to fix 5–60 performance bugs each month
in the past 10 years. Performance bugs have already caused several highly
publicized failures, such as the slow affordable care act system [47]. Fighting
performance bugs is solely needed.

There are many misunderstanding of performance bugs, such as “perfor-
mance is taken care of by compilers and hardware” and “profiling is sufficient
to solve performance problems”. These wrong perceptions are partly the
causes of today’s performance-bug problem [23]. The lack of understanding
of performance bugs has severely limited the research and tool building in
this area.

There are many empirical studies on functional bugs [15, 62, 63, 78, 84, 92].
Many of them are conducted along the following dimensions: root causes
of functional bugs, how functional bugs are introduced, how to expose func-
tional bugs, and how to fix functional bugs. These studies have provided
guidance for functional-bug detection, functional failure diagnosis, functional-
bug avoidance, and software testing. It is feasible and necessary to conduct
similar studies on performance bugs for the following reasons:

Firstly, it is feasible to sample performance-bug reports in the real world
to conduct the empirical study. There are well-known open-source software
suites with long well maintained bug databases. For some of them, developers
explicitly mark certain bug reports in their bug databases as performance bugs.
For example, Mozilla developers use “perf” tag to mark performance bugs. It
is fairly easy for us to collect enough performance bugs to conduct the study.

Secondly, it is reasonable to understand whether techniques designed
for functional bugs still work for performance bugs, before designing new
techniques for performance bugs. In order to make this clear, it is necessary to
follow study dimensions conducted on functional bugs to perform a similar
empirical study for performance bugs.

Finally, performance bugs are different from functional bugs. For example,
performance bugs do not have failure symptoms, such as crash and segmen-
tation fault. We cannot directly leverage experience gained from combating
functional bugs. It is necessary to understand the unique features and bug
patterns for performance bugs.

18

This chapter makes the first, to the best of our knowledge, comprehensive
study of real-world performance bugs based on 110 bugs randomly collected
from the bug databases of five representative open-source software suites
(Apache, Chrome, GCC, Mozilla, and MySQL). Our study has made the fol-
lowing findings.

Guidance for bug avoidance. Two-thirds of the studied bugs are intro-
duced by developers’ wrong understanding of workload or APIs’ performance
features. More than one quarter of the bugs arise from previously correct code
due to workload or API changes. To avoid performance bugs, developers need
performance-oriented annotation systems and change-impact analysis.

Guidance for performance testing. Almost half of the studied bugs re-
quire inputs with both special features and large scales to manifest. New
performance-testing schemes that combine the input-generation techniques
used by functional testing [11, 31] with a consideration towards large scales
will significantly improve the state-of-the-art.

Guidance for bug detection. Recent works [13, 22, 49, 87, 100, 103] have
demonstrated the potential of performance-bug detection. Our study found
common root causes and structural patterns of real-world performance bugs
that can help improve the coverage and accuracy of performance-bug detection.

Guidance for bug diagnosis. The root-cause patterns and fix strategies for
performance bugs are highly correlated. It is feasible to propose fix strategies
automatically, based on identified root causes.

Comparison with functional bugs. Performance bugs tend to hide for
much longer time in software than functional bugs. Unlike functional bugs, per-
formance bugs cannot all be modeled as rare events, because a non-negligible
portion of them can be triggered by almost all inputs.

General motivation (1) Many performance-bug patches are small. The fact
that we can achieve significant performance improvement through a few lines
of code change motivates researchers to pay more attention to performance
bugs. (2) A non-negligible portion of performance bugs in multi-threaded
software are related to synchronization. Developers need tool support to avoid
over-synchronization traps.

19

3.2 Methodology

This section describes how we collect performance bugs from the real world.
Applications We chose five open-source software suites to examine: Apache,

Chrome, GCC, Mozilla, and MySQL. These popular, award-winning software
suites [40] are all large-scale and mature, with millions of lines of source code
and well maintained bug databases.

Application Suite Description (language) # of Bugs

Apache Suite 25
HTTPD: Web Server (C)
TomCat: Web Application Server (Java)
Ant: Build management utility (Java)

Chromium Suite Google Chrome browser (C/C++) 10

GCC Suite GCC & G++ Compiler (C/C++) 11

Mozilla Suite 36
Firefox: Web Browser (C++, JavaScript)
Thunderbird: Email Client (C++, JavaScript)

MySQL Suite 28
Server: Database Server (C/C++)
Connector: DB Client Libraries (C/C++/Java/.Net)

Total 110

Table 3.1: Applications and bugs used in the study.

As shown in Table 3.1, these five suites provide a good coverage of vari-
ous types of software, such as interactive GUI applications, server software,
command-line utilities, compilers, and libraries. They are primarily written
in C/C++ and Java. Although they are all open-source software, Chrome is
backed up by Google and MySQL was acquired by Sun/Oracle in 2008. Fur-
thermore, the Chrome browser was first released in 2008, while the other four
have had 10–15 years of bug reporting history. From these applications, we
can observe both traditions and new software trends such as web applications.

Bug Collection GCC, Mozilla, and MySQL developers explicitly mark cer-
tain reports in their bug databases as performance bugs using special tags,
which are compile-time-hog, perf, and S5 respectively. Apache and Chrome
developers do not use any special tag to mark performance bugs. Therefore,

20

we searched their bug databases using a set of performance-related keywords
(‘slow’, ‘performance’, ‘latency’, ‘throughput’, etc.).

From these sources, we randomly sampled 110 fixed bugs that have sufficient
documentation. Among these bugs, 44 were reported after 2008, 39 were
reported between 2004 and 2007, and 27 were reported before 2004. 41 bugs
came from server applications and 69 bugs came from client applications. The
details are shown in Table 3.1.

Caveats Our findings need to be taken with the methodology in mind.
The applications in our study cover representative and important software
categories, workload, development background, and programming languages.
Of course, there are still uncovered categories, such as scientific computing
software and distributed systems.

The bugs in our study are collected from five bug databases without bias.
We have followed the decisions made by developers about what are perfor-
mance bugs, and have not intentionally ignored any aspect of performance
problems in bug databases. Of course, some performance problems may never
be reported to the bug databases and some reported problems may never be
fixed by developers. Unfortunately, there is no conceivable way to study these
unreported or unfixed performance problems. We believe the bugs in our
study provide a representative sample of the reported and fixed performance
bugs in these representative applications.

We have spent more than one year to study all sources of information
related to each bug, including forum discussions, patches, source code reposi-
tories, and others. Each bug is studied by at least two people and the whole
process consists of several rounds of bug (re-)study, bug (re-)categorization,
cross checking, etc.

Finally, we do not emphasize any quantitative characteristic results, and
most of the characteristics we found are consistent across all examined appli-
cations.

3.3 Case Studies

We will discuss six motivating examples in this part, and we will answer the
following questions by using these six examples.

21

//Apache#45464
//modules/dav/fs/repos.c

status = apr_stat(&fsctx−>info1.finfo, fsctx−>path1.buf,
− APR_FINFO_NORM | APR_FINFO_LINK, pool);
+ APR_FINFO_TYPE | APR_FINFO_LINK, pool);

Figure 3.1: An Apache-HTTPD bug retrieving more than necessary data

//Mozilla#66461 & Patch
//gfx/src/gtk/nsImageGTK.cpp

//When the input figure is transparent, mIsSpacer will be true.
//The patch conditionally skips nsImageGTK::Draw().
NS_IMETHODIMP nsImageGTK::Draw(...)
{
...

+ if ((mAlphaDepth==1) && mIsSpacer)
+ return NS_OK;
...
//render the input figure

}

Figure 3.2: A Mozilla bug drawing transparent figures

(1) Are performance bugs too different from traditional bugs to study along
the traditional bug-fighting process (i.e., bug avoidance, testing, detection, and
fixing)?

(2) If they are not too different, are they too similar to be worthy of a study?
(3) If developers were more careful, do we still need research and tool

support to combat performance bugs?
Retrieve Unnecessary (Figure 3.1) Apache HTTPD developers forgot to

change a parameter of API apr_stat after an API upgrade. This mistake causes
apr_stat to retrieve more than necessary information from the file system and
leads to more than ten times slowdown in Apache server. After changing the
parameter, apr_stat will retrieve exactly what developers originally needed

Transparent Draw (Figure 3.2) Mozilla developers implemented a proce-
dure nsImageGTK::Draw for figure scaling, compositing, and rendering, which
is a waste of time for transparent figures. This problem did not catch de-

22

//Mozilla515287 & Patch
//content/base/src/nsXMLHttpRequest.cpp

//This was not a bug until Web 2.0, where doing
//garbage collection (GC) after every XMLHttpRequest(XHR)
//is too frequent.
nsXMLHttpRequest::OnStopRequest(...)
{
...

− mScriptContext−>GC();
}

Figure 3.3: A Mozilla bug doing intensive GCs

velopers’ attention until two years later when 1 pixel by 1 pixel transparent
GIFs became general purpose spacers widely used by Web developers to
work around certain idiosyncrasies in HTML 4. The patch of this bug skips
nsImageGTK::Draw when the function input is a transparent figure.

Intensive GC (Figure 3.3) Users reported that Firefox cost 10 times more
CPU than Safari on some popular Web pages, such as gmail.com. Lengthy
profiling and code investigation revealed that Firefox conducted an expensive
garbage collection (GC) process at the end of every XMLHttpRequest, which is
too frequent. A developer then recalled that GC was added there five years
ago when XHRs were infrequent, and each XHR replaced substantial portions
of the DOM in JavaScript. However, things have changed in modern Web
pages. As a primary feature enabling Web 2.0, XHRs are much more common
than they were five years ago. This bug is fixed by removing the call to GC.

Bookmark All (Figure 3.4) Users reported that Firefox hung when they
clicked ‘bookmark all (tabs)’ with 50 open tabs. Investigation revealed that
Firefox used N database transactions to bookmark N tabs, which is very time-
consuming comparing with batching all bookmark tasks into a single transac-
tion. Discussion among developers revealed that there was almost no batchable
database task in Firefox a few years back. The addition of batchable function-
alities, such as ‘bookmark all (tabs)’ exposed this inefficiency problem. After
replacing N invocations of doTransact with a single doAggregateTransact, the

23

//Mozilla#490742 & Patch
//browser/components/places/src/nsPlacesTransactionsService.js

//doTransact saves one tab into 'bookmark' SQLite Database.
//Firefox hangs @ 'bookmark all (tabs)'
for (var i = 0; i < tabs.length; ++i)
{
...

− tabs[i].doTransact();
}

+ doAggregateTransact(tabs);

Figure 3.4: A Mozilla bug with un-batched DB operations

//MySQL#38941 & Patch
//mysys/thr_mutex.c

//random() is a serialized global−mutex−protected
//glibc function.
int fastmutex_lock(...)
{
...

− maxdelay += (double)random();
+ maxdelay += (double)park_rng();

...
}

Figure 3.5: A MySQL bug with over synchronization

hang disappears. During patch review, developers found two more places
with similar problems and fixed them by doAggregateTransact.

Slow Fast-Lock (Figure 3.5) In order to conduct fast locking, MySQL
synchronization-library developers implemented a fastmutex_lock, which would
call library function random to calculate spin delay. Unfortunately, it turns
out that random actually contains a lock, and this lock serializes every thread
that invoke random. Developers’ unit test showed that invoking random from
multi-thread could be 40 times slower than from multi-process, due to the lock
contention. This bug is fixed by replacing random with a non-synchronized
random number generator.

24

//MySQL#26527 & Patch
//sql/ha_partition.cc

void ha_partition::start_bulk_insert(ha_rows rows)
{

...
− if (!rows)
− { //slow path where caching is not used
− DBUG_VOID_RETURN;
− }
− rows = rows/m_tot_parts + 1;
+ rows = rows ? (rows/m_tot_parts + 1) : 0;

...
//fast path where caching is used
DBUG_VOID_RETURN;

}

Figure 3.6: A MySQL bug without using cache

No Cache (Figure 3.6) MySQL users reported that loading data into a
partitioned table would be 20 times slower, compared with loading the same
amount of data into an unpartitioned table. The slowness comes from the fact
that cache was not used, and it is the branch in Figure 3.6 causing cache not to
be allocated. The developer who implemented this start_bulk_insert function
thought that parameter 0 indicates no need of cache, while developer who
wrote caller function thought that parameter 0 means the allocation of a large
cache. This miscommunication causes this bug. The patch is to change the
branch selection when using 0 as parameter.

These six bugs can help us answer the questions asked earlier.
(1) They have similarity with traditional bugs. For example, they are either

related to usage rules of functions/APIs or related to programs’ control flow,
like branch, both of which are well studied by previous work on detecting and
diagnosing functional bugs [55, 57, 61].

(2) They also have interesting differences compared to traditional bugs.
For example, the code snippets in Figure 3.1–3.4 turned buggy (or buggier)
long after they were written, which is rare for functional bugs. As another
example, testing designed for functional bugs cannot effectively expose bugs
like Bookmark All. Once the program has tried the ‘bookmark all (tab)’ button

25

Root Causes for Performance Bugs Apache Chrome GCC Mozilla MySQL Total

Wrong Branch: branch selection leading to performance loss 2 0 2 7 6 17

Resultless: not generating desired results 3 5 4 20 10 42

Redundancy: generating the same results repeatedly 13 3 4 6 5 31

Synchronization Issues: inefficient synchronization among threads 6 1 0 1 8 16

Others: all the bugs not belonging to the above four categories 5 1 1 3 3 13

Table 3.2: Root cause categorization in Section 3.4.

with one or two open tabs, bookmarking more tabs will not improve the
statement or branch coverage and will be skipped by functional testing.

(3) Developers cannot fight these bugs by themselves. They cannot pre-
dict future workload or code changes to avoid bugs like Retrieve Unnecessary,
Transparent Draw, Intensive GC, and Bookmark All. Even experts who imple-
mented synchronization libraries could not avoid bugs like Slow Fast-Lock,
given opaque APIs with unexpected performance features. Research and tool
support are needed here.

Of course, it is premature to draw any conclusion based on six bugs. Next,
we will comprehensively study 110 performance bugs.

3.4 Root Causes of Performance Bugs

There are a large variety of potential root causes for inefficient code, such as
poorly designed algorithms, non-optimal data structures, cache-unfriendly
data layouts, etc. Our goal here is not to discover previously unheard-of root
causes, but to check whether there are common root-cause patterns among
real-world performance bugs that bug detection and diagnosis work can focus
on.

Our study shows that the majority of real-world performance bugs in our
study are covered by only a couple of root-cause categories (Table 3.2).

Wrong Branch A non-negligible portion of performance bugs are branch-
related. There are three situations for bugs under this category. Firstly, wrong
branches lead to some slow code paths. For example, when Mozilla#231300 is
triggered, Firefox would use separate system calls to move files in the same
directory one by one instead of using one single system call to move them

26

altogether. Seconly, wrong branches lead to unnecessary computation or
execution. For example, when Mozilla#258793 is triggered, Firefox will call
draw functions for background figures, which actually do not exist. Finally,
wrong branches lead to inefficient functionalities, such as the No Cache example
shown in Figure 3.6.

Resultless Around one-third of performance bugs are caused by resultless
codes. Buggy codes rarely generate results when these bugs are triggered. Bugs
in this category can be further categorized along two dimensions: according
to different granularities, resultless bugs can be divided into loop-related bugs
and not loop-related bugs; based on whether semantic information is needed
to identify resultless, resultless bugs can be divided into semantic resultless,
and non-semantic resultless. When Intensive GC shown in Figure 3.3 triggered,
the loop conducting garbage collection scans all heap objects, but rarely finds
free objects with reference number 0 and deallocate them. This bug is loop-
related and non-semantic. Transparent Draw in Figure 3.2 is not loop-related,
and semantic information is needed to know that drawing a transparent figure
does not generate any results.

Redundancy Redundancy means generating the same results repeatedly. In-
tuitively, we can remove repeated work and improve performance. According
to different code granularity to observe redundant work, bugs in this category
can be divided into redundant snippets, cross-iteration redundancy, and cross-
loop redundancy. For example, in Chrome#70153, both software and GPU will
render the same video redundantly, and this bug is categorized as redundant
snippets. In the Bookmark All example shown in Figure 3.3, Firefox will start,
commit, and destroy a transaction for each tab in each iteration, and there is a
lot of redundant work across different iterations. There are also bugs caused
by cross-loop redundancy, like Mozilla#35294

Synchronization Issues Unnecessary synchronization that intensifies thread
competition is also a common root cause, as shown in the Slow Fast-Lock bug
(Figure 3.6). These bugs are especially common in server applications, con-
tributing to 6 out of 16 Apache server bugs and 7 out of 25 MySQL server
bugs.

27

How Performance Bugs Are Introduced Apache Chrome GCC Mozilla MySQL Total

Workload Issues: developers’ workload assumption is wrong or out-dated 15 4 7 21 10 57

API Issues: misunderstand performance features of functions/APIs 6 2 1 10 9 28

Others: all the bugs not belonging to the above two categories 4 4 3 6 9 26

Table 3.3: How performance bugs are introduced in Sections 3.5.

Others There are also bugs that do not fall into above categories. For these
bugs, developers find more efficient methods to optimize original codes. For
example, in order to accelerate the slow startup of GPU process reported in
Chrome#59711, developers use one extra thread to collect expensive GPU
information. For MySQL#14637, MySQL developers replace byte-wise parsing
by using four-byte-wise parsing to accelerate trimming blank characters from
the end of a string.

3.5 How Performance Bugs Are Introduced

We have studied the discussion among developers in bug databases and
checked the source code of different software versions to understand how
bugs are introduced. Our study has particularly focused on the challenges
faced by developers in writing efficient software, and features of modern
software that affect the introduction of performance bugs.

Our study shows that developers are in a great need of tools that can help
them avoid the following mistakes.

Workload Mismatch Performance bugs are most frequently introduced when
developers’ workload understanding does not match with the reality.

Our further investigation shows that the following challenges are responsi-
ble for most workload mismatches.

Firstly, the input paradigm could shift after code implementation. For
example, the HTML standard change and new trends in web-page content led
to Transparent Draw and Intensive GC, shown in Figure 3.2 and Figure 3.3.

Secondly, software workload has become much more diverse and complex
than before. A single program, such as Mozilla, may face various types of
workload issues: the popularity of transparent figures on web pages led to
Transparent Draw in Figure 3.2; the high frequency of XMLHttpRequest led to

28

Intensive GC in Figure 3.3; users’ habit of not changing the default configuration
setting led to Mozilla#110555.

The increasingly dynamic and diverse workload of modern software will
lead to more performance bugs in the future.

API Misunderstanding The second most common reason is that developers
misunderstand the performance feature of certain functions. This occurs for
28 bugs in our study.

Sometimes, the performance of a function is sensitive to the value of a
particular parameter, and developers happen to use performance-hurting
values.

Sometimes, developers use a function to perform task i, and are unaware
of an irrelevant task j conducted by this function that hurts performance
but not functionality. For example, MySQL developers did not know the
synchronization inside random and introduced the Slow Fast-Lock bug shown
in Figure 3.5.

Code encapsulation in modern software leads to many APIs with poorly
documented performance features. We have seen developers explicitly com-
plain about this issue [91]. It will lead to more performance bugs in the future.

When a bug was not buggy An interesting trend is that 29 out of 110 bugs
were not born buggy. They became inefficient long after they were written
due to workload shift, such as that in Transparent Draw and Intensive GC (Fig-
ures 3.2 and 3.3), and code changes in other part of the software, such as that
in Figure 3.1. In Chrome#70153, when GPU accelerator became available, soft-
ware rendering code became redundant. Many of these bugs went through
regression testing without being caught.

3.6 How Performance Bugs Are Exposed

We define exposing a performance bug as causing a perceivably negative
performance impact, following the convention used in most bug reports. Our
study demonstrates several unique challenges for performance testing.

Always Active Bugs A non-negligible portion of performance bugs are al-
most always active. They are located at the start-up phase, the shutdown
phase, or other places that are exercised by almost all inputs. They could

29

How Performance Bugs Are Exposed Apache Chrome GCC Mozilla MySQL Total

Always Active: almost every input on every platform can trigger this bug 2 3 0 6 5 16

Special Feature: need special-value inputs to cover specific code regions 18 7 11 23 17 76

Special Scale: need large-scale inputs to execute a code region many times 18 2 10 21 18 69

Feature+Scale: the intersection of Special Feature and Special Scale 13 2 10 14 12 51

Table 3.4: How performance bugs are exposed in Section 3.6.

be very harmful in the long term, because they waste performance at every
deployment site during every run of a program. Many of these bugs were
caught during comparison with other software (e.g., Chrome vs. Mozilla vs.
Safari).

Judging whether performance bugs have manifested is a unique challenge
in performance testing.

Input Feature & Scale Conditions About two-thirds of performance bugs
need inputs with special features to manifest. Otherwise, the buggy code
units cannot be touched. Unfortunately, this is not what black-box testing is
good at. Much manual effort will be needed to design test inputs, a problem
well studied by past research in functional testing [11, 13].

About two-thirds of performance bugs need large-scale inputs to manifest
in a perceivable way. These bugs cannot be effectively exposed if software
testing executes each buggy code unit only once, which unfortunately is the
goal of most functional testing.

Almost half of the bugs need inputs that have special features and large
scales to manifest. For example, to trigger the bug shown in Figure 3.3, the
user has to click ‘bookmark all’ button (i.e., special feature) with many open
tabs (i.e., large scale).

3.7 How Performance Bugs Are Fixed

There are four common strategies in fixing performance bugs, as shown in
Table 3.5.

Change Condition The most common fix strategy is Change Condition. It is
used in 36 patches, in which code units not always generating results are
conditionally skipped, a fast path is changed to be executed, or the same func-

30

How to Fix Performance Bugs Apache Chrome GCC Mozilla MySQL Total

Change Condition: a condition is added or modified 3 3 5 13 9 36

In-place Call Change: replace call sequences in the exact same place 5 1 0 12 10 28

Memoization: reuse results from previous computation 9 1 3 2 3 18

Batch: batch computation to eliminate redundancy 4 3 1 6 1 15

Others: all the bugs not belonging to the above four categories 4 2 2 3 5 16

Table 3.5: How to fix performance bugs in Section 3.7.

tionality is realized in a more efficient way. For example, Draw is conditionally
skipped to fix Transparent Draw (Figure 3.2), and cache will be used to fix No
Cache (Figure 3.6).

In-place Call Change The second most common strategy is In-place Call Change.
By using this strategy, developers replace or reorganize the call sequence in the
exact same place. The performance gain can be achieved whenever changed
codes are executed. For example, in order to fix Mozilla#103330, developers
replace the setLength and Append call combination with Assign.

Memoization fixes 18 bugs by reusing results from previous computation.
For example, in order to fix Mozilla#409961, developers move do_QueryInterface
outside the buggy loop, instead of calling it in each iteration.

Batch strategy is used in 15 patches. For example, Bookmark All in Figure 3.4
is fixed by this strategy.

Are patches complicated? Most performance bugs in our study can be fixed
through simple changes. In fact, 41 out of 110 bug patches contain five or fewer
lines of code changes. The median patch size for all examined bugs is 9 lines
of code. The small patch size is a result of the above fixing strategies. Many
change condition patches are small. Most in-place call change, memoization,
and batch patches do not require implementing new function calls.

3.8 Other Characteristics

Lifetime We chose Mozilla to investigate the lifetime of performance bugs,
due to its convenient CVS query interface. We consider a bug’s life to have
started when its buggy code was first written. The 36 Mozilla bugs in our
study took 966 days on average to get discovered, and another 140 days on

31

average to be fixed. For comparison, we randomly sampled 36 functional bugs
from Mozilla. These bugs took 252 days on average to be discovered, which
is much shorter than that of performance bugs in Mozilla. These bugs took
another 117 days on average to be fixed, which is a similar amount of time
with those performance bugs.

Location For each bug, we studied the location of its minimum unit of
inefficiency. Our first finding shows that most performance bugs happen at call
sites, and their fix are changing the usage of function calls, such as replacing
old call sequences with new call sequences, conditionally or unconditionally
skipping buggy functions or changing parameters, and so on. For example,
Retrieve Unnecessary (Figure 3.1), Transparent Draw (Figure 3.2), Intensive GC
(Figure 3.3), Bookmark All (Figure 3.4), and Slow Fast-Lock (Figure 3.5) are all
fixed by changing function-call usage. This is probably because developers
and compilers have already done a good job in optimizing code within each
procedure. Therefore, future work to detect, diagnose and fix performance
bugs should allocate more effort at call sites and procedure boundaries.

There are also 32 bugs not fixed by changing function-call usage. These
bugs mainly arise from two scenarios. In one scenario, the buggy code unit
itself does not directly waste performance. Instead, its impact propagates to
other places in the software and causes performance loss there. For example,
the No Cache (Figure 3.6) bug happens when MySQL mistakenly does not allo-
cate cache. This operation itself does not take time, but it causes performance
loss later. The second scenario is to optimize code units inside functions, like
MySQL#14637, whose patch replaces byte-wise parsing with four-byte-wise
parsing to accelerate trimming blank characters from the end of a string.

Our second finding shows that around three quarters of bugs are located
inside either an input-dependent loop or an input-event handler. For example,
the buggy code in Figure 3.3 is executed at every XHR completion. The bug in
Figure 3.2 wastes performance for every transparent image on a web page. In
addition, about half performance bugs involve I/Os or other time-consuming
system calls. There are a few bugs whose buggy code units only execute once
or twice during each program execution. For example, the Mozilla#110555
bug wastes performance while processing exactly two fixed-size default con-

32

figuration files, userChrome.css and userContent.css, during the startup of a
browser.

Correlation Among Categories Following previous empirical studies [54],
we use a statistical metric lift to study the correlation among characteristic
categories. The lift of category A and category B, denoted as lift(AB), is calcu-
lated as P(AB)

P(A)P(B) , where P(AB) is the probability of a bug belonging to both
categories A and B. When lift(AB) equals 1, category A and category B are
independent of each other. When lift(AB) is greater than 1, categories A and B
are positively correlated: when a bug belongs to A, it likely also belongs to B.
The larger the lift is, the more positively A and B are correlated. When lift(AB)
is smaller than 1, A and B are negatively correlated: when a bug belongs to A,
it likely does not belong to B. The smaller the lift is, the more negatively A and
B are correlated.

Root cause categories are highly correlated with fix strategies. Among all
correlations, the redundant root cause and the memoization fix strategy are
the most positively correlated with a 3.54. The wrong branch selection root
cause is strongly correlated with the change condition fix strategy with a 2.74
lift. The redundant root cause and the batch fix strategy are the third most
positively correlated pair with a 2.36 lift. On the other hand, the wrong branch
selection root cause has the most negative correlation with in-place call change,
memoization and batch bug-fix strategies. Their lifts are all 0.

Server Bugs vs. Client Bugs Our study includes 41 bugs from server
applications and 69 bugs from client applications. To understand whether
these two types of bugs have different characteristics, we apply chi-square
test [95] to each category listed in Table 3.2, Table 3.3, Table 3.4 and Table 3.5.
We choose 0.01 as the significance level of our chi-square test. Under this
setting, if we conclude that server and client bugs have different probabilities
of falling into a particular characteristic category, this conclusion only has a
1% probability to be wrong.

We find that, among all the categories listed in Table 3.2, Table 3.3, Table 3.4
and Table 3.5, only the synchronization issues category is significantly different
between server bugs and client bugs — synchronization issues have caused
31.7% of server bugs and only 4.3% of client bugs.

33

3.9 Guidance for My Thesis Work

Performance-bug Detection Our study provides several motivations for our
own rule-based bug detection work, which will be discussed in detail in
Chapter 4. Most performance bugs loss performance at function-call sites
(Section 3.8), more than one-fourth of performance bugs are introduced by
misunderstanding API (Section 3.5), and more than one-fourth of performance
bugs are fixed by in-place call changes (Section 3.7). We could detect sim-
ilar inefficient call usage to find new bugs, and propose more efficient call
sequences with the same functionalities. Because some performance bugs
are always active (Section 3.6), performance bugs cannot be modeled as rare
events. Automatically inferring efficiency rules [24] may not be feasible for
performance bugs. Patches for performance bugs are simple (Section 3.7), and
they follow limited fix strategies. It is feasible to extract efficiency rules from
these patches.

Performance Failure Diagnosis Our study also provides guidance for
our performance failure diagnosis work (Chapter 5 and Chapter 6). A non-
negligible portion of performance bugs are caused by wrong branch selection
(Section 3.5). Statistical debugging, leveraging branch predicate, can well diag-
nose functional bugs with similar root causes. It is promising to explore how to
apply statistical debugging to diagnose performance bugs. The three common
root causes are wrong branch, resultless and redundancy (Section 3.4). Our
diagnosis projects should focus on bugs caused by these three root causes.
Root causes and fix strategies are highly correlated (Section 3.8). It is feasible
to automatically provide fix suggestions based on identified root causes.

3.10 Guidance for Future Work

Comparison with Functional Bugs There are several interesting comparisons
between performance and functional bugs. (1) The distribution of performance-
failure rates over software life time follows neither the bathtub model of hard-
ware errors nor the gradually maturing model of functional bugs, because
performance bugs have long hiding periods (Section 3.8) and can emerge from
non-buggy places when software evolves (Section 3.5). (2) Unlike functional
bugs, performance bugs cannot always be modeled as rare events, because

34

some of them are always active (Section 3.6). (3) The percentage of synchro-
nization problems among performance bugs in our study is higher than the
percentage of synchronization problems among functional bugs in a previous
study for a similar set of applications [54] (Section 3.4).

Annotation Systems Annotation systems are used in many software de-
velopment environments [66, 93]. Unfortunately, they mainly communicate
functionality information.

Our study calls for performance-aware annotation systems [79, 94] that
help developers maintain and communicate APIs’ performance features and
workload assumptions (Section 3.5). Simple support such as warning about the
existence of locks in a library function, specifying the complexity of a function,
and indicating the desired range of a performance-sensitive parameter can
go a long way in avoiding performance bugs. Recent work that automatically
calculates function complexity is also promising [33].

Testing Regression testing and change-impact analysis have to consider
workload changes and performance impacts, because new performance bugs
may emerge from old code (Section 3.5).

Performance testing can be improved if its input design combines smart
input-generation techniques used in functional testing [11, 31] with an empha-
sis on large scale (Section 3.6).

Expressing performance oracles and judging whether performance bugs
have occurred are critical challenges in performance testing (Section 3.6). Tech-
niques that can smartly compare performance numbers across inputs and
automatically discover the existence of performance problems are desired.

Future Directions One might argue that performance sometimes needs to
be sacrificed for better productivity and functional correctness. However, the
fact that we can often achieve significant performance improvement through
only a few lines of code change motivates future research to pay more attention
to performance bugs (Section 3.7). Our study suggests that the workload trend
and API features of modern software will lead to more performance bugs in
the future (Section 3.5). In addition, our study observes a significant portion of
synchronization-related performance bugs in multi-threaded software. There
will be more bugs of this type in the multi-core era. Beyond research discussed

35

in this proposal, we think that there are still several potential directions to
combat performance bugs.

Finally, our observations have been consistent across old software and new
software (Chrome), old bugs (27 pre-2004 bugs) and new bugs (44 post-2008
bugs). Therefore, we are confident that these lessons will be useful at least for
the near future.

3.11 Conclusions

Performance bugs have largely been ignored in previous research on software
defects. Facing the increasing significance of performance bugs, this chapter
provides one of the first studies on real-world performance bugs based on 110
bugs collected from five representative software suites. The study covers a
wide spectrum of characteristics, and provides guidance for future research on
performance-bug avoidance, performance testing, bug detection, etc. However,
the empirical studies presented in this chapter do not cover all characteristics of
real-world performance bugs that might be interesting for tool developers. In
fact, later in Section 5.2 and Section 6.2, we will further study subsets of these
performance bugs to guide our research in performance failure diagnosis.

36

Chapter 4

Rule-Based Performance-Bug Detection

Bug detection aims to find previously unknown bugs inside programs. This
chapter presents our rule-based static performance-bug detection work. Guided
by the characteristics study in the last chapter, we extract efficiency rules from
25 patches and use them to detect new performance bugs. 332 previously
unknown performance problems are found in the latest versions of Apache,
Mozilla, and MySQL applications, including 219 performance problems found
by applying rules across applications.

4.1 Introduction

Rule-based detection approach is effective for discovering functional bugs
and security vulnerabilities [14, 27, 38, 55, 69]. Many functional bugs can be
identified by comparing against certain function-call sequences that have to
be followed in a program for functional correctness and security.

We hypothesize that rule-based bug detection is useful for detecting per-
formance bugs based on our characteristics study:

Efficiency rules should exist. Many performance bugs happen at call sites
(Section 3.8), and those inefficient call sites could all become rules. For example,
random() should not be used by concurrent threads, and doTransact() in loops
should be replaced by aggregateTransact().

Efficiency rules can be easily collected from patches, as most patches are small
and follow regular fixing strategies (Section 3.7). It will not be difficult to
examine them and extract efficiency rules.

37

Efficiency rules could be widely applicable, as a misunderstanding of an API
or workload could affect many places and lead to many bugs, considering how
bugs are introduced (Section 3.5).

To test these hypotheses, we collected 25 rules from Apache, Mozilla, and
MySQL bug patches, and built static checkers to detect rule violations. Our
checkers automatically found 125 potential performance problems (PPPs) in the
original buggy versions of Apache, Mozilla, and MySQL. Programmers failed
to fix them together with the original 25 bugs where the rules came from.
Our checkers also found 332 previously unknown PPPs in the latest versions
of Apache, Mozilla, and MySQL, including 219 PPPs found by extracting
rules from one application and applying rules to a different application. Our
thorough code reviews and unit testings demonstrate that each PPP runs
significantly slower than its functionality-preserving alternate suggested by
the checker. 77 of found PPPs are already confirmed by developers and 15 of
found PPPs are fixed based on our report.

The main contribution of our bug-detection work is that it confirms the
existence and value of efficiency rules: efficiency rules in our study are usually
violated at more than one place, by more than one developer, and sometimes
in more than one program. Our experience motivates future work to automat-
ically generate efficiency rules, through new patch languages [78], automated
patch analysis [65], source code analysis, or performance-oriented annotations.
Future work can also improve the accuracy of performance-bug detection by
combining static checking with dynamic analysis and workload monitoring.

4.2 Efficiency Rules in Patches

Terminology Efficiency rules, or rules, include two components: a transfor-
mation and a condition for applying the transformation. Once a code region
satisfies the condition, the transformation can be applied to improve perfor-
mance and preserve functionality.

We have manually checked all the 110 performance-bug patches. 50 out of
these 110 patches contain efficiency rules. The other 60 do not contain rules,
because they either target too specific program contexts or are too general to
be useful for rule-based bug detection.

38

Call Sequence Conditions

function f1 is invoked
function f1 is always followed by f2
function f1 is called once in each iteration of a loop

Parameter/Return Conditions

nth parameter of f1 equals K (constant)
nth parameter of f1 is the same variable as the return of f2
a param. of f1 and a param. of f2 point to the same object
the return of f1 is not used later
the parameter of f1 is not modified within certain scope
the input is a long string

Calling Context Conditions

function f1 is only called by one thread
function f1 can be called simultaneously by multiple threads
function f1 is called many times during the execution

Table 4.1: Typical conditions in function rules.

The conditions for applying these rules are composed of conditions on
function-call sequences, parameter/return variables, and calling contexts, as
shown in Table 4.1. For example, to apply the Bookmark All patch in Figure 3.4
elsewhere, one needs to find places that call doTransact inside a loop; to apply
the patch in Figure 3.1 elsewhere, one needs to ensure that certain fields of the
object pointed by the first parameter of apr_stat is not used afterward. There
are also non-function rules, usually containing Change Condition transforma-
tion and other miscellaneous algorithm improvements.

4.3 Building Rule Checkers

Selecting Statically Checkable Rules Some rules’ applying conditions are
statically checkable, such as function f1 inside a loop; some are dynamically
checkable, such as function f1 called by multiple threads at the same time;
some are related to workload, such as having many large input files.

We check three largest application suites in our study: Apache, MySQL,
and Mozilla. We find that 40 bug patches from them contain rules. 25 out of
these 40 have applying conditions that are mostly statically checkable. There-
fore, we have built checkers based on these 25 efficiency rules.

Checker Implementation We build 25 checkers in total. 14 of them are
built using LLVM compiler infrastructure [52] for rules from C/C++ appli-

39

cations. LLVM works well for C++ software that troubles many other static
analysis infrastructure [78]. It also provides sufficient data type, data flow,
and control flow analysis support for our checking. The other 11 checkers are
written in Python for 11 rules from Java, JavaScript, and C# applications.

The checker implementation is mostly straightforward. Each checker goes
through software bitcode, in case of LLVM checkers, or source code, in case of
Python checkers, looking for places that satisfy the patch-applying condition.
We briefly discuss how our checkers examine typical conditions for function
rules in the following.

Checking call-sequence conditions, exemplified in Table 4.1, involve mainly
three tasks: (1) Differentiating functions with the same name but different
classes; (2) Collecting loop information (loop-head, loop-exit conditions, loop-
body boundaries, etc.); (3) Control flow analysis. LLVM provides sufficient
support for all these tasks. Checkers written in Python struggle from time to
time.

Checking parameter/return conditions, exemplified in Table 4.1, typically
rely on data-flow analysis. In our current prototype, LLVM checkers conduct
intra-procedural data-flow analysis. This analysis is scalable, but may lead
to false positives and negatives. In practice, it works well as shown by our
experimental results. Our current Python checkers can extract parameters of
particular function calls, but can only do preliminary data-flow analysis.

4.4 Rule-Checking Methodology

We conduct all the experiments on an 8-core Intel Xeon machine running Linux
version 2.6.18.

We apply every checker to the following software:
(1) The exact version of the software that the original patch was applied to,

which is referred to as original version;
(2) The latest version of the software that the original patch was applied to,

which is referred to as original software;
(3) The latest versions of software applications that are different from the

one that the original patch was applied to, which is referred to as different
software. This was applied to 13 checkers, whose rules are about glibc library

40

functions, Java library functions, and some general algorithm tricks. We will
refer to this as cross-application checking. For example, a C/C++ checker from
MySQL will be applied to Mozilla and Apache HTTPD for cross-application
checking; a Java checker from Apache TomCat server will be applied to the 65
other Java applications in the Apache software suite1.

The checking results are categorized into three types: PPPs, bad practices,
and false positives. As discussed in Section 4.1, a PPP is an inefficient code
region that runs slower than its functionality-preserving alternate implied by
the efficiency rule. A bad practice is a region prone to becoming inefficient in
the future. We reported some PPPs to developers. Based on our reports, 77
PPPs detected by 10 different checkers have been confirmed by the developers.
Among confirmed PPPs, 15 PPPs detected by 7 different checkers have been
fixed by the developers. Other reported PPPs are put on hold due to lack of
bug-triggering input information, which is unfortunately out of the scope of
this work.

Finally, we have also changed each checker slightly to report code regions
that follow each efficiency rule. We refer to these regions as good practices, the
opposite of PPPs.

4.5 Rule-Checking Results

Overall Results As shown in Table 4.2, 125 PPPs are found in the original
version of software. Programmers missed them and failed to fix them together
with the original bugs.

113 previously unknown PPPs are found in the latest versions of the original
software, including bugs inherited from the original version and bugs newly
introduced. Figure 4.1 shows an example.

219 previously unknown PPPs are found in the latest versions of different
software. An example is shown in Figure 4.2.

77 PPPs in the latest versions of Apache, Mozilla, and MySQL are already
confirmed by developers. 15 PPPs are already fixed by developers based on
our reports.

1Development teams behind different Apache applications are different

41

ID Orig. Buggy Version Lastest Version of Same Softw. Latest Version of Diff. Softw.

PPP BadPr F.P. GoodPr PPP BadPr F.P. GoodPr PPP BadPr F.P. GoodPr

Mozilla 35294 5 0 10 / - - - / - - - / C++
Mozilla103330 2 0 0 117 0 0 0 7 - - - - C++
Mozilla258793 1 0 2 0 0 1 1 2 - - - - C++
Mozilla267506 6 0 0 9 3 0 0 19 - - - - C++
Mozilla311566 26 0 7 0 25 0 8 2 - - - - C++
Mozilla104962 0 0 0 1 3 0 0 12 0 0 0 0 C#
Mozilla124686 0 1 0 14 0 0 0 1 0 0 0 0 C#
Mozilla490742 1 0 3 5 0 0 0 4 - - - - JS

MySQL14637 50 0 11 / 49 0 11 / 46 0 31 / C/C++
MySQL15811 15 20 5 5 16 20 7 7 - - - - C++
MySQL38769 0 0 1 5 - - - - - - - - C++
MySQL38941 1 4 0 2 1 4 0 2 3 5 2 0 C/C++
MySQL38968 3 0 1 38 2 0 2 43 - - - - C/C++
MySQL39268 7 0 0 4 7 0 0 18 - - - - C++
MySQL49491 1 0 0 0 1 0 0 2 3 0 0 0 C/C++
MySQL26152 0 0 0 0 0 0 0 0 0 0 1 4 C#
MySQL45699 0 2 0 0 0 0 0 0 9 0 0 45 C#/Java

Apache33605 0 2 0 / 0 2 0 / 0 5 0 / C
Apache45464 3 0 0 47 3 0 0 67 - - - - C
Apache19101 1 0 0 1 1 0 0 0 - - - - Java
Apache32546 1 0 0 0 1 0 0 0 135 24 9 13 Java
Apache34464 0 0 0 3 0 0 0 2 1 0 0 12 Java
Apache44408 1 0 1 1 0 0 1 2 3 1 2 2 Java
Apache45396 0 0 0 0 0 0 0 1 0 0 0 1 Java
Apache48778 1 0 0 0 1 0 0 0 19 14 1 17 Java

Total 125 29 41 252 113 27 30 191 219 49 46 94

Table 4.2: Checking results. BadPr: bad practice; F.P.: false positives; GoodPr:
good practices. More detailed definitions are presented in Section 4.4. ‘-’: not
applicable. ‘/’: good-practice checker does not exist.

These results confirm that performance bugs widely exist. Efficiency rules
exist and are useful for finding performance problems.

PPPs In Original Versions 17 out of 25 checkers found new PPPs, 125 in
total, in the original versions of the buggy software.

Some developers clearly tried to find all similar bugs when fixing one bug,
but did not succeed. For example, in MySQL#14637, after two buggy code
regions were reported, developers found three more places that were similarly
inefficient and fixed them altogether. Unfortunately, there were another 50
code regions that violated the same efficiency rule and skipped developers’
checking, as shown in Table 4.2. Similarly, MySQL developers found and fixed

42

//MySQL#15811 & Patch
//strings/ctype−mb.c

− char ∗ end = str + strlen(str);
− if(ismbchar(cs, str, end))
+ if(ismbchar(cs, str, str

+ cs−>mbmaxlen))

//A PPP we found in the latest MySQL
//ibmysql/libmysql.c

//'end' is only used in the ismbchar checking
− for (end=s; ∗end ; end++) ;
− if (ismbchar(mysqlcs, s, end))
+ if (ismbchar(mysqlcs, s, s

+ mysqlcs−>mbmaxlen)

Figure 4.1: A PPP we found in latest versions of original software (ismbchar
checks whether a string (2nd parameter) is coded by a specific character-set
(1st parameter). Since ismbchar only checks the first CHARSET::mbmaxlen
characters of a string, calculating the exact length and range of a string is
unnecessary.)

//Apache#34464 & Patch
//TelnetTask.java

+ int i = −k.length();
− while (s.indexOf(k) == −1)
+ while (i++<0 ||
+ s.substring(i).indexOf(k)==−1)

{s.append (nextchar());}

//A PPP we found in the latest Struts

while (1) {
− n = s.indexOf("%\\>");
+ n = s.substring(n+2).indexOf("%\\>");

if (n < 0) break;
... // replace "%\\>" by "%>" and continue

}

Figure 4.2: A PPP we found in latest versions of different software
(String::indexOf (String sub) looks for sub-string sub from the beginning of
a string s. If program has already compared the first N characters of s with sub,
it is better not to repeat this. The Struts PPP is already confirmed and patched
by Struts developers based on our report.)

3 places that had the inefficiency pattern shown in Figure 4.1, but missed the
other 15 places.

113 out of these 125 PPPs exist in different files or even different modules
where the original bugs exist, which is probably why they were missed by
developers. These PPPs end up in several ways: (1) 4 of them were fixed in later
versions, which took 14–31 months; (2) 20 eventually disappeared, because
the functions containing these PPPs were removed or re-implemented; (3) 101
still exist in the latest versions of the software, wasting computation resources
12–89 months after the original bugs were fixed.

43

Lesson The above results show that developers do need support to sys-
tematically and automatically find similar performance bugs and fix them all
at once.

PPPs In The Latest Versions 2 of the 25 checkers are no longer applicable
in the latest versions, because the functions involved in these checkers have
been removed. The remaining 23 checkers are applied to the latest versions
of corresponding software and find 113 PPPs. Among them, 101 PPPs were
inherited from the original buggy versions. The other 12 were introduced
later.

Lesson Developers cannot completely avoid the mistakes they made and
corrected before, which is understandable considering the large number of
bugs in software. Specification systems and automated checkers can prevent
developers from introducing old bugs into new code.

PPPs In Different Software Applications An exciting result is that 8 out
of 13 cross-application checkers have successfully found previously unknown
PPPs in the latest versions of applications that are different from where the
rules came from.

Most of these checkers reflect common pitfalls in using library functions.
For example, Figure 4.2 shows a pitfall of using String::indexof(). Apache-Ant
developers made this mistake, and we found Apache-Struts developers also
made a similar mistake.

Apache#32546 checker presents an interesting case. In the original bug
report, developers from Apache-Slide recognized that a small buffer size
would severely hurt the performance of java.io.InputStream.read (byte buffer[])
for reasonably large input (e.g., larger than 50KB). Replacing their original
2KB buffer with a 200KB buffer achieved 80 times throughput improvement
in WebDav server. We first confirmed that this rule is still valid. Our checker
then found 135 places in the latest versions of 36 software applications where
similar mistakes were made. These places use small buffers (1KB – 4KB) to
read images or data files from disk or web, and are doomed to performance
losses.

Some checkers reflect algorithm improvements and are also applicable to
many applications. For example, algorithm improvements for string operations

44

proposed by MySQL developers (MySQL#14637 and MySQL#49491) also apply
for Mozilla and Apache HTTPD.

Cross-application checking also helps validate efficiency rules. For exam-
ple, by comparing how java.util.zip.Deflater.deflate() is used across applications,
we found that Ant developers’ understanding of this API, reflected by their
discussion, was wrong. They fixed Apache#45396 by coincidence.

Lesson The above results show that there exist general inefficiency pat-
terns that go beyond one application, just like that for functional bugs [38].
Maintaining specifications and checkers for these general patterns can signifi-
cantly save developers’ effort, and allow them to learn from other developers
and other software. We can even discover performance bugs in a software
where no performance patch has ever been filed.

Bad Practices Other than PPPs, some code regions identified by the check-
ers are categorized as bad practices. For example, there are code regions very
similar to the MySQL PPP shown in Figure 4.1, except that the calculation of
end is not completely useless as end is used in places other than the invocation
of ismbchar. Clearly this practice is more likely to cause performance prob-
lems in the future than directly using mysqlcs→mbmaxlen as the parameter for
ismbchar function.

Good Practices Code regions that have well followed the efficiency rules
are also identified by slightly changed checkers. For example, we found that in
13 places of various applications developers do use InputStream.read (byte buffer[])
in a performance efficient way: buffer has a configurable size or a large size
that suits the workload (e.g., 64K in some Hadoop code).

Lesson Violations to efficiency rules are not always rare comparing with
good practices. Previous techniques that use statistical analysis to infer func-
tional rules [24, 55] may not work for efficiency rules.

False Positives Our PPP detection is accurate. On average, the false-
positive-vs-PPP rate is 1:4. The false positives mainly come from three sources.

First, Python checkers have no object-type information. Therefore, some
rules are applied to functions with right function names but wrong classes
(e.g., Mozilla#490742 and Apache#32546). This is not a problem in LLVM
checkers.

45

Second, some non-function rules are difficult to accurately express and
check, which leads to false positives in MySQL#14637.

Third, accurately checking some efficiency rules requires runtime and/or
workload information, which inevitably leads to false positives in our static
checkers. False positives in Apache#44408 and Apache#48778 mostly belong
to this category. These false positives can be largely eliminated by runtime
checkers.

Performance Results Our checkers are efficient. Each Python checker
finishes checking 10 million lines of code within 90 seconds. Our LLVM
checkers are mainly applied to MySQL, Mozilla Firefox, and Apache HTTPD.
It takes 4 – 1270 seconds for one LLVM checker to process one application.

We tried unit testing on PPPs. The performance difference is significant. For
example, for programs that read images and files using InputStream.read(byte buffer[])
with a 4KB-buffer parameter, we can stably get 3 times throughput improve-
ment through a 40K-buffer parameter. When we feed the unit test with a 50MB
file, which is a quite common image-file workload these days, the file opera-
tion time decreases from 0.87 second to 0.26 second, a definitely perceivable
difference. As another example, the Struts code shown in Figure 4.2 is from
a utility function used for processing JSP files. Our unit testing with a 15K
JSP file shows that the simple patch can decrease latency by 0.1 second, a
perceivable difference in interactive web applications.

Whole system testing turns out to be difficult, as suggested by our char-
acteristics study (Section 3.6). No PPP detected by our checkers belongs to
the always-active category. Future performance-oriented input-generation
tools will significantly help performance testing and identify truly severe PPPs.
Execution frequency information can also help future static performance-bug
detectors to rank the severity of PPPs.

4.5.1 Discussions

Effectiveness of rule-based performance-bug detection
Effort saving Rule-based detection not only identifies problems, but also

suggests alternative implementations with better efficiency. These alternative
implementations often have small sizes and regular patterns, as shown in

46

Figure 4.1 and Figure 4.2, making PPP validation and fixing easy. It is also
conceivable to enhance our checkers for automated PPP fixing.

Improving performance These PPPs showed significant performance im-
provement than their alternative implementations in our unit testing. Without
fixing these PPPs, these unit-level performance losses could aggregate into
intolerable performance problems that are difficult to diagnose. This is espe-
cially significant considering that many performance bugs are difficult to catch
using other approaches.

Maintaining code readability Like those 110 patches studied earlier, most
PPPs detected by us can be fixed through changes to a few lines of code,
as shown in Figure 4.1 and Figure 4.2. Even for the few complicated PPPs,
wrapper-functions or macros can easily address the patch-readability issue.

Other usage Rules and checkers can serve as performance specifications
for future software development. They can aid in code maintenance when
software evolves. Developers can also save PPPs to an inefficiency list for
future performance diagnosis.

Of course, this is only a starting point for rule-based performance-bug
detection. We expect our experience to motivate future work on automatically
generating rules, checkers, or even patches.

Can these problems be detected by other tools?
Copy-paste detectors Most PPPs that we found are not from copy-paste code

regions and cannot be detected by text-matching tools [28, 53], as we can see
in Figure 4.1 and Figure 4.2. Rule violations are not rare. When developers
misunderstand an API, they tend to make mistakes whenever they use this
API. As a result, these mistakes usually go beyond copy-paste code regions.

Compiler optimization None of the bugs that provided the efficiency rules
could be optimized away by compilers used in Apache, MySQL, and Mozilla.
Many PPPs involve library functions and algorithmic inefficiency, and are
almost impossible for a compiler to optimize (Figure 4.1 and Figure 4.2). Even
for the few cases where compiler optimization might help (Figure 3.1), the
required inter-procedural and points-to analyses are not scalable for real-world
large software.

47

General rule-based bug detectors Ideas for detecting functional bugs can
greatly benefit and inspire future research on performance-bug detection.
However, many approaches cannot be directly applied. Tools that automat-
ically infer functional correctness rules [24, 55, 61] may not be suitable for
efficiency rules, because rule violations are not rare, as shown in Table 4.2. In
addition, many efficiency rules either involve only one function or discourage
multiple functions to be used together, making them unsuitable for tools that
focus on function correlations.

4.6 Conclusions

Guided by our empirical study in the last chapter, we further explore rule-
based performance-bug detection using efficiency rules implied by patches,
and find many previously unknown performance problems. Many reported
performance problems have already confirmed and fixed by the developers.
Our work shows that rule-based performance-bug detection is promising.

48

Chapter 5

Statistical Debugging for Real-World Performance
Bugs

As we discussed in previous chapters, performance bugs are difficult to avoid
due the lack of performance documentation and quickly changing workloads.
Many performance bugs escape from in-house testing process and manifest in
front of end users. Effective tools that diagnose performance problems and
point out the inefficiency root cause are sorely needed.

The state of the art of performance diagnosis is preliminary. Profiling
can identify the functions that consume the most computation resources, but
can neither identify the ones that waste the most resources nor explain why.
Performance-bug detectors can identify specific type of inefficient computation,
but are not suited for diagnosing general performance problems. Effective
failure diagnosis techniques, such as statistical debugging, have been proposed
for functional bugs. However, whether they work for performance problems
is still an open question.

In this chapter, we first conduct an empirical study to understand how per-
formance problems are observed and reported by real-world users. Our study
shows that statistical debugging is a natural fit for diagnosing performance
problems, which are often observed through comparison-based approaches
and reported together with both good and bad inputs. We then thoroughly
investigate different design points in statistical debugging, including three
different predicates and two different types of statistical models, to understand
which design point works the best for performance diagnosis. Finally, we study

49

how some unique nature of performance bugs allows sampling techniques to
lower the overhead of runtime performance diagnosis without extending the
diagnosis latency.

5.1 Introduction

5.1.1 Motivation

As we discussed in Chapter 3, performance bugs are difficult to avoid during
implementation, and are also difficult to expose during in-house testing. Many
performance bugs manifest in front of end users and severely hurt users’
experience during production runs. After users report performance bugs,
developers need to quickly diagnose them and fix them. Diagnosing user-
reported performance bugs is one important aspect to combat performance
bugs. Effective tool support is sorely needed.

The state of practice of performance diagnosis is preliminary. The most
commonly used and often the only available tool during diagnosis is profiler [1,
77]. Although useful, profilers are far from sufficient. They can tell where
computation resources are spent, but not where or why computation resources
are wasted. As a result, they still demand a huge amount of manual effort to
figure out the root cause1 of performance problems.

Figure 3.6 shows a real-world performance problem in MySQL. MySQL
users noticed surprisingly poor performance for queries on certain type of
tables. Profiling could not provide any useful information, as the top ranked
functions are either low-level library functions, like pthread_getspecific
and pthread_mutex_lock, or simple utility functions, like ha_key_cmp (key
comparison). After thorough code inspection, developers finally figured out
that the problem is in function start_bulk_insert, which does not even get
ranked by the profiler. The developer who implemented this function assumed
that parameter-0 indicates no need of cache, while the developers who wrote
the caller functions thought that parameter-0 indicates the allocation of a large
buffer. This mis-communication led to unexpected cache-less execution, which

1Root cause refers to a static code region that can cause inefficient execution.

50

is extremely slow. The final patch simply removes the unnecessary branch in
Figure 3.6, but it took developers a lot of effort to figure out.

Most recently, non-profiling tools have been proposed to help diagnose
certain type of performance problems. For example, X-Ray can help pin-point
the configuration entry or input entry that is most responsible for poor per-
formance [6]; trace analysis techniques have been proposed to figure out
the performance-causality relationship among system events and compo-
nents [21, 106]. Although promising, these tools are still far from automatically
identifying source-code level root causes and helping figure out source-code
level fix strategies for general performance problems.

Many automated performance-bug detection tools have been proposed
recently, but they are ill suited for performance diagnosis. Each of these
tools detects one specific type of performance bugs, such as inefficient nested
loops [75], under-utilized data structures [102], and temporary object bloat [22,
100, 103], through static or dynamic program analysis. They are not designed
to cover a wide variety of performance bugs. They are also not designed to
focus on any specific performance symptom reported by end users, and would
inevitably lead to false positives when used for failure diagnosis.

5.1.2 Can we learn from functional failure diagnosis?

Automated failure diagnosis has been studied for decades for functional bugs
Many useful and generic techniques [34, 37, 43, 45, 56, 109] have been proposed.
Among these techniques, statistical debugging is one of the most effective [43,
45, 56]. Specifically, statistical debugging collects program predicates, such
as whether a branch is taken, during both success runs and failure runs, and
then uses statistical models to automatically identify predicates that are most
correlated with a failure, referred to as failure predictors. It would be nice if
statistical debugging can also work for diagnosing performance problems.

Whether statistical debugging is useful for performance bugs is still an open
question. Whether it is feasible to apply the statistical debugging technique to
performance problems is unclear, not to mention how to apply the technique.

Is it feasible to apply statistical debugging? The prerequisites for statistical
debugging are two sets of inputs, one leading to success runs, referred to as

51

good inputs, and one leading to failure runs, referred to as bad inputs. They are
easy to obtain for functional bugs, but may be difficult for some performance
bugs.

For functional bugs, failure runs are often easy to tell from success runs due
to clear-cut failure symptoms, such as crashes, assertion violations, incorrect
outputs, and hangs. Consequently, it is straightforward to collect good and
bad inputs. In the past, the main research challenge has been generating
good inputs and bad inputs that are similar with each other [109], which can
improve the diagnosis quality.

For some performance bugs, failure runs could be difficult to distinguish
from success runs, because execution slowness can be caused by either large
workload or manifestation of performance bugs.

Empirical study is needed to understand whether statistical debugging is
feasible for real-world performance bugs and, if feasible, how to obtain good
inputs and bad inputs.

How to conduct effective statistical debugging? The effectiveness of statis-
tical debugging is not guaranteed by the availability of good and bad inputs.
Instead, it requires careful design of predicates and statistical models that are
suitable for the problem under diagnosis.

Different predicates and statistical models have been designed to target
different types of common functional bugs. For example, branch predicates
and function-return predicates have been designed to diagnose sequential
bugs [56, 57]; interleaving-related predicates have been designed to diagnose
concurrency bugs [5, 43]; ∆LDA statistical model [4] has been used to locate
failure root causes that have weak signals. What type of predicates and sta-
tistical models, if any, would work well for performance diagnosis is still an
open question.

5.1.3 Contributions

This chapter presents a thorough study of statistical debugging for real-world
performance problems. Specifically, it makes the following contributions.

An empirical study of the diagnosis process of real-world user-reported
performance problems To understand whether it is feasible to apply statisti-

52

cal debugging for real-world performance problems, we study how users notice
and report performance problems based on 65 real-world user-reported perfor-
mance problems in five representative open-source applications (Apache,
Chrome, GCC, Mozilla, and MySQL). We find that statistical debugging
is feasible for most user-reported performance problems in our study, be-
cause (1) users notice the symptoms of most performance problems through a
comparison-based approach (more than 80% of the cases), and (2) many users
report performance bugs together with two sets of inputs that look similar with
each other but lead to huge performance difference (about 60% of the cases).
Furthermore, we also find that performance diagnosis is time consuming,
taking more than 100 days on average, and lacking good tool support, taking
more than 100 days on average even after profiling. Although our work is far
from a full-blown study of all real-world user-reported performance bugs, its
findings still provide guidance and motivation for statistical debugging on
performance problems. The details are in Section 5.2.

A thorough study of statistical in-house performance diagnosis To under-
stand how to conduct effective statistical debugging for real-world perfor-
mance problems, we set up a statistical debugging framework and evaluate a
set of design points for user-reported performance problems. These design
points include three representative predicates (branches, function returns, and
scalar-pairs) and two different types of statistical models. They are evaluated
through experiments on 20 user-reported performance problems and manual
inspections on all the 65 user-reported performance problems collected in our
empirical study. Our evaluation demonstrates that, when the right design
points are chosen, statistical debugging can effectively provide root-cause and
fix-strategy information for most real-world performance problems, improving
the state of the art of performance diagnosis. More details are presented in
Section 5.3.

A thorough study of sampling-based production-run performance diagno-
sis We apply both hardware-based and software-based sampling techniques
to lower the overhead of statistical performance diagnosis. Our evaluation
using 20 real-world performance problems shows that sampling does not

53

degrade the diagnosis capability, while effectively lowering the overhead to
below 10%. We also find that the special nature of loop-related performance
problems allows the sampling approach to lower runtime overhead without
extending the diagnosis latency, a feat that is almost impossible to achieve for
sampling-based functional-bug failure diagnosis. More details are presented
in Section 5.4.

5.2 Understanding Real-World Performance Problem Reporting and
Diagnosis

This section aims to understand the performance diagnosis process in real
world. Specifically, we will focus on these two aspects of performance diagno-
sis.

1. How users notice and report performance problems. This will help us
understand the feasibility of applying statistical debugging to real-world
performance problems, as discussed in Section 5.1.2. Particularly, we will
study how users tell success runs from failure runs in the context of per-
formance bugs and how to obtain success-run inputs (i.e., good inputs)
and failure-run inputs (i.e., bad inputs) for performance diagnosis.

2. How developers diagnose performance problems. This will help us
understand the state of practice of performance diagnosis.

5.2.1 Methodology

The performance problems under this study include all user-reported per-
formance problems from the benchmark suite collected in Chapter 3. We
cannot directly use the baseline benchmark suite, because it contains bugs that
are discovered by developers themselves through code inspection, a scenario
that performance diagnosis does not apply. Consequently, we carefully read
through all the bug reports and identify all the 65 bugs that are clearly reported
by users. These 65 bug reports all contain detailed information about how each
performance problem is observed by a user and gets diagnosed by developers.
They are the target of the following characteristics study, and will be referred
to as user-reported performance problems or simply performance problems in the

54

Application Suite Description (language) # Bugs

Apache Suite 16
HTTPD: Web Server (C)
TomCat: Web Application Server (Java)
Ant: Build management utility (Java)

Chromium Suite Google Chrome browser (C/C++) 5

GCC Suite GCC & G++ Compiler (C/C++) 9

Mozilla Suite 19
Firefox: Web Browser (C++, JavaScript)
Thunderbird: Email Client (C++, JavaScript)

MySQL Suite 16
Server: Database Server (C/C++)
Connector: DB Client Libraries (C/C++/Java/.Net)

Total 65

Table 5.1: Applications and bugs used in the study.

remainder of this chapter. The detailed distribution of these 65 bugs is shown
in Table 5.1.

Caveats Similar with all previous characteristics studies, our findings and
conclusions need to be considered with our methodology in mind. As dis-
cussed in Chapter 3, the bugs in our study are collected from representative
applications without bias. We have followed users and developers’ discussion
to decide what are performance problems that are noticed and reported by
users, and finally diagnosed and fixed by developers. We did not intention-
ally ignore any aspect of performance problems. Of course, our study does
not cover performance problems that are not reported to or fixed in the bug
databases. It also does not cover performance problems that are indeed re-
ported by users but have undocumented discovery and diagnosis histories.
Unfortunately, there is no conceivable way to solve these problems. We believe
the bugs in our study provide a representative sample of the well-documented
fixed performance bugs that are reported by users in representative applica-
tions.

5.2.2 How users report performance problems

In general, to conduct software failure diagnosis, it is critical to understand
what are the failure symptoms and what information is available for failure

55

Categories Apache Chrome GCC Mozilla MySQL Total

Comparison within one code base 9 3 7 7 12 38
Comparing the same input with different configurations 2 1 1 1 5 10
Comparing inputs with different sizes 6 2 4 4 6 22
Comparing inputs with slightly different functionality 2 0 3 2 4 11

Comparison cross multiple code bases 7 3 8 5 4 27
Comparing the same input under same application’s different versions 4 2 8 3 3 20
Comparing the same input under different applications 4 1 1 2 1 9

Not using comparison-based methods 3 1 0 9 1 14

Table 5.2: How performance problems are observed by end users. There are
overlaps among different comparison-based categories; there is no overlap
between non-comparison and comparison-based categories.

diagnosis. Specifically, as discussed in Section 5.1.2, to understand the fea-
sibility of applying statistical debugging for performance diagnosis, we will
investigate two issues: (1) How do users judge whether a slow execution is
caused by large workload or inefficient implementation, telling success runs
from failure runs? (2) What information do users provide to convince devel-
opers that inefficient implementation exists and hence help the performance
diagnosis?

How are performance problems observed? As shown in Table 5.2, the ma-
jority (51 out of 65) of user-reported performance problems are observed
through comparison, including comparisons within one software code base
and comparisons across multiple code bases.

Comparison within one code base is the most common way to reveal perfor-
mance problems. In about 60% of cases, users notice huge performance differ-
ences among similar inputs and hence file bug reports.

Sometimes, the inputs under comparison have the same functionality but
different sizes. For example, MySQL#44723 is reported when users observe
that inserting 11 rows of data for 9 times is two times slower than insert-
ing 9 rows of data for 11 times. As another example, Mozilla#104328 is re-
ported when users observe a super-linear performance degradation of the
web-browser start-up time in terms of the number of bookmarks.

56

Sometimes, the inputs under comparison are doing slightly different tasks.
For example, when reporting Mozilla#499447, the user mentions that changing
the width of Firefox window, with a specific webpage open, takes a lot of time (a
bad input), yet changing the height of Firefox window, with the same webpage,
takes little time (a good input).

Finally, large performance difference under the same input and different
configurations is also a common reason for users to file bug reports. For
example, when reporting GCC#34400, the user compared the compilation
time of the same file under two slightly different GCC configurations. The
only difference between these two configurations is that the “ZCX_By_Default”
entry in the configuration file is switched from True to False. However, the
compilation times goes from 4 seconds to almost 300 minutes.

Comparison across different code bases In about 40% of the performance prob-
lems that we studied, users support their performance suspicion through a
comparison across different code bases. For example, GCC#12322 bug report
mentions that “GCC-3.3 compiles this file in about five minutes; GCC-3.4
takes 30 or more minutes”. As another example, Mozilla#515287 bug report
mentions that the same Gmail instance leads to 15–20% CPU utilization in
Mozilla Firefox and only 1.5% CPU utilization in Safari.

Note that, the above two comparison approaches do not exclude each
other. In 14 out of 27 cases, comparison results across multiple code bases are
reported together with comparison results within one code base.

Non-comparison based For about 20% of user-reported performance prob-
lems, users observe an absolutely non-tolerable performance and file the bug
report without any comparison. For example, Mozilla#299742 is reported as
the web-browser frozed to crawl.

What information is provided for diagnosis? The most useful information
provided by users include failure symptom (discussed above), bad inputs,
and good inputs. Here, we refer to the inputs that lead to user-observed
performance problems as bad inputs; we refer to the inputs that look similar
with some bad inputs but lead to good performance, according to the users,
as good inputs.

57

Apache Chrome GCC Mozilla MySQL Total

Total # of bug reports 16 5 9 19 16 65

of bad inputs provided
0/?: No bad input 0 0 0 0 0 0
1/?: One bad input 0 1 5 6 7 19
n/?: A set of bad inputs 16 4 4 13 9 46

of good inputs
?/0: No good input 7 2 2 12 4 27
?/1: One good input 0 0 3 0 3 6
?/n: A set of good inputs 9 3 4 7 9 32

Table 5.3: Inputs provided in users’ bug reports. n: developers provide a way
to generate a large number of inputs.

Bad inputs Not surprisingly, users provide problem-triggering inputs in
all the 65 cases. What is interesting is that in about 70% of cases (46 out of
65), users describe a category of inputs, instead of just one input, that can
trigger the performance problem, as shown in Table 5.3. For example, in
MySQL#26527, the user describes that loading data from file into partitioned
table can trigger the performance problem, no matter what is the content or
schema of the table.

Good inputs Interestingly, good inputs are specified in almost 60% of bug
reports, as shown in Table 5.3. That is, users describe inputs that look similar
with the bad inputs but have much better performance in all the 38 bug reports
where “comparison within one code base” is used to observe the performance
problem. Furthermore, in 32 bug reports, users describe how to generate a
large number of good inputs, instead of just one good input. For example,
when reporting MySQL#42649, the user describes that executing queries on
tables using the default charset setting or the latin1 charset setting (good inputs)
will not cause lock contention, while queries on tables using other types of
charset settings (bad inputs) may cause lock contention. Note that, this is
much rarer in functional bug reports, which is why special tools are designed
to automatically generate inputs that execute correctly and are similar with
bad inputs, when diagnosing functional-bug failures [109].

58

5.2.3 How developers diagnose performance problems

To collect the diagnosis time, we check the bug databases and calculate the time
between a bug report being posted and a correct fix being proposed. Of course,
strictly speaking, this time period can be further broken down to bug-report
assignment, root-cause locating, patch design, and so on. Unfortunately, we
cannot obtain such fine-grained information accurately from the databases.
Most Apache, Chrome, and MySQL bugs in our study do not have clear
assignment time in record. For GCC bugs in study, report assignment takes
about 1% of the overall diagnosis time on average; for Mozilla bugs in study,
report assignment takes about 19% of the overall diagnosis time on average.

Our study shows that it takes 129 days on average for developers to finish
diagnosing a performance problem reported by users. Among the 5 software
projects, the Chrome project has the shortest average performance-diagnosis
time (59 days), and Apache project has the longest average diagnosis time
(194 days). Comparing with the numbers reported in Chapter 3, the time to
diagnose user-reported performance problems is slightly shorter than that for
non-user-reported performance problems, and similar or longer than that of
functional bugs.

We also studied how developers diagnose performance problems. The
only type of diagnosis tools that are mentioned in bug reports are performance
profilers. They are mentioned in 13 out of the 65 reports. However, even after
the profiling results are provided, it still takes developers 116 days on average
to figure out the patches.

5.2.4 Implications of the study

Implication 1 Performance bugs and functional bugs are observed in different
ways. Intuitively, the symptoms of many functional bugs, such as assertion vi-
olations, error messages, and crashes, can be easily identified by looking at the
failure run alone [54]. In contrast, the manifestation of performance bugs often
gets noticed through comparison. We have randomly sampled 65 user-reported
functional bugs from the same set of applications (i.e., Apache, Chrome, GCC,
Mozilla, and MySQL) and found that only 8 of them are observed through
comparison. Statistical Z tests [96] show that the above observation is statisti-

59

cally significant — at the 99% confidence level, a user-reported performance
bug is more likely to be observed through comparison than a user-reported
functional bug.

Implication 2 Although judging execution efficiency based on execution
time alone is difficult in general, distinguishing failure runs from success
runs and obtaining bad and good inputs are fairly straightforward based on
performance-bug reports filed by users. Our study shows that most user-
reported performance problems are observed when two sets of similar inputs
demonstrate very different performances (38 out of 65 cases). Most of these
cases (32 out of 38), users provide explicit good and bad input-generation
methodology. In other cases (27 out of 65), users observe that an input causes
intolerably slow execution or very different performances across similar code
bases. Distinguishing failure runs from success runs and bad inputs from good
inputs are straightforward in these cases based on the symptoms described in
the bug reports, such as “frozed the GUI to crawl” in Mozilla#299742 and 10X
more CPU utilization rate than Safari under the same input in Mozilla#515287.

Implication 3 Statistical debugging is naturally suitable for diagnosing many
user-reported performance problems, because most performance bugs are
observed by users through comparison and many performance-bug reports
(38 out of 65) already contain information about both bad and good inputs that
are similar with each other. Statistical tests [96] show that with 90% statistical
confidence, a user-filed performance-bug report is more likely to contain
both bad and good inputs than not. Comparing the 65 randomly sampled
functional bugs mentioned above with the 65 performance bugs, statistical
tests [96] show that, at the 99% confidence level, a user-filed performance-bug
report is more likely to contain good inputs than a user-filed functional-bug
report. Previous statistical debugging work tries hard to generate good inputs
to diagnose functional bugs [109]. This task is likely easier for performance
failure diagnosis.

Implication 4 Developers need tools, in addition to profilers, to diagnose
user-reported performance problems.

60

5.3 In-house Statistical Debugging

During in-house performance diagnosis, users send detailed bug reports to the
developers and developers often repeat the performance problems observed
by the users before they start debugging. Following the study in Section 5.2,
this section designs and evaluates statistical debugging for in-house diagnosis
of real-world performance problems. We aim to answer three key questions.

1. What statistical debugging design is most suitable for diagnosing real-
world performance problems;

2. What type of performance problems can be diagnosed by statistical
debugging;

3. What type of performance problems cannot be diagnosed by statistical
debugging alone.

5.3.1 Design

In general, statistical debugging [3, 5, 43, 45, 56, 57, 86] is an approach that uses
statistical machine learning techniques to help failure diagnosis. It usually
works in two steps. First, a set of runtime events E are collected from both
success runs and failure runs. Second, a statistical model is applied to identify
an event e ∈ E that is most correlated with the failure, referred to as the failure
predictor. Effective statistical debugging can identify failure predictors that
are highly related to failure root causes and help developers fix the underlying
software defects.

There are three key questions in the design of statistical debugging.

1. Input design – what inputs shall we use to drive the incorrect execution
and the correct execution during statistical debugging. If the good runs
and the bad runs are completely different (e.g., they do not cover any
common code regions), the diagnosis will be difficult.

2. Predicate design – what type of runtime events shall we monitor. Roughly
speaking, a predicate Pi could be true or false, depending on whether a

61

specific property is satisfied at instruction i at run time. To support ef-
fective diagnosis, one should choose predicates that can reflect common
failure root causes.

3. Statistical model design – what statistical model shall we use to rank
predicates and identify the best failure predictors among them.

The input design problem is naturally solved for performance diagnosis, as
discussed in Section 5.2. We discuss different predicate designs and statistical
model designs below.

5.3.1.1 Predicate designs

Many predicates have been designed to diagnose functional bugs. We discuss
some commonly used ones below.

Branches. There are two branch predicates associated with each branch b:
one is true when b is taken, and the other is true when b is not taken [56, 57].

Returns. There are a set of six return predicates for each function return
point, tracking whether the return value is ever < 0, 6 0, > 0, > 0, = 0, or 6= 0
[56, 57].

Scalar-pairs. There are six scalar-pair predicates for each pair of variables
x and y, tracking whether x is ever < y, 6 y, > y, > y, = y, or 6= y [56, 57].
Whenever a scalar variable x is updated, scalar-pair predicates are evaluated
between x and each other same-type variable y that is in scope, as well as
program constants.

Instructions. Instruction predicate i is true, if i has been executed during
the monitored run [3, 45, 86].

Interleaving-related ones. Previous work on diagnosing concurrency bugs
[43] has designed three types of predicates that are related to thread interleav-
ing. For example, CCI-Prev predicates track whether two consecutive accesses
to a shared variable come from two distinct threads or the same thread.

In the remainder of this section, we will focus on three predicates: branch
predicates, return predicates, and scalar-pair predicates. We skip instruction
predicates in this study, because they are highly related to branch predicates.

62

Static # of predicates Static # of Reported Inputs

BugID KLOC Language Branch Return Scalar-pair Loops (bad/good)

Mozilla258793 3482 C++ 385722 1126770 * 10016 n/0
Mozilla299742 3482 C++ 385720 1126698 * 10016 1/0
Mozilla347306 88 C 26804 38634 271968 951 n/n
Mozilla416628 105 C 28788 39306 302496 1420 1/0

MySQL15811 1149 C++ 13508 15576 * 760 n/n
MySQL26527 986 C++ 90128 128610 * 4222 n/n
MySQL27287 995 C++ 92316 119322 * 4683 n/n
MySQL40337 1191 C++ 103686 138582 * 4510 n/n
MySQL42649 1164 C++ 126822 155766 * 5688 n/n
MySQL44723 1164 C++ 126822 155766 * 5688 1/1

Apache3278 N/A Java 10 126 204 7 n/n
Apache34464 N/A Java 22 42 342 8 n/n
Apache47223 N/A Java 24 36 390 9 n/n
Apache32546 N/A Java 6 66 120 5 n/n

GCC1687 2099 C 183496 296058 4187586 6476 n/n
GCC8805 2538 C 207188 327804 4161012 7309 n/n
GCC15209 2586 C 192108 304800 3705558 7310 1/1
GCC21430 3844 C 238514 447510 3768078 9078 n/n
GCC46401 5521 C 337810 713532 5625606 15159 1/1
GCC12322 2341 C 177098 284484 3750912 6563 1/0

Table 5.4: Benchmark information. N/A: since our statistical debugging tools
only work for C/C++ programs, we have reimplemented the four Java bench-
marks in C programs. *: we have no tools to collect scalar-pair predicates in
C++ programs. The 1s and ns in the “Reported Inputs” column indicate how
many bad/good inputs are reported by users.

We skip interleaving-related predicates in this study, because most perfor-
mance problems that we study are deterministic and cannot be effectively
diagnosed by interleaving-related predicates.

5.3.1.2 Statistical model designs

Many statistical models have been used before for anomaly detection [24, 36,
51, 53] and fault localization [3, 4, 43, 45, 56, 57, 86]. Although the exact models
used by previous work differ from each other, they mostly follow the same
principle — if a predicate is a good failure predictor, it should be true in many
failure runs, and be false or not-observed in many success runs. They can be
roughly categorized into two classes. The first class only considers whether
a predicate has been observed true for at least once in a run (e.g., whether

63

a branch b has been taken for at least once). The exact number of times the
predicate has been true in each run is not considered in the model. The second
class instead considers the exact number of times a predicate has been true in
each run. Naturally, by considering more information in the model, the second
class could complement the first class, but at the cost of longer processing
time. Most previous work on functional bug diagnosis has found the first class
sufficient [5, 43, 56, 57] and did not try the second class.

To cover both classes of statistical models for performance diagnosis, our
study will look at two models: a basic model proposed by CBI work [56, 57]
that belongs to the first class discussed above and a ∆LDA model proposed by
[4] that belongs to the second class discussed above. We leave investigating
other existing statistical models and designing new models to future work.
Since our evaluation will use exactly the same formulas, parameters, and
settings for these two models as previous work [4, 56, 57], we briefly discuss
these two models below. More details about these two models can be found in
their original papers [4, 56, 57].

Basic model This model works in two steps. First, it checks whether an
execution is more likely to fail when a predicate P is observed true, whose
probability is computed by formula Failure(P), than when P has merely being
observed during the execution, whose probability is computed by formula
Context(P). Consequently, only predicates, whose Increase values computed
below are higher than 0 with certain statistical confidence, will appear in the
final ranking list. By default, statistical Z-tests and 0.99 confidence level are
used in CBI [56].

Failure(P) =
F(Ptrue)

S(Ptrue)+F(Ptrue)

Context(P) =
F(Pobserved)

S(Pobserved)+F(Pobserved)

Increase(P) = Failure(P)−Context(P)

64

F(Ptrue) is the number of failure runs in which P is true, and F(Pobserved)

is the number of failure runs in which P is observed, no matter true or false.
S(Ptrue) is the number of success runs in which P is true, and S(Pobserved) is the
number of success runs in which P is observed.

Importance(P) =
2

1
Increase(P) +

1
log(F(Ptrue))/log(F)

The final ranking is based on an Importance metric. This metric reflects
the harmonic mean of the Increase metric and the conditional probability of
a predicate P being true given that an execution has failed. F is the total
number of failure runs in the formula above. Previous work [57] has tried
different variants of the harmonic mean and found the formula above, with a
logarithmic transformation, to be the best. As mentioned above, we reuse all
the formulas, parameters, and settings from previous work.

∆LDA model ∆LDA [4] model is derived from a famous machine learning
model, called Latent Dirichlet Allocation (LDA) [8]. By considering how many
times a predicate is true in each run, it can pick up weaker bug signals, as
shown by previous work [4]. Imagine the following scenario — during a
success run, predicate P is true for 10 times and false for 100 times; during a
failure run, P is true for 100 times and false for 10 times. The basic model will
consider P as useless, as it has been observed both true and false in every run.
However, ∆LDA model will notice that P is true for many more times during
each failure run than that in each success run, and hence consider P as failure
predictor. The exact ranking formula of ∆LDA model is very complicated, and
is skipped here. It can be found in previous work [4].

How to apply the models A statistical debugging framework collects the
following information from each run: (1) whether the run has succeeded and
failed; (2) a list of predicates that have been observed true and for how many
times each (the latter only for ∆LDA model). After collecting such information
from several success runs and failure runs, the framework will naturally obtain
values, such as the number of failure runs where a predicate is observed/true,
for the formulas discussed above and produce a rank list of failure predictors.

65

5.3.2 Experimental evaluation

5.3.2.1 Methodology

To evaluate how statistical debugging works for real-world performance prob-
lems, we apply three types of predicates and two types of statistical models
on real-world user-reported performance problems. All our experiments are
conducted on an Intel i7-4500U machine, with Linux 3.11 kernel.

Benchmark selection Among the 65 user-reported performance problems
discussed in Section 5.2, we have tried our best effort and successfully repeated
20 of them from four different C/C++/Java applications. In fact, most of the
65 performance problems are deterministically repeatable based on the bug
reports. We have failed to repeat 45 of them for this study mainly because
they depend on special hardware platforms or very old libraries that are
not available to us or very difficult to set up. The detailed information for
the 20 performance problems used in our experiments is shown in Table 5.4.
Specifically, the static number of branch predicates is counted based on the
fact that there are two predicates for each static branch instruction in the user
program (excluding library code). The static numbers of other predicates are
similarly counted.

To make sure these 20 benchmarks are representative, we also conduct
manual source-code inspection to see how statistical debugging could work
for all the 65 user-reported performance problems in our study. We will show
that our manual inspection results on all the 65 cases are consistent with our
experimental evaluation on these 20 benchmarks.

Input design To conduct the statistical debugging, we run each benchmark
program 20 times, using 10 unique good inputs and 10 unique bad inputs. For
each performance problem, we get its corresponding 20 inputs based on users’
bug report. For 13 of them, the bug reports have described how to generate
a large number of good and bad inputs, which makes our input generation
straightforward. For the remaining 7 bugs, with 3 from Mozilla, 3 from GCC,
and 1 from MySQL, we randomly change the provided inputs and use the user-
provided failure-symptom information to decide which inputs are good or
bad. We make sure that inputs generated by us are still valid HTML webpages,

66

valid JavaScript programs, valid C programs, or valid database tables/queries.
The process of judging which inputs are good or bad is straightforward, as
discussed in Section 5.2.4. For example, Mozilla#299742 reports a webpage that
leads to a consistent CPU usage rate above 70%, while some similar webpages
lead to less than 10% CPU usage rate. We generate many inputs by randomly
replacing some content of this webpage with content from other randomly
picked webpages, and judge whether the inputs are good or bad based on
CPU usage.

Techniques under comparison We will evaluate three predicates (branches,
returns, scalar-pairs) and two statistical models (basic, ∆LDA) for statistical
debugging. For C programs, we use CBI [56, 57] to collect all these three types
of predicates2. For C++ programs, we implement our own branch-predicate
and return-predicate collection tools using PIN binary-instrumentation frame-
work [64]. Scalar-pair predicates are very difficult to evaluate using PIN, and
hence are skipped for C++ programs in our experimental evaluations. They
will be considered for all benchmarks in our manual study (Section 5.3.3). For
Java programs, we re-implement them by using C, and use CBI to collect all
the three types of predicates. Since the exact execution time is not the target
of our information collection, we did not encounter any observer effect in our
experiment.

We use the default settings of the CBI basic model and the ∆LDA model
for all the benchmarks in our evaluation. Specifically, CBI model only has one
parameter — the statistical confidence level for filtering out predicates based
on the Increase metric. We use the default setting 0.99. The key parameter in
∆LDA model is the number of bad topics. We use the default setting 1.

We also use OProfile [77] to get profiling results in our experiments. We
provide two types of profiling results, both of which are under the “Profiler”
column in Table 5.5. “Fun” demonstrates where the root-cause function ranks
in the profiler result and what is the distance between the root-cause function
and where patches are applied. “Stack” considers the call-chain information

2 CBI [56, 57] is a C framework for lightweight instrumentation and statistical debugging. It
collects predicate information from both success and failure runs, and utilize statistical model
to identify the likely causes of software failures.

67

of candidate predicates Basic model ∆LDA model Profiler

BugID Branch Return S-pair Branch Return S-pair Branchloop Return S-pair Fun Stack

Mozilla258793 62822 149354 * X1(0) - * - - * - -
Mozilla299742 61256 148688 * X1(0) - * - - * - -
Mozilla347306 3931 4062 21590 - - - X1(1) X1(1) X1(1) X1(7) X1[0]
Mozilla416628 3719 3598 19428 - - - X1(.) - X1(.) X1(.) X1[0]

MySQL15811 1198 866 * - - * X1(.) X1(0) * X1(.) X1[0]
MySQL26527 6422 6823 * X1(0) - * - - * - -
MySQL27287 5377 5752 * - - * X1(0) - * X1(0) X1[0]
MySQL40337 7868 8160 * X1(1) - * - - * - -
MySQL42649 12569 9696 * X1(.) - * - - * - -
MySQL44723 10476 9108 * X1(.) - * - - * - X1[2]

Apache3278 7 63 102 X1(3) X1(2) X1(2) - - - - -
Apache34464 17 23 193 - - - X3(0) X1(2) - X5(2) X1[1]
Apache47223 17 15 237 - - - X1(.) - X1(.) X1(.) X1[0]
Apache32546 5 34 69 - - - X1(8) X1(7) X1(7) - X5[0]

GCC1687 22602 17787 428103 - - - X1(.) X2(.) - X1(.) X1[0]
GCC8805 23891 20467 404594 - - - X4(0) X1(0) - - -
GCC15209 8956 9403 155007 X1(13) - - - - - - -
GCC21430 45494 51270 647228 - - - X1(0) - X1(0) X1(2) X1[0]
GCC46401 34365 38263 479508 - - - X2(.) X3(.) X1(.) X5(.) X1[2]
GCC12322 46721 38269 878823 - - - - - - - X1[1]

Table 5.5: Experimental results for in-house diagnosis. Xx(y): the x-th ranked
failure predictor is highly related to the root cause, and is y lines of code away
from the patch. (.): the failure predictor and the patch are more than 50 lines
of code away from each other or are from different files. Xx[y]: a y-th level
caller of the x-th ranked function in a profiler result is related to the root cause;
x[0] means it is the function itself that is related to the root cause. -: none of
the top five predictors are related to the root cause or no predicates reach the
threshold of the statistical model.

provided by OProfile for each function in its ranking list. It first checks whether
any direct or indirect caller functions of the top OProfile-ranked function is
related to the root cause; if not, it then checks the callers, callers’ callers, and
so on of the second top ranked function; and so on. Among the 65 bug reports
in our study, 13 of them mentioned the use of profilers. Among these 13, 4 of
them mentioned the use of call-chain information provided by the profilers.
For the simplicity of explanation, we will use the “Fun” setting as the default
setting for discussing profiler results, unless specified otherwise.

68

1 notified = false;
2 while(!notified) {
3 rc = pthread_cond_timedwait(
4 &cond, &lock, &timeToWait);
5 if(rc == ETIMEDOUT) {
6 break;
7 }
8 }

Figure 5.1: An Apache bug diagnosed by Return

5.3.2.2 Results for basic model

Overall, 8 out of 20 performance problems can be successfully diagnosed using
the basic statistical model. Furthermore, in all these 8 cases, the failure predic-
tor that is ranked number one by the statistical model is indeed highly related
to the root cause of the performance problem. Consequently, developers will
not waste their time in investigating spurious failure predictors.

Among all three types of evaluated predicates, the branch predicate is the
most useful, successfully diagnosing 8 benchmarks.

The scalar-pair predicate and function-return predicate are only useful for
diagnosing one performance problem, as shown in Figure 5.1. In Apache#3278,
users describe that Tomcat could non-deterministically take about five seconds
to shut-down, which is usually instantaneous. When applied to Tomcat exe-
cutions with fast and slow shut-downs, statistical debugging points out that
there are strong failure predictors from all three types of predicates — (1) the
if(rc==ETIMEDOUT) branch on line 5 being taken (branch predicate); (2) the
pthread_cond_timedwait function returning a positive value (function-return
predicate); (3) the value of rc on line 3 after the assignment is larger than its
original value before the assignment (scalar-pair predicate)3. These three pred-
icates actually all indicate that pthread_cond_timedwait times out without
getting any signal. A closer look at that code region shows that developers
initialize notified too late. As a result, another thread could set notified to
be true and issue a signal even before the notified is initialized to be false

3CBI does not consider program constants for its scalar-pair predicates by default, and
hence cannot capture the comparison between rc and ETIMEDOUT here.

69

//ha_myisam.cc
/∗ don't enable row cache if too few rows ∗/
if (! rows || (rows > MI_MIN_ROWS_TO_USE_WRITE_CACHE))

mi_extra(...);
//mi_extra() will allocate write cache
//and zero−fill write cache
// fix is to remove zero−fill operation
....
// in myisamdef.h:
// #define MI_MIN_ROWS_TO_USE_WRITE_CACHE 10

Figure 5.2: A MySQL bug diagnosed by Branch

on line 1 of Figure 5.1, causing a time-out in pthread_cond_timedwait. This
problem can be fixed by moving notified=false; earlier.

In most cases, the failure predictor is very close to the final patch of the
performance problem (within 10 lines of code). For example, the patch for the
Apache bug in Figure 5.1 is only two lines away from the failure predictor. As
another example, the top-ranked failure predictor for the MySQL bug shown in
Figure 3.6 is at the if(!rows) branch, and the patch exactly changes that branch.

There are also two cases, where the failure predictor is highly related to the
root cause but is in different files from the final patch. For example, Figure 5.2
illustrates the performance problem reported in MySQL#44723. MySQL#44723
is caused by unnecessarily zero-filling the write cache. Users noticed that there
is a huge performance difference between inserting 9 rows of data and 11 rows
of data. Our statistical debugging points out that the failure is highly related
to taking the (row > MI_MIN_ROWS_TO_USE_WRITE_CACHE) branch. That is,
success runs never take this branch, yet failure runs always take this branch.
This is related to the root cause — an inefficient implementation of function
mi_extra, and the patch makes mi_extra more efficient.

Note that identifying the correct failure predictor is not trivial. As shown
by the “# of candidate predicates” column of Table 5.5, there is a large number
of predicates that have been observed true for at least once in failure runs.
Statistical debugging is able to identify the most failure predicting ones out of
thousands or even hundreds of thousands of candidate predicates.

70

Comparing with the profiler For eight cases where the basic statistical model
is useful, profilers fail miserably. In terms of identifying root causes (i.e., what
causes the inefficient computation), among these 8 cases, the root-cause func-
tions are ranked from number 11 to number 1037 for 5 cases. In the other 3
cases, the function that contains the root cause does not even appear in the
profiling result list (i.e., these functions execute for such a short amount of
time that they are not even observed by profilers).

Even if we consider functions in the call stacks of top-ranked profiler
functions, profiler is helpful for only one out of these eight cases, as shown
by the “Stack” column of Table 5.5. That is, for MySQL#44723, the root cause
function is the caller’s caller of the top ranked function in profiler results. For
the other seven benchmarks, the root cause functions do not appear on the
call stacks of the top five ranked functions in profile results.

In terms of suggesting fix strategies, profiler results provide no hint about
how to solve the performance problem. Instead, the statistical debugging re-
sults are informative. For example, among the 7 cases where branch predicates
are best failure predictors, the fixes either directly change the branch condition
(5 cases) or optimize the code in the body of the branch (2 cases). For the one
case where a return predicate is the best failure predictor, the fix affects the
return value of the corresponding function.

5.3.2.3 Results for ∆LDA model

We also tried statistical debugging using the ∆LDA model together with the
branch, return, and scalar-pair predicates. For branch predicates, we focus on
predicates collected at loop-condition branches here and we will refer to them
as “Branchloop” in Table 5.5.

As shown in Table 5.5, ∆LDA model well complements the statistical de-
bugging designs discussed earlier (i.e., basic statistical model). In 11 out of 12
cases where the basic statistical model fails to identify good failure predictors,
useful failure predictors are identified by the ∆LDA model.

Among the three different types of predicates, branch predicates are the
most useful — help diagnosing 11 cases under ∆LDA model. In general, when
a loop-branch predicate b is considered as a failure predictor by the ∆LDA

71

statistical model, it indicates that b’s corresponding loop executes many more
iterations during failure runs than during success runs.

In eight cases, the loop ranked number one is exactly the root cause of
computation inefficiency. The effect of the patches is to (1) completely remove
the inefficient loop from the program; (2) reduce the workload of the loop; or
(3) remove redundancy across loop iterations or across loop instances.

In three cases, the root-cause loop is ranked within top four (second, third,
and fourth, respectively), but not number one. The reason is that the loop
ranked number one is actually part of the effect of the performance problem.
For example, in GCC#8805 and GCC#46401, the root-cause loop produces
more than necessary amount of work for later loops to handle, which causes
later loops to execute many more iterations during failure runs than success
runs.

In one case, GCC#12322, the root-cause loop is not ranked within top five
by ∆LDA model. Similar with GCC#8805 and GCC#46401, the root-cause loop
produces many unnecessary tasks. In GCC#12322, these tasks happen to be
processed by many follow-up nested loops. The inner loops of those nested
loops are all ranked higher than the root-cause loop, as they experience many
more iteration-number increases from success runs to failure runs.

Return predicates and scalar-pair predicates can also help diagnose some
performance problems under the ∆LDA model, but their diagnosis capability
is subsumed by branchloop predicates in our evaluation, as shown in Table
5.5. For the six cases when a scalar-pair predicate p is identified as a good
failure predictor, p is exactly part of the condition evaluated by a correspond-
ing branchloop failure predictor. For the seven cases when a function-return
predicate f is identified as a good failure predictor, f is ranked high by the
statistical model because it is inside a loop that corresponds to a highly ranked
branchloop failure predictor.

Comparing with the profiler ∆LDA model is good at identifying root causes
located inside loops. Since functions that contain loops tend to rank high by
profilers, profilers perform better for this set of performance problems than

72

Apache Chrome GCC Mozilla MySQL Total

Total # of bugs 16 5 9 19 16 65

of bugs the default CBI model can help
Branches 1 0 1 5 5 12
Returns 1 0 0 0 1 2
Scalar-Pairs 0 0 0 0 0 0

of bugs∆LDA model can help
Branchesloop 10 4 8 12 10 44
Returns 0 0 0 0 0 0
Scalar-Pairs 0 0 0 0 0 0

of bugs above designs cannot help
4 1 0 2 0 7

Table 5.6: How different predicates work for diagnosing user-reported perfor-
mance bugs. In this manual inspection, if more than one predicate can help
diagnose a problem, we only count the predicate that is most directly related
to the root cause.

the ones discussed in Section 5.3.2.2. In comparison, statistical debugging still
behaves better.

In terms of identifying root causes, ∆LDA model always ranks the root-
cause loop/function equally good (in 7 cases) or better (in 4 cases) than profil-
ers. There are mainly two reasons that ∆LDA is better. First, sometimes, the
root-cause loop does not take much time. They simply produce unnecessary
tasks for later loops to process. For example, in GCC#8805, the function that
contains the root-cause loop only ranks 20th by profiler. However, it is still
ranked high by ∆LDA model, because the loop-iteration-number change is
huge between success and failure runs. Second, sometimes, functions called
inside an inefficient loop take a lot of time. Profilers rank those functions high,
while those functions actually do not have any inefficiency problems.

Considering call-stack functions in the profiling results (“Stack” column
in Table 5.5) does not make profiler much more useful. For example, the root
cause function of GCC#46401 ranks fifth in the profiling result. This function
is also one of the callers’ callers of the top-ranked function in the profiling
results. However, since the profiler reports three different callers, each having
1–3 callers, for the top-ranked function, the effective ranking for the root-cause
function does not change much with or without considering call stacks.

73

5.3.3 Manual inspection

In addition to the above experimental study, we also manually checked which
predicate, if any, would help diagnose each of the 65 user-reported performance
bugs in our benchmark set. The result is shown in Table 5.6.

Assuming the basic statistical model, traditional predicates (i.e., branches,
returns, and scalar-pairs) can diagnose 14 out of 65 performance problems.
Among them, branch predicates are the most helpful, able to diagnose 12 per-
formance problems; return predicates can diagnose 2 performance problems;
scalar-pair predicates are the least useful among the three in our study.

Among the ones that cannot be diagnosed by the basic statistical model,
44 of them are caused by inefficient loops. We expect that the ∆LDA sta-
tistical model can identify root-cause related branch predicates (denoted as
“Branchesloop” in Table 5.6). That is, the loop-condition branch related to the
loop that is executed for too many times during failure runs will be ranked
high by the ∆LDA model. Some scalar-pair predicates and function-return
predicates could also help failure diagnosis under the ∆LDA model. For ex-
ample, the loop-condition of an inefficient loop could involve the comparison
between two scalar variables; the inefficient loop could invoke a function that
happens to always return positive values; and so on. However, these predi-
cates will not provide more information than branch predicates. Therefore,
we do not mark them in Table 5.6.

The remaining 7 performance problems are mostly caused by unnecessary
I/Os or other system calls, not related to any predicates discussed above.

5.3.4 Discussion

Putting our manual inspection results and experimental evaluation results
together, we conclude the following:

1. Statistical debugging can help the diagnosis of many user-reported per-
formance problems, improving the state of the art in performance diag-
nosis;

2. Two design points of statistical debugging are particularly useful for di-
agnosing performance problems. They are branch predicates under basic

74

statistical model and branch predicates under ∆LDA model. These two
design points complement each other, providing almost full coverage
of performance problems that we have studied;

3. The basic statistical model that works for most functional bugs [3, 5,
43, 45, 56, 57, 86] is very useful for performance diagnosis too, but still
leaves many performance problems uncovered; statistical models that
consider the number of times a predicate is true in each run (e.g., the
∆LDA model) is needed for diagnosing performance problems.

4. Statistical debugging alone cannot solve all the problem of diagnosing
performance problems. Although statistical debugging can almost al-
ways provide useful information for performance diagnosis, developers
still need help to figure out the final patches. Especially, when an inef-
ficient loop is pointed out by the ∆LDA model, developers need more
program analysis to understand why the loop is inefficient and how to
optimize it.

As we discussed in Chapter 3, root causes of performance problems are
highly correlated with fixes. For loop-related performance problems, we expect
future performance diagnosis systems to use static or dynamic analysis to
automatically figure out the fine-grained root causes, differentiate effects from
causes, and suggest detailed fix strategies, after statistical debugging identifies
root-cause loop candidates.

5.4 Production-run Statistical Debugging

In-house performance diagnosis discussed in Section 5.3 assumes that users
file a detailed bug report and developers can repeat the performance problem
at the development site. Unfortunately, this does not always happen. In many
cases, production-run users only send back a simple automatically generated
report, claiming that a failure has happened, together with a small amount of
automatically collected runtime information.

The key challenge of diagnosing production-run failures is how to satisfy
the following three requirements simultaneously:

75

1. Low runtime overhead. The diagnosis tool will not be accepted by end
users, if it incurs too much slow down to each production run.

2. High diagnosis capability. The diagnosis tool is useful to developers
only when it can accurately provide failure root cause information.

3. Short diagnosis latency. Short diagnosis latency can speed up patch
design and improve system availability.

This section discusses this issue in the context of performance bugs.

5.4.1 Design

The state of the art production-run functional bug diagnosis [5, 43, 56, 57]
proposes to satisfy the first two requirements (i.e., low overhead and high
capability) by combining sampling techniques with statistical debugging. By
randomly sampling predicates at run time, the overhead can be lowered; by
processing predicates collected from many failure and success runs together,
the diagnosis capability can be maintained for the diagnosis of most functional
bugs [5, 43, 56, 57]. The only limitation is that sampling could affect diagnosis
latency — the same failure needs to occur for many times until sufficient
information can be sampled. This is especially a problem for software that
is not widely deployed and bugs that do not manifest frequently. We plan to
follow this approach and apply it for production-run performance diagnosis.

Different from production-run functional failure diagnosis [5, 43, 56, 57],
production-run performance diagnosis needs to have a slightly different failure-
reporting process. Traditional functional failure diagnosis assumes that a
profile of sampled predicates will be collected after every run. This profile will
be marked as failure when software encounters typical failure symptoms such
as crashes, error messages, and so on; the profile will be marked as success
otherwise. The same process does not apply to performance failures, because
most performance failures are observed through comparisons across runs, as
discussed in Section 5.2.

To adapt to the unique way that performance problems are observed, we
expect that users will explicitly mark a profile as success, failure, or do-not-care
(the default marking), when they participate in production-run performance

76

diagnosis. For most performance problems (i.e., those problems observed
through comparisons), do-not-care profiles will be ignored during statisti-
cal debugging. For performance problems that have non-comparison-based
symptoms (i.e. application freeze), all profiles collected from production runs
will be considered during statistical debugging.

One issue not considered in this chapter is failure bucketing. That is, how to
separate failure (or success) profiles related to different software defects. This
problem is already handled by some statistical models [56, 57] that can discover
multiple failure predictors corresponding to different root causes mixed in
one profile pool, as well as some failure bucketing techniques [30] that can
roughly cluster profiles based on likely root causes. Of course, performance
diagnosis may bring new challenges to these existing techniques. We leave
this for future research.

5.4.2 Experimental evaluation

Our evaluation will aim to answer two key questions:

1. Can sampling lower the overhead and maintain the capability of performance-
related statistical debugging? A positive answer would indicate a promis-
ing approach to production-run performance diagnosis.

2. What is the impact of sampling to diagnosis latency? Traditionally, if
we use 1 out of 100 sampling rate, we need hundreds of failure runs to
achieve good diagnosis results. Since many performance bugs lead to re-
peated occurrences of an event at run time, it is possible that fewer failure
runs would be sufficient for performance diagnosis. If this heuristic is
confirmed, we will have much shorter diagnosis latency than traditional
sampling-based failure diagnosis for functional bugs.

5.4.2.1 Methodology

Benchmarks and inputs We reuse the same set of benchmarks shown in
Table 5.1. We also use the same methodology to generate inputs and drive
success/failure runs. The only difference is that for the four performance

77

problems that users do not report any good inputs, we will use completely
random inputs to produce success-run profiles.

Tool implementation To sample return predicates, we directly use CBI [56,
57]. CBI instruments program source code to conduct sampling. Specifically,
CBI instrumentation keeps a global countdown to decide how many predicates
can be skipped before next sample. When a predicate is sampled, the global
countdown is reset to a new value based on a geometric distribution whose
mean value is the inverse of the sampling rate.

To sample branch predicates, we directly use CBI for benchmarks written
in C. For all MySQL and some Mozilla benchmarks that are written in C++,
since CBI does not work for C++ code, we conduct sampling through hardware
performance counters following the methodology described in previous work
[5]. Specifically, hardware performance counters are configured so that an
interrupt will be triggered every N occurrences of a particular performance
event (e.g, branch-taken event), with no changes to the program.

Metrics and settings We will evaluate all three key metrics for failure diagno-
sis: (1) runtime overhead, measured by the slow down caused by information
collection at every run; (2) diagnosis capability, measured by whether top
ranked failure predictors are related to failure root causes, as discussed in
Section 5.3.2. (3) diagnosis latency, measured by how many failure runs are
needed to complete the diagnosis.

By default, we keep the sampling rate at roughly 1 out of 10000 and use
samples collected from 1000 failure runs and 1000 success runs for failure
diagnosis.

In addition to experiments under the default setting, we also evaluate the
impact of different numbers of failure/success runs, ranging from 10 to 1000,
while keeping the sampling rate fixed, and evaluate the impact of different
sampling rates, ranging from roughly 1 out of 100 to roughly 1 out of 100000,
while keeping the number of failure/success runs fixed. Particularly, we will
try using only 10 success runs and 10 failure runs, under the default sampling
rate, to see if we can achieve good diagnosis capability, low diagnosis latency,
and low runtime overhead simultaneously.

78

Since sampling is random, we have repeated our evaluation for several
rounds to confirm that all the presented results are stable.

For every performance problem benchmark, the results presented below
are obtained under the combination of predicate and statistical model that is
shown to be (most) effective in Table 5.5 (Section 5.3). That is, basic model plus
branch predicates are used for seven benchmarks; basic model plus return
predicates are used for one benchmark; ∆LDA model plus branchloop predi-
cates are used for the remaining twelve benchmarks, including GCC#12322.
Since sampling can only lower overhead and cannot improve the diagnosis
capability, those combinations that fail to deliver useful diagnosis results in
Table 5.5 still fail to deliver useful diagnosis results in our sampling-based
evaluation.

5.4.2.2 Results

BugID Diagnosis Capability Overhead

(# of runs) (10) (100) (500) (1000) per run

Mozilla258793 - X1 X1 X1 2.39%
Mozilla299742 - - X1 X1 4.27%
Mozilla347306 X1 X1 X1 X1 1.42%
Mozilla416628 X1 X1 X1 X1 2.03%

MySQL15811 X1 X1 X1 X1 2.25%
MySQL26527 - - X1 X1 6.05%
MySQL27287 X1 X1 X1 X1 3.02%
MySQL40337 - X1 X1 X1 2.69%
MySQL42649 - - X2 X1 6.10%
MySQL44723 - X1 X1 X1 3.16%

Apache3278 - - - - 0.23%
Apache34464 X3 X3 X3 X3 0.18%
Apache47223 X1 X1 X1 X1 0.13%
Apache32546 X1 X1 X1 X1 0.38%

GCC1687 X1 X1 X1 X1 0.80%
GCC8805 X4 X4 X4 X4 1.81%
GCC15209 - - X1 X1 2.37%
GCC21430 X1 X1 X1 X1 7.55%
GCC46401 X2 X2 X2 X2 2.91%
GCC12322 - - - - 2.33%

Table 5.7: Runtime overhead and diagnosis capability evaluated with the
default sampling rate (1 out of 10000); 10, 100, 500, 1000 represents the different
numbers of success/failure runs used for diagnosis.

79

BugID Diagnosis Capability Overhead Avg. # of sampled predicates

(sampling rate) (1
102) (1

103) (1
104) (1

105) (1
102) (1

103) (1
104) (1

105) (1
102) (1

103) (1
104) (1

105)

Mozilla258793 * X1 X1 X1 * 24.36% 2.39% 1.84% * 1.42∗106 1.45∗105 1.49∗104

Mozilla299742 * X1 X1 X2 * 30.84% 4.27% 4.16% * 1.87∗105 1.77∗104 1.82∗103

Mozilla347306 X1 X1 X1 X1 69.73% 8.27% 1.42% 0.56% 7.13∗106 7.13∗105 7.13∗104 7.13∗103

Mozilla411722 X1 X1 X1 X1 24.64% 4.31% 2.03% 1.36% 8.18∗105 8.18∗104 8.17∗103 816.56

MySQL15811 * X1 X1 X1 * 7.65% 2.25% 1.53% * 3.67∗105 1.67∗105 1.66∗104

MySQL26527 * X1 X1 - * 6.40% 6.05% 4.53% * 3.23∗103 921.41 92.60
MySQL27287 * X1 X1 X1 * 4.63% 3.02% 0.61% * 2.52∗106 1.15∗106 1.19∗105

MySQL40337 * X1 X1 - * 10.88% 2.69% 2.28% * 5.10∗106 1.66∗106 1.42∗105

MySQL42649 * X1 X1 - * 8.28% 6.10% 3.93% * 7.25∗103 1.14∗103 128.53
MySQL44723 * X1 X1 X1 * 7.10% 3.16% 2.24% * 3.23∗105 1.83∗105 1.46∗104

Apache3278 X1 - - - 0.23% 0.23% 0.23% 0.23% 0.21 0.01 0 0
Apache34464 X3 X3 X3 X3 29.45% 2.62% 0.18% 0.04% 2.50∗107 2.50∗106 2.49∗105 2.50∗104

Apache47223 X1 X1 X1 X1 12.58% 1.28% 0.13% 0.12% 6.27∗106 6.26∗105 6.27∗104 6.27∗103

Apache32546 X1 X1 X1 X1 0.24% 0.39% 0.38% 0.40% 9.75∗103 977.72 99.01 9.5

GCC1687 X1 X1 X1 X1 47.30% 5.34% 0.80% 0.43% 3.18∗107 3.18∗106 3.18∗105 3.17∗104

GCC8805 X4 X4 X4 X4 50.92% 7.33% 1.81% 1.05% 1.63∗107 1.63∗106 1.63∗105 1.63∗104

GCC15209 X1 X2 X1 X2 41.06% 8.43% 2.37% 1.27% 3.35∗104 3.35∗103 334.72 33.64
GCC21430 X1 X1 X1 X1 64.98% 13.68% 7.55% 5.07% 9.15∗107 9.15∗106 9.15∗105 9.15∗104

GCC46401 X2 X2 X2 X2 88.97% 13.04% 2.91% 0.46% 8.88∗107 8.88∗106 8.88∗105 8.88∗104

GCC12322 - - - - 15.55% 2.33% 2.33% 0.56% 9.97∗107 9.97∗106 9.97∗105 9.97∗104

Table 5.8: Diagnosis capability, overhead, and average number of samples in
each run under different sampling rates by using 1000 success/failure runs.
*: no results are available, because hardware-based sampling cannot be as
frequent as 1/100 and software-based CBI sampling does not apply for these
C++ benchmarks.

Runtime overhead As shown in Table 5.7, the runtime overhead is small
under the default sampling rate (i.e., 1 out of 10000). It is below 5% in all but
three cases, and is always below 8%.

As expected, the overhead is sensitive with the sampling rate. As shown
in Table 5.8, it can be further lowered to be mostly below 2% under the 1

105

sampling rate, and could be as large as over 40% under the 1
100 sampling rate.

Diagnosis capability As shown by Table 5.7, with 1000 success runs and
1000 failure runs, sampling did very little damage to the diagnosis capability
of statistical debugging. Apache#3278 is the only one, among all benchmarks,
where failure diagnosis fails under this sampling setting. For all other bench-

80

marks, the rankings of the ideal failure predictors remain the same as those
without sampling in Table 5.5.

Also as expected, the diagnosis capability would decrease under sparser
sampling or fewer failure/success runs. As shown in Table 5.8, under the
default setting of 1000 success/failure runs, the diagnosis capability is roughly
the same between 1

103 sampling rate and 1
104 sampling rate, but would drop

with 1
105 sampling rate. Four benchmarks that can be diagnosed with more

frequent sampling cannot be diagnosed with 1
105 sampling rate. Clearly, more

runs will be needed to restore the diagnosis capability with a lower sampling
rate.

Diagnosis latency Diagnosis latency versus runtime overhead and diagnosis
capability is a fundamental trade-off facing sampling-based statistical debug-
ging for functional bugs [43, 56, 57]. With sampling, intuitively, more failure
runs are needed to collect sufficient diagnosis information. This is not a prob-
lem for widely deployed software projects. In those projects, the same failure
tends to quickly occur for many times on many users’ machines [30]. However,
this is a problem for software that is not widely deployed.

We quantitatively measured the impact of sampling to diagnosis latency
in Table 5.7. As we can see, three benchmarks need about 100 failure runs for
their sampling-based diagnosis to produce useful results; four benchmarks
need about 500 failure runs; and one benchmark, Apache#3278, needs more
than 1000 failure runs. This indicates longer diagnosis latencies than the non-
sampling-based diagnosis evaluated in Section 5.3, where only 10 failure runs
are used.

Interestingly, there are 11 benchmarks, whose diagnosis latency is not
lengthened by sampling. As shown in Table 5.7, even with only 10 failure runs,
the sampling-based diagnosis still produces good failure predictors. These
are exactly all the 11 benchmarks that ∆LDA model suits in Table 5.5. For all
these benchmarks, the rankings are exactly the same with or without sampling,
with just 10 failure runs. Consequently, sampling allows us to achieve low
runtime overhead (<10%), high diagnosis capability, and low diagnosis latency

81

simultaneously, a feat that is almost impossible for sampling based functional
bug diagnosis.

The nice results for these 11 benchmarks can be explained by a unique
feature of performance bugs, especially loop-related performance bugs —
their root-cause related predicates are often evaluated to be true for many
times in one run, which is why the performance is poor. Consequently, even
under sparse sampling, there is still a high chance that the root-cause related
predicates can be sampled, and be sampled more frequently than root-cause
unrelated predicates.

Finally, even for the other 9 benchmarks, 1
104 sampling rate does not extend

diagnosis latency by 104 times. In fact, for most of these benchmarks, 100 – 500
failure runs are sufficient for failure diagnosis under 1

104 sampling rate. Our
investigation shows that the root-cause code regions in these benchmarks are
all executed for several times during the user-reported failure runs, which is
likely part of the reason why users perceived the performance problems. Con-
sequently, the negative impact of sampling on diagnosis latency is alleviated.

5.5 Conclusion

Software design and implementation defects lead to not only functional misbe-
havior but also performance losses. Diagnosing performance problems caused
by software defects are both important and challenging. This chapter made
several contributions to improving the state of the art of diagnosing real-world
performance problems. Our empirical study showed that end users often
use comparison-based methods to observe and report performance problems,
making statistical debugging a promising choice for performance diagnosis.
Our investigation of different design points of statistical debugging shows
that branch predicates, with the help of two types of statistical models, are
especially helpful for performance diagnosis. It points out useful failure pre-
dictors for 19 out of 20 real-world performance problems. Furthermore, our
investigation shows that statistical debugging can also work for production-
run performance diagnosis with sampling support, incurring less than 10%
overhead in our evaluation. Our study also points out directions for future
work on fine-granularity performance diagnosis.

82

Chapter 6

LDoctor: Hybrid Analysis Routines for Ineffi-
cient Loops

Statistical performance debugging discussed in the last chapter can identify
which loop is the root cause for a performance problem. However, it cannot
provide detailed root-cause information, such as why the loop is inefficient
and how developers might fix the problem.

In this chapter, we first conduct an empirical study to understand what
is fine-grained root-cause information for inefficient loops in the real world.
We then design a series of static-dynamic hybrid analysis routines that can
help identify accurate fine-grained root-cause information. We further use
sampling techniques to lower our diagnosis overhead without hurting diagno-
sis accuracy or latency. Evaluation using real-world inefficient loops shows
that our tool can provide good coverage and accuracy, with small runtime
overhead.

6.1 Introduction

6.1.1 Motivation

In Chapter 5, we discussed how to apply statistical debugging to performance
failure diagnosis. Given the symptom of a performance problem (e.g., two
similar inputs leading to very different execution speed), statistical debug-
ging, an approach widely used for diagnosing functional failures [45, 56, 57],
can accurately identify control-flow constructs that are most correlated with
the performance problem by comparing problematic runs and regular runs.

83

Unfortunately, for loop-related performance problems, which contribute to
two-thirds of user-reported real-world performance problems studied in Chap-
ter 5, statistical debugging is not very effective. Although it can identify the
root-cause loop, it does not provide any information regarding why the loop
is inefficient and hence is not very helpful in fixing the performance problem.

Figure 1.1 shows a real-world performance bug in GCC. Function synth_mult
is used to compute the best algorithm for multiplying t. It is so time consum-
ing that developers tried speeding it up through memoization — hash-table
alg_hash is used to remember which t has been processed in the past and
what is the processing result. Unfortunately, a small mistake in the type decla-
ration of hash-table entry alg_hash_entry causes memoization not to work
when t is larger than the maximum value type-int can represent. As a result,
under certain workloads, synth_mult conducts a lot of redundant computa-
tion for the same t values recursively, leading to huge performance problems.
In practice, developers know the problem is inside synth_mult very early.
However, since this function is complicated, it took them several weeks to
figure out the root cause. If a tool can tell them not only which loop1 is the root
cause but also why the loop is inefficient (i.e., lot of redundant computation
and the need for better memoization in this example), the diagnosis and bug
fixing process would be much easier for developers.

Clearly, more research is needed to improve the state of the art of perfor-
mance diagnosis. Diagnosis techniques that can provide fine-grained root-
cause information for common performance problems, especially loop-related
performance problems, are well desired.

6.1.2 Contributions

This chapter presents a tool, LDoctor, that can effectively provide fine-grained
root causes for inefficient loops.

LDoctor targets the most common type of performance problems, ineffi-
cient loops, according to empirical studies in Chapter 3 and Chapter 5. LDoctor
also targets a challenging problem. Although statistical debugging (Chap-
ter 5) can help identify suspicious loops that are highly correlated with user-

1Recursive functions are handled similarly as loops in this chapter.

84

perceived performance problems, it provides no information about why the
suspicious loop is inefficient, not to mention providing fix suggestions. Al-
though various bug-detection techniques [72, 73, 75] can help detect loop-
related performance bugs, they all suffer from generality problems, covering
only a specific type of loop problems each; the dynamic tools [72, 75] also
suffer from performance problem, imposing 10X slowdown or more.

LDoctor can provide good coverage, accuracy and performance simultane-
ously: 1) Coverage. LDoctor can cover most common root causes for inefficient
loops. 2) Accuracy. LDoctor can accurately point out whether a loop is ineffi-
cient, explain why the loop is inefficient, and provide correct fix suggestions.
3) Performance. LDoctor incurs a low runtime overhead.

We build LDoctor through the following three steps.
First, figuring out a taxonomy for the root causes of common inefficient

loops. Such a taxonomy is the prerequisite to developing a general and accurate
diagnosis tool. Guided by a thorough study of 45 real-world inefficient loop
problems, we come up with a hierarchical root-cause taxonomy for inefficient
loops. Our empirical study shows that our taxonomy is general enough to
cover common inefficient loops, and also specific enough to help developers
understand and fix the performance problem. We will present more details in
Section 6.2.

Second, building a tool(kit) LDoctor that can automatically and accurately
identify the fine-grained root-cause type of a suspicious loop and provide
fix-strategy suggestions. We achieve this following several principles:

• Focused checking. Different from performance-bug detection tools that
blindly check the whole software, LDoctor focuses on performance symp-
toms and only check inefficient loop candidates identified by existing
tools, a statistical debugging tool (Chapter 5) in our current prototype.
This focused study is crucial for LDoctor to achieve high accuracy.

• Root-cause taxonomy guided design. To provide the needed coverage,
we follow the root-cause taxonomy discussed above and design analysis
routines for every root-cause sub-category. Given a candidate inefficient

85

loop, we will apply a series of analysis to it to see if it matches any type
of inefficiency.

• Static-dynamic hybrid analysis to balance performance and accuracy. As
we will see, static analysis alone cannot accurately identify inefficiency
root causes, especially because some inefficiency problems only happen
under specific workload. However, pure dynamic analysis will cause
too large runtime overhead. Therefore, we take a hybrid approach to
achieve both performance and accuracy goals.

Third, using sampling to further lower the runtime overhead of LDoctor,
without degrading diagnosis capability. Random sampling is a natural fit
for performance diagnosis due to the repetitive nature of inefficient codes,
especially inefficient loops.

We have evaluated LDoctor on 18 real-world performance problems. Eval-
uation results show that LDoctor can accurately identify the detailed root
cause for all benchmarks and provide correct fix-strategy suggestion for 16
benchmarks. All these are achieved with low runtime overhead.

6.2 Root-Cause Taxonomy

The first task we are facing is to figure out a root-cause taxonomy for real-world
inefficient loops. Our taxonomy design is guided by checking inefficient loops
in the benchmark suite discussed in Chapter 3 and Chapter 5. We also try to
satisfy three requirements in our design. (1) Coverage: covering a big portion
of real-world inefficient loop problems; (2) Actionability: each root-cause
category should be informative enough to help developers decide how to fix
a performance problem; (3) Generality: too application-specific root causes
will not work, as we need to build diagnosis tools to automatically identify
these root causes without developers’ help. In this section, we will first present
our taxonomy, together with real-world examples, followed by our empirical
study about how a suite of real-world inefficient loop problems fall into our
root-cause categories.

86

//Mozilla347306
//jsscript.c

jssrcnote ∗
js_GetSrcNote(JSScript ∗script, jsbytecode ∗pc)
{

...
target = PTRDIFF(pc, script−>code, jsbytecode);
for (sn = SCRIPT_NOTES(script);

!SN_IS_TERMINATOR(sn); sn = SN_NEXT(sn))
{

offset += SN_DELTA(sn);
if (offset == target && SN_IS_GETTABLE(sn))

return sn;
}
return NULL;

}

Figure 6.1: A resultless 0*1? bug in Mozilla

6.2.1 Taxonomy

Our taxonomy contains two major root cause categories, resultless and redun-
dancy, and several sub-categories, as below.

Resultless Resultless loops spend a lot of time in computation that does not
produce any results that will be used after the loop. Depending on when such
resultless computation is conducted, we further consider four sub-categories.

0*: This type of loops never produce any results in any iteration. This type
of loops should be rare in mature software systems. They should simply be
deleted from the program.

0*1?: This type of loops only produce results in the last iteration, if any.
They are often related to search: they check a sequence of elements one by
one until the right one is found. Not all loops of this type are inefficient. If
they are, they are often fixed by data-structure changes 2. Figure 6.1 shows
an example from Mozilla JavaScript engine. The loop searches through an
array containing source code information for the input pc. In practice, this
loop needs to execute more than 10000 iterations for many long JavaScript
encountered by users, which leads to huge performance problems. To fix this

2All bugs fixed by data-structure change are categorized as In-place Call Change in Chapter 3.

87

//GCC46401
//c−common.c

//bad input contains a long expression:
//QStringList function_list =
// QStringList() << "abasep" <<"abs" ...

static bool
candidate_equal_p (const_tree x, const_tree y)
{

return (x == y) || (x && y && operand_equal_p (x, y, 0));
}

//comments from developers:
//"No point tracking CALL_EXPRs that aren't ECF_CONST
//(because then operand_equal_p fails anyway) nor
//STRING_CSTs (which can't be written into)"
static void
merge_tlist(struct tlist ∗∗to, struct tlist ∗add, int copy)
{

...
for (tmp2 = ∗to; tmp2; tmp2 = tmp2−>next)

if (candidate_equal_p (tmp2−>expr, add−>expr))
{

found = 1;
if (!tmp2−>writer)

tmp2−>writer = add−>writer;
}

...
}

Figure 6.2: A resultless [0|1]* bug in GCC

problem, developers simply replace array with hash table when processing
long JavaScript files.

[0|1]*: Every iteration in this type of loops may or may not produce results.
Under certain workload, the majority of the loop iterations do not produce
any results and lead to performance problems perceived by end users. The
inefficiency problem caused by this type of loops can often be solved by adding
extra conditions to skip the loop under certain contexts. Figure 6.2 shows such
an example from GCC. Only when the if branch executed, one iteration will
generate results. The bug happens when GCC checks violations of sequence

88

1 //Mozilla477564
2 //nsSessionStore.js
3
4 generate: function sss_xph_generate(aNode)
5 {
6 ...
7 for (let n = aNode; (n = n.previousSibling);)
8 if (n.localName == aNode.localName && n.namespaceURI ==
9 aNode.namespaceURI && (!nName || n.name == nName))
10 count++;
11 //count will be used to generate a ID
12 //for the aNode
13 ...
14 }

Figure 6.3: A cross-loop redundant bug in Mozilla

point rule. The user notices severe performance degradation when enabling
the checking. The buggy loop is super-linear inefficient in terms of the number
of operands in one expression. The buggy input contains an expression, which
is long and special. The loop takes a lot of iterations during bad run, but none
of the iterations will generate results. The patch is to add extra checking before
processing each operand. When it also has the special feature like the bad
input, the loop will be skipped.

[1]*: Loops in this category always generate results in almost all iterations.
They are inefficient, because the results generated could be useless due to some
high-level semantic reasons. Understanding and fixing this type of inefficiency
problems often require deep understanding of the program and are difficult
to automate. For example, several Mozilla performance problems are caused
by loops that contain intensive GUI operations. Although every iteration of
these loops produce side effects, the performance problem forced developers
to change the program and batch/skip some GUI operations.

Redundant Redundant loops spend a lot of time in repeating computation
that is already conducted. Depending on the unit of the redundant computa-
tion, we further consider two sub-categories.

Cross-iteration Redundancy: Loop iteration is the redundancy unit here:
one iteration repeats repeating what was already done by an earlier iteration

89

of the same loop. Here, we consider recursive function calls as a loop, treating
one function call instance as one loop iteration. This type of inefficiency is often
fixed by memoization or batching, depending on whether the redundancy
involves I/O operations. For example, GCC#27733 shown in Figure 1.1 is fixed
by better memoization. Mozilla#490742 in Figure 3.4 represents a slightly
different type of cross-iteration redundancy. The inefficient loop in this case
saves one URL into the “Favorite Links” database in each iteration. One
database transaction in each iteration turns out to be to time consuming, with
too much redundant work across iterations. At the end, developers decide to
batch all database updates into one big transaction, which speeds up some
workload like bookmarking 50 tabs from popping up timeout windows to not
blocking.

Cross-loop Redundancy: A whole loop is the redundancy unit here: one
dynamic instance of a loop spends a big chunk, if not all, of its computation
in repeating the work already done by an earlier instance of the same loop.
Developers often fix this type of inefficiency problems through memoization:
caching the earlier computation results and skip following redundant loops.
Mozilla#477564 shown in Figure 6.3 is an example for this type of bugs. The
buggy loop is to count how many previous siblings of the input aNode have
the same name and URI. There is an outer loop for the buggy one, and the
outer loop will update aNode by using its next siblings. The bug is fixed by
saving the calculated count for each node. A new count value is calculated by
adding one to the saved count value of the nearest previous sibling with the
same name and URI.

6.2.2 Empirical study

Having presented our taxonomy above, we will see how it works for a set
of real-world inefficient loop problems collected in Chapter 3 and Chapter 5.
Specifically, we want to check the coverage and the actionability of our taxon-
omy presented above: (1) How common are real-world performance problems
caused by the patterns discussed above? (2) How are real-world problems
fixed by developers? Can we predict their fix strategies based on the root-cause
pattern?

90

6.2.2.1 Methodology

Application Suite Description (language) # Bugs

Apache Suite 11
HTTPD: Web Server (C)
TomCat: Web Application Server (Java)
Ant: Build management utility (Java)

Chromium Suite Google Chrome browser (C/C++) 4

GCC Suite GCC & G++ Compiler (C/C++) 8

Mozilla Suite 12
Firefox: Web Browser (C++, JavaScript)
Thunderbird: Email Client (C++, JavaScript)

MySQL Suite 10
Server: Database Server (C/C++)
Connector: DB Client Libraries (C/C++/Java/.Net)

Total 45

Table 6.1: Applications and bugs used in the study.

In Chapter 3, we studied the on-line bug databases of five representative
open-source software projects, as shown in Table 6.1. Through a mix of random
sampling and manual inspection, we found 65 performance problems that are
perceived and reported by users in Chapter 5. Among these 65 problems, 45
problems are related to inefficient loops and hence are the target of the study
here3.

6.2.2.2 Observations

Are the root-causes in our taxonomy common? The answer is yes. Resultless
loops are about as common as redundant loops (24 vs. 21). Intuitively, 0* loops,
where no iteration produces any results, are rare in mature software. In fact,
no bugs in this benchmark suite belong to this category. All other root-cause
sub-categories are well represented.

How are real-world performance bugs fixed? Overall, the fix strategies are
well aligned with root-cause patterns. For example, all inefficient loops with
resultless [0|1]* are fixed by skipping the loop under certain contexts 4, and all

3The definition of “loop-related” in this chapter is a little bit broader than in Chapter 5,
which only considers 43 problems as loop-related.

4All bugs fixed by skipping the loop are categorized as Change Condition in Chapter 3.

91

Apache Chrome GCC Mozilla MySQL Total Fix Strategy

Total # of loop-related bugs 11 4 8 12 10 45

of Resultless bugs
0* 0 0 0 0 0 0
0*1? 0 0 0 2 3 5 C(4)|S(1)
[0|1]* 0 1 1 1 1 4 S(4)
1* 1 2 3 6 3 15 B(4)|S(4)|O(7)

of Redundant bugs
Cross-iteration redundancy 7 1 2 1 1 12 B(4)|M(8)
Cross-loop redundancy 3 0 2 2 2 9 B(4)|M(5)

Table 6.2: Number of bugs in each root-cause category. B, M, S, C, and O rep-
resent different fix strategies: B(atching), M(emoization), S(kipping the loop),
C(hange the data structure), and O(thers). The numbers in the parentheses
denote the number of problems that are fixed using specific fix strategies.

inefficient loops with redundant root causes are fixed either by memoization
or batching the computation. In fact, as we will discuss later, simple analysis
can tell whether memoization or batching should be used to fix a problem.
The only problem is that there are no silver bullets for 1* loops.

Implications As we can see, resultless loops and redundant loops are both
common reasons that cause user-perceived performance problems in practice.
The root-cause categories discussed above also match with developers’ fix
strategy well — with a little bit amount of extra analysis, one can pretty much
predict the fix strategy based on the root-cause pattern. Consequently, tools
that cover these root causes will have high chances to satisfy the coverage and
accuracy requirements of performance diagnosis.

6.2.2.3 Caveats

Just as previous empirical study work, our empirical study above needs to be
interpreted with our methodology in mind. As we discussed in Chapter 3 and
Chapter 5, we use developers tagging and on-line developer/user discussion
to judge whether a bug report is about performance problems and whether
the performance problem under discussion is noticed and reported by users
or not. We follow the methodology used in Chapter 5 to judge whether the
root cause of a performance problem is related to loops or not. We do not

92

intentionally ignore any aspect of loop-related performance problems. Some
loop-related performance problems may never be noticed by end users or
never be fixed by developers, and hence skipped by our study. However, there
are no conceivable ways to study them.

We believe that the bugs in our study provide a representative sample of
the well-documented and fixed performance bugs that are user-perceived and
loop-related in the studied applications. Since we did not set up the root-cause
taxonomy to fit particular bugs in this bug benchmark suite, we believe our
taxonomy and diagnosis framework presented below will go beyond these
sampled performance bugs.

6.3 LDoctor Design

LDoctor is composed of a series of analysis routines, each designed to identify
whether a given loop belongs to one specific type of root causes, as we will
present below.

As briefly mentioned in Section 6.1, the design of these analysis routines
follows the following principles.

• Providing diagnosis information, not detecting bugs. LDoctor will be
used together with other performance diagnosis tools (Chapter 5) and
focus on a small number of loops that are most correlated with a specific
performance symptom, instead of being applied to the whole program.
Therefore, we will have different design trade-offs in terms of coverage
and accuracy, comparing with bug detection tools.

• Static-dynamic hybrid analysis. As we will see, static analysis alone will
not be able to provide all the needed information for performance diag-
nosis; dynamic analysis alone will incur too much unnecessary overhead.
Therefore, we will use static-dynamic hybrid approach throughout our
design.

• Using sampling to decrease runtime overhead. Loop-related perfor-
mance problems have the unique nature of repetitiveness, which make
them a natural fit for random sampling. Therefore, we will design differ-
ent sampling schemes for different analysis routines.

93

6.3.1 Resultless checker

Our resultless checker includes two parts. First, we use static analysis to figure
out which are the side-effect instructions in a loop and hence decide whether a
loop belongs to 0*, 0*1?, [0|1]*, or 1*. Second, for 0*1? and [0|1]* loops, we use
dynamic analysis to figure out what portion of loop iterations are resultless at
run time, which will help decide whether the loop is indeed inefficient.

6.3.1.1 Static analysis

We consider side-effect instructions as those instructions that write to variables
defined outside the loop. The analysis to identify side-effect instructions is
straightforward. We consider all functions that are called by a loop directly or
indirectly — a function F that updates variables defined outside Fmakes the
corresponding call statement in F’s caller a side-effect instruction. We consider
all library functions or function calls through function pointers as functions
that have side effects, unless the library functions are specially marked by us
in a white list.

After identifying side-effect instructions, it is straight-forward to catego-
rize loops into the four types discussed above. Loop 0* contains no side-effect
instructions. Loop 1* contains at least one side-effect instruction along ev-
ery path that starts from the loop header and ends at the loop header. The
remaining cases are either 0*1? or [0|1]*. Differentiating these two cases is
also straight-forward. In short, when the basic block that contains side-effect
instructions is part of the natural loop, the case belongs to [0|1]*; instead, if the
side-effect basic block is strictly post-dominated by one of the loop-exit blocks
and is dominated by the loop header, yet is not part of the natural loop, the
case belongs to 0*1?.

Finally, since the 1* pattern contains the least amount of information about
computation inefficiency, LDoctor will not report a loop’s root-cause type as
1*, if more informative root-cause type is identified for this loop (e.g., cross-
iteration or cross-loop redundancy).

94

6.3.1.2 Dynamic monitoring

Except for 0*, none of the other three type of loops are inefficient for sure.
We need dynamic analysis to figure out what portion of loop iterations are
resultless at run time, which will help decide whether the loop is indeed the
root cause of a user-perceived performance problem and worth fixing.

For a 0*1? loop, since it only generates results in the last iteration, we only
need to know the total number of iterations (or the average total number of
iterations when the loop has multiple instances) to figure out the resultless rate
of the loop. The implementation is straightforward — we initialize a local
counter to be 0 in the pre-header of the loop; we increase the counter by 1 in
the loop header to count the number of iterations; we dump that local counter
value to a global counter when the loop exits.

For [0|1]*, we need to count not only the total number of iterations, but
also the exact number of iterations that execute side-effect instructions at run
time. To do that, our instrumentation uses a local boolean variable HasResult
to represent whether one iteration have side effect or not. HasResult is set to
False in the loop header, and set to True after each side-effect instruction. It
will be used to help count the number of side-effect iterations. For performance
concerns, before instrumenting side-effect blocks, we check whether there are
post-domination relation between each pair of side-effect blocks. If both block
A and block B are side-effect blocks and block A post-dominates block B, we
only instrument block A to update HasResult.

We could speed up the above counting using sampling. However, since the
runtime overhead of the above counting is low, as shown in Section 6.4, our
current prototype of LDoctor does not use sampling for this part of runtime
analysis.

6.3.1.3 Limitations

The technique designed in this section has the following limitations. First,
when callee may have side effect, we will consider it will have side effect in
the caller side, and do not consider the real execution inside callee. This could
bring false negatives, because we could miss resultless cases, where side effect

95

instructions inside callee do not execute. Experiments results in Section 6.4
show that this is not a big issue, since we do not miss any resultless bugs.

Second, our dynamic instrumentation does not consider concurrent execu-
tion of the monitored loop, because most of buggy loops we study only execute
in one single thread. When the monitored loop is executed in multi-thread,
like loop marked with omp pragma, we need to synchronize updates to global
variables.

6.3.2 Redundancy checker

6.3.2.1 Design overview

To check whether there is redundant computation across different iterations
of one loop instance or across different instances of one static loop, we need to
address several challenges.

How to judge redundancy between two iterations/loop-instances? Given two
iterations (or loop-instances) i1 and i2, since they have the same source code,
a naive, yet expensive, solution is to record and compare the return value of
every memory read conducted by i1 and i2. Two better alternative solutions
are to record and compare only the values written or read by the side-effect
instructions, such as line 10 in Figure 6.3, or the source instructions5, such as
source[i] at line 11 of Figure 6.4.

Among the the above two potential solutions, our design chooses the
second one. The reason is that, if there is indeed redundancy, repetitive
patterns at the side-effect instructions are caused by repetitive patterns in
the source instructions. For the purpose of performance diagnosis, it is more
informative to track the cause, rather than the effect.

How to handle partial redundancy? In practice, redundant loops may be do-
ing largely the same, instead of exactly the same, computation across iterations
or loop instances. It is also possible that only some, instead of all, iterations in
a loop are doing redundant computation. We will discuss how we handle this
issue in Section 6.3.2.3.

5We define source instructions in a code region r as a set of memory-read instructions that
side-effect instructions in r depend on and do not depend on any other instructions inside r.

96

1 //Apache34463
2 //java.lang.String
3 static int indexOf(char[] source, int sourceCount, char[] target, int targetCount)
4 {
5 ...
6 char first = target[targetOffset];
7 int max = sourceCount − targetCount;
8 for (int i = 0; i <= max; i++) {
9 // Look for first character.
10 if (source[i] != first) {
11 while (++i <= max && source[i] != first);
12 }
13 // Found first character now look at the rest
14 if (i <= max) {
15 int j = i + 1;
16 int end = j + targetCount − 1;
17 for (int k = 1; j < end && source[j] == target[k]; j++, k++);
18 if (j == end) {
19 /∗ Found whole string. ∗/
20 return i ;
21 }
22 }
23 }
24 return −1;
25 }
26 //TelnetTask.java
27 public void waitForString(...)
28 {
29 + int windowIndex = −s.length();
30 − while (sb.toString().indexOf(s) == −1) {
31 + while (windowIndex++ < 0 || sb.substring(windowIndex).indexOf(s) == −1) {
32 sb.append((char) is.read());
33 }
34 }

Figure 6.4: A cross-loop redundant bug in Apache

97

How to lower the overhead of record-and-compare? Even if we only record and
compare the values returned by source instructions, instead of all instructions
in a loop, the runtime overhead and the log size would still be large. We will
use two ways to lower this time and spatial overhead. First, static analysis
can already tell some source instructions will always return the same value
across iterations/loop-instances, and hence need not be traced at run time.
Second, we can leverage the repetitive nature of performance problems and
use random sampling to lower the overhead without degrading the diagnosis
capability. We will discuss details of these two optimization in Section 6.3.2.4
and 6.3.2.5.

How to provide the most suitable fix-strategy suggestion? Finally, as discussed
in Section 6.2.2.2 and Table 6.2, memoization and batching are both common fix
strategies for redundant loops. To pick the right fix strategies to fix a redundant
loop, we will conduct some extra analysis. We will discuss this in Section
6.3.2.6.

6.3.2.2 Identifying source instructions

Informally, we use static analysis to identify a set of memory-read instructions
that the loop computation depends on. We refer to these instructions as source
instructions. The values returned from them at runtime will be tracked and
compared to identify redundant computation.

Specifically, we first identify side-effect instructions in the loop, as dis-
cussed in Section 6.3.1.1; we then conduct static slicing from these instructions,
considering both control and data dependency, to identify source instructions.

Our slicing ends when it reaches either a local-variable read conducted
outside the loop or a heap/global-variable read anywhere in the program. For
the latter case, our slicing stops because tracking data-dependency through
heap/global variables is complicated in multi-threaded C/C++ programs.
For the former case, not including local-variable reads inside the loop can
help reduce the amount of data that needs to be recorded. When there are
function calls inside the loop, we conduct slicing for return values of callees
and side-effect instructions inside callees. We omit encountered constant

98

values through slicing, because constant values will not influence whether a
loop or an iteration is redundant.

The analysis for cross-iteration and cross-loop redundancy analysis is
pretty much the same. The only difference is that, if a memory read instruction
i in a loop depends on the value returned by instruction j in an earlier iteration,
we stop tracing the dependence at i and consider i as a source instruction for
cross-iteration redundancy analysis, while we continue the slicing for cross-
loop redundancy analysis. For example, the instruction defining the value
of i is the only side-effect instruction for the loop at line 11 of Figure 6.4.
The source instructions calculated by cross-loop dependence analysis include
memory read source[i] inside the loop, and three values defined outside
the loop, which represent the initial value of i, the value of max and first
respectively. In contrast, the source instructions calculated by cross-iteration
dependence analysis include value i defined in previous iteration, memory
read source[i], and two values defined outside the loop (max and first).

6.3.2.3 Identifying redundant loops

After identifying source instructions, we instrument these source instructions,
so that the values returned by these memory read instructions can be recorded
at run time. Specifically, we will assign a unique ID for each source instruction,
and a pair of< InstID,Value>will be recorded at run time with the execution
of a source instruction. Our trace also includes some delimiters and meta
information that allows trace analysis to differentiate values recorded from
different loop iterations, different loop instances, and so on.

After collecting values returned by source instructions from every iteration
of one or multiple loop instances, we need to process the trace and decide
whether the loops under study contain cross-iteration redundancy or cross-
loop redundancy. We will first present our high-level algorithms, followed by
the exact implementation in our prototype.

High-level algorithms For cross-iteration redundancy, we need to answer
two questions. First, how to judge whether two iterations are doing redundant
work — should the two iterations conduct exactly the same computation?

99

//Apache37184 & Patch
//Project.java
public synchronized void
addBuildListener(BuildListener listener) {
+ if (!newListeners.contains(listener)) {

newListeners.addElement(listener);
+ }
}

private void fireMessageLoggedEvent(...) {
...
while (iter.hasNext()) {
BuildListener listener = (BuildListener) iter.next();
listener.messageLogged(event);

}
}

Figure 6.5: A cross-iteration redundant bug in Apache

Second, is a (dynamic) loop problematic when it contains only few iterations
that are redundant with each other?

Our answer to these two questions stick to one principle: there should be
sufficient amount of redundant computation to make a loop likely root-cause
for a user-perceived performance problem and to make itself worthwhile to
get optimized by the developers. Consequently, for the first question, LDoctor
takes a strict definition — only iterations that are doing exactly the same
computation are considered redundant. Since one iterating may not contain too
much computation, a weaker definition here may lead to many false positives.
For the second question, we believe there should be a threshold. In our current
prototype, when the number of distinct iterations is less than half of the total
iterations, we consider the loop is cross-iteration redundant.

For example, Figure 6.5 shows a loop from Apache-Ant that contains cross-
iteration redundancy. As we can see, under the problem triggering input, only
several distinct listeners are contained inside the vector, and most of iterations
of the loop inside function fireMessageLoggedEvent are doing exactly the
same computation.

For cross-loop redundancy, we need to answer similar questions, especially
how to judge whether two loop instances are doing redundant work — should

100

they contain exactly the same number of iterations and doing exactly the same
computation in each iteration?

Our answers here are different from our answers above for cross-iteration
redundancy analysis. We do not require two loop instances to conduct exactly
the same computation to be considered redundant. The rationale is that
a whole loop instance contains a lot of computation, much more than one
iteration in general. Even if only part of its computation is redundant, it could
still be the root-cause of a user-perceived performance problem and worth
developers’ attention.

In fact, in practice, we almost have never seen cases where different loop
instances are doing exactly the same computation. For example, Figure 6.3
demonstrates a cross-loop redundancy problem in Mozilla. Here, the latter
instances contain more iterations than previous instances. Figure 6.4 shows an
example in Apache, The inner loop, which starts from line 8, searches from the
beginning of a string sb for a target sub-string s. Since the outer loop, which
starts on line 30, appends one character to sb in every iteration, every inner
loop instance is doing computation that is similar, but not exactly the same,
from its previous instance.

Detailed algorithm implementation The implementation of checking cross-
iteration redundancy is straightforward. We will record a sequence of <
InstID,Value > pair for every monitored iteration, with each InstID repre-
senting a unique source instruction. We consider two iterations to be redun-
dant, if their sequences are exactly the same. To make sure a loop contains
sufficient redundant computation, we calculate a loop’s cross-iteration redun-
dancy rate — dividing the total number of iterations in the loop by the number
of distinct iterations. The smaller the rate is, with 1 being the minimum possi-
ble value, the less cross-iteration redundancy the loop contains.

The implementation of checking cross-loop redundancy goes through
several steps. First, for k dynamic instances of a static loop L that appear at run
time, denoted as l1, l2, ..., lk, we check whether redundancy exists between l1
and l2, l2 and l3, and so on. Second, we compute a cross-loop redundancy rate
for L— dividing the number of redundant pairs by k−1. The smaller the rate

101

is, with 0 being the minimum possible value, the less cross-loop redundancy L
contains. Here we only check redundancy between consecutive loop instances,
because checking the redundancy between every pairs of loop instances would
be very time consuming.

The key of this implementation is to judge whether two dynamic loop in-
stances l1 and l2 are redundant or not. The challenge is that l1 and l2 may have
executed different number of iterations; in different iteration, a different set of
source instructions may have executed. Therefore, we cannot simply merge
values from different source instructions and iterations together and compare
two big data sequence. Instead, we decide to check the redundancy for each
source instruction across l1 and l2 first, and then use the average redundancy
rate of all source instructions as the cross-loop redundancy rate between l1 and
l2.

We calculate the redundancy for one source instruction I by normalizing
the edit-distance between the two sequences of values returned by I in the two
loop instances. The exact formula is the following:

Redundancy(I) =
dist(SeqA,SeqB)−(len(SeqA)− len(SeqB))

len(SeqB)

Here, SeqA and SeqB represent the two value sequences corresponding to
I from two loop instances, with SeqA being the longer sequence. distmeans
edit distance, and len means the length of a value sequence. Since the edit
distance is at least the length-difference between the two sequences and at
most the length of the longer sequence, we use the subtraction and division
shown in the formula above to normalize the redundancy value.

6.3.2.4 Dynamic performance optimization: sampling

Recording values returned by every source instructions would lead to huge
runtime time. To lower the overhead, we use random sampling to reduce the
number of instructions that we track at run time. Due to the repetitive nature
of performance bugs, we will still be able to recognize redundant computation
as long as the sampling rate is not too sparse (we will evaluate this in Section

102

6.4). Our sampling scheme requires almost no changes to our redundancy
identification algorithm discussed in Section 6.3.2.3.

Cross-iteration redundancy analysis Our high-level sampling strategy is
straightforward: randomly decide at the beginning of every iteration whether
to track the values returned by source instructions in this iteration.

The implementation is similar with previous sampling work [56, 57]. Specif-
ically, we create a clone of the original loop iteration code, including functions
called by the loop directly or indirectly, and insert value-recording instructions
along the cloned copy. We then insert a code snippet that conducts random
decision to the beginning of a loop iteration. Two variables CurrentID, which
is initialized as 0, and NextSampleID, which is initialized by a random integer,
are maintained in this code snippet. CurrentID is increased by 1 for each
iteration. When it matches NextSampleID, the control flow jumps to the value-
recording clone of the loop iteration and the NextSampleID is increased by a
random value. Different sampling sparsity setting will determine the range
from which the random value is generated.

Cross-loop redundancy analysis At high level, we randomly decide at the
beginning of every loop instance whether to track values for this instance.
Since we will need to compare two consecutive loop instances for redundancy,
once we decide to sample one loop instance, we will make sure to sample the
immediately next loop instance too.

The implementation is similar with that for cross-iteration redundancy
analysis. The only difference includes: (1) clone is made for the whole loop
and the sampling control is done in the pre-header of the loops; (2) sampling is
conducted when CurrentID equals either NextSampleID or NextSampleID+1,
with NextSampleID increased by a random value in the latter case.

Handling recursive functions We also conduct sampling to our redundancy
analysis for recursive functions. For a recursive function, we first create an
instrumented clone copy of the whole function body. We then add a sampling-
control code snippet at the entry point of the function, where CurrentID
and NextSampleID are maintained to decide whether to execute the original
function body or the instrumented value-recording clone copy. We also create

103

clones for all the callee functions of the recursive function under study, so that
the sampling decision can be correctly conducted throughout the call chain.

6.3.2.5 Static analysis for performance optimization

We conduct a series of static analysis to reduce the number of instructions we
need to monitor.

First, we identify and avoid monitoring memory reads whose return values
can be statically proved to not change throughout one loop instance (i.e., for
cross-iteration redundancy analysis) or multiple loop instances (i.e., for cross-
loop redundancy analysis). Since we implement LDoctor at LLVM byte-code
level, a major part of this analysis is already done by LLVM, which lifts loop-
invariant memory accesses out of loops. The only extra analysis we did is to
prune memory reads whose reading address is loop invariant, and there are
no writes inside the loop which are possibly conducted on the same address.
For example, the read address of aNode.localName and aNode.namespaceURI
in Figure 6.1 is loop-invariant, and there are no write conducted on the same
address. We do not need to record these two memory reads during cross-
iteration redundancy analysis.

Second, we identify and avoid monitoring some memory reads whose
return values can be statically proved to be different throughout one loop
instance in cross-iteration redundancy analysis. Specifically, for read on loop
induction variable, such as i for loop at line 11 of Figure 6.4, we also know
for sure that their return values are different in different iterations. If source
instructions include read on loop induction variables, we know that there
could not be cross-iteration redundancy. We use scalar evolution analysis
provided by LLVM to identify induction variables and avoid tracking their
values.

Third, sometimes we only record the memory-address range of a sequence
of memory read, instead of the value returned by every read, in cross-loop
redundancy analysis. The loop at line 11 in Figure 6.4 shows an example. The
content of array source is not heavily modified throughout the outer-loop,
which starts at line 30 in the Figure 6.4. Therefore, to check whether different
inner loop instances read similar sequence of array data, we only need to record

104

the starting and ending array index touched by each inner loop, significantly
reduce the monitoring overhead. To accomplish this optimization, we again
leverage the scalar evolution analysis provided by LLVM. The scalar evolution
analysis tells us whether the address of a memory read instruction is a loop
induction variable. For example, the address for memory read source[i] is
added by one in each loop iteration, so it is a loop induction variable. From
the scalar evolution analysis, we know that the starting address is source plus
the initial value of i, and the ending address is source plus the ending value
of i.

6.3.2.6 Fix strategy recommendation

As discussed in Section 6.2.2, extra analysis is needed to decide whether batch-
ing or memoization should be suggested to fix a loop that conducts redundant
computation.

For cross-iteration redundancy, batching is often used towards batching
I/O related operations, based on our empirical study. Therefore, we treat I/O
related redundancy separately. Specifically, when the only side effect of a loop
is I/O operations and the same statement(s) is executed in every loop iteration,
we report this as I/O related redundancy problem and suggest batching as a
potential fix strategy.

For cross-loop redundancy, whether to use memoization or batching often
depends on which strategy is cheaper to use. LDoctor uses a simple heuris-
tic. If the side effect of each loop instance is to update a constant number
of memory locations, like the buggy loop in Figure 6.3 and Figure 6.4, we
recommend memoization. Instead, if the side effect is updating an sequence of
memory locations, with the number of locations increasing with the workload,
memoization is unlikely to help save much computation.

6.4 Evaluation

6.4.1 Methodology

Implementation and Platform We implement LDoctor in LLVM-3.4.2 [52],
and conduct our experiments on a i7-960 machine, with Linux 3.11 kernel.

105

Root
BugID KLOC P. L. Cause Fix

Mozilla347306 88 C 0*1? C
Mozilla416628 105 C 0*1? C
Mozilla490742 N/A JS C-I B
Mozilla35294 N/A C++ C-L B
Mozilla477564 N/A JS C-L M

MySQL27287 995 C++ 0*1?,C-L C
MySQL15811 1127 C++ C-L M

Apache32546 N/A Java C-I B
Apache37184 N/A Java C-I M
Apache29742 N/A Java C-L B
Apache34464 N/A Java C-L M
Apache47223 N/A Java C-L B

GCC46401 5521 C [0|1]* S
GCC1687 2099 C C-I M
GCC27733 3217 C C-I M
GCC8805 2538 C C-L B
GCC21430 3844 C C-L M
GCC12322 2341 C 1* S

Table 6.3: Benchmark information. N/A: we skip the size of benchmarks that
are extracted from real-world applications. Root cause “C-I” is short for cross-
iteration redundancy. Root cause “C-L” is short for cross-loop redundancy. C,
B, M, and S represent different fix strategies, as discussed in Table 6.2.

Benchmarks We use 18 out of the 45 bugs listed in Table 6.2 as our evaluation
benchmarks. Among these 18, seven are extracted from Java or JavaScript
programs and re-implemented in C++, as LDoctor currently only handles
C/C++ programs; one is extracted from a very old version of Mozilla. The
remaining bugs listed in Table 6.2 are much more difficult to use as benchmarks,
either because they depend on special hardware/software environment or
because they involve too complex data structures to extract. Overall, these 18
bugs cover a wide variety of performance root causes, as shown in Table 6.3.

Metrics Our experiments are designed to evaluate LDoctor from three main
aspects:

• Coverage. Given our benchmark suite that covers a wide variety of
real-world root causes, can LDoctor identify all those root causes?

106

Reported Fix
BugID Root Cause Suggestion

Mozilla347306 X X
Mozilla416628 X X
Mozilla490742 X X
Mozilla35294 X X
Mozilla477564 X X

MySQL27287 X 7
MySQL15811 X X

Apache32546 X X
Apache37184 X X
Apache29742 X X
Apache34464 X X
Apache47223 X X

GCC46401 X X
GCC1687 X X
GCC27733 X X
GCC8805 X X
GCC21430 X X
GCC12322 X 7

Table 6.4: Coverage Results.

• Accuracy. When analyzing non-buggy loops, will LDoctor generate any
false positives?

• Performance. What is the runtime overhead of LDoctor?

Evaluation settings The imagined usage scenario of LDoctor is that one
will apply LDoctor to identify detailed root causes and provide fix-strategy
suggestion for a small number of suspicious loops that are most correlated
with the specific performance problem.

Our evaluation uses the statistical performance diagnosis tool discussed
in Chapter 5 to process a performance problem and identify one or a few
suspicious loops for LDoctor to analyze. For 14 out of the 18 benchmarks,
statistical performance debugging identifies the real root-cause loop as the top
ranked suspicious loop. For the remaining benchmarks, the real root-cause
loops are ranked number 2, 2, 4, and more than 5.

To evaluate the coverage, accuracy, and performance of LDoctor, we mainly
conduct three sets of evaluation. First, we apply LDoctor to the real root-cause
loop to see if LDoctor can correctly identify the root-cause category and pro-

107

vide correct fix-strategy suggestion. Second, we apply statistical performance
debugging (Chapter 5) to all our benchmarks and apply LDoctor to the top 5
ranked loops6 to see how accurate LDoctor is. Third, we evaluate the runtime
performance of applying LDoctor to the real root-cause loop.

For all benchmarks we use, real-world users have provided at least one
problem-triggering input in their on-line bug bugs. We use these inputs in our
runtime analysis.

As discussed in Section 6.3, our analysis contains several configurable
thresholds. In our evaluation, we use 0.001 as the resultless rate threshold
for identifying 0*1? loops, 0.01 as the resultless rate threshold for identifying
[0|1]* loops, 0.9 as the cross-loop redundancy rate, and 2 as the cross-iteration
redundancy rate (i.e., the number of distinct iterations is less than half of the
total iterations).

All the analysis and performance results presented below regarding cross-
loop analysis is obtained using 1/100 sampling rate; all the results regarding
cross-iteration analysis is obtained using 1/1000 sampling rate. We use sparser
sampling rate in the latter case, because there tend to be more loop iterations
than loop instances. All our diagnosis results require only one run under the
problem-triggering input.

6.4.2 Coverage results

Overall, LDoctor provides good diagnosis coverage, as shown in Table 6.4.
LDoctor identifies the correct root cause for all 18 benchmarks, and suggests
fix strategies that exactly match what developers took in practice for 16 out
of 18 cases. There are only two cases where LDoctor fails to suggest the fix
strategy that developers used. For MySQL#27287, the root-cause loop is both
cross-loop redundant and 0*1? inefficient. LDoctor suggests both changing
data structures and memoization as fix strategies. In practice, the developers
find a new data structure that can eliminate both root causes. For GCC#12322,
LDoctor correctly tells that the loop under study does not contain any form of
inefficiency and produce results in every iteration, and hence fails to suggest

6Some extracted benchmarks have fewer than 5 loops. We simply apply LDoctor to all
loops in these cases.

108

BugID 0*1? [0|1]* C-Ib C-Im C-L Total

Mozilla347306 - - - - - -
Mozilla416628 - - - - - -
Mozilla490742 - - - - - -
Mozilla35294 - - - - - -
Mozilla477564 - - - - - -

MySQL27287 - 01 - - - 01
MySQL15811 - - - - - -

Apache32546 - - - - - -
Apache37184 - - - - - -
Apache29742 - - - - - -
Apache34464 - - - - - -
Apache47223 - - - - - -

GCC46401 - 01 - - - 01
GCC1687 - - - - - -
GCC27733 - - - - - -
GCC8805 - 02 - - - 02
GCC21430 01 03 - 01 01 06
GCC12322 01 01 - 01 01 04

Table 6.5: False positives of LDoctor, when applying to top 5 loops reported
by statistical performance diagnosis for each benchmark. ‘-’ represents zero
false positive. Other cells report real false positives and benign false positives,
which is in the subscript.

any fix strategy. In practice, GCC developers decide to skip the loop, which
will cause some programs compiled by GCC to be less performance-optimal
than before. However, GCC developers feel that it is worthwhile considering
the performance impact of the original loop to the GCC compilation process.
Providing this type of fix strategy suggestion goes beyond the capability of
LDoctor.

6.4.3 Accuracy results

As shown in Table 6.5, LDoctor is accurate, having 0 real false positive and 14
benign false positives for all the top 5 loops.

Here, benign false positives mean that the LDoctor analysis result is true —
some loops are indeed cross-iteration/loop redundant or indeed producing
results in only a small portion of all the iterations. However, those problems
are not fixed by developers in their performance patches.

109

There are several reasons for these benign performance problems. The
main reason is that they are not the main contributor to the performance
problem perceived by the users. This happens to 12 out of the 14 benign
cases. In fact, this is not really a problem for LDoctor in real usage scenarios,
because statistical debugging can accurately tell that these loops are not top
contributors to the performance problems. The remaining two cases happen
when fixing the identified redundant/resultless problems are very difficult
and hence developers decide not to fix them.

The accuracy of LDoctor benefits from its runtime analysis. For example, 4
benchmarks contain loops that only generate side-effect in the last iteration
among their top 5 suspicious loops. However, these loops are actually not
inefficient because the portion of resultless iterations is small.

The good accuracy of LDoctor can actually help improving the accuracy of
identifying which loop is the root cause loop. For example, the real root-cause
loop of Apache#34464 and GCC#46401 both rank number two by the statistical
performance diagnosis tool. LDoctor can tell that the number one loops in both
cases do not contain any form of inefficiency, resultless or redundancy. This
result can potentially used to improve the accuracy of identifying root-cause
loops.

6.4.4 Performance

As shown in Table 6.6, the performance of LDoctor is good. The overhead is
consistently under or around 5% except for one benchmark, Mozilla#347306.
We believe LDoctor is promising for potential production run usage. Of course,
if we apply LDoctor to multiple loops simultaneously, the overhead will be
higher. However, the current results are obtained by running the program
only once under the problem-triggering workload. The sampling nature of
LDoctor will allow us to keep the overhead low at the exchange of running
the program for a couple of more times, if needed.

As we can also see from the table, our performance optimization discussed
in Section 6.3.2.4 and 6.3.2.5 has contributed a lot to the good performance of
LDoctor.

110

LDoctor w/o optimization

BugID Resultless C-L R. C-I R. C-L R. C-I R.

Mozilla347306 1.07% 22.40% 10.17% 304.37X 468.74X
Mozilla416628 0.80% 4.10% 2.99% 567.51X 85.6X

MySQL27287 ∼0 1.66% - 109.55X 352.07X
MySQL15811 - 0.03% - 227.04X 424.44X

GCC46401 3.12% 3.80% 5.95% 21.07X 38.44X
GCC1687 - / ∼0 / 142.29X
GCC27733 ∼0 / 4.73% / 17.41X
GCC8805 - ∼0 ∼0 2.22X 3.52X
GCC21430 - 5.46% 0.69% 107.20X 159.89X
GCC12322 - 1.75% ∼0 21.07X 38.44X

Table 6.6: Runtime overhead of applying LDoctor to the buggy loop, with
and without optimizations. Only results from non-extracted benchmarks are
shown. -: static analysis can figure out the results and hence no dynamic
analysis is conducted. /: not applicable.

Without sampling, while still applying our static optimization, our redun-
dancy analysis would lead to over 100X slowdown for six benchmarks.

The buggy loops of MySQL#27287 and MySQL#15811 access arrays. After
changing to tracking the initial and ending memory-access addresses of the
array, instead of the content of the whole array accesses, the overhead is
reduced from 11.77% to 1.66% for MySQL#27287, and from 20.46% to 0.03%
for MySQL#15811 respectively (sampling is conducted consistently here).

The side-effect of the buggy loop for MySQL#15811 is to calculate the length
of a string. The variable representing the length is an induction variable. The
side-effect of the buggy loop for MySQL#27287 is to calculate the index of a
searched target, and the variable representing the index is also an induction
variable. We can reply on static analysis to figure out that these two loops are
not cross-iteration redundant.

We also tried sampling with different sampling rates. For cross-loop re-
dundancy, we also conduct experiments under sampling rate 1 out of 1000.
Both runtime overhead and collected sample will be reduced. Mozilla#347306
is still the benchmark with largest overhead, but the overhead is reduced to
0.49%. For two benchmarks, GCC#8805 and GCC#12322, we cannot sample
more than 10 loop instances and hence cannot draw strong conclusion about

111

their root-cause type. For all other benchmarks, we can still have more than 10
loop instances and get exactly the same root-cause analysis results presented
above.

We also conduct cross-iteration redundant experiment under different sam-
pling rates. When the sampling rate is 1 out of 100, there are two benchmarks,
whose runtime overhead is larger than 30%. The overhead for Mozilla#347306
is 59.57%, and the overhead of GCC#21430 is 30.65%. When changing sam-
pling rate to 1 out of 10000, Mozilla#347306 has the largest overhead, which
is 4.47%. And Mozilla#347306 is the only one whose overhead is larger than
2%. Except for GCC#12322, all other benchmarks will have more than 100
iterations sampled, under the sample rate is 1 out of 10000. Consequently, the
same root-cause analysis results will be reported for these benchmarks as the
ones presented above.

6.5 Conclusion

Performance diagnosis is time consuming and also critical for complicated
modern software. LDoctor tries to automatically pin-point the root cause of
the most common type of real-world performance problems, inefficient loops,
and provide fix-strategy suggestions to developers. It achieves the coverage,
accuracy, and performance goal of performance diagnosis by leveraging (1)
a comprehensive root-cause taxonomy; (2) a hybrid static-dynamic program
analysis approach; and (3) customized random sampling that is a natural fit
for performance diagnosis. Our evaluation shows that LDoctor can accurately
identify detailed root causes of real-world inefficient loop problems and pro-
vide fix-strategy suggestions. Future work can further improve LDoctor by
providing more detailed fix suggestions and providing more information to
help diagnose and fix 1* loops.

112

Chapter 7

Conclusion

Performance bugs are software implementation mistakes that can cause inef-
ficient execution. Performance bugs are common and severe, and they have
already become one major source of software’s performance problems. With
the increasing complexity of modern software and workloads, the meager
increases of single-core hardware performance, and pressing energy concerns,
it is urgent to combat performance bugs.

This dissertation targets to improve the state-of-the-art performance bug
fighting techniques. We start from an empirical study on real-world perfor-
mance bugs in order to get a better understanding of performance bugs in
Chapter 3. Inspired by our empirical study, we build a series of rule-based
static checkers to identify previously unknown performance bugs in Chapter 4.
We explore how to apply statistical debugging to diagnose user-perceived
performance bugs in Chapter 5. Statistical debugging cannot answer all the
questions, so we design a series of static-dynamic hybrid analysis for inefficient
loops to provide fine-grained diagnosis information in Chapter 6.

In this chapter, we first summarize our study work and built techniques in
Section 7.1. We then list a set of lessons learned over the course of our work in
Section 7.2. Finally, we discuss directions for future research in Section 7.3.

7.1 Summary

This dissertation can be divided into three parts: performance bug understand-
ing, performance bug detection, and performance failure diagnosis. We now
summarize each part in turn.

113

7.1.1 Performance bug understanding

Like functional bugs, research on performance bugs should also be guided
by empirical studies. Poor understanding of performance bugs is part of
the causes of today’s performance-bug problem. In order to improve the
understanding of real-world performance bugs, we conduct the first empirical
study on 110 real-world performance bugs randomly sampled from five open-
source software suites (Apache, Chrome, GCC, Mozilla, and MySQL).

Following the lifetime of performance bugs, our study is mainly performed
in four dimensions. We study the root causes of performance bugs, how they
are introduced, how to expose them, and how to fix them. The main findings
of our study include that (1) performance bugs have dominating root causes
and fix strategies, which are highly correlated with each other; (2) workload
mismatch and misunderstanding of APIs’ performance features are two major
reasons why performance bugs are introduced; and (3) around half of the
studied performance bugs require inputs with both special features and large
scales to manifest.

Our empirical study can guide future research on performance bugs, and
it has already motivated our own bug detection and diagnosis projects.

7.1.2 Performance bug detection

Inspired by our empirical study, we hypothesize that efficiency rules widely
exist in software, rule violations can be statically checked, and violations also
widely exist. To test our hypothesis, we manually inspect final patches of
fixed performance bugs from Apache, Mozilla, and MySQL in our studied
performance-bug set. We extract efficiency rules from 25 bug patches and
implement static checkers for these rules.

In total, our static checkers find 332 previously unknown Potential Per-
formance Problems (PPPs) from the latest versions of Apache, Mozilla, and
MySQL. Among them, 101 were inherited from the original buggy versions
where final patches are applied. Tools are needed to help developers automat-
ically and systematically find all similar bugs. 12 PPPs were introduced later.
Tools are needed to help developers avoid making the same mistakes repeat-
edly. 219 PPPs are found by cross-application checking. There are generic rules

114

among different software. Our experimental results verify all our hypothesis.
Rule-based performance-bug detection is a promising direction.

7.1.3 Performance failure diagnosis

Due to the preliminary tool support, many performance bugs escape from
in-house performance testing and manifest in front of end users. After users
report performance bugs, developers need to diagnose them and fix them.
Diagnosing user-reported performance failure is another key aspect of fighting
performance bugs.

We investigate the feasibility and design space to apply statistical debug-
ging to performance failure diagnosis. After studying 65 user-reported per-
formance bugs in our bug set, we find that the majority of performance bugs
are observed through comparison, and that many user-file performance-bug
reports contain not only bad inputs, but also similar and good inputs. Sta-
tistical debugging is a natural fit for user-reported performance bugs. We
evaluate three types of widely used predicates and two representative statis-
tical models. Our evaluation results show that branch predicates plus two
statistical models can effectively diagnose user-reported performance failure.
Basic model can help diagnose performance failure caused by incorrect branch
decision, and ∆LDA model can identify inefficient loops. We apply sampling
to performance failure diagnosis. Our experimental results show that a special
nature of loop-related performance bugs allows sampling to lower runtime
overhead without sacrificing diagnosis latency, which is very different from
functional failure diagnosis.

We build LDoctor to further provide fine-grained diagnosis information for
inefficient loops through two steps. We first figure out a root-cause taxonomy
for common inefficient loops through a comprehensive study on 45 inefficient
loops. Our taxonomy contains two major categories, resultless and redundancy,
and several subcategories. Guided by our taxonomy, we then design a series of
analysis for inefficient loops. Our analysis focuses its checking on suspicious
loops pointed out by statistical debugging, hybridizes static and dynamic
analysis to balance accuracy and performance, and relies on sampling and
other designed optimization to further lower runtime overhead. We evaluate

115

LDoctor using 18 real-world inefficient loops. The evaluation results show that
LDoctor can cover most root-cause subcategories, report few false positives,
and bring a low runtime overhead.

7.2 Lessons Learned

In this section, we present a list of general lessons we learned while working
on this dissertation.

Identifying performance failure is hard. Performance bugs do not have
fail-stop symptoms. Both developers and end users face challenges in identify-
ing performance failure runs. Performance bugs tend to hide longer in software
than functional bugs (Section 3.8). Some performance bugs, which can be trig-
gered by almost all inputs, can still escape from in-house performance testing
(Section 3.6). Fearing that described symptoms are not convincing enough,
end users sometimes use more than one comparison-based method when
they file performance-bug reports (Section 5.2). Techniques targeting auto-
matically identifying performance failure runs, such as automated oracles for
performance bugs and performance assertion, are solely needed.

Similar mistakes can be made everywhere. Implementation mistakes
are usually caused by developers’ misunderstanding of programming lan-
guages, API, workload, documents, and so on. Before the misunderstanding is
corrected, developers definitely would make similar mistakes in other places.
Misunderstanding could also be shared among different developers, and the
same mistakes could also be made by more than one developer. When fixing
one bug, it is necessary to systematically check software to find similar bugs
and fix them altogether.

Non-buggy codes can become buggy. Some performance bugs in our
benchmark set are not born buggy. They become performance bugs, due
to workload shift, code changes in other part of the software, or hardware
changes. Periodic workload study, performance change impact analysis, and
systematically profiling when porting software to new hardware are needed
during software development and maintenance.

Static analysis is not accurate enough. Our experience shows that static
analysis is not good enough when analyzing performance bugs, because some

116

codes are inefficient only under certain workloads. In Chapter 4, accurately
checking some efficiency rules relies on runtime or workload information. Our
detection techniques are only based on static checking, and this is one reason
why we have false positives. In Chapter 6, static analysis can only identify
static resultless types and conduct slicing. We need dynamic information
about portions of resultless iterations and values of source instructions, so we
build LDoctor based on static-dynamic hybrid approaches.

7.3 Future Work

Future work can explore how to combat performance bugs through different
aspects from this thesis. The following are several potential research opportu-
nities:

On-line workload monitoring. Our empirical study in Chapter 3 shows
that many performance bugs are introduced due to developers’ misunder-
standing of workloads in reality. We think that monitoring workloads from
production runs is a possible solution. Production-run techniques need to
keep a low runtime overhead. How to collect accurate workload information
from deployed software in a low overhead remains an open issue.

Improving the accuracy of static analysis by leveraging existing dynamic
information. One lesson we learned is that static analysis alone is not accurate
enough, and that dynamic information is needed (Section 7.2). Systems may
have already recorded some dynamic information through logging or tracing.
How to leverage existing dynamic information to improve the results of static
analysis remains an open issue.

Applying sampling to existing in-house performance-bug techniques.
Sampling can help lower runtime overhead, while recording dynamic infor-
mation. Due to performance bugs’ repetitive patterns, sampling does not hurt
latency as much as functional bugs. In Chapter 5 and Chapter 6, we show how
sampling helps statistical debugging and LDoctor. How to leverage sampling
to make other existing in-house performance-bug detection and performance
failure diagnosis techniques applicable in production runs remains an open
issue.

117

Test input generation for performance bugs. In Chapter 3, we discuss
that almost half of the studied performance bugs require inputs with both
special features and large scales to manifest. Existing techniques are designed
to generate inputs with good code coverage and focus only on special features.
How to extend existing input-generation techniques with an emphasis on large
scales remains an open issue. Another important problem during performance
testing is to automatically judge whether a performance bug has occurred.
How to leverage existing dynamic performance-bug detection techniques to
build test oracles for performance bugs also remains an open issue.

Performance-aware annotation system. Our study in Chapter 3 shows
that performance-aware annotations, which can help developers maintain and
communicate APIs’ performance features, can help avoid performance bugs.
How to automatically identify performance features, such as the existence of
lock or IO, through program analysis or document mining on existing software,
remains an open issue.

7.4 Closing Words

Performance bugs are software implementation mistakes that can slow down
the program. With new software and hardware trends and pressing energy
concerns, it is very important to fight performance bugs. We hope that this
dissertation can help researchers and developers by providing a better under-
standing of real-world performance bugs. We also hope that this dissertation
can provide hints and implications for developers when they try to identify
previously unknown performance bugs and diagnose user-perceived perfor-
mance failure.

118

References

[1] http://sourceware.org/binutils/docs/gprof/.

[2] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. 2010.
Performance analysis of idle programs. In Proceedings of the ACM In-
ternational Conference on Object Oriented Programming Systems Languages
and Applications, 739–753. OOPSLA ’10, New York, NY, USA: ACM.

[3] Elton Alves, Milos Gligoric, Vilas Jagannath, and Marcelo d’Amorim.
2011. Fault-localization using dynamic slicing and change impact anal-
ysis. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, 520–523. ASE ’11, Washington, DC,
USA: IEEE Computer Society.

[4] David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu. 2007.
Statistical debugging using latent topic models. In Proceedings of the
18th European Conference on Machine Learning, 6–17. ECML ’07, Berlin,
Heidelberg: Springer-Verlag.

[5] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. 2013.
Production-run software failure diagnosis via hardware performance
counters. In Proceedings of the Eighteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, 101–
112. ASPLOS ’13, New York, NY, USA: ACM.

[6] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: automating
root-cause diagnosis of performance anomalies in production software.
In Proceedings of the 10th USENIX Conference on Operating Systems De-

119

sign and Implementation, 307–320. OSDI’12, Berkeley, CA, USA: USENIX
Association.

[7] Woongki Baek, and Trishul M. Chilimbi. 2010. Green: a framework for
supporting energy-conscious programming using controlled approxima-
tion. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 198–209. PLDI ’10, New York, NY,
USA: ACM.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent
dirichlet allocation. J. Mach. Learn. Res. 3:993–1022.

[9] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. 2013.
A bloat-aware design for big data applications. In Proceedings of the
2013 International Symposium on Memory Management, 119–130. ISMM
’13, New York, NY, USA: ACM.

[10] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. Wise: Auto-
mated test generation for worst-case complexity. In Proceedings of the
31st International Conference on Software Engineering, 463–473. ICSE ’09,
Washington, DC, USA: IEEE Computer Society.

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex sys-
tems programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, 209–224. OSDI’08, Berkeley, CA, USA:
USENIX Association.

[12] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan,
Mohamed Nasser, and Parminder Flora. 2014. Detecting performance
anti-patterns for applications developed using object-relational mapping.
In Proceedings of the 36th International Conference on Software Engineering,
1001–1012. ICSE 2014, New York, NY, USA: ACM.

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: a platform for in-vivo multi-path analysis of software systems. In

120

Proceedings of the Sixteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 265–278. ASPLOS
XVI, New York, NY, USA: ACM.

[14] Andy Chou, Benjamin Chelf, Dawson Engler, and Mark Heinrich. 2000.
Using meta-level compilation to check flash protocol code. In Proceedings
of the Ninth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 59–70. ASPLOS IX, New York, NY,
USA: ACM.

[15] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. 2001. An empirical study of operating systems errors. In Pro-
ceedings of the Eighteenth ACM Symposium on Operating Systems Principles,
73–88. SOSP ’01, New York, NY, USA: ACM.

[16] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-
sensitive profiling. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, 89–98. PLDI ’12,
New York, NY, USA: ACM.

[17] Emilio Coppa, Camil Demetrescu, Irene Finocchi, and Romolo Marotta.
2014. Estimating the empirical cost function of routines with dynamic
workloads. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization, 230:230–230:239. CGO ’14, New
York, NY, USA: ACM.

[18] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying
systems rules using rule-directed symbolic execution. In Proceedings
of the Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 329–342. ASPLOS ’13, New
York, NY, USA: ACM.

[19] Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2011. Min-
ing hot calling contexts in small space. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, 516–527. PLDI ’11, New York, NY, USA: ACM.

121

[20] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei
Lin, Qiang Fu, Dongmei Zhang, and Tao Xie. 2015. Log2: A cost-aware
logging mechanism for performance diagnosis. In 2015 USENIX An-
nual Technical Conference (USENIX ATC 15), 139–150. Santa Clara, CA:
USENIX Association.

[21] Amer Diwan, Matthias Hauswirth, Todd Mytkowicz, and Peter F.
Sweeney. 2011. Traceanalyzer: a system for processing performance
traces. Softw., Pract. Exper. 41(3):267–282.

[22] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2008. A scalable
technique for characterizing the usage of temporaries in framework-
intensive java applications. In Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, 59–70. SIG-
SOFT ’08/FSE-16, New York, NY, USA: ACM.

[23] Robert F. Dugan. 2004. In Proceedings of the 4th International Workshop on
Software and Performance, 37–48. WOSP ’04, New York, NY, USA: ACM.

[24] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. 2001. Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, 57–72. SOSP ’01, New York, NY, USA:
ACM.

[25] Lu Fang, Liang Dou, and Guoqing Xu. 2015. Perfblower: Quickly de-
tecting memory-related performance problems via amplification. In
Proceedings of the 29th European Conference on Object-Oriented Program-
ming. ECOOP’15.

[26] Rodrigo Fonseca, Michael J. Freedman, and George Porter. 2010. Ex-
periences with tracing causality in networked services. In Proceedings
of the 2010 Internet Network Management Conference on Research on Enter-
prise Networking, 10–10. INM/WREN’10, Berkeley, CA, USA: USENIX
Association.

122

[27] Fortify. HP Fortify Static Code Analyzer (SCA).
http://www8.hp.com/us/en/software-solutions/static-code-
analysis-sast/.

[28] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong
Su. 2010. Scalable and systematic detection of buggy inconsistencies
in source code. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, 175–190.
OOPSLA ’10, New York, NY, USA: ACM.

[29] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping
Zhou, Bing Xie, and Hong Mei. 2015. Safe memory-leak fixing for c
programs. In Proceedings of the 37th International Conference on Software
Engineering. ICSE ’15.

[30] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,
Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen
Hunt. 2009. Debugging in the (very) large: Ten years of implementation
and experience. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, 103–116. SOSP ’09, New York, NY, USA:
ACM.

[31] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. Dart: directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, 213–223.
PLDI ’05, New York, NY, USA: ACM.

[32] Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically finding
performance problems with feedback-directed learning software testing.
In Proceedings of the 34th International Conference on Software Engineering,
156–166. ICSE ’12, Piscataway, NJ, USA: IEEE Press.

[33] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. Speed:
precise and efficient static estimation of program computational complex-
ity. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium

123

on Principles of Programming Languages, 127–139. POPL ’09, New York,
NY, USA: ACM.

[34] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005.
Locating faulty code using failure-inducing chops. In Proceedings of the
20th IEEE/ACM International Conference on Automated Software Engineer-
ing, 263–272. ASE ’05, New York, NY, USA: ACM.

[35] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. 2012.
Performance debugging in the large via mining millions of stack traces.
In Proceedings of the 34th International Conference on Software Engineering,
145–155. ICSE ’12, Piscataway, NJ, USA: IEEE Press.

[36] Sudheendra Hangal, and Monica S. Lam. 2002. Tracking down software
bugs using automatic anomaly detection. In Proceedings of the 24th Inter-
national Conference on Software Engineering, 291–301. ICSE ’02, New York,
NY, USA: ACM.

[37] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang. Syst. 12(1):
26–60.

[38] David Hovemeyer, and William Pugh. 2004. Finding bugs is easy. SIG-
PLAN Not. 39(12):92–106.

[39] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Per-
formance regression testing target prioritization via performance risk
analysis. In Proceedings of the 36th International Conference on Software
Engineering, 60–71. ICSE 2014, New York, NY, USA: ACM.

[40] InfoWorld. Top 10 open source hall of famers.
http://www.infoworld.com/d/open-source/top-10-open-source-hall-
famers-848.

[41] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
2012. Understanding and detecting real-world performance bugs. In

124

Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 77–88. PLDI ’12, New York, NY, USA:
ACM.

[42] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.
Automated atomicity-violation fixing. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, 389–400. PLDI ’11, New York, NY, USA: ACM.

[43] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instrumen-
tation and sampling strategies for cooperative concurrency bug isola-
tion. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, 241–255. OOPSLA ’10,
New York, NY, USA: ACM.

[44] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.
2012. Automated concurrency-bug fixing. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, 221–
236. OSDI’12, Berkeley, CA, USA: USENIX Association.

[45] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization
of test information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering, 467–477. ICSE ’02, New
York, NY, USA: ACM.

[46] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. 2011. Catch
me if you can: Performance bug detection in the wild. In Proceedings
of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, 155–170. OOPSLA ’11, New York,
NY, USA: ACM.

[47] Jyoti Bansal. Why is my state’s aca healthcare exchange site
slow? http://blog.appdynamics.com/news/why-is-my-states-aca-
healthcare-exchange-site-slow/.

[48] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. 2010.
Black-box problem diagnosis in parallel file systems. In Proceedings of

125

the 8th USENIX Conference on File and Storage Technologies, 4–4. FAST’10,
Berkeley, CA, USA: USENIX Association.

[49] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W.
Anderson, and Ranjit Jhala. 2010. Finding latent performance bugs in sys-
tems implementations. In Proceedings of the Eighteenth ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, 17–26. FSE
’10, New York, NY, USA: ACM.

[50] Chung Hwan Kim, Junghwan Rhee, Hui Zhang, Nipun Arora, Guofei
Jiang, Xiangyu Zhang, and Dongyan Xu. 2014. Introperf: Transparent
context-sensitive multi-layer performance inference using system stack
traces. SIGMETRICS Perform. Eval. Rev. 42(1):235–247.

[51] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson
Engler. 2006. From uncertainty to belief: Inferring the specification
within. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, 161–176. OSDI ’06, Berkeley, CA, USA: USENIX As-
sociation.

[52] Chris Lattner, and Vikram Adve. 2004. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, 75–. CGO ’04, Washington, DC, USA:
IEEE Computer Society.

[53] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-
Miner: A Tool for Finding Copy-paste and Related Bugs in Operating
System Code. In Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation - Volume 6, 20–20. OSDI’04, Berkeley,
CA, USA: USENIX Association.

[54] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. 2006. Have things changed now?: an empirical study
of bug characteristics in modern open source software. In Proceedings of

126

the 1st Workshop on Architectural and System Support for Improving Software
Dependability, 25–33. ASID ’06, New York, NY, USA: ACM.

[55] Zhenmin Li, and Yuanyuan Zhou. 2005. Pr-miner: Automatically ex-
tracting implicit programming rules and detecting violations in large
software code. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 306–315. ESEC/FSE-13, New York,
NY, USA: ACM.

[56] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. 2003.
Bug isolation via remote program sampling. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, 141–154. PLDI ’03, New York, NY, USA: ACM.

[57] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jor-
dan. 2005. Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 15–26. PLDI ’05, New York, NY, USA: ACM.

[58] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G.
Zorn. 2011. Flikker: saving DRAM refresh-power through critical data
partitioning. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
213–224. ASPLOS XVI, New York, NY, USA: ACM.

[59] Tongping Liu, and Emery D. Berger. 2011. Sheriff: Precise detection and
automatic mitigation of false sharing. In Proceedings of the 2011 ACM In-
ternational Conference on Object Oriented Programming Systems Languages
and Applications, 3–18. OOPSLA ’11, New York, NY, USA: ACM.

[60] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and
detecting performance bugs for smartphone applications. In Proceed-
ings of the 36th International Conference on Software Engineering, 1013–1024.
ICSE 2014, New York, NY, USA: ACM.

127

[61] V. Benjamin Livshits, and Thomas Zimmermann. 2005. Dynamine:
Finding common error patterns by mining software revision histories.
In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 296–305. ESEC/FSE-13, New York, NY, USA:
ACM.

[62] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. 2014. A study of linux file system evolution. Trans. Storage
10(1):3:1–3:32.

[63] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-
ing from mistakes – a comprehensive study of real world concurrency
bug characteristics. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems,
329–339. ASPLOS XIII, New York, NY, USA: ACM.

[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
2005. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, 190–200. PLDI ’05,
New York, NY, USA: ACM.

[65] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic
editing: Generating program transformations from an example. In Pro-
ceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 329–342. PLDI ’11, New York, NY, USA: ACM.

[66] Microsoft. MSDN SAL annotations. http://msdn2.microsoft.com/en-
us/library/ms235402.aspx.

[67] Ian Molyneaux. 2009. The art of application performance testing: Help for
programmers and quality assurance. O’Reilly Media.

128

[68] Glen Emerson Morris. 2004. Lessons from the colorado
benefits management system disaster. www.ad-mkt-
review.com/publichtml/air/ai200411.html.

[69] Gilles Muller, Yoann Padioleau, Julia L. Lawall, and René Rydhof Hansen.
2006. Semantic patches considered helpful. SIGOPS Oper. Syst. Rev. 40(3):
90–92.

[70] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. 2010. Evaluating the accuracy of java profilers. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, 187–197. PLDI ’10, New York, NY, USA: ACM.

[71] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing
Xu. 2015. Facade: A compiler and runtime for (almost) object-bounded
big data applications. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, 675–690. ASPLOS ’15, New York, NY, USA: ACM.

[72] Khanh Nguyen, and Guoqing Xu. 2013. Cachetor: Detecting cacheable
data to remove bloat. In Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering, 268–278. ESEC/FSE 2013, New York, NY,
USA: ACM.

[73] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015.
Caramel: Detecting and fixing performance problems that have non-
intrusive fixes. In ICSE.

[74] Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Discovering, reporting, and
fixing performance bugs. In Proceedings of the 10th Working Conference
on Mining Software Repositories, 237–246. MSR ’13, Piscataway, NJ, USA:
IEEE Press.

[75] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler:
Detecting performance problems via similar memory-access patterns.
In Proceedings of the 2013 International Conference on Software Engineering,
562–571. ICSE ’13, Piscataway, NJ, USA: IEEE Press.

129

[76] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static detection of
asymptotic performance bugs in collection traversals. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 369–378. PLDI 2015, New York, NY, USA: ACM.

[77] OProfile. OProfile – A System Profiler for Linux.
http://oprofile.sourceforge.net.

[78] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia
Lawall, and Gilles Muller. 2011. Faults in linux: Ten years later. In
Proceedings of the Sixteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 305–318. ASPLOS
XVI, New York, NY, USA: ACM.

[79] Sharon E. Perl, and William E. Weihl. 1993. Performance assertion check-
ing. In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles, 134–145. SOSP ’93, New York, NY, USA: ACM.

[80] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Perfor-
mance regression testing of concurrent classes. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, 13–25. ISSTA
2014, New York, NY, USA: ACM.

[81] Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. 2014.
Eventbreak: Analyzing the responsiveness of user interfaces through
performance-guided test generation. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Languages
and Applications, 33–47. OOPSLA ’14, New York, NY, USA: ACM.

[82] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Maha-
jan, Ian Obermiller, and Shahin Shayandeh. 2012. Appinsight: Mo-
bile app performance monitoring in the wild. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, 107–
120. OSDI’12, Berkeley, CA, USA: USENIX Association.

130

[83] Tim Richardson. 1901 census site still down after six
months. http://www.theregister.co.uk/2002/07/03/ 1901_cen-
sus_site_still_down/.

[84] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. 2010.
Is transactional programming actually easier? In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, 47–56. PPoPP ’10, New York, NY, USA: ACM.

[85] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat,
Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,
and Gregory R. Ganger. 2011. Diagnosing performance changes by
comparing request flows. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, 43–56. NSDI’11, Berkeley,
CA, USA: USENIX Association.

[86] Raul Santelices, James A. Jones, Yanbing Yu, and Mary Jean Harrold.
2009. Lightweight fault-localization using multiple coverage types. In
Proceedings of the 31st International Conference on Software Engineering, 56–
66. ICSE ’09, Washington, DC, USA: IEEE Computer Society.

[87] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. 2008. Jolt:
Lightweight dynamic analysis and removal of object churn. In Proceed-
ings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, 127–142. OOPSLA ’08, New York, NY,
USA: ACM.

[88] Richard L. Sites. Identifying dark latency.

[89] Connie U. Smith, and Lloyd G. Williams. 2000. Software performance
antipatterns. In Proceedings of the 2nd international workshop on Software
and performance.

[90] Linhai Song, and Shan Lu. 2014. Statistical debugging for real-world per-
formance problems. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages and Applications,
561–578. OOPSLA ’14, New York, NY, USA: ACM.

131

[91] Stefan Bodewig. Bug 45396: There is no hint in the javadocs.
https://issues.apache.org/ bugzilla/show_bug.cgi?id=45396#c4.

[92] Mark Sullivan, and Ram Chillarege. 1992. A comparison of software
defects in database management systems and operating systems. In
FTCS.

[93] L. Torvalds. Sparse - a semantic parser for c.
http://www.kernel.org/pub/software/devel/sparse/.

[94] Jeffrey S. Vetter, and Patrick H. Worley. 2002. Asserting performance
expectations. In Proceedings of the 2002 ACM/IEEE Conference on Super-
computing, 1–13. SC ’02, Los Alamitos, CA, USA: IEEE Computer Society
Press.

[95] wikipedia. Chi-squared test. http://en.wikipedia.org/wiki/Chi-
squared_test.

[96] Wikipedia. Z-test. http://en.wikipedia.org/wiki/Z-test.

[97] Xusheng Xiao, Shi Han, Tao Xie, and Dongmei Zhang. 2013. Context-
sensitive delta inference for identifying workload-dependent perfor-
mance bottlenecks. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, 90–100. ISSTA 2013, New York, NY, USA:
ACM.

[98] Guoqing Xu. 2012. Finding reusable data structures. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, 1017–1034. OOPSLA ’12, New York, NY, USA:
ACM.

[99] Guoqing Xu. 2013. Resurrector: A tunable object lifetime profiling
technique for optimizing real-world programs. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, 111–130. OOPSLA ’13, New York,
NY, USA: ACM.

132

[100] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary
Sevitsky. 2009. Go with the flow: profiling copies to find runtime bloat.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 419–430. PLDI ’09, New York, NY, USA:
ACM.

[101] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011.
Leakchaser: Helping programmers narrow down causes of memory
leaks. In Proceedings of the 32Nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 270–282. PLDI ’11, New York,
NY, USA: ACM.

[102] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith
Schonberg, and Gary Sevitsky. 2010. Finding low-utility data structures.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 174–186. PLDI ’10, New York, NY, USA:
ACM.

[103] Guoqing Xu, and Atanas Rountev. 2010. Detecting inefficiently-used con-
tainers to avoid bloat. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 160–173. PLDI ’10,
New York, NY, USA: ACM.

[104] Guoqing Xu, and Atanas Rountev. 2013. Precise memory leak detec-
tion for java software using container profiling. ACM Trans. Softw. Eng.
Methodol. 22(3):17:1–17:28.

[105] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I.
Jordan. 2009. Detecting large-scale system problems by mining console
logs. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, 117–132. SOSP ’09, New York, NY, USA: ACM.

[106] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. 2014. Comprehending
performance from real-world execution traces: A device-driver case.
In Proceedings of the 19th International Conference on Architectural Support

133

for Programming Languages and Operating Systems, 193–206. ASPLOS ’14,
New York, NY, USA: ACM.

[107] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A qualita-
tive study on performance bugs. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, 199–208. MSR ’12, Piscataway,
NJ, USA: IEEE Press.

[108] Dmitrijs Zaparanuks, and Matthias Hauswirth. 2012. Algorithmic profil-
ing. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, 67–76. PLDI ’12, New York, NY,
USA: ACM.

[109] Andreas Zeller. 2002. Isolating cause-effect chains from computer pro-
grams. In Proceedings of the 10th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, 1–10. SIGSOFT ’02/FSE-10, New York, NY,
USA: ACM.

[110] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok
Choi. 2006. Accurate, efficient, and adaptive calling context profiling.
In Proceedings of the 27th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 263–271. PLDI ’06, New York, NY, USA:
ACM.

	Contents
	List of Tables
	List of Figures
	NOMENCLATURE
	Abstract
	Introduction
	Motivation
	Thesis Philosophy
	Dissertation Contribution
	Dissertation Outline

	Background and Previous Work
	Empirical Studies on Performance Bugs
	Performance-bug Detection
	Performance Failure Diagnosis
	Other Techniques to Fight Performance Bugs

	Real-World Performance-Bug Understanding
	Introduction
	Methodology
	Case Studies
	Root Causes of Performance Bugs
	How Performance Bugs Are Introduced
	How Performance Bugs Are Exposed
	How Performance Bugs Are Fixed
	Other Characteristics
	Guidance for My Thesis Work
	Guidance for Future Work
	Conclusions

	Rule-Based Performance-Bug Detection
	Introduction
	Efficiency Rules in Patches
	Building Rule Checkers
	Rule-Checking Methodology
	Rule-Checking Results
	Conclusions

	Statistical Debugging for Real-World Performance Bugs
	Introduction
	Understanding Real-World Performance Problem Reporting and Diagnosis
	In-house Statistical Debugging
	Production-run Statistical Debugging
	Conclusion

	LDoctor: Hybrid Analysis Routines for Inefficient Loops
	Introduction
	Root-Cause Taxonomy
	LDoctor Design
	Evaluation
	Conclusion

	Conclusion
	Summary
	Lessons Learned
	Future Work
	Closing Words

	References

