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Fast Replication in Content Distribution Overlays

Samrat Ganguly, Akhilesh Saxena, Sudeept Bhatnagar, Suman Banerjee, Rauf Izmailov

Abstract—We present SPIDER - a system for fast
replication or distribution of large content from a single ¢
source to multiple sites interconnected over Internet or T
via a private network. In order to exploit spatial diversity
of the underlying network, SPIDER uses an overlay
structure composed of dedicated Transit Nodes (TNSs).
The data transport mechanism in SPIDER leverages this
overlay structure to provide a coordinated approach that
minimizes the maximum time to replicate to all destination Tree-2
sites (the makespan of content replication). In order to —
achieve this objective, SPIDER employs two orthogonal
components: a) creation of multiple dynamic distribution
trees using the transit nodes b) end-to-end reliable data
transport with flow control on these trees by chaining
point-to-point TCPs. We further present simulations based
results to quantify benefits of tree construction algorithms Fig. 1.  Content distribution overlay using transit nodes; example
in random topologies. We evaluate the real implementation Scenario: source replicates content at edge servers using multiple trees
of the SPIDER in PlanetLab and observe a 2-6 times speed Tree-1 (solid) and Tree-2 (dashed)
up compared to different existing schemes.

Data
Distribution

Index Terms— System Design, Mathematical program-
ming/optimization, Graph Theory, Experimentation with
real networks/Testbeds.

multiple remote data centers over the Internet. Large
software companies have to periodically update their
various mirror sites with the latest releases of their
software products. In e-science collaboration projects,
|. INTRODUCTION large experimental data sets need to be transferred to

The recent emergence of new applications in the emgp_ographically di_stributed locations for analysis._Fc_)r all
tainment, business and scientific communities has leddbthese applications, the key performance metric is the
a tremendous growth in the size of data sets in the recE@! time needed to replicate large data sets. This paper
past [1] and has necessitated the research in the fegsents practical approaches to extract more bandwidth
of fast bulk data transfer and replication. For examplEOm underlying network in designing a system that can
in the entertainment community, content providers aR€ used to accelerate the data replication.
now interested in transferring very large content such asOur approach is based on an overlay architecture com-
digital video programming or video-on-demand moviggosed of a number of dedicated transit nodes (TNs) as
over the Internet from a central server to geograptghown in Figure 1. The source in these applications are
cally distributed edge servers for providing on demarf®ntent publishers, data repositories, or central servers.
streaming to their clients. Similarly, movie distributordn this architecture, the content is not directly pushed to
are considering the use of the Internet to transport movié€ clients. Instead the source replicates the large volume
from their central location to movie theaters around ti¥ data to a relatively small set of edge servers, caches, or
country and the world. Analogously, wide-area storagi&ta centers. End-users, that are the actual clients of this
backup systems are interested in transporting large v@&ta, subsequently downloads it from these edge servers.

umes of data to be archived from a single location #® similar architecture is employed by popular CDNs,
like Akamai, to distribute large (more than 100 MB)
S. Ganguly, A. Saxena, S. Bhatnagar, and R. Izmailanovies (bmwfilms [2]) to edge servers. The edge servers
are with the Broadband and Mobile Networking Depart; ; 1Th ;
ment,NEC Laboratories, Princeton, NJ, 08540, USA. Emails'u,bsequently Stfeam these mOVI'eS to millions of C“ent.s'
{samrat,saxena,sudeept,fa@nec-labs.com. S. Banerjee is with ith the steady increase in the size of the data sets being
the Department of Computer Sciences, University of Wisconsidjstributed across such CDNs from a single source to

Madison, W1 53706, USA. Email: suman@cs.wisc.edu multiple edge servers (destinations), the transfer latency
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has gained importance. Typically, the source of the dgieoblem as an optimization problem (which is NP-
initiates thisreplication processof a large volume of Hard) and hence propose heuristics that perform well
data to a known set of destinations at a specific timaith respect to upper-bounds on the optimal. (3) In our
The objective then becomes to minimize the makespaaplication case we consider data distribution in very
i.e., to minimize the total time to replicate content fronarge volumes (GBs or TBs). Hence we can leverage
the source to these chosen destination set. To achidévis long-lived nature of this replication process in our
such data replication our proposed architecture useslesign.

set of special intermediaries called Transit Nodes (TNs),

that can be deployed at opportunistic locations in the content distribution overlay

network,_ €.9., _G|gaPoPs, 0 |mprove.per_formanc_e. . We consider a CDN architecture as shown in Figure 1
We distinguish such a data replication application

from the file sharing applications that are popular in thWhere a set of intermediaries act as TNs. The TNs are
g app hop qaced at opportunistic locations in the network that

peer-to-peer (P2P) domain. P2P file sharing applicatio o?ganize themselves into a content distribution overlay

(like Kazaa, Emule) are receiver-driven, i.e., an indI- .
. . - nd are used to replicate and forward data. These nodes
vidual receiver initiates data download asynchronously, . ) .
Iplcally are servers with fast cache and high access

independently of all other requests of the same conte Sindwidth. The advantages of TNs are two-fold: (1)

Most of these scher_ne_s allow |nd|V|du_aI clle_nts to dowr:'I:hey allow us to better exploit available spatial diversity
load data opportunistically from multiple sites toward Usin ltinle al . h iiable within th
y g multiple alternative paths available within the

minimizing download time. To facilitate such a downloa S
Kazaa organizes the clients into an overlay P2P netwoﬂ?twork from the source to the destinations and thus
reduce data transfer time, (2) They allow us to better

The overlay changes with time as nodes dynamlcallyjo&ploit alternate paths that can be better than the direct
and leave the system.

) . unicast paths. Recent research (Detour [13], RON [14])
The following are key differences between our prg- :
as shown that in many cases alternate overlay paths

posed WOI‘.k and prior Work.”.] the c_ontext of P2 have better latency and throughput characteristics than
downloads: (1) We are examining a different probler(rjl

— how do we efficiently replicate large content from a'reCt IP paths. For example in specific experiments the

. X . A authors in [13] have shown that in 30% of direct IP
single source to pre-determined multiple destinations |n

a coordinated and synchronous fashidn. this sender- paths have better alternate paths with respect to the round

. T trip time metric and 70% of direct IP paths have better
driven scenario, it is likely that the sender, the Transi ) .

o2 L alternate paths with respect to the loss metric. RON uses

Nodes and all the destinations will implement a coordi-

. . . . _such alternate paths for fault tolerance.

nated solution that optimizes the makespan. This is very

. : . ) ) A common approach to distribute data using an over-
unlike the receiver-driven problem in which protocols . ) .
. o . .—._~".lay is to organize the set of nodes into an overlay tree
can be designed for an individual client to maximize its . - .
. rooted at the source. Various optimized multicast tree
own data rate by downloading content from the SOUrCe . on alaorithms have also been proposed in [15]
and other peers that are available in the system, with 9 brop '

necessarily trying to minimize the global objective funif ]’. [17], [10]. However, as pomt_ed out in [4], a smglg
. . i multicast tree based data forwarding cannot achieve high
tion. (2) In P2P download scenarios there are typically

tﬁroughput as bandwidth monotonically decrease with

large number of peers many of which are located across o :
low bandwidth access links. Hence in most propos§ pth of the tree. Additionally, decreasing tree depth by

. . increasing tree fan-out is not necessarily a good option as
P2P download systems, a client randomly discors. . : .
: ) . it can increase the forwarding load on the transit nodes,
few other peers through simple randomized technlqu%sg noted in the SplitStream work [6]
Subsequently due to bandwidth limitations they perform '
a coarse-grained measurement to choose a subset of o
these peers for parallel download. In our fast replicatiéh Contributions
scenario, the source, Transit Nodes, and destinations aré/e present a stand-alone content distribution system,
part of a high-bandwidth CDN. The total number of sucBPIDER, based oBPatial I ndirection for pattDiversity
nodes is much lower than the number of peers in P28t ExpeditedReplication. SPIDER utilizes the transit
systems. Therefore in our case we are able to probe tteaes in creating multiple multicast trees and coordinates
suitability of all possible paths between these nodes attie transport of data on these trees to the given set of
perform more accurate measurements on them. Note ttastinations. In SPIDER, the original data is stripped into
a CDN (e.g., Akamai) already have such measuremeatual sized blocks and reliably transported to destination

infrastructure in place [30]. In particular we model thisising the multicast distribution trees and aggregated into
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the original file at each destination. We present the. Related Work
design of SPIDER which has two core components:

a) computation of multiple distribution trees; b) flow N the recent past, a significant amount of research
control in data distribution among trees. has been directed towards developing protocols and

. L mechanisms for fast bulk data delivery. A number of such
In Section Il we formulate the data replication proble

Mosearch efforts were focussed on unicast data transfers,

as an optimization problem — minimizing the replicatio% Fast-TCP [19], XCP [20], gridFTP [21], blast-
makespan. Since this problem is NP-Hard, we propo P [22], Digital Fo’untain [23].’SPIDER can L’JSG any

a .po'y”"m"'?‘"“me approxmaﬂqn (Apper_ldl_x). Althougi’bf these schemes as the underlying transport protocol
this approximation is polynomial-time, it is still COM-p wrween each pair of nodes on the overlay

putationally expensive and hence we define a heuristicAt the same time. with the tremendous. rowth of
algorithm (called MBST) for computing multiple trees ’ 9

based on bandwidth measurements. The tree computaﬁgrefr-to'peer networks for file sharing, various protocols

method tries to maximize the total throughput achievelvgﬁre developed to minimize the file download time.
ith

using all trees. We compare the proposed algorithm w faslfel a:c;ﬁc?r:f)r:rfh;r?sfr?e or;e(:ové?rfa}g'z%rgof:: (')rf]
other alternate algorithms as well as an upper bound kS one peer. P
the optimal. such approach already exist in current Kazaa and E-mule

o P2P networks.
We subsequently present the data distribution archl-various improved solutions were proposed in the con-

tecture of SPIDER that defines flow control m(.achanisnggx,[ of P2P network, such as BitTorrent [8], Bullet [7],
at block level anc_zl gracefully_adapts to variations %formed content delivery [4], Slurpie [9], ROMA [10],
pottleneck bandwidth of a given tree. At the SAMEitStream [6]. In most of these approaches, it is the
time, the flgw control mechanism ensures an efﬂmeg ient which is responsible for selecting a set of others
load balancing among the.trees based on the Iong'teéf"peers from where they downloads a complementary
average bottleneck bandwidth of the tree. set of blocks forming the original file. In different
Some of the salient features of the SPIDER systesfotocols, such a set of peers are chosen either randomly
are: a) trees can be reconfigured quickly to changigg based on selective bandwidth estimation for a few
network conditions without losses, b) it is resilient tpeers. Hence these solutions are particularly tailored for
Transit Node failures, c) tree creation can be based ppp download applications, where clients join and leave
chaining of any point-to-point transport protocol (wén ad-hoc fashion. In contrast our work focusses on
use TCP currently) d) sharingsangle TCP connection coordinated replication in Content Distribution Networks
between edges in different trees passing through sajewhich the objective of the source, Transit Nodes,
pair of nodes, which leads to TCP friendliness in thend destinations is to minimize the makespan of the
network. The system is easy to use (akinto simple FTRplication process. We demonstrate the difference of
and needs installation of the same SPIDER servers attglse techniques and ours by experimental comparisons
the participating nodes (destination and TNs). Finallyp two of these schemes (BitTorrent, which is widely
we have made the tool available at [18] for communitysed today, and Slurpie). Some of these approaches,
use. e.g., ROMA, use a single overlay multicast tree for data
We have evaluated the performance of the redistribution and hence cannot exploit path diversity in
implementation of SPIDER on the PlanetLab (sébe network. SplitStream, on the other hand, proposes
http://www.planet-lab.org). In our experiments we havée use of multiple trees for data transfer with the goal
examined the performance for transfers of different size balancing the forwarding load at intermediate peers
of data on different topologies on the PlanetLab wittfransit Node in our case). Their solution is particularly
diverse sets of nodes (diversity of geographical locgeared towards scenarios where the uplink and downlink
tions and their access bandwidths). In these experimefdesesbandwidth of the peers is the bottleneck. For high-
we compared the performance of SPIDER to differekgndwidth CDN architectures, this is not necessarily
schemes, including multiple unicast TCP sessions fife case because the destinations are edge servers tha
parallel and existing fast file download tools such @€ placed in locations with high access bandwidth.
BitTorrent [8] and Slurpie [9]. Our results indicates thahdditionally empirical studies in [11] show, end-to-end
SPIDER can achieve speed-up of up to five-six tim¢gath bottlenecks frequently occur in intra-AS and inter-
compared to multi-unicast approaches. SPIDER providd§ peering links, and not just at end-point access links.
two times speedup compared to Slurpie and around fourFast Replica [24] is another solution which essentially
times speed up compared to BitTorrent. constructs multiple ) trees. The file is split intaX



SUBMITTED TO IEEE INFOCOM 2005 4

in the middle of replication process. In this section,
we present the algorithm used to compute multiple
distribution trees in SPIDER. The distribution system of

‘ / SPIDER (described in the next section) takes these trees
vy Orgina Graph “";F‘,mmmg osmswnze: &S INPUt parameters and performs data replication using
them.

Fig. 2. An example showing the failure of shortest widest path
algorithm in finding the best trees. A. Formal Problem

The goal in SPIDER is to minimize thmakesparin
data replication, where makespan is defined as the total
ount of time between the moment the data transfer
initiated and the moment when the data download
mpletes at the last destination.

stripes and each stripe is sent along one of kh&ees.
However, their tree construction process (unlike ouré
does not take into account bandwidth of different patﬁ
into account and hence their approach may lead to | . . .
quality trees. Additionally the amount of data transported In this section, we focus on algorithms for construct-

on each of these trees does not depend on the t optimized multiple multicast trees on a capacity

bottleneck. Consequently Fast Replica would be vegr;stralpe?hgrapth. fLst ?_en(t)_te the dsou_rce node&and
inefficient in a scenario where two trees are used al enote the set of destination nodes in a grép

one tree has ten times the bandwidth of the other. (V, A), whereN is the set of vertices and is the set of

Apart from bulk data delivery, the use of path diversit dges. Given a capacity co_nstr_amed graph- (V, .E)’
also finds applications in the context of real-time strea _sources and a- set of destinationS € V — {s}, find
ing. For these applications, various coding solutions® & SetA of directed rooted treeT:, ..., T, } from
were proposed such as [12] with the main purpose of the sources spanning the destinations
increasing decoding quality and not minimizing transfer * @ Pandwidth assignment = {3(T1),..., 6(Tn)}
time. Path diversity was also proposed in [3], where a Such that the total bandwidt#., = 5(T1)+. ..+
client establishes parallel connections to multiple sites 3(7x) is maximized and the capacity constraints are
to download a file. However, our objective is just the met.

reverse - how to replicate from one source to multiple The special case ofD| = 1 can be solved by the
destinations. max-flow-min-cut theorem.
In the graphG, let F'(d) denote the max-flow value
from the source node to a destination nod€, where
d € N — {s}. Let \(G) = min F(d) denote the
In the next two sections we present the two important. . deN—{s}
minimum of the max-flow values from the sourgeo

components of SPIDER, namely creation of multlpléeIII the destinationsV — {s}. If D = N — {s}, the

trees and the data distribution mechanism using theﬁs)?al bandwidthB from any set of trees cannot exceed

trees. We present the results to evaluate the performan e : : .
. . . . “A@). Further refinement of this observation comes from
of SPIDER based on simulation and experimentation Y

) ) mond’s packing theorem [27], which states that in
PlanetLab. Finally, we present conclusions and future . . . :
S an integral capacity scenario, the maximum value of
directions of work.

B is Bpa: = A(G). The formulated problem can
be considered amaximum packingf directed rooted
spanning trees in a graph. There exists a polynomial time
algorithm providing optimal solution to this problem
SPIDER has two orthogonal components: (1) trdeased on [27] as can be found in [28]. However,
computation, and (2) reliable data transport on the confre problem in the general non-spanning case, where
puted trees. Such a split allows us to efficiently deplapy ¢ N — {s} ), is NP-Hard. The solution for this
this system over the Internet as well as over privageenario reduces to solving a set of Steiner tree problem
networks. In many private networks, the topology alorgnd thereby has same approximation bound as Steiner
with the link bandwidth maybe known a-priori and therecase. We present a sketch of the approximation algorithm
fore the distribution trees can be pre-computed and ciam the general case in appendix based on results in [29].
be passed to SPIDER as parameters. On the other hands we may require fast computation of trees in
in Internet, the trees can be created dynamically basedarder to adapt to changing bottleneck bandwidth, we
current bandwidth availability and can be reconfiguratked a practical and efficient algorithm with reduced

D. Organization of the paper

II. TREE COMPUTATION ALGORITHM BASED ON
BANDWIDTH ESTIMATION
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complexity, than what the approximation algorithm in
the Appendix provides. Therefore, we describe a heuri
tic algorithm to compute the multiple trees, given the
estimated bandwidth between different pairs of nodes.
In the next two subsections we show the limitations of w
simple tree computation algorithms and then describe B
how our algorithm overcomes these shortcomings.
Let the bandwidth between nodésindj is given by
bi; (and is the weight of the arc betweémndj in G).
If the bandwidth between nodeésand j is not known,
we setb;; to 0. Along with the bandwidth, the outgoing
access bandwidtl; of each node is assumed to be
known. If E; is not known, then we sef; equal to the
sum of outgoing bandwidths frormto all other nodes
(Ei =32, bij wherej € N). In all casesE; > b;; (for

all j € N) since the outgoing bandwidth to an individualye eliminate the 9 units utilized by this tree to get the

node cannot be more than the access bandwidth of figyork shown in figure 2(C). Notice that the execution
node. of SWPT algorithm uses both of the outgoing links

from the source thus leaving only 1 unit of outgoing
B. A Naive Approach - Shortest Widest Path Trdgandwidth from the source for future. Thus, the next
(SWPT) tree created has only 1 unit of bandwidth as shown in

Using the above information, one could conceividuré 2(C). It is important to note that the minimum
several algorithms to construct multiple source-rootdgcoming bandwidth into the destination nodes is at least

trees. We now look at a naive tree constructing algorithip Units and the repeated use of shortest widest path

and use it to identify the issues that need to be accounfEgults in @ use of 10 units of bandwidth through the

for in designing a good tree construction algorithm. Nofvo trees.

that the tree construction algorithms have to create alNiS €xample also show that the use of a maximum
directed tree rooted at source, however, for the purp dwidth spanning tree also results in bandwidth under-
of exposition we refer to this as a tree. utilization. It can be verified that the maximum band-

Since the amount of bandwidth that a tree couWidth directed spanning tree also gives the same trees as

provide for transfer is limited by its bottleneck bandth€ ones shown in the figure. _

width, a natural candidate for tree construction is the 1he key insight we get from the example is that
Shortest Widest Path Tree (SWPT) algorithm (which is3[Y trée creation algorithm cannot be oblivious of the
variant of the shortest path algorithm that maximizes tigtWork state left for subsequent iteration. Thus, any
bottleneck bandwidth from source to any destination). A90rithm to create multiple trees has to try to leave as

simple algorithm to create multiple trees is obtained Hjuch bandwidth for future trees while trying to keep
repeated application of the SWPT algorithm. bandwidths of each of the trees as balanaced as possible.

« Find a source-rooted SWPT in the graph. _ _ _
o If an SWPT is found, remove the edges in the. Maximum Bandwidth Sum Tree (MBST) Algorithm

SWPT from the graph and repeat first step. Our MBST algorithm incorporates the above insight in

« Otherwise report all the SWPTs found and exit. puilding the trees. It does so by checking the amount of

While this algorithm is simple, the key problem withoutgoing bandwidth left at a node if one of its outgoing
this greedy algorithm is that in each iteration it onlgdge is added to the current arborescence. The MBST
considers the present tree. There is no notion of leavialgorithm is shown in Figure 4.
enough bandwidth for the trees that would be created inThe MBST algorithm starts by adding the source (say
subsequent iterations. This is best illustrated using thede 0) to the list of nodes that have been added to the
example shown in Figure 2. The example has a souma@rent InTree (line 4). Next, for each nodé in the
S and three destination nodes labelldd, Ny, N3. The InTree list, we find the maximum outgoing bandwidth
numbers shown in the figure are the bandwidths of tlaec to nodes outside thenT'ree list (line 7). For each
edges. Figure 2(B) shows the SWPT on the originaf node k already in the tree, we compute the leftover
graph. The bottleneck capacity of this tree is 9 unitsutgoing bandwidthE,, if its maximum outgoing edge

Fig. 3. An example showing the use of our algorithm in creating
multiple trees.
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Input: . /f
N - Set of Nodes -S is the source \\ ////,/v
b;; - Bandwidth between all pairsj € N \ Treel,
E,, - Outgoing Access Capacity of € N N \\ ?ngiﬂp?grmm(ml-ﬁm) /
\ ran: I on

Output:
T - Set of Trees

__________ _0___/
RASTETEr >
3
[eal || e,

Algorithm: "
1. T—o¢ S
2. Do
3 CurrentTree «—
4 InTree — {S} ? Fig. 5. Block transfer on a tree edge: blocks of different trees are
5. While InTree # N do transferred through a single TCP connection sequentially
6 For eachn € InTree do
7 M,, — Edge withmaz;{bn;} )
8 R, «— E, - {Bandwidth of M,,} be reduced to 1 (since the tree would have a bottleneck
2-0 End 'rleord e R capacity of 9 and two edges out 6f would be used,
11 G romt T o ieéiﬂee ny thus leaving 1 unit of spare capacity 6h— N;). If we
12. InTree — InTreeU {destinatign of M:r} add N3 — N1 to the tl’ee, thenEl W0u|d be redUCEd
13. End While _ to 7. Since addingVs — N leaves more bandwidth at
1‘5" F°rbea:hbed_g{eb'gttgﬁgi’ﬁgffmntTTee} the source of the edge, we add it to the tree, despite
16, End For knowing thatS — N; was more likely to create a larger
17. T «— T U CurrentTree bandwidth tree (Figure 3(C)). We updatg to 7 and
ig- E”? D% also updateF, to 12 to account for the fact that 3 units
- Reum of bandwidth onS — N; would be available for future
Fig. 4. Algorithm to create multiple trees (MBST) use. Using a similar procedure, we complete the first

tree by addingV; — N to the tree. Figure 3(D) shows
the complete first tree along with the updated outgoing

is added to the current tree (line 8). The edge Whi%cess bandwidths at each node after the tree is created.

. : . . e continue this process to get two more trees shown in
leaves the maximum outgoing bandwidth for its sour%e ures 3(E) and 3(F). Note that the total capacity of these
node, is added to the tree and its destination node ' pactty

added to thelnTree list (lines 10-12). We repeat thisthree trees is 16 unlj[s (7+7+2) vyhereas using SWF.)T we
. could only get 10 units of bandwidth. It could be verified
process until all nodes have been added to the tree. Thén

we reduce the bandwidth on all edges of the tree by t eat 16 units is the maximum transfer capacity one could

amount of bottleneck bandwidth (lines 14-16). We ru%xtract in the above example.
this algorithm on the remaining graph until we cann(ts

: . Implementation note
find any more trees. We note that the ability to use a ) )
single overlay edge in multiple trees is only available to N the SPIDER system, the MBST algorithm requires

us because of the sub-file multiplexing capability of th&'€ knowledge of measured bandwidth among node pairs

SPIDER architecture. and the access bandwidth. In most CDN scenarios,

We trace the MBST algorithm on the example showygrious mea_surement mfra_structure is already in place
e.g. Akamai as referred in [30]). In measuring the

in Figure 3. The network graph is identical to that i ted TCP th hout betw w q
Figure 2 except that its nodes are now labelled with theteh?(pec € roughput between two nodes, we use

access bandwidthtf;, Eq, E5, E3). For this example, we e following equation given in [31] as
keep the values of the access bandwidths as the sum 7T = i :
of the outgoing bandwidths from a link. The first edge R\/%p + tRTo(?n/%p)p(l + 32p?)

S — Ny is added as shown in figure 3(B) as it has thghere)) is the loss event rate, is the packet sizeR is
maximum outgoing capacity (10 units). This reduces thge round-trip time andgro is the TCP retransmit value.

outgoing capacity of the source (for future trees) by e apove sending rate measurement approach does not
units (thusEs = 19 — 10 = 9). To add the next edge’inject too much probe traffic.

we have two candidate edgeés— N; and N3 — Ny,
which are the maximum capacity outgoing edges from [ll. CONTENT DISTRIBUTION USING SPIDER

the two nodes already in the tree. If we aid> N1 10 The SPIDER distribution system consists of three
the tree, then the outgoing capacity at souftewould  gpiities: source, Transit Nodes (TNs), and destinations.
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< ------ - transmitting the block. The format of the control packet

is shown in Figure 6(b). The fields of the control packet
include a blockid (for identifying its position in the
@ file and for acknowledgments) a tré and also the

topology of the tree (tre&fo).
When a TN receives this control packet, it first adds

v v _ the tree topology information in itsee-table and sub-
\D:”ﬁ"’”‘ | Destnaton | sequently forwards the control packet to its children on

TYPE

the tree as specified in the tree topology information
( 6 (a)). In this manner the control packet propagates
to the entire tree prior to the block. This ensures that
_ _ o the tree forwarding information is always available at
Fig. 6. a) Tree management has two parts: i) transmission of H]r(N before the data block arrives. For each subsequent
blocks along the tree by sending a control packets preceding it; |q K that | be distributed . h h
ack propagation back to the tree ensuring reliable delivery of bIoc’R.OC that Is tf) e 'S_m L_jte uslng the ?ame tree, the
b) Control packet format. tree topology information is not included in the control
packet since it can be extracted by each TN from the
tree-table maintained locally.
The entire replication process is coordinated by theOn receiving a block each child sends an acknowledg-
source and SPIDER agents installed at all destinatiof@nt back to the parent ( 6(a)). A node waits for ACKs

BLOCK_ID TREE_ID REEINFO, FILE.NAME | DEST_ADD TREE_INFO

AN

(b)

and TNs. from children before propagating the ACK to its parent
node.
A. Block level transfer In a dynamic network environment such as Internet,

At the source, the original data file is split into equan may be necessary to change the topologies of trees in

sized blocks. In our experiments and simulations Wa€ Middle of the replication process in order to adapt to
considered the size of the blocks as 512 KB. The sid¥ changing bandwidth conditions. The proposed “tree-
was chosen based on experimentation and is balaH@é’blOCk" method allows trivial addition, deletion and
between large size to achieve high TCP throughput afi§€ é-configuration at the granularity of single block
low sizes for faster adaptation to bottleneck bandwid{Ff"nSfe,r_t'me' Once the source has assigned a block to
fluctuation. For each block, the source decides whihSPecific tree (as described in the control packet) that
specific tree is to be used for the transfer from itsefock is d|str_|buted by using that tree alone. By keeping
to the entire set of destinations. A block is transportdd€ 9ranularity of block size adequately small (512 KB)
using only a single source-specified tree. Each block'fscomparison to the total da_lta volune 64 MB) such
transferred hop-by-hop along the given tree using Tcpstructure allows us to switch trees quickly based on

or any point-to-point transport protocol as shown iﬁhanglng network conditions.
Figure 5. When the block is completely transferred from

transit node TN1 to the next hop TN2, TN2 replicates the. Elow control at block level
block and transfers it to its children in the tree. The point-
to-point transport session is terminated between tvglﬂ

overlay nodes which essentially decouples the sendin . . .
rate of two TCP sessions on any two tree edges - onding block has reached all the intended destinations.
or each tre€l;, the source maintains the number of

approach also used in [25]. In order to avoid application- } .
level buffer space overflow, we perform a window-baset acknowledged ploc_ks“ which re_fer; to_ the number
flow control at block level at the source and TNS (not% blocks that are in flight on the distribution tree. For a
that TNs may use a fast cache of finite size). On iven treeT;, there is a threshol#’; which acts as the

the block reaches the intended destination, it is direc Pl/.lffe-l’ sSlze at source. BIOCk.S are pushed sequentially on
written into the original file. ee_z if b; < W;, i.e, there is spgce in the buffer. Tr_\e
W; is chosen based on the maximum delay- bandwidth
o product for the treei and can be time varying . The
B. Distribution tree setup maximum delay can be found from time stamping the
Each tree has a trad T;. Each block is mapped control packet and finding the time when it reaches all
to an unique treéd at the time of transfer from thethe destinations. The bandwidth can be computed from
source node. The source sends a control packet beftire ACKs.

When the source receives an ACK for a block from
its direct children, it is guaranteed that that the corre-
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Incoming ACKs from children

Receive Queue

ACK Table dequeue

Block | Tree | ACK Receive Queue Handler | €"4U€€
0 | Received[ P! @

[} 0 |[Te

1 1 | False

2 1 False Tree Id Buffer Size

:

control packets
and block g 15

Sender Thread Pool

(o]1[2]3]a]...[[n1] s |
Original File in blocks 0 ’—‘

2 3 4 5 6

Buffer Table

Block Scheduler
Next block to schedule = 4
network connectivity

Fig. 7. Node level components ) o ] )
Fig. 8. Speedup of SPIDER over multi-unicast. (Simulations)

There are two reasons for having this window control. )
First, it ensures that the application buffer at TNs do&9ntrol packets and ACKs, b) an ACK table for keeping
not overflow while trying to maintain a non-zero buffellfack of delivered blocks, c) a buffer table used for
The non-zero buffer is required to make sure that tfflow control d) a scheduler for selecting trees on which
TN always has data to send thus maximizing the i transfer a block and e) a Send queue to enqueue
utilization. Second, this allows SPIDER to balance tHieparting blocks on to a single TCP connection.
load among trees. With infinite window, blocks will be
sent on a tree based on the available bandwidth 6. PERFORMANCE EVALUATION AND EXPERIMENTS
the first hop and not on the bottleneck bandwidth of In this section we present results from both simulation
the trees. However, with the window, a tree which hasudies (to explain some properties of our proposed
more bandwidth will have ACKs coming at a highescheme) and detailed experimental results conducted on
rate increasing the rate of blocks being pushed in thRlanetLab. In all these experiments we examine primarily
tree. Without load balancing among the trees, the totalo metrics of interest — the makespan of the replication
throughput from the trees will not be maximized. process, defined by the last destination to complete the

In certain cases, two trees may share the same owvesnsfer, and net throughput achieved different destina-
lay link. In the implementation of SPIDER, a singl&ions.

TCP session is opened on which blocks belonging to
different trees can be transferred. This is done to avoAd
establishing multiple TCP connection between two nodes ] ) )
and thus ensuring fairness to other competing traffic, 707 OUr simulations we generate Internet-like topolo-

However, blocks may be assigned on the two trees Y¢S Using Brite [36] of upto 2000 nodes. Typically 200

different rates, which is decided by the tree creatidﬂ‘ these nc_)des serve as destinations for the replication
algorithm. In such cases the traffic on the single TAPOCESS. Since we expect that the source, TNs and the
connection (corresponding to the shared edge) is Sﬂﬁstlnatlons are part of a high-speed content delivery

between blocks assigned to the two trees proportionallfWork, we assume that these nodes have relatively high
based on the corresponding rates of the trees. bandwidth & 1 Mbps). We will examine more realistic
scenarios in the PlanetLab experiments. For different

experiments we generated such topologies with varying

, _ ~ degree of network connectivity.
In the unlikely event that a Transit Node fails, a

parent wil discover through lack of acknowledgments

and attempt to foward data directly to the childen Qfqmnarison with multiple-unicast: We first compare

the failed node. In the worst case the affected blogke herformance of SPIDER with a simple multi-unicast
may need to be re-transmitted from the source, possiblys5ach; in which the data is sent using multiple unicast
using a new tree that will be automatically computed fQfansfers directly from the source to each destination. In

Simulation Studies

D. Resilience to Transit Node/Connection failures

subsequent blocks as the failure gets detected. Figure 8 we plot the speedup factor for the makespan,
_ which we define as the ratio of the makespan for multi-
E. Node level architecture unicast to the makespan for SPIDER. We can observe

The main components of basic node architecture (Fitpat in general the speedup gained by SPIDER in these
ure 7) are: a) a Receive queue handler for processiperiments vary between 4 and 33 for different network
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Fig. 9. Performance comparison of MBST and SWPT to an upper ie.cuhk.edu.hk HK
bound of the maximum bandwidth achievabl(). (simulations) cis.upenn.edu UPENN
info.ucl.ac.be Belgium
cs.ucla.edu UCLA
diku.dk Denmark
topologies, with greater speedup achieved in more con- dcs.bbk.ac.uk UK

nected networks. This is an expected behavior of SFig. 10. Planet-Lab sites and labels.
DER because increase in connectivity implies increase in

path diversity which is efficiently exploited by SPIDER.

In particular for network connectivity around 3-4 (as is p

true on the Internet) the speedup varies between 9-15.
Comparison of MBST and SWPT: In Section II ‘DM I 3‘

we had compared two approaches for tree construction,

namely SWPT and MBST, and had intuitively explained g [

(

o
3
3

why the latter is a better choice. We new present exper-
imental verification of this intuition. In Figure 9 we plot
the variation of the total throughput achievable on all
trees simultaneously, as the location of the bottleneck in
the network is varied. (In these experiments we varied

the bandwidths of the access links on the topology
with respect to the rest of the links.) The X-axis oFig. 11.
the plot shows the ratio of the average bandwidth &fo TNs.
the access links to the average bandwidth in the rest

of the network. Note that all links in the network ar
assigned one bandwidth value and all access links ar
assigned another bandwidth value. The y-axis plots theWe ran the PlanetLab experiments with upto 18 nodes
ratio 3/\(G) as a percentage, whergis the sum of (including source, TNs, and destinations) that were
throughput achieved on all the trees tadG) is the widely distributed in different sites. In order to avoid
minimum of max flow values from the source to albverloading of the shared PlanetLab nodes with our
destinations. In general we want a higher valuegof experimental traffic, we restricted our experiments to
and as explained in Section I\(G) is an upper-bound transfer files of size 64 MB from the single source to
on 3. We can observe that when the access links servenagltiple destinations in all our experiments. In Figure 10
bottlenecks (e.g., as access to network bandwidth ratie list all the nodes that we have used in our experi-
of 40%) the trees are primarily constrained by acceg®¥ents.

bandwidths in both cases and they achieve the same

performance as the minimum max-flow. Note that in Comparison with multi-unicast and single-tree so-
such scenarios\(G) is also the optimal value fop. lutions: As a base case, we first compare the perfor-
However, as the bottleneck shifts to the network (e.gnance of SPIDER to simple multi-unicast and single
for access to network bandwidth ratio of 100%) ouree based solutions with only two destinations and two
proposed MBST algorithm starts to perform better thasther nodes as TNs. The source was located in China, the
SWPT, vindicating our choice. MBST achieves a totalestinations were in Israel and Princeton, and the TNs
throughput within 76% of\(G) in such cases whichwere in Intel and HP (see labels in Figure 10). The top
SWPT achieves a throughout within 65% XfG). panel in Figure 11 illustrates the different trees that were

Transfer Time (in se

Data Replication from China to Princeton and Israel using

e PlanetLab Experiments
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Fig. 12. Comparing transfer time with increase in Fig. 13
the number of destinations. T

ce- (slow) —& (fast)

-------------

Replication time in secs

Speed up factor
.
\ \

nnnnnnnnnnnnnnnn

Speed up factor with increase in TNs.

Fig. 15. Percentage completion of replication for SPIDER, BitTor-

Fig. 14. Transfer time with increase in trees !
rent and Slurpie.

generated. The leftmost tree was the multi-unicast trgfutric in SPIDER as the number of destinations is varied
(no TNs) and the remaining three topologies indicate thgumber of TNs constant (4), source at Netherlands, and
three trees that were created in SPIDER. In the lowgfimper of trees used by SPIDER constant (3)). We ob-
panel of the figure we plot the replication latency tQerye that although the absolute performance of SPIDER
each of the two destinations as well as the makespatkps improving with increasing number of destinations
(marked as ‘total’) which is essentially the same as Isra(%l\,er multi-unicast), the relative improvement is about
in this case. The replication latency in case of multi 75 i all these scenarios.
unicast (leftmost bar) was a factor of 2-3.5 greater thangwever, as the number of TNs was increased from
SPIDER (second bar from the left). The remaining thregig 6 the opportunity for spatial diversity in SPIDER
bars indicate the latency incurred if only a single tre@creased and led to improvements in relative perfor-
was used for the replication process. In this example We&ynce with respect to multi-unicast, i.e., increasing
choose the same three trees generated by SPIDER,@gedupS (Figure 13). This can be observed in the plot
individually for this comparison. The advantage of using,, experiments with different sources.
multiple trees in SPIDER is obvious from this plot. More Comparison to other techniques — BitTorrent and
importantly, replication performance on a single poorlgmrpie: We next compare performance of SPIDER to
chosen tree alone can be worse than multi-unicast. wyo different data download techniques, namely Bit-
In Figure 14 we perform a similar experiment with gorrent [8] and Slurpie [9]. The source code for both
total of 7 destinations, 4 TNs, and the source located tifese schemes were publicly available. In order to keep
Netherlands and present the performance of SPIDERtag comparisons fair, we chose to run Slurpie in an
the number of trees created is varied. We can obserggruistic’ mode, where each peer (in our case TNs
that there is nearly a factor of 1.75 improvement iand destinations) would stay in the system to assist
performance (makespan) when two trees is used instealer destinations in completing their downloads. In
of one, and a factor of 2.6 improvement in performangggure 15 we compare the download latency of all seven
when three trees are used instead of one. destinations used in this experiment. The plot indicates
Varying number of destinations and TNs: In Fig- the cumulative fraction of destinations that completed
ure 12 we examine the performance of the makespdie download (replication) with time. We can observe
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that destinations in SPIDER, which efficiently leveragg$0] G. Kwon and J. Byers, “ROMA: Reliable Overlay Multicast
multiple trees, finishes the entire replication process by Using Loosely Coupled TCP Connectionsi Proc. of IEEE
180 seconds, followed by Slurpie at about 260 seconf[ﬂﬁ,]

ie.,

an improvement factor of approximately 1.5. The

performance of BitTorrent is highly variable and is
sensitive to which destination is able to completely finish?!
the first download. The lines marked BitTorrent-UMD

and BitTorrent-France represents the best and the worst

case scenarios for BitTorrent among all the different rufi]
of the experiment (best case occured when the UMD
destination was the first to finish download and the worst
case occured when France was the first) Our resylts]
here also confirm the observations of authors in [9]

that Slurpie achieves a factor of two improvement iHS]
download performance over BitTorrent.

V. CONCLUSIONS

In this paper, we have presented the SPIDER systélr%]
for coordinated fast distribution of large content acros$sr)
multiple sites. SPIDER is suitable for replication in dif-
ferent infrastructure based systems such CDNs, scientific

data exchange systems, and storage network. In SPIDEg,

data replication is accelerated by employing multiplig9]

trees rooted at sources that are computed through careful
measurements. We present an algorithm for computatra
er

of multiple trees and discuss the SPIDER data trans
protocol. In our experimental evaluation of SPIDER on
PlanetLab, we observe an improvement factor of 6 whé&i!
compared to multi-unicast. In comparison to Bittorrent
and Slurpie, SPIDER provides an improvement factor 2]
4 and 1.5 respectively.
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T from sources connectingD in a set of all such polynomial time algorithm to find a fractional packing
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maximum possible under the constraint that for any edge the maximum weight fractional packing. As this
e, the sum of the capacities of the trees containinggorithm only gives an approximate value for the dual
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violated constraint. Testing feasibility still remains a hard
problem as it reduces to the NP-Hard directed Steiner
tree problem. Ana-approximation algorithm for this

VI. APPENDIX: APPROXALGORITHM FOR TREE
COMPUTATION

max { Z b(T) : Z b(T) < cVe € E,b(T) > OWT € T
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