
SUBMITTED TO IEEE INFOCOM 2005 1

Fast Replication in Content Distribution Overlays
Samrat Ganguly, Akhilesh Saxena, Sudeept Bhatnagar, Suman Banerjee, Rauf Izmailov

Abstract— We present SPIDER – a system for fast
replication or distribution of large content from a single
source to multiple sites interconnected over Internet or
via a private network. In order to exploit spatial diversity
of the underlying network, SPIDER uses an overlay
structure composed of dedicated Transit Nodes (TNs).
The data transport mechanism in SPIDER leverages this
overlay structure to provide a coordinated approach that
minimizes the maximum time to replicate to all destination
sites (the makespan of content replication). In order to
achieve this objective, SPIDER employs two orthogonal
components: a) creation of multiple dynamic distribution
trees using the transit nodes b) end-to-end reliable data
transport with flow control on these trees by chaining
point-to-point TCPs. We further present simulations based
results to quantify benefits of tree construction algorithms
in random topologies. We evaluate the real implementation
of the SPIDER in PlanetLab and observe a 2-6 times speed
up compared to different existing schemes.

Index Terms— System Design, Mathematical program-
ming/optimization, Graph Theory, Experimentation with
real networks/Testbeds.

I. I NTRODUCTION

The recent emergence of new applications in the enter-
tainment, business and scientific communities has led to
a tremendous growth in the size of data sets in the recent
past [1] and has necessitated the research in the area
of fast bulk data transfer and replication. For example,
in the entertainment community, content providers are
now interested in transferring very large content such as
digital video programming or video-on-demand movies
over the Internet from a central server to geographi-
cally distributed edge servers for providing on demand
streaming to their clients. Similarly, movie distributors
are considering the use of the Internet to transport movies
from their central location to movie theaters around the
country and the world. Analogously, wide-area storage
backup systems are interested in transporting large vol-
umes of data to be archived from a single location to
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Fig. 1. Content distribution overlay using transit nodes; example
scenario: source replicates content at edge servers using multiple trees
– Tree-1 (solid) and Tree-2 (dashed)

multiple remote data centers over the Internet. Large
software companies have to periodically update their
various mirror sites with the latest releases of their
software products. In e-science collaboration projects,
large experimental data sets need to be transferred to
geographically distributed locations for analysis. For all
of these applications, the key performance metric is the
total time needed to replicate large data sets. This paper
presents practical approaches to extract more bandwidth
from underlying network in designing a system that can
be used to accelerate the data replication.

Our approach is based on an overlay architecture com-
posed of a number of dedicated transit nodes (TNs) as
shown in Figure 1. The source in these applications are
content publishers, data repositories, or central servers.
In this architecture, the content is not directly pushed to
the clients. Instead the source replicates the large volume
of data to a relatively small set of edge servers, caches, or
data centers. End-users, that are the actual clients of this
data, subsequently downloads it from these edge servers.
A similar architecture is employed by popular CDNs,
like Akamai, to distribute large (more than 100 MB)
movies (bmwfilms [2]) to edge servers. The edge servers
subsequently stream these movies to millions of clients.
With the steady increase in the size of the data sets being
distributed across such CDNs from a single source to
multiple edge servers (destinations), the transfer latency
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has gained importance. Typically, the source of the data
initiates this replication processof a large volume of
data to a known set of destinations at a specific time.
The objective then becomes to minimize the makespan,
i.e., to minimize the total time to replicate content from
the source to these chosen destination set. To achieve
such data replication our proposed architecture uses a
set of special intermediaries called Transit Nodes (TNs),
that can be deployed at opportunistic locations in the
network, e.g., GigaPoPs, to improve performance.

We distinguish such a data replication application
from the file sharing applications that are popular in the
peer-to-peer (P2P) domain. P2P file sharing applications,
(like Kazaa, Emule) are receiver-driven, i.e., an indi-
vidual receiver initiates data download asynchronously,
independently of all other requests of the same content.
Most of these schemes allow individual clients to down-
load data opportunistically from multiple sites towards
minimizing download time. To facilitate such a download
Kazaa organizes the clients into an overlay P2P network.
The overlay changes with time as nodes dynamically join
and leave the system.

The following are key differences between our pro-
posed work and prior work in the context of P2P
downloads: (1) We are examining a different problem
— how do we efficiently replicate large content from a
single source to pre-determined multiple destinations in
a coordinated and synchronous fashion.In this sender-
driven scenario, it is likely that the sender, the Transit
Nodes and all the destinations will implement a coordi-
nated solution that optimizes the makespan. This is very
unlike the receiver-driven problem in which protocols
can be designed for an individual client to maximize its
own data rate by downloading content from the source
and other peers that are available in the system, without
necessarily trying to minimize the global objective func-
tion. (2) In P2P download scenarios there are typically a
large number of peers many of which are located across
low bandwidth access links. Hence in most proposed
P2P download systems, a client randomly discoversa
few other peers through simple randomized techniques.
Subsequently due to bandwidth limitations they perform
a coarse-grained measurement to choose a subset of
these peers for parallel download. In our fast replication
scenario, the source, Transit Nodes, and destinations are
part of a high-bandwidth CDN. The total number of such
nodes is much lower than the number of peers in P2P
systems. Therefore in our case we are able to probe the
suitability of all possible paths between these nodes and
perform more accurate measurements on them. Note that
a CDN (e.g., Akamai) already have such measurement
infrastructure in place [30]. In particular we model this

problem as an optimization problem (which is NP-
Hard) and hence propose heuristics that perform well
with respect to upper-bounds on the optimal. (3) In our
replication case we consider data distribution in very
large volumes (GBs or TBs). Hence we can leverage
this long-lived nature of this replication process in our
design.

A. Content distribution overlay

We consider a CDN architecture as shown in Figure 1
where a set of intermediaries act as TNs. The TNs are
placed at opportunistic locations in the network that
organize themselves into a content distribution overlay
and are used to replicate and forward data. These nodes
typically are servers with fast cache and high access
bandwidth. The advantages of TNs are two-fold: (1)
They allow us to better exploit available spatial diversity
by using multiple alternative paths available within the
network from the source to the destinations and thus
reduce data transfer time, (2) They allow us to better
exploit alternate paths that can be better than the direct
unicast paths. Recent research (Detour [13], RON [14])
has shown that in many cases alternate overlay paths
have better latency and throughput characteristics than
direct IP paths. For example in specific experiments the
authors in [13] have shown that in 30% of direct IP
paths have better alternate paths with respect to the round
trip time metric and 70% of direct IP paths have better
alternate paths with respect to the loss metric. RON uses
such alternate paths for fault tolerance.

A common approach to distribute data using an over-
lay is to organize the set of nodes into an overlay tree
rooted at the source. Various optimized multicast tree
creation algorithms have also been proposed in [15],
[16], [17], [10]. However, as pointed out in [4], a single
multicast tree based data forwarding cannot achieve high
throughput as bandwidth monotonically decrease with
depth of the tree. Additionally, decreasing tree depth by
increasing tree fan-out is not necessarily a good option as
it can increase the forwarding load on the transit nodes,
as noted in the SplitStream work [6].

B. Contributions

We present a stand-alone content distribution system,
SPIDER, based onSPatial Indirection for pathDiversity
for ExpeditedReplication. SPIDER utilizes the transit
nodes in creating multiple multicast trees and coordinates
the transport of data on these trees to the given set of
destinations. In SPIDER, the original data is stripped into
equal sized blocks and reliably transported to destination
using the multicast distribution trees and aggregated into
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the original file at each destination. We present the
design of SPIDER which has two core components:
a) computation of multiple distribution trees; b) flow
control in data distribution among trees.

In Section II we formulate the data replication problem
as an optimization problem — minimizing the replication
makespan. Since this problem is NP-Hard, we propose
a polynomial-time approximation (Appendix). Although
this approximation is polynomial-time, it is still com-
putationally expensive and hence we define a heuristic
algorithm (called MBST) for computing multiple trees
based on bandwidth measurements. The tree computation
method tries to maximize the total throughput achieved
using all trees. We compare the proposed algorithm with
other alternate algorithms as well as an upper bound of
the optimal.

We subsequently present the data distribution archi-
tecture of SPIDER that defines flow control mechanisms
at block level and gracefully adapts to variations of
bottleneck bandwidth of a given tree. At the same
time, the flow control mechanism ensures an efficient
load balancing among the trees based on the long-term
average bottleneck bandwidth of the tree.

Some of the salient features of the SPIDER system
are: a) trees can be reconfigured quickly to changing
network conditions without losses, b) it is resilient to
Transit Node failures, c) tree creation can be based on
chaining of any point-to-point transport protocol (we
use TCP currently) d) sharing asingle TCP connection
between edges in different trees passing through same
pair of nodes, which leads to TCP friendliness in the
network. The system is easy to use (akinto simple FTP)
and needs installation of the same SPIDER servers at all
the participating nodes (destination and TNs). Finally,
we have made the tool available at [18] for community
use.

We have evaluated the performance of the real
implementation of SPIDER on the PlanetLab (see
http://www.planet-lab.org). In our experiments we have
examined the performance for transfers of different sizes
of data on different topologies on the PlanetLab with
diverse sets of nodes (diversity of geographical loca-
tions and their access bandwidths). In these experiments
we compared the performance of SPIDER to different
schemes, including multiple unicast TCP sessions in
parallel and existing fast file download tools such as
BitTorrent [8] and Slurpie [9]. Our results indicates that
SPIDER can achieve speed-up of up to five-six times
compared to multi-unicast approaches. SPIDER provides
two times speedup compared to Slurpie and around four
times speed up compared to BitTorrent.

C. Related Work

In the recent past, a significant amount of research
has been directed towards developing protocols and
mechanisms for fast bulk data delivery. A number of such
research efforts were focussed on unicast data transfers,
e.g., Fast-TCP [19], XCP [20], gridFTP [21], blast-
UDP [22], Digital Fountain [23]. SPIDER can use any
of these schemes as the underlying transport protocol
between each pair of nodes on the overlay.

At the same time, with the tremendous growth of
peer-to-peer networks for file sharing, various protocols
were developed to minimize the file download time.
These protocols are based on downloading a file in
parallel from more than one peer. Simple versions of
such approach already exist in current Kazaa and E-mule
P2P networks.

Various improved solutions were proposed in the con-
text of P2P network, such as BitTorrent [8], Bullet [7],
informed content delivery [4], Slurpie [9], ROMA [10],
SplitStream [6]. In most of these approaches, it is the
client which is responsible for selecting a set of others
of peers from where they downloads a complementary
set of blocks forming the original file. In different
protocols, such a set of peers are chosen either randomly
or based on selective bandwidth estimation for a few
peers. Hence these solutions are particularly tailored for
P2P download applications, where clients join and leave
in ad-hoc fashion. In contrast our work focusses on
coordinated replication in Content Distribution Networks
in which the objective of the source, Transit Nodes,
and destinations is to minimize the makespan of the
replication process. We demonstrate the difference of
these techniques and ours by experimental comparisons
to two of these schemes (BitTorrent, which is widely
used today, and Slurpie). Some of these approaches,
e.g., ROMA, use a single overlay multicast tree for data
distribution and hence cannot exploit path diversity in
the network. SplitStream, on the other hand, proposes
the use of multiple trees for data transfer with the goal
of balancing the forwarding load at intermediate peers
(Transit Node in our case). Their solution is particularly
geared towards scenarios where the uplink and downlink
accessbandwidth of the peers is the bottleneck. For high-
bandwidth CDN architectures, this is not necessarily
the case because the destinations are edge servers that
are placed in locations with high access bandwidth.
Additionally empirical studies in [11] show, end-to-end
path bottlenecks frequently occur in intra-AS and inter-
AS peering links, and not just at end-point access links.

Fast Replica [24] is another solution which essentially
constructs multiple (K) trees. The file is split intoK
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Fig. 2. An example showing the failure of shortest widest path
algorithm in finding the best trees.

stripes and each stripe is sent along one of theK trees.
However, their tree construction process (unlike ours)
does not take into account bandwidth of different paths
into account and hence their approach may lead to low
quality trees. Additionally the amount of data transported
on each of these trees does not depend on the tree
bottleneck. Consequently Fast Replica would be very
inefficient in a scenario where two trees are used and
one tree has ten times the bandwidth of the other.

Apart from bulk data delivery, the use of path diversity
also finds applications in the context of real-time stream-
ing. For these applications, various coding solutions
were proposed such as [12] with the main purpose of
increasing decoding quality and not minimizing transfer
time. Path diversity was also proposed in [3], where a
client establishes parallel connections to multiple sites
to download a file. However, our objective is just the
reverse - how to replicate from one source to multiple
destinations.

D. Organization of the paper

In the next two sections we present the two important
components of SPIDER, namely creation of multiple
trees and the data distribution mechanism using these
trees. We present the results to evaluate the performance
of SPIDER based on simulation and experimentation in
PlanetLab. Finally, we present conclusions and future
directions of work.

II. T REE COMPUTATION ALGORITHM BASED ON

BANDWIDTH ESTIMATION

SPIDER has two orthogonal components: (1) tree
computation, and (2) reliable data transport on the com-
puted trees. Such a split allows us to efficiently deploy
this system over the Internet as well as over private
networks. In many private networks, the topology along
with the link bandwidth maybe known a-priori and there-
fore the distribution trees can be pre-computed and can
be passed to SPIDER as parameters. On the other hand,
in Internet, the trees can be created dynamically based on
current bandwidth availability and can be reconfigured

in the middle of replication process. In this section,
we present the algorithm used to compute multiple
distribution trees in SPIDER. The distribution system of
SPIDER (described in the next section) takes these trees
as input parameters and performs data replication using
them.

A. Formal Problem

The goal in SPIDER is to minimize themakespanin
data replication, where makespan is defined as the total
amount of time between the moment the data transfer
is initiated and the moment when the data download
completes at the last destination.

In this section, we focus on algorithms for construct-
ing optimized multiple multicast trees on a capacity
constrained graph. Lets denote the source node and
D denote the set of destination nodes in a graphG =
(N,A), whereN is the set of vertices andA is the set of
edges. Given a capacity constrained graphG = (V, E),
a sources and a set of destinationsD ∈ V − {s}, find
• a setA of directed rooted trees{T1, . . . , Tn} from

the sources spanning the destinationsD
• a bandwidth assignmentβ = {β(T1), . . . , β(Tn)}

such that the total bandwidthBmax = β(T1)+. . .+
β(Tn) is maximized and the capacity constraints are
met.

The special case of|D| = 1 can be solved by the
max-flow-min-cut theorem.

In the graphG, let F (d) denote the max-flow value
from the source nodes to a destination noded, where
d ∈ N − {s}. Let λ(G) = min

d∈N−{s}
F (d) denote the

minimum of the max-flow values from the sources to
all the destinationsN − {s}. If D = N − {s}, the
total bandwidthB from any set of trees cannot exceed
λ(G). Further refinement of this observation comes from
Edmond’s packing theorem [27], which states that in
an integral capacity scenario, the maximum value of
B is Bmax = λ(G). The formulated problem can
be considered asmaximum packingof directed rooted
spanning trees in a graph. There exists a polynomial time
algorithm providing optimal solution to this problem
based on [27] as can be found in [28]. However,
the problem in the general non-spanning case, where
D ⊂ N − {s} ), is NP-Hard. The solution for this
scenario reduces to solving a set of Steiner tree problem
and thereby has same approximation bound as Steiner
case. We present a sketch of the approximation algorithm
for the general case in appendix based on results in [29].

As we may require fast computation of trees in
order to adapt to changing bottleneck bandwidth, we
need a practical and efficient algorithm with reduced
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complexity, than what the approximation algorithm in
the Appendix provides. Therefore, we describe a heuris-
tic algorithm to compute the multiple trees, given the
estimated bandwidth between different pairs of nodes.
In the next two subsections we show the limitations of
simple tree computation algorithms and then describe
how our algorithm overcomes these shortcomings.

Let the bandwidth between nodesi andj is given by
bij (and is the weight of the arc betweeni andj in G).
If the bandwidth between nodesi and j is not known,
we setbij to 0. Along with the bandwidth, the outgoing
access bandwidthEi of each nodei is assumed to be
known. If Ei is not known, then we setEi equal to the
sum of outgoing bandwidths fromi to all other nodes
(Ei =

∑
j bij wherej ∈ N ). In all cases,Ei ≥ bij (for

all j ∈ N ) since the outgoing bandwidth to an individual
node cannot be more than the access bandwidth of the
node.

B. A Naive Approach - Shortest Widest Path Tree
(SWPT)

Using the above information, one could conceive
several algorithms to construct multiple source-rooted
trees. We now look at a naive tree constructing algorithm
and use it to identify the issues that need to be accounted
for in designing a good tree construction algorithm. Note
that the tree construction algorithms have to create a
directed tree rooted at source, however, for the purpose
of exposition we refer to this as a tree.

Since the amount of bandwidth that a tree could
provide for transfer is limited by its bottleneck band-
width, a natural candidate for tree construction is the
Shortest Widest Path Tree (SWPT) algorithm (which is a
variant of the shortest path algorithm that maximizes the
bottleneck bandwidth from source to any destination). A
simple algorithm to create multiple trees is obtained by
repeated application of the SWPT algorithm.

• Find a source-rooted SWPT in the graph.
• If an SWPT is found, remove the edges in the

SWPT from the graph and repeat first step.
• Otherwise report all the SWPTs found and exit.

While this algorithm is simple, the key problem with
this greedy algorithm is that in each iteration it only
considers the present tree. There is no notion of leaving
enough bandwidth for the trees that would be created in
subsequent iterations. This is best illustrated using the
example shown in Figure 2. The example has a source
S and three destination nodes labelledN1, N2, N3. The
numbers shown in the figure are the bandwidths of the
edges. Figure 2(B) shows the SWPT on the original
graph. The bottleneck capacity of this tree is 9 units.
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Fig. 3. An example showing the use of our algorithm in creating
multiple trees.

We eliminate the 9 units utilized by this tree to get the
network shown in figure 2(C). Notice that the execution
of SWPT algorithm uses both of the outgoing links
from the source thus leaving only 1 unit of outgoing
bandwidth from the source for future. Thus, the next
tree created has only 1 unit of bandwidth as shown in
figure 2(C). It is important to note that the minimum
incoming bandwidth into the destination nodes is at least
16 units and the repeated use of shortest widest path
results in a use of 10 units of bandwidth through the
two trees.

This example also show that the use of a maximum
bandwidth spanning tree also results in bandwidth under-
utilization. It can be verified that the maximum band-
width directed spanning tree also gives the same trees as
the ones shown in the figure.

The key insight we get from the example is that
any tree creation algorithm cannot be oblivious of the
network state left for subsequent iteration. Thus, any
algorithm to create multiple trees has to try to leave as
much bandwidth for future trees while trying to keep
bandwidths of each of the trees as balanaced as possible.

C. Maximum Bandwidth Sum Tree (MBST) Algorithm

Our MBST algorithm incorporates the above insight in
building the trees. It does so by checking the amount of
outgoing bandwidth left at a node if one of its outgoing
edge is added to the current arborescence. The MBST
algorithm is shown in Figure 4.

The MBST algorithm starts by adding the source (say
node 0) to the list of nodes that have been added to the
current InTree (line 4). Next, for each nodek in the
InTree list, we find the maximum outgoing bandwidth
arc to nodes outside theInTree list (line 7). For each
of nodek already in the tree, we compute the leftover
outgoing bandwidthEk, if its maximum outgoing edge
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Input:
N - Set of Nodes –S is the source
bij - Bandwidth between all pairsi, j ∈ N
En - Outgoing Access Capacity ofn ∈ N

Output:
T - Set of Trees

Algorithm:
1. T ← φ
2. Do
3. CurrentTree ← φ
4. InTree ← {S}
5. While InTree 6= N do
6. For eachn ∈ InTree do
7. Mn ← Edge withmaxj{bnj}
8. Rn ← En - {Bandwidth ofMn}
9. End For
10. x ← Node withmaxj{Rj}
11. CurrentTree ← CurrentTree ∪Mx

12. InTree ← InTree ∪ {destination of Mx}
13. End While
14. For each edgee in CurrentTree
15. be ← be - {bottleneck inCurrentTree}
16. End For
17. T ← T ∪ CurrentTree
18. End Do
19. ReturnT

Fig. 4. Algorithm to create multiple trees (MBST)

is added to the current tree (line 8). The edge which
leaves the maximum outgoing bandwidth for its source
node, is added to the tree and its destination node is
added to theInTree list (lines 10–12). We repeat this
process until all nodes have been added to the tree. Then,
we reduce the bandwidth on all edges of the tree by the
amount of bottleneck bandwidth (lines 14–16). We run
this algorithm on the remaining graph until we cannot
find any more trees. We note that the ability to use a
single overlay edge in multiple trees is only available to
us because of the sub-file multiplexing capability of the
SPIDER architecture.

We trace the MBST algorithm on the example shown
in Figure 3. The network graph is identical to that in
Figure 2 except that its nodes are now labelled with their
access bandwidth (Es, E1, E2, E3). For this example, we
keep the values of the access bandwidths as the sum
of the outgoing bandwidths from a link. The first edge
S → N3 is added as shown in figure 3(B) as it has the
maximum outgoing capacity (10 units). This reduces the
outgoing capacity of the source (for future trees) by 10
units (thusEs = 19 − 10 = 9). To add the next edge,
we have two candidate edgesS → N1 and N3 → N1,
which are the maximum capacity outgoing edges from
the two nodes already in the tree. If we addS → N1 to
the tree, then the outgoing capacity at sourceEs would

BLOCK1

BLOCK2

BLOCK1

BLOCK2

Tree-1

Tree-2

BLOCK2

BLOCK1

BLOCK1

BLOCK2

Single Point-to-Point (TN1�TN2)
Transport Session

TN-1 TN-2

Fig. 5. Block transfer on a tree edge: blocks of different trees are
transferred through a single TCP connection sequentially

be reduced to 1 (since the tree would have a bottleneck
capacity of 9 and two edges out ofS would be used,
thus leaving 1 unit of spare capacity onS → N1). If we
add N3 → N1 to the tree, thenE1 would be reduced
to 7. Since addingN3 → N1 leaves more bandwidth at
the source of the edge, we add it to the tree, despite
knowing thatS → N1 was more likely to create a larger
bandwidth tree (Figure 3(C)). We updateE3 to 7 and
also updateEs to 12 to account for the fact that 3 units
of bandwidth onS → N1 would be available for future
use. Using a similar procedure, we complete the first
tree by addingN1 → N2 to the tree. Figure 3(D) shows
the complete first tree along with the updated outgoing
access bandwidths at each node after the tree is created.
We continue this process to get two more trees shown in
figures 3(E) and 3(F). Note that the total capacity of these
three trees is 16 units (7+7+2) whereas using SWPT we
could only get 10 units of bandwidth. It could be verified
that 16 units is the maximum transfer capacity one could
extract in the above example.

D. Implementation note

In the SPIDER system, the MBST algorithm requires
the knowledge of measured bandwidth among node pairs
and the access bandwidth. In most CDN scenarios,
various measurement infrastructure is already in place
(e.g. Akamai as referred in [30]). In measuring the
expected TCP throughput between two nodes, we use
the following equation given in [31] as

T =
s

R
√

2p
3 + tRTO(3

√
3p
8 )p(1 + 32p2)

,

wherep is the loss event rate,s is the packet size,R is
the round-trip time andtRTO is the TCP retransmit value.
The above sending rate measurement approach does not
inject too much probe traffic.

III. C ONTENT DISTRIBUTION USING SPIDER

The SPIDER distribution system consists of three
entities: source, Transit Nodes (TNs), and destinations.
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Fig. 6. a) Tree management has two parts: i) transmission of the
blocks along the tree by sending a control packets preceding it; ii)
ack propagation back to the tree ensuring reliable delivery of block.
b) Control packet format.

The entire replication process is coordinated by the
source and SPIDER agents installed at all destinations
and TNs.

A. Block level transfer

At the source, the original data file is split into equal
sized blocks. In our experiments and simulations we
considered the size of the blocks as 512 KB. The size
was chosen based on experimentation and is balance
between large size to achieve high TCP throughput and
low sizes for faster adaptation to bottleneck bandwidth
fluctuation. For each block, the source decides which
specific tree is to be used for the transfer from itself
to the entire set of destinations. A block is transported
using only a single source-specified tree. Each block is
transferred hop-by-hop along the given tree using TCP
or any point-to-point transport protocol as shown in
Figure 5. When the block is completely transferred from
transit node TN1 to the next hop TN2, TN2 replicates the
block and transfers it to its children in the tree. The point-
to-point transport session is terminated between two
overlay nodes which essentially decouples the sending
rate of two TCP sessions on any two tree edges - an
approach also used in [25]. In order to avoid application-
level buffer space overflow, we perform a window-based
flow control at block level at the source and TNs (note
that TNs may use a fast cache of finite size). Once
the block reaches the intended destination, it is directly
written into the original file.

B. Distribution tree setup

Each tree has a treeid Ti. Each block is mapped
to an unique treeid at the time of transfer from the
source node. The source sends a control packet before

transmitting the block. The format of the control packet
is shown in Figure 6(b). The fields of the control packet
include a blockid (for identifying its position in the
file and for acknowledgments) a treeid, and also the
topology of the tree (treeinfo).

When a TN receives this control packet, it first adds
the tree topology information in itstree-table, and sub-
sequently forwards the control packet to its children on
the tree as specified in the tree topology information
( 6 (a)). In this manner the control packet propagates
to the entire tree prior to the block. This ensures that
the tree forwarding information is always available at
TN before the data block arrives. For each subsequent
block that is to be distributed using the same tree, the
tree topology information is not included in the control
packet since it can be extracted by each TN from the
tree-table maintained locally.

On receiving a block each child sends an acknowledg-
ment back to the parent ( 6(a)). A node waits for ACKs
from children before propagating the ACK to its parent
node.

In a dynamic network environment such as Internet,
it may be necessary to change the topologies of trees in
the middle of the replication process in order to adapt to
the changing bandwidth conditions. The proposed “tree-
per-block” method allows trivial addition, deletion and
tree re-configuration at the granularity of single block
transfer time. Once the source has assigned a block to
a specific tree (as described in the control packet) that
block is distributed by using that tree alone. By keeping
the granularity of block size adequately small (512 KB)
in comparison to the total data volume (> 64 MB) such
a structure allows us to switch trees quickly based on
changing network conditions.

C. Flow control at block level

When the source receives an ACK for a block from
all its direct children, it is guaranteed that that the corre-
sponding block has reached all the intended destinations.
For each treeTi, the source maintains the number of
unacknowledged blocksbi, which refers to the number
of blocks that are in flight on the distribution tree. For a
given treeTi, there is a thresholdWi which acts as the
buffer size at source. Blocks are pushed sequentially on
tree i if bi ≤ Wi, i.e, there is space in the buffer. The
Wi is chosen based on the maximum delay- bandwidth
product for the treei and can be time varying . The
maximum delay can be found from time stamping the
control packet and finding the time when it reaches all
the destinations. The bandwidth can be computed from
the ACKs.
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There are two reasons for having this window control.
First, it ensures that the application buffer at TNs does
not overflow while trying to maintain a non-zero buffer.
The non-zero buffer is required to make sure that the
TN always has data to send thus maximizing the link
utilization. Second, this allows SPIDER to balance the
load among trees. With infinite window, blocks will be
sent on a tree based on the available bandwidth on
the first hop and not on the bottleneck bandwidth of
the trees. However, with the window, a tree which has
more bandwidth will have ACKs coming at a higher
rate increasing the rate of blocks being pushed in that
tree. Without load balancing among the trees, the total
throughput from the trees will not be maximized.

In certain cases, two trees may share the same over-
lay link. In the implementation of SPIDER, a single
TCP session is opened on which blocks belonging to
different trees can be transferred. This is done to avoid
establishing multiple TCP connection between two nodes
and thus ensuring fairness to other competing traffic.
However, blocks may be assigned on the two trees at
different rates, which is decided by the tree creation
algorithm. In such cases the traffic on the single TCP
connection (corresponding to the shared edge) is split
between blocks assigned to the two trees proportionally
based on the corresponding rates of the trees.

D. Resilience to Transit Node/Connection failures

In the unlikely event that a Transit Node fails, a
parent wil discover through lack of acknowledgments
and attempt to foward data directly to the childen of
the failed node. In the worst case the affected block
may need to be re-transmitted from the source, possibly
using a new tree that will be automatically computed for
subsequent blocks as the failure gets detected.

E. Node level architecture

The main components of basic node architecture (Fig-
ure 7) are: a) a Receive queue handler for processing
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Fig. 8. Speedup of SPIDER over multi-unicast. (Simulations)

control packets and ACKs, b) an ACK table for keeping
track of delivered blocks, c) a buffer table used for
flow control d) a scheduler for selecting trees on which
to transfer a block and e) a Send queue to enqueue
departing blocks on to a single TCP connection.

IV. PERFORMANCE EVALUATION AND EXPERIMENTS

In this section we present results from both simulation
studies (to explain some properties of our proposed
scheme) and detailed experimental results conducted on
PlanetLab. In all these experiments we examine primarily
two metrics of interest — the makespan of the replication
process, defined by the last destination to complete the
transfer, and net throughput achieved different destina-
tions.

A. Simulation Studies

For our simulations we generate Internet-like topolo-
gies using Brite [36] of upto 2000 nodes. Typically 200
of these nodes serve as destinations for the replication
process. Since we expect that the source, TNs and the
destinations are part of a high-speed content delivery
network, we assume that these nodes have relatively high
bandwidth (∼ 1 Mbps). We will examine more realistic
scenarios in the PlanetLab experiments. For different
experiments we generated such topologies with varying
degree of network connectivity.

Comparison with multiple-unicast: We first compare
the performance of SPIDER with a simple multi-unicast
approach, in which the data is sent using multiple unicast
transfers directly from the source to each destination. In
Figure 8 we plot the speedup factor for the makespan,
which we define as the ratio of the makespan for multi-
unicast to the makespan for SPIDER. We can observe
that in general the speedup gained by SPIDER in these
experiments vary between 4 and 33 for different network
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Fig. 9. Performance comparison of MBST and SWPT to an upper
bound of the maximum bandwidth achievable,λ(G). (simulations)

topologies, with greater speedup achieved in more con-
nected networks. This is an expected behavior of SPI-
DER because increase in connectivity implies increase in
path diversity which is efficiently exploited by SPIDER.
In particular for network connectivity around 3-4 (as is
true on the Internet) the speedup varies between 9-15.

Comparison of MBST and SWPT: In Section II
we had compared two approaches for tree construction,
namely SWPT and MBST, and had intuitively explained
why the latter is a better choice. We new present exper-
imental verification of this intuition. In Figure 9 we plot
the variation of the total throughput achievable on all
trees simultaneously, as the location of the bottleneck in
the network is varied. (In these experiments we varied
the bandwidths of the access links on the topology
with respect to the rest of the links.) The X-axis of
the plot shows the ratio of the average bandwidth of
the access links to the average bandwidth in the rest
of the network. Note that all links in the network are
assigned one bandwidth value and all access links are
assigned another bandwidth value. The y-axis plots the
ratio β/λ(G) as a percentage, whereβ is the sum of
throughput achieved on all the trees tndλ(G) is the
minimum of max flow values from the source to all
destinations. In general we want a higher value ofβ,
and as explained in Section II,λ(G) is an upper-bound
on β. We can observe that when the access links serve as
bottlenecks (e.g., as access to network bandwidth ratio
of 40%) the trees are primarily constrained by access
bandwidths in both cases and they achieve the same
performance as the minimum max-flow. Note that in
such scenariosλ(G) is also the optimal value forβ.
However, as the bottleneck shifts to the network (e.g.,
for access to network bandwidth ratio of 100%) our
proposed MBST algorithm starts to perform better than
SWPT, vindicating our choice. MBST achieves a total
throughput within 76% ofλ(G) in such cases which
SWPT achieves a throughout within 65% ofλ(G).
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Fig. 10. Planet-Lab sites and labels.
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B. PlanetLab Experiments

We ran the PlanetLab experiments with upto 18 nodes
(including source, TNs, and destinations) that were
widely distributed in different sites. In order to avoid
overloading of the shared PlanetLab nodes with our
experimental traffic, we restricted our experiments to
transfer files of size 64 MB from the single source to
multiple destinations in all our experiments. In Figure 10
we list all the nodes that we have used in our experi-
ments.

Comparison with multi-unicast and single-tree so-
lutions: As a base case, we first compare the perfor-
mance of SPIDER to simple multi-unicast and single
tree based solutions with only two destinations and two
other nodes as TNs. The source was located in China, the
destinations were in Israel and Princeton, and the TNs
were in Intel and HP (see labels in Figure 10). The top
panel in Figure 11 illustrates the different trees that were
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generated. The leftmost tree was the multi-unicast tree
(no TNs) and the remaining three topologies indicate the
three trees that were created in SPIDER. In the lower
panel of the figure we plot the replication latency to
each of the two destinations as well as the makespan
(marked as ‘total’) which is essentially the same as Israel
in this case. The replication latency in case of multi-
unicast (leftmost bar) was a factor of 2-3.5 greater than
SPIDER (second bar from the left). The remaining three
bars indicate the latency incurred if only a single tree
was used for the replication process. In this example we
choose the same three trees generated by SPIDER, but
individually for this comparison. The advantage of using
multiple trees in SPIDER is obvious from this plot. More
importantly, replication performance on a single poorly
chosen tree alone can be worse than multi-unicast.

In Figure 14 we perform a similar experiment with a
total of 7 destinations, 4 TNs, and the source located in
Netherlands and present the performance of SPIDER as
the number of trees created is varied. We can observe
that there is nearly a factor of 1.75 improvement in
performance (makespan) when two trees is used instead
of one, and a factor of 2.6 improvement in performance
when three trees are used instead of one.

Varying number of destinations and TNs: In Fig-
ure 12 we examine the performance of the makespan
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Fig. 15. Percentage completion of replication for SPIDER, BitTor-
rent and Slurpie.

metric in SPIDER as the number of destinations is varied
(number of TNs constant (4), source at Netherlands, and
number of trees used by SPIDER constant (3)). We ob-
serve that although the absolute performance of SPIDER
keeps improving with increasing number of destinations
(over multi-unicast), the relative improvement is about
1.75 in all these scenarios.

However, as the number of TNs was increased from
2 to 6, the opportunity for spatial diversity in SPIDER
increased and led to improvements in relative perfor-
mance with respect to multi-unicast, i.e., increasing
speedups (Figure 13). This can be observed in the plot
for experiments with different sources.

Comparison to other techniques – BitTorrent and
Slurpie: We next compare performance of SPIDER to
two different data download techniques, namely Bit-
Torrent [8] and Slurpie [9]. The source code for both
these schemes were publicly available. In order to keep
the comparisons fair, we chose to run Slurpie in an
“altruistic” mode, where each peer (in our case TNs
and destinations) would stay in the system to assist
other destinations in completing their downloads. In
Figure 15 we compare the download latency of all seven
destinations used in this experiment. The plot indicates
the cumulative fraction of destinations that completed
the download (replication) with time. We can observe
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that destinations in SPIDER, which efficiently leverages
multiple trees, finishes the entire replication process by
180 seconds, followed by Slurpie at about 260 seconds,
i.e., an improvement factor of approximately 1.5. The
performance of BitTorrent is highly variable and is
sensitive to which destination is able to completely finish
the first download. The lines marked BitTorrent-UMD
and BitTorrent-France represents the best and the worst
case scenarios for BitTorrent among all the different runs
of the experiment (best case occured when the UMD
destination was the first to finish download and the worst
case occured when France was the first) Our results
here also confirm the observations of authors in [9]
that Slurpie achieves a factor of two improvement in
download performance over BitTorrent.

V. CONCLUSIONS

In this paper, we have presented the SPIDER system
for coordinated fast distribution of large content across
multiple sites. SPIDER is suitable for replication in dif-
ferent infrastructure based systems such CDNs, scientific
data exchange systems, and storage network. In SPIDER,
data replication is accelerated by employing multiple
trees rooted at sources that are computed through careful
measurements. We present an algorithm for computation
of multiple trees and discuss the SPIDER data transfer
protocol. In our experimental evaluation of SPIDER on
PlanetLab, we observe an improvement factor of 6 when
compared to multi-unicast. In comparison to Bittorrent
and Slurpie, SPIDER provides an improvement factor of
4 and 1.5 respectively.
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VI. A PPENDIX: APPROX-ALGORITHM FOR TREE

COMPUTATION

We present an approach to design an approximation
algorithm to solve the general case based on the corre-
sponding problem in undirected graph studied in [29].

Based on previous definitions, our problem can be
stated as a linear programming problem:

max

{∑
T∈T

b(T ) :
∑

T :T3e

b(T ) ≤ ce∀e ∈ E, b(T ) ≥ 0∀T ∈ T
}

.

In other words, it requires an assignment of non-
negative capacities (denotedb(T )) to the directed tree
T from sources connectingD in a set of all such
trees T , such that the sum of these capacities is the
maximum possible under the constraint that for any edge
e, the sum of the capacities of the trees containing
e is at most the capacityce of e. This LP problem
has exponentially many constraints and variables and
standard LP algorithm will require exponential amount
of time. The dual problem of is more tractable:

min

{∑
e∈E

ceye :
∑
e∈A

ye ≥ 1, ∀A ∈ A, ye ≥ 0

}
.

In other words, the dual problem associates a non-
negative real numberye with each edge such that a
weighted sum of these variables is the minimum possible
and for every directed treeT rooted ats spanningD in
T , the sum ofye for e an edge inT is at least1.

This problem has polynomially many variables al-
though the number of constraints is still exponential.
The ellipsoid algorithm [32] can be used to solve it,
i.e., provided that we have a polynomial algorithm to
check if a proposed solution is feasible; and if not, find a
violated constraint. Testing feasibility still remains a hard
problem as it reduces to the NP-Hard directed Steiner
tree problem. Anα-approximation algorithm for this

problem leads to anα-approximation algorithmA for
our original packing problem. We briefly describe the
proof of this based on [29].

To solve the optimization problem, as in the above
dual linear program, we add the inequality

∑
e∈E ceye ≤

R to the set of constraints in the dual and check if the
resulting linear program is feasible using the ellipsoid
method. By doing binary search onR, we can get
arbitrarily close to the true optimum. Each step of the
ellipsoid algorithm maintainsye’s, and checks whether
the presentye’s form a feasible solution. In our case,
for this checking the ellipsoid algorithm usesA. If A
finds a tree with weight less than1, that means that
the program is infeasible. If it does not, then we cannot
be sure whether the program is feasible or not, but we
do know that if we replaceR by αR then αye’s form
a feasible solution becauseA is an α-approximation
algorithm. This implies that if the ellipsoid algorithm
finds the solution to the dual to beR∗, then the actual
solution to the dual, and hence to the primal lies between
R∗ andαR∗. Thus we get anα-approximate algorithm
for our packing problem.

In [33] an approximation algorithm is given for the
minimum directed Steiner tree problem, which finds a
directed Steiner tree with weight at mostkε times the
weight of the minimum weight Steiner tree for any
fixed positive ε and with polynomial running time (k
is the number of Steiner vertices). This gives us a
polynomial time algorithm to find a fractional packing
of the trees with weight at leastk−ε times the weight
of the maximum weight fractional packing. As this
algorithm only gives an approximate value for the dual
but not for the primal, we need the solution for the
primal in order to find the packing. To obtain the actual
approximate packing, we can use the techniques of [34].
In solving the dual approximately, the ellipsoid algorithm
finds polynomially many separating hyperplanes which
show that the solution of the dual is at leastR∗. So
if we set the variables in the primal which correspond
to constraints other than those which arise from the
separating hyperplanes, then the resulting program has
polynomial size and still has solution≥ R∗. The solution
to this program gives us the desired packing.

Authors in [33] observe (using the hardness result
of [35]), one cannot approximate the directed Steiner
tree within a factor smaller thanln k in polynomial time
implying that it is hard to find a tree packing with weight
more than1/ ln k times the weight of the maximum
weight packing.


