Tolerating File-System Mistakes with EnvyFS

Lakshmi N. BairavasundardimSwaminathan Sundararaman,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
"NetApp, Inc. University of Wisconsin-Madison

Abstract insidious scenarios, file-system bugs have been shown
to accidentally corrupt the on-disk state of one or more
blocks [34, 49, 51]; such “fail-silent” behavior is much
more challenging to detect and recover from, and thus
can lead to both data loss (due to a corrupt directory) or
bad data passed back to the user.

One method to improve file systems and reduce fail-
silent mistakes is thorough testing and other bug-finding
techniques. For example, recent research has introduced
a number of increasingly sophisticated and promising
bug-finding tools [18, 29, 49, 51]. However, until such
capacity overheads can be significant. To remedy this issuipnﬁ)?;g;ﬁ(zlarte able t_o identty f||$|-system bug_s ’ plr(ob-
we introduceSubSISTa novel single-instance store designed yto persist. Hgnce, : e-system.mlsta esare

here to stay; the challenge is how to cope with them.

to operate in an N-version environment. In the common case In thi d hb q h
where all child file systems are working properly, SubSIST co n this paper, we advocate an approach based on the

alesces most blocks and thus greatly reduces time and spa&;assm idea of N-version programming [1]. Specifically,

overheads. In the rare case where a child makes a mistak&’e present the design and implementation of EnvyFS,

SubSIST does not propagate the error to other children, and software I_ayer_thqt multiplexes flle-sysfcem operations
across multiplehild file systems. EnvyFS issues all user

operations to each child, determines the majority result,
and delivers it to the user. By design, we thus elimi-
nate the reliance on a single complex file system, instead
placing it on a much simpler and smaller software layer.
A significant challenge in N-version systems is to for-
1 Introduction mulate the common specification and to create the differ-
ent versions. EnvyFS overcomes this challenge by using
File systems make mistakes. A modern file system conthe Virtual File System (VFS) layer as the common spec-
sists of many tens of thousands of lines of complex codeification and by leveraging existing Linux file systems
such a system must handle memory-allocation failurealready written by different open-source development
disk faults, and system crashes, and in all cases pragroups (e.g., ext3 [46], JFS [8], ReiserFS [36]). In this
serve the integrity of both user data and its own metaimanner, we build on work that leverages existing soft-
data. Thus, it is perhaps no surprise that many recenwvare bases to build N-version services, including NFS
studies have uncovered hundreds of bugs in file sysservers [37] and transaction-processing systems [47].
tems [14, 18, 34, 49, 51]. An important design goal in building EnvyFS is to
Bugs manifest in numerous ways. In the best case, &eep it simple, thereby reducing the likelihood of bugs
system immediately crashes; recent research has showhat arise from the sheer complexity of file-system code.
how to cope with such “fail-stop” behavior by both iso- At the same time, EnvyFS should leverage the VFS layer
lating said file system from the rest of the kernel andand existing file systems to the extent possible. We find
transparently restarting it [16, 44]. However, in more that EnvyFS is indeed simple, being only a fraction of the

We introduceEnvyFS an N-version local file system designed
to improve reliability in the face of file-system bugs. En&;F
implemented as a thin VFS-like layer near the top of the stor-
age stack, replicates file-system metadata and data aciess e
ing and diverse commaodity file systems (e.g., ext3, ReiserFS
JFES). It uses majority-consensus to operate correctlyidebie
sometimes faulty behavior of an underlying commodihjld

file system. Through experimentation, we show EnvyFS is ro-
bust to a wide range of failure scenarios, thus deliveringg®n
promise of increased fault tolerance; however, perforraam

thus preserves the ability of EnvyFS to detect and recoween fr
bugs that affect data reliability. Overall, EnvyFS and SI83S
combine to significantly improve reliability with only mosie
space and time overheads.

size as its child file systems, and can leverage much oBections 3 and 4 respectively. We evaluate our system
the common specification. However, limitations do arisefor reliability in Section 5 and performance in Section 6.
from the nature of the specification in combination with We then discuss related work in Section 7 and conclude
our goal of simplicity. For example, because child file in Section 8.
systems issue different inode numbers for files, EnvyFS
is tasked with issuing inode numbers as well; in the inter-
est of simplicity, EnvyFS does not maintain these inode2 Do File Systems Make Mistakes?
numbers persistently (i.e., the inode number for a file is
the same within, but not across, mounts). Before describing EnvyFS, we first briefly explain why
A second challenge for EnvyFS is to minimize the we believe file systems do indeed make mistakes, and
performance and disk-space overheads of storing an#hy those mistakes lead file systems to deliver corrupt
retrieving data from its underlying child file systems. data to users or corrupt metadata to themselves. Such
Our solution is to develop a variant of a single-instancefailures are silent, and thus challenging to detect.
store (an SIS) [11, 17, 35]. By utilizing content hashes Recent work in analyzing file systems has uncov-
to detect duplicate data, an SIS can significantly re-ered numerous file system bugs, many of which lead
duce the space and performance overheads introducedd silent data corruption. For example, Prabhakaran et
by EnvyFS. However, using an SIS underneath EnvyF&l. found that a single transient disk error could cause
mandates a different approach, as we wish to reduca file system to return corrupt data to the calling appli-
overhead without sacrificing the ability to tolerate mis- cation [33, 34]. Further, a single transient write failure
takes in a child file system. We achieve this by imple-could corrupt an arbitrary block of the file system, due
menting a novel SIS (which we call SubSIST) that en-to weaknesses in the failure-handling machinery of the
sures that a mistake in one file system (e.g., filling ajournaling layer [34]. Similar bugs have been discovered
block with the wrong contents) does not propagate toby others [50, 51].
other children, and thus preserves the ability of EnvyFS Another piece of evidence that file systems corrupt
to detect faults in an underlying file system through vot-their own data structures is the continued presence of
ing. Thus, in the common case where all file systemdfile system check-and-repair tools such as fsck [30]. De-
work properly, SubSIST coalesces most blocks and cagpite the fact that modern file systems either use journal-
greatly reduce time and space overheads; in the rare caseg [21] or copy-on-write [12, 19, 25, 38] to ensure con-
where a single child makes a mistake, SubSIST does ndaistent update of on-disk structures, virtually all modern
do so, enabling EnvyFS to detect and recover from thefile systems ship with a tool to find and correct inconsis-
problem. tencies in on-disk data structures [20]. One might think
We have implemented EnvyFS and SubSIST forinconsistencies arise solely from faulty disks [6, 7]; how-
Linux; currently, EnvyFS employs any combination of ever, even systems that contain sophisticated machinery
ext3, JFS, and ReiserFS as child file systems. Througto detect and recover from disk faults ship with repair
fault injection, we have analyzed the reliability of tools [24]. Thus, even if one engineers a reliable storage
EnvyFS and have found that it can recover from a rangesystem, on-disk structures can still become corrupt.
of faults in nearly all scenarios; many of these faults In addition to bugs, file systems may accidentally
cause irreparable data loss or unmountable file systemsorrupt their on-disk structures due to faulty memory
in the affected child. We have also analyzed the perchips [31, 39]. For example, if a bit is flipped while a
formance and space overheads of EnvyFS both with antllock is waiting to be written out, either metadata or data
without SubSIST. We have found across a range of workwill become silently corrupted when the block is finally
loads that, in tandem, they usually incur modest perforiritten to disk.
mance overheads. However, since our currentimplemen- Thus, both due to poor implementations as well as bad
tation of SubSIST does not persist its data structures, thﬁ]em()ry, file systems can corrupt their on-disk state. The
performance improvements achieved through SubSISType of protection an N-version system provides is thus
represent the best case. We find that SubSIST also r&omplementary to the machinery of checksums and par-
duces the space overheads of EnvyFS significantly byty and mirroring that could be provided in the storage
coalescing all data blocks. Finally, we have discoveredsystem [28, 41], because these problems otmiore
that EnvyFS may also be a useful diagnostic tool for file-such protection can be enacted. These problems cannot
system developers; in particular, it helped us to readilype handled via file-system backups either; backups po-
identify and fix a bug in a child file system. tentially provide a way to recover data, but they do not
The rest of the paper is organized as follows. In Sec-elp detect that currently-available data is corrupt. To
tion 2, we present extended motivation. We present theletect (and perhaps recover) from these problems, some-
design and implementation of EnvyFS and SubSIST inthing more is required.

3 EnvyFS: An N-Version File System EnvyFS, this goal primarily translates to avoiding persis-
tent metadata; this simplification allows us to not allo-
N-version programming [1, 2, 4, 5, 13, 15, 48] is used tocate disk blocks and to not worry about failures affecting
build reliable systems that can tolerate software bugs. AEnvyFS metadata.
system based on N-version programming u’ediffer- No application modifications: Applications should not
ent versions of the same software and determines a mareed to be modified to use EnvyFS instead of a single lo-
jority result. The different versions of the software are cal file system. This goal supports our decision to lever-
created byV different developers or development teamsage the POSIX specification as our specification.
for the same software specification. It is assumed (andingle disk: The N-version file system is intended to
encouraged using the specification) that different develimprove the reliability of desktop systems in the face of
opers will design and implement the specification differ- file-system mistakes. Therefore, it replicates data across
ently, lowering the chances that the versions will containmultiple local file systems that use the same disk drive.
the same bugs or will fail in a similar fashion. This goal translates to a need for reducing disk-space
Developing N-version systems has three importanioverheads; thus, we develop a new single-instance store
steps (a) producing the specification for the software, (bYSection 4) for our environment.
implementing the\V different versions of the software, Non-malicious file systems:We assume that child file
and (c) creating the environment that executes the differsystems are not malicious. Thus, we must only guard
ent versions and determines a consensus result[1]. against accidents and not intentional attempts to corrupt
We believe the use of N-version programming is par-user data or file-system metadata.
ticularly attractive for building reliable file systems & Bug isolation: We also assume that the bugs do not prop-
the design and development effort required for the firstagate to the rest of the kernel. If such corruption were in-
two steps (i.e., specification and version developmentlieed a major issue, one could apply isolation techniques
can be much lower than for the typical case. as found in previous work to contain them [16, 44].
First, many existing commodity file systems adhere
to a common interface. All Linux file systems adhere3.2 Basic Architecture
to the POSIX interface, which internally translates to EnvyFS receives application file operations, issues the
the Virtual File System (VFS) interface. Thus, if an N- operations to multiplechild file systemscompares the
version file system is able to leverage the POSIX/VFSresults of the operation on all file systems, and returns
interface, then no additional effort will be needed to the majority result to the application. Each child stores
develop a new common specification. However, be-ts data and metadata in its own disk partition.
cause the POSIX/VFS interface was not designed with We have built EnvyFS within Linux 2.6, and Figure 1
N-versioning in mind, we do find that EnvyFS must ac- shows the basic architecture. EnvyFS consists of a soft-
count for differences between file systems. ware layer that operates underneath the virtual file sys-
Second, many diverse file systems are available fotem (VFS) layer. This layer executes file operations
Linux today. For example, in Linux 2.6, there are at that it receives on multiple children. We use ext3 [46],
least 30 different file systems (depending upon how on€JFS [9], and ReiserFS [36] for this purpose. We chose
counts), such as ext2, ext3, JFS, ReiserFS, XFS, FAThese file systems due to their popularity and their dif-
and HFS; new ones are being implemented as well, sucferences in how they handle failures [34]. However, the
as btrfs. All have been built for the POSIX/VFS inter- EnvyFS design does not preclude the use of other file
face. These different file systems have drastically differ-systems that use the VFS interface.
ent data structures, both on disk and in memory, which Similar to stackable file systems [22], EnvyFS inter-
reduces the chances of common file-system bugs. Fuposes transparently on file operations; it acts as a normal
thermore, previous research has shown that file systemfile system to the VFS layer and as the VFS layer to the
behave differently when they encounter partial-disk fail- children. It thus presents file-system data structures and
ures; for example, Prabhakaran et al. show that when diinterfaces that the VFS layer operates with and in turn
rectory data is corrupted, ReiserFS and JFS detect theanages the data structures of the child file systems. We

problem while ext3 does not [34]. have implemented wrappers for nearly all file and direc-
tory operations. These wrappers verify the status of nec-
3.1 Design Goals and Assumptions essary objects in the children before issuing the operation
The design of EnvyFS is influenced by the following to them. For example, for an unlink operation, EnvyFS
goals and assumptions: first verifies that both the file and its parent directory are

Simplicity: As systems have shown time and again,consistent with majority opinion.
complexity is the source of many bugs. Therefore, an Each operation is issued in series to the child file sys-
N-version file system should be as simple as possible. Items; issuing an operation in parallel to all file systems

One issue that EnvyFS must handle is that the POSIX
| VFS | specification is imprecise for use in an N-version setting;
| EnvyFS | that is, the child file systems we leverage differ in vari-
ous user-visible aspects that are not a part of the POSIX
interface. For example, POSIX does not specify the or-
der in which directory entries are to be returned when a
directory is read; thus, different children may return di-
| rectory entries in a different order. As another example,
the inode number of a file is available to users and appli-
cations through thset at system call; yet, different file
systems issue different inode numbers for the same file.
One approach to addressing this problem would be
))) o to make the specification more precise and change the
Figure 1: N-version file system in Linux. The figure fije systems to adhere to the new specification. This ap-
presents the architecture of a 3-version file system wit8, ext proach has a number of problems. First, refining the
ReiserFS and JFS as the children. The core layer is EnvyFSgpecification discourages diversity across the different
it is responsible for issuing file operations to all three lgs- | systems. For example, if the specification details
tems, determining a majority result from the ones returngd b how inode numbers should be assigned to files, then all
the file systems, and returning it to the VFS layer. The option {jje systems will be forced to use the same algorithm
layer beneath the file systems (SubSIST) is a single-irstangq 5)|ocate inode numbers, perhaps causing them to also
store built to work in an N-version setting; it coalescesruse |;se the same data structures and inviting common bugs.
data stored by the different file systems in order to reduce pe Second, even given a more precise specification, non-
formance and space overheads. determinism and differences in operation ordering can
easily cause different results. Finally, changing the spec

increases complexity and is unlikely to realize much,.f_ i Id v i th t of devel
if any, performance benefit when the children share thd''cation would greatly increase the amount ot develop-
ment effort to produce an N-version file system, since

same disk drive. When the operations complete, the re-

sults are semantically compared to determine the majort?ach e?ilstmg L;]ql(j);_fllle sy?tem would need to be changed
ity result; this result is then returned to the user. When o useitasachiidfie system.

no majority result is obtained, an I/O error is returned.

Our current implementation does not support the o . .)
map operation. While supportingrap is not funda- Our solution is to have EnvyFS deal with the imprecise
mentally difficult, it does present a case where child file POSIX specification: when EnvyFS compares and re-
systems cannot be trivially leveraged. Specifically, anturns re_sults from the child file systems, it does_ S0 using
implementation ofmap in EnvyFS would likely involve semantic knowledge of how the POSIX/VFS interface

operates. In other words, EnvyFS examines the VFS data

the use of filer ead andwr i t e operations of children, o
rather than theimap operations. structures returned by each child file system and does a

We now discuss how our implementation addresseSemantic comparison of individual fields.
each of the three steps of N-version programming. In For example, for a file read operation, EnvyFS com-
particular, we discuss how EnvyFS deals with the comPPares (a) the size of data read (or the error code re-
plexities of leveraging the existing POSIX specifica- turned), (b) the actual content read, and (c) the file po-

tion/VFS layer and of using existing Linux file systems sition at the end of the read. For all file operations where
while keeping EnvyFS simple. inodes may be updated, EnvyFS compares (and copies

to its VFS inode) the contents of the individual inodes.
3.3 Leveraging the POSIX Specification We have developed comparators for different file-system
EnvyFS leverages the existing POSIX specification andlata types like superblocks, inodes, and directories. For
operates underneath VFS as it provides core functionalexample, an inode comparator checks whether the fields
ity (like ordering of file operations) that is challenging to i -nl i nk, i _node, i _ui d, and so forth in the child in-
replicate without modifying applications. Thus, EnvyFS odes are the same. While EnvyFS compares results re-
relies upon the correct operation of the VFS layer. Weturned to it, it does not verify that the operation com-
believe the VFS layer has been heavily tested over th@leted correctly in each file system; for example, it does
years and is likely to have fewer bugs that the file sys-not re-read data written to a file to verify that all file sys-
tems themselves; this optimism is partially validated bytems actually wrote the correct data.
Yang et al., who find two bugs in the VFS layer and As mentioned above, directory entries and inodes
nearly thirty in ext3, ReiserFS, and JFS [51]. are especially interesting cases. We now describe how

ext3
ReiserFS
JFS

——————
| SubSIST

| Driver |

3.3.1 Semantic Result Comparison

EnvyFS handles these structures in more detail and weorrect data; in addition, in the common case, when file
also describe how EnvyFS optimizes its comparison ofsystems agree, the third read is avoided. It is important
data blocks across file systems. to note that we choose not to take the same issue-only-
Directory Entries: POSIX does not specify the order in until-majority approach with other VFS operations such
which directory entries are to be returned. Thus, EnvyFSas lookup since the limited performance gain for such
reads all directory entries from all file systems; it then operations is not worth the complexity involved, say in
returns individual entries that occur in a majority of file tracking and issuing a sequence of lookups for the en-
systems. The disadvantage of this approach is that it intire path when a lookup returns erroneous results in one
creases the overhead for thet di rent ri es system file system. A future implementation could include a
call for very large directories. We note that we could “verify-all” option that causes EnvyFsS to issue the read
optimize the performance of this case (at the expense dp all file systems ignoring the performance cost.

code simplicity), by reading from child file systems only In choosing the checksum algorithm for comparing
until EnvyFS finds matches for exactly as many entriesdata, one must remember that the cost of checksumming
as the user provides space for. can be significant for reads that are satisfied from the
Inode Numbers: POSIX does not specify how inode Page cache. We have measured that this cost is espe-
numbers should be assigned to files, yet inode number@@lly high for cryptographic checksums such as MD5
are visible to user applications. Since EnvyFS cannofind SHA-1; therefore, in keeping with our goal of pro-
always use the inode number produced by any one chil@cting against bugs but not maliciousness, we use a sim-

file system (because it may fail), it assigns a virtual inodePle TCP-like checksum (sum of bytes) for comparisons.
number when a new object is encountered and tracks thig 3 Operation Ordering

mapping. Keeping with our simplicity goal, inode num- o, yjacement of EnvyFS beneath VFS simplifies the is-

bers so assigned are not persistent; that is, an object N@ge of ordering file operations. As in many replication-
a specific virtual inode number only between a mounty,qeq fault tolerance schemes, determining an order-

and the corresponding unmount. This decision impact§yy of gperations is extremely important; in fact, recent

only a few applications that depend on the persistence qfor in managing heterogeneous database replicas fo-

file-system inode numbers. If applications using EnvyFS,,qe5 primarily on operation ordering [47]. In the context

do require persistent inode numbers, one simple solutiof , fjie system, consider the scenario where multiple file

that could be explored is to store the inode mapping in &, ations are issued for the same object: if an ordering
hidden file in the root directory of each file system andig ot predetermined for these operations, their execu-

load the mapping at mount time. A specific example inyj,, may be interleaved such that the different children

this contextis an NFS server using protocol Versions 2 0t orm the operations in a different order and therefore
3; the server uses persistent inode numbers to create fi

; oduce different results even in the absence of bugs.
handles for clients that can be used across server crashes.Un"ke databases, the dependence between operations

Even so, in protocol version 4, a *volatile file handle” .o, he predetermined for file systems. In EnvyFS, we
opthn was introduced, thereby ellrr_nnatmg the need ff)rrely on the locking provided by the Linux VFS layer to
persistent inode numbers. Interestingly, some local file

.) : : order metadata operations. As explained earlier, this re-
systems, like the_ High _Slerra file system for CD-ROMS, jjznce cannot be avoided without modifying applications
do not have persistent inode numbers [32].

(to issue operations to multiple replicas of VFS that ex-
Reads of Data Blocks:In performing read operations, ecyte an agreement algorithm). In addition to the VFS-
we would like to avoid the performance overhead of al-jevel locking, we perform file locking within EnvyFS for

locating memory to store the results returned by all of thereads and writes to the same file. This locking is neces-

file systems (especially when the data read is already iRgry since the VFS layer does not (and has no need to)
cache). Therefore, EnvyFS reuses the memory providegder file reads and writes.

by the application for the ead system call. Reusing the

memory influences two subsequent decisions. First, t&3.4 Using Existing File Systems

determine whether the child file systems return the sam®ur decision to leverage existing Linux file systems
data from ther ead, EnvyFS computes checksums on for child file systems greatly simplifies the development
the data returned by the child file systems and comparesosts of the system. However, it does restrict our behav-
them; a more thorough byte-by-byte comparison wouldior in some cases.

require memory for all copies of data. Second, EnvyFS One problem with using multiple local file systems is
issues the read operation in series to child file systemghat the different file systems execute within the same ad-
only until a majority opinion is reached (i.e., usually to dress space. This exposes EnvyFS to two problems: (a)
two children); this choice eliminates the problem of is- a kernel panic induced by a child file system, and (b) a
suing reads again in case the last file system returns ilfmemory bug in a child file system that corrupts the rest

of the kernel. A solution to both problems would be to sult. This part is specifically important for local file sys-
completely isolate the children using a technique such atems since the ability to perform successive operations
Nooks [43]. However, due to the numerous interactionanay depend on the result of the current operation (e.g., a
between the VFS layer and the file systems, such isolafile read cannot be issued when open fails).
tion comes at a high performance cost. When an error is detected, in order to restore EnvyFS
Therefore, we explore a more limited solution to han-to full replication, the erroneous child file system should
dle kernel panics. We find the current practice of file sys-be repaired. The repair functionality within EnvyFS fixes
tems issuing a call tpani ¢ whenever they encounter incorrect data blocks and inodes in child file systems.
errors to be too drastic, and developers seem to agrespecifically, if EnvyFS observes that the file contents in
For example, ext3 code had the following comment:one file system differs from the other file systems dur-
“Given ourselves just enough room to cope with inodesing a file read, it issues a write of the correct data to the
in which iblocks is corrupt: we’ve seen disk corruptions corrupt file system before returning the data to the user.
in the past which resulted in random data in an inode With respect to inodes, EnvyFS repairs a subset of var-
which looked enough like a regular file for ext3 to try to ious possible corruptions; it fixes inconsistencies in the
delete it. Things will go a bit crazy if that happens, but at permission flags (which arerode, iuid, i_gid) with the
least we should try not to panic the whole kerndtithe majority result from other file systems. It also fixes size
case of ext3 and JFS, a mount opti@nr¢rs) can spec- mismatches where the correct size is larger than the cor-
ify the action to take when a problem is encounterediupt one by copying the data from correct file systems.
one could specifyerrors=continueto ensure that panic On the other hand, issuing a file truncate for the case
is not called by the file systems. However, this optionwhere the correct size is smaller may result in more cor-
is not available on all file systems. Our solution is to ruption in an already corrupt file system (e.g., the blocks
replace calls tgpani ¢, BUG, andBUG.ON by child file being freed by truncate may actually be in use by a dif-
systems with a call to avfs_chi | d_pani ¢ routine ferent file as a result of a prior corruption).
in EnvyFS. This simple replacement is performed in file- As the above example demonstrates, efficient repair
system source code. T fs_chi | d_pani c routine for all inconsistencies is challenging. If EnvyFS can-
disables issuing of further file operations to the failed file not repair the erroneous object in a child file system, it
system. operates irdegraded-modéor the associated object. In
Another limitation of using existing file systems is degraded mode, future operations are not performed for
that different file systems use different error codes forthat object in the file system with the error, but EnvyFS
the same underlying problems (e.g., “Input/output error”,continues to perform operations on other objects for that
“Permission denied”, or “Read-only file system”). A file system. For example, if a child’s file inode is de-
consistent error code representing each scenario woulglared faulty, then read operations for that file are not is-
enable EnvyFS to take further action. In our current im-syed to that file system. As another example, if a lookup
plementation EnvyFS simply reports the majority error gperation completes successfully for only one file sys-
code or reports an I/O error if there is no majority. tem, its corresponding in-memory dentry data structure
. . is deallocated, and any future file create operation for that
3.5 SKﬁep-lng En\éyFS Simple . ._dentry is not issued to that file system.
EnvyFS has its own data structures (e.g., in-memory in- For simplicity, the validity information for objects is

odes andlentrystructures), which are required for inter- L . . :
acting with the VES layer. In turn, EnvyFS manages thenot maintained persistently. With this approach, after a
) ' reboot, the child file system will try to operate on the

allocation and deallocation of such structures for childfault objects again. Ifthe object s faulty due to a perma-
file systems; this management includes tracking the sta- Y 00 gan.) P

S ; . .~ “nent failure, then the error is likely to be detected again,
tus of each object: whether it matches with the majority : :
) as desired. Alternately, if the problem was due to a tran-
and whether it needs to be deallocated.

. . R . sient error, the child will return to normal operation as
In keeping with our simplicity goal, we have designed

. O . long as the object has not been modified in the interim.
EnvyFS so that it does not maintain any persistent dat . . .
) . - . ur current approach to fully repair inconsistencies that
structures of its own. This decision affects various parts L . .
o . . S cannot be repaired in-flight requires that the entire erro-
of the design; we previously discussed how this impacts o
i . _“neous child file system be re-created from the other (cor-
the management of inode numbers (Section 3.3.1); we : :
i S . . Tect) children, an expensive process.

now discuss how it impacts the handling of faulty file S turther chall ith efficient . .

systems and system crashes. ome further challenges with efficient repair may arise

from limitations of the VFS layer. Consider the fol-
3.5.1 Handling Disagreement lowing scenario. A file with two hard links to it may
An important part of EnvyFS is the handling of caseshave incorrect contents. If EnvyFS detects the corrup-
where a child file system disagrees with the majority re-tion through one of the links, it may create a new file in

the file system to replace the erroneous one. Howevetpry; if the performance and space overheads of EnvyFS
there is no simple way to identify the directory where the are acceptable, there is no reason to make use of Sub-
other link is located, so that it can be fixed as well (ex-SIST (indeed, the less code relied upon the better).

cept through an expensive scan of the entire file system). With SubSIST, the disk operations of the multiple chil-

In the future, we plan to investigate how one can providedren pass through SubSIST, which is implemented as
hooks into the file system to enable fast repair. a block-level layer. As is common in single-instance
stores, SubSIST computes a content hash (MD5) for all
3.5.2 System Crashes) disk blocks being written and uses the content hash to
When a system crash occurs, EnvyFsS file-system recovgetect duplicate data.

ery co_nsists of performing file—sys_tem recovery fc_>r all Using an SIS greatly reduces disk usage underneath
child file systems before EnvyFS is mounted again. Inan N-version file system. At the same time, despite co-

our current approach, EnvyFS simply leverages the reI’;\Iescing data blocks, an SIS retains much of the bene-

covery methods inherent to each individual file system,e, EnvyFS for two reasons. First, the reliability of

such as replaying the journal. This approach leads tcfile-systemmetadatais not affected by the use of an
a consistent state within each of the children, but it iSq5 “since metadata forms the access path to multiple
possible for d_ifferent file systems to recover to diﬁerentunits of data, its reliability may be considered more im-
states. SpeC|f_|caIIy, when a crash oceurs in the mIOIdI'?)ortant than that of data blocks. Because the format of
of afile operat|on,. EnvyFS could have |ssueq| (and Com’file-system metadata is different across different file sys-
pleted) the operation for only a subset of the file SYSteMS;o s metadata blocks of different file systems have dif-
thereby causing children to recover to different states. Iqteren’t hash values and are stored separately; thus, the SIS
addition, file systems like ext3 maintain their journal in layer can distinguish between data and met,adata{ blocks
memary, flushin_g the bIo<_:ks to disk periodically_; Jour- without any knowledge of file-system data structures.
naling thus prqwdes consistency and_not du_rablllty. Second, since file systems maintain different in-memory
An alternative approach f_or solving th_|s problem copies of data, file-system bugs that corrupt data blocks
would be for EnvaS itself to journal op_erat|ons and re- in-memory cause the data in different file systems to have
play them during recovery. However, this would require igerent content hashes; therefore, individual file sys-

EnvyFS to maintain persistent state. tems are still protected against each other’s in-memory
In EnvyFS, the state modifications that occur durablyfile—data corruptions.

for a majority of file systems before the crash are consid-

ered to have completed. The differences in the minority 1 Requirements and Implications
set can be detected when the corresponding objects arg e design of SubSIST for an N-version file system

read, either during user file operations or during a proacyy id satisfy slightly different requirements than a con-

.“V? flle-system scan. Ther_e are comer cases where a M3entional SIS. We discuss four important observations
jority result will not be obtained when a system crash 0C-2nd their impact on the design of SubSIST

gu:é rrl1nv$irlllensjt ;?fzecf;‘ilz r-](sm;tlgr?q tsheerr:ZflltjilcEsOf AT:% eogaerr?(lee First, child file systems often replicate important meta-
Y Y . data blocks so that they can recover from failures. For ex-

t!me, these cases cannot be distinguished from other re%lmple, JFS replicates its superblock and uses the replica
file-system errors. Therefore, EnvyFS returns an error,

:) . to recover from a latent sector error to the primary. Thus,
code when these differences are detected; future 'mp.leéubSIST does not coalesce disk blocks with the same

mentations could choose to use the result from a desig- : :
nated “primary” child. content if they belong to the same file system. .
Second, an SIS coalesces common data written at
approximately the same time by different file systems.
4 SubSIST: A Single-Instance Store Therefore, in SubSIST, the content hash information for
each disk block is not stored persistently; the content
Two issues that arise in using an N-version file system ardaashes are maintained in memory and deleted after some
the disk-space and performance overheads. Since datine has elapsed (or afté¥ file systems have written the
is stored inN file systems, there is aiW-fold increase same content). This ephemeral nature of content hashes
(approximately) in disk space used. Since each file opalso reduces the probability of data loss or corruption due
eration is performed on all file systems (except for file hash collisions [10, 23].
reads), the likely disk traffic iSV times that for a sin- Third, in an N-version file system, reads of the same
gle file system. For those environments where the usedata blocks occur at nearly the same time. Thus, Sub-
is willing to trade-off some data reliability for disk space SIST services reads from different file systems by main-
and performance, we develop a variant of single-instancéaining a small read cache. This read cache holds only
storage [11, 17, 35]. Note that SubSIST is not mandathose disk blocks whose reference count (number of file

systems that use the block) is more than one. It also
tracks the number of file systems that have read a bloc
and removes a block from cache as soon as this number
reaches the reference count for the block.

Finally, the child file systems using SubSIST are un-
modified and therefore have no knowledge of content ad

dressing; therefore, SubSIST virtualizes the disk address

space; it exports a virtual disk to the file system, and

maintains a mapping from each file system’s virtual disk—Fjje metadata differ in one

address to the corresponding physical disk address, alonggg present in only two

K Difference in content Num | Correct | Correct
Tests | success| error
code
None 28 17/17 | 11/11
Dir contents differ in one 13 6/6 717
Dir present in only two 13 6/6 717
Dir present in only one 9 4/4 5/5
File contents differin one| 15 11/11 4/4
45 33/33 | 12/12
15 11/11 4/4
9 3/3 6/6

with a reference count for each physical disk block. Sub-"Fjje present in only one

SIST uses file-system virtual addresses as well as previg;
ously mapped physical addresses as hints when assign-

[147 | 91/91 | 56/56

ing physical disk blocks to maintain as much sequential-Table 1: File-system Content Experiments. This table
ity and spatial locality as possible. When these hints dgresents the results of issuing file operations to Enyy6is
not provide a free disk block, SubSIST selects the closeskcts that differ in data or metadata content across theecft

free block to the previously mapped physical block.

4.2 Implementation

children. The first column describes the difference in filgtem
content. The second column presents the total number af-expe
iments performed for this content difference; this is thenhar

SubSIST has numerous important data structures, includst applicable file operations for the file or directory objeEor

ing: (i) a table of virtual-to-physical mappings, (i) al- metadata differences, 15 operations each are performedifor
location information for each physical disk block in the ferences in mode, nlink, and size fields of the inode. The thir
form of reference count maps, (iii) a content-hash cachggjymn is the fraction of operations that return correct alat
of recent writes and the identities of the file systems thagngjor successfully complete. The fourth column is the- frac

performed the write, and (iv) a small read cache.

tion of operations that correctly return an error code (andsi

_We have built Sl_JbS|ST_ as a pseudo-device drive_r iNthe expected error code) (e.g., ENOENT when an unlink oper-
Linux. It exports virtual _d'5k5 that are used by the file ation is performed for a non-existent file). We see that EfyyF
systems. Our current implementation does not storeyccessfully uses the majority result in all 147 experiment

virtual-to-physical mappings and reference-count maps

persistently; in the future, we plan to explore reliably e first experiment by creating different file-system

writing this information to disk.

images as the children and executing a set of file oper-

ations on EnvyF$that uses the children. We have ex-

5 Reliability Evaluation

plored various file-system content differences, including
extra or missing files or directories, and differences in

We evaluate the reliability improvements of a 3-version'il€ or directory content. The differentfile operations per-
EnvyFS (EnvyF$) that uses ext3, JFS, and Reis- formed include all possible file operations for the object
erFS (v3) as children. All our experiments use the ver-(iréspective of whether the operation causes the differ-
sions of these file systems that are available as part of thg"t content to be read). Our file operations include those

Linux 2.6.12 kernel.
We evaluate the reliability of EnvyRSn two ways:

that are expected to succeed as well as those that are ex-
pected to fail with a specific error code.

First, we examine whether it recovers from scenarios Table 1 shows that EnvykSorrectly detects all dif-
where file-system content is different in one of the threeferences and always returns the majority result to the user

children. Second, we examine whether it can recovefWhether the expected data or error code). Envyéih
from corruption to on-disk data structures of one child. @lso be successfully mounted and unmounted in all cases.
We find that the results are the same irrespective of which

5.1 Differing File System Content

child (ext3, JFS, ReiserFS) has incorrect contents.

The first set of experiments is intended to mimic the sce- We then explore whether Envyg8ontinues to detect
nario where one of the file systems has an incorrect disland recover from differences caused by in-memory cor-
image. Such a scenario might occur either when (i) aruption when SubSIST is added. We experiment by mod-
system crash occurs and one of the children has writteifying data (or metadata) as it being written to a child file
more or less to disk than the others, (ii) a bug causes onsystem and then causing the data (or metadata) to be read
of the file systems to corrupt file data, say by perform-back. Table 2 presents the results of the experiments.
ing a misdirected write of data belonging to one file to We find that EnvyF$used along with SubSIST returns
another file, or (iii) soft memory errors cause corruption.the correct results in all scenarios. Also, in most sce-

operation fails and (ii) the file system is remounted in

Corruption Type Num | Correct | Fix read-only mode. In addition to the symbols for each
Tests | success column, the symbol next to the data-structure name for

File contents differinone | 3 3/3 3/3 all the rows indicates whether or not the loss of the disk

Dir contents d'ﬁe.r In one 3 3/3 0/3 block causes irreparable data or metadata loss.

Inode contents differ in ong 15 15/15 | 9715 As shown in Figure 2a, JFS is rarely able to recover

Total [21 [21721 [12/21

from corruptions: JFS can continue normal operation
when the read to the block-allocation bitmap fails during
truncate and unlink. Often, the operation fails and JFS
remounts the file system in read-only mode. The corrup-
tion of some data structures also results in a file system
that cannot be mounted. In one interesting case, JFS de-
lects the corruption to an internal (indirect) block of a file
and remounts the file system in read-only mode, but still
returns corrupt data to the user. Data loss is indicated for
many of the JFS rows.

In comparison to stand-alone JFS, EnvyF&covers
from all but one of the corruptions (Figure 2b). EnvyFS
detects errors reported by JFS and also detects corrupt
narios when file contents or inode contents are differentgata returned by JFS when the internal block or data
EnvyFS successfully repairs the corrupt child during block is corrupted during file read. In all these cases,
file-system operation (Section 3.5.1 describes scenariodsnvyFS uses the two other file systems to continue nor-
in which EnvyFS repairs a child during file-system op- mal operation. Therefore, no data loss occurs when any
eration). The use of SubSIST does not affect protectiorof the data structures is corrupted.
against in-memory corruption; a data block corrupted in In one interesting fault-injection experiment, a system
memory will cause SubSIST to generate a different concrash occurs both when using JFS stand-alone and when
tent hash for the bad block when it is written out, therebyusing it in EnvyF3. In this experiment, the first aggre-
avoiding the usual coalescing step. gate inode block AGGR- | NODE- 1) is corrupted, and

. . the actions of JFS lead to a kernel panic during paging.
5.2 Disk Corruption) Since this call topani c is not in JFpS code, it ?:apnngotg
The second set of experiments analyzes whethegeen replaced as described in Section 3.4. Therefore,
EnvyFS recovers when a child's on-disk data structuresyhe 1ernel panic occurs both when using JFS stand-alone
are corrupt. Such corruption may be due to a bug in theand when using EnvyRS Thus, we find a case where
file s_yst_em or the rest of the storage stack. We_z inject COTEnyyFS, is not completely resilient to underlying child
ruption into JFS and ext3 data structures by interposing,ire: faults that lead to subsequent panics in the main

a pseudo-device driver that has knowledge of the datge e cannot be handled with N-version techniques.
structures of each file system. This driver zeroes the en-

tire buffer being filled in response to a disk request bys 2 2 Corruption in Ext3

the file system, but does not return an error code (i-€.gjgyres 2¢ and 2d show the results of injecting corrup-
the corruption is silent). All results, except that for data j,, jntg ext3 data structures. As in the case of JFS, the
blocks, are applicable to using Envyf®ith SubSIST. figures compare ext3 against EnvyFS
5.2.1 Corruptionin JFS Overall, we find that ext3 does not handle corruption
Figures 2a and 2b compare the user-visible results of inwell. Figure 2c shows that no corruption error leads to
jecting corruptions into JFS data structures when JFS isiormal operation without data loss for ext3. In most
used stand-alone and when EnvyfSused (thatis com- cases, there is unrecoverable data loss and either the op-
posed of JFS, ext3, and ReiserFS). eration fails (ext3 reports an error) or the file system is
Each row in the figures corresponds to the JFS dataemounted in read-only mode or both. In some cases,
structure for which the fault is injected. Each column in the file system cannot even be mounted. In other cases,
the figures corresponds to different file operations. Theext3 fails to detect corruption (e.d.MAP, | NDI RECT),
different symbols represent the user-visible results ef th thereby either causing data lo$sMAP) or returning cor-
fault; examples of user-visible results include data lossyupt data to the useid (NDI RECT). Finally, in one sce-
and a non-mountable file system. For example, in Fig-nhario (corruptl NODE during unl i nk), the failure to
ure 2a, when an inode block is corrupted during pathhandle corruption leads to a system crash upon unmount.
traversal (column 1), the symbol indicates that (i) the In comparison, Figure 2d shows that Envyr®ntin-

Table 2: File-system Corruption Experiments. This
table presents the results of corrupting one of the file dbjec
in EnvyF$ that results in different data or metadata content
across the different children with SubSIST underneath fie T
first column describes the type of corruption. The second col
umn presents the total number of experiments performed; Th
third column is the fraction of operations that return carte
data and/or successfully complete (which also includetifien
cation of mismatch in file system contents). The fourth colum
is the fraction of operations that EnvyFS was able to repair
after detecting corruption.

(a) JFS (b) EnvyFS

g 3 E: g
g E g E
Elalal_Blel.| |2l IE| lxlzl=lE |E|=|a|_|Bl8].| |<|BIE].|E] |«|e]x|E
1121314516 (7 18 |9 |10[11[12]13]|14]|15|16]17(18 1213141516 |7 [8 |9 [10|11[12(13]14]|15]|16(17[18
81 NooE [OIO[O] 0] LMok & [OIo[oHH ___E B _E N BN
Bor CEEEECEPECOEEECCZEE EEEE 22 BN BN
Cewee (IITTTTohkMak™aoll WL 11 [T TT T T M [
B we CITTTTIor ol Jol T JoloRH T1 ECTT T T I W T 1]
B 1 NTERNAL EENOEEEEEEECEETEENNEEE EEEEEEE B EEE
Cloata CITTTeT TTTTTTTe[TTTITT] (ITT MM TITTTTTMITTITIT]
[super COITTTITTIT I I I T T AT COITITITTITTITTT 1T T]
[1ssuper EEEEEEEEEEEEEEN: N NEEEEEEEEEEEEEEE B
[lipaTa AEEEEEEEEEEEEEE EEREEEEEEEEEEEEEEE EE
Cacrinooer XTI TTITITITITTIO] TITTITTITTITITTITITIeMT]
11 maPpESC EEEEEEEEEEEEEENEENEEEEEEEEEEEEEEE EE|
HRYeN EEEEEEEEEEEEEEN:EENEEEEEEEEEEEEEEE EE|
(c) EXT3 (d) EnvyFSs
g 3 E: g
g E g E
Elalal_[Blel.| <2l IE| lxlel=lE |E|=|a|_|Bl8].| |<|BIE].|E] |«|e]x|E
1121314516 (7 18 |9 |10[11[12]13]|14]|15|16]17(18 1213141516 |7 [8 |9 [10|11[12(13]14]|15]|16(17[18
B 1 Nooe I B DN W B
DR O TTT MSIoooel TTolol TT] M T T N T 7]
Clewe (TTTT T TelelelelelemT T 11 [CTTT T T T 1]
L1 wep (T T T R W T TT] CITT T T T
Y o RECT O TTe[TTTITTTeTITTT] MM TTTTTT T
Clpata (TT T TTTT T T T TTITTIT] (TT MM TITITTMTITITITT]
[super EEEEEEEEEEEEEEN:EENEEEEEEEEEEEEEEE EE|
[]ssuper COITTTITTIT I I I T T AT COITITITTITTITTT 1T T]
[eoesc EEEEEEEEEEEEEENEENEEEEEEEEEEEEEEE EE|
LEGEND
B Non-mountable file system
B Normal operation [@ System crash
B Data or metadata loss O Read-only file system (ROFS)
[*] Data corrupted or corrupt data returned [@ Data loss <or> operation fails and ROFS
[0l Operation fails [e] Data loss <or> Data corruption
A Later operations fail O Not applicable

Figure 2:Disk corruption experiments. The figures show the results of injecting corruption for JF8 axt3 on-disk data
structures. JFS is used stand-alone in (a) and is one of thdreh in EnvyF$ in (b). ext3 is used stand-alone in (c) and is one
of the children in EnvyFS§in (d). Each row in the figures corresponds to the data stmectar which the fault is injected; each
column corresponds to a file operation; each symbol reptsstie user-visible result of the fault injection. Note t{iathe column
SET-1 denotes file operations access, chdir, chroot, gttfssistat, and open; SET-2 denotes chmod, chown, aneésitiSET-3
denotes fsync and sync, (ii) some symbols are a combinatimmoasymbols, one of which is the light-gray square for “realy
file system?”

ues normal operation in every single experiment, includ- ext3 JFS Reiser| Envys +SIS
ing in the system-crash case. EnvyRain shows great ~ Cached read 21 21 22 57 57
resilience to faults in a single child file system. Cached write 37 25 22] 88 88
We also found EnvyFs$Sto be surprisingly helpful 223' ;2:31\'(/' gg g; 122 4;;"1 gg;
in isolating a non-trivial bug in ext3. As reported ' ' ' ' ' '

)) Seq. write 26.0 18.7 24.4 749 29.7
above,.when an ext3 inode block is corru_pted befor_e Rand. read 163.6 1635 1651 434.2 164.2
anunl i nk, the system crashes when the file system is rand. write 204 189 204 614 7.0
later unmounted. The system crash does not occur iMOpenSSH 253 257 2561 264 260
EnvyFS; one might suspect that Envyg$ robust be- Postmark-10K 147 39.0 9.6/ 128.8 26.4
cause ext3 was modified to call/f s_chi | d_pani c. Postmark-100K | 29.0 107.2 33.6| 851.4 430.0
However, this is not the case; instead, EnvyE®m- Postmark-100K*| 128.3 242.5 78.3 4055 271.1

pletely avoids the code paths that cause the panic; in _ _
particular, EnvyF$ detects that the inode returned by 'I_'able. 3: Performance. _Thls table compares the exe.cutlon
ext3 in response to a lookup (that is performed by VFStime (in seconds) for various benchmarks for EnvyRith-
prior to the actual unlink) is faulty (i.e., semantically-di ©ut and with SubSIST) against the child file systems, ex&, JF
fers from the inodes returned by the other file systems)and ReiserFS. All our experiments use Linux 2.6.12 installe
Therefore, it does not issue the subsequent unlink operg2? @ machine with an AMD Opteron 2.2 GHz processor, 2 GB
tion to ext3, hence avoiding actions that cause the panid?AM. Hitachi Deskstar 7200-rom SATA disks, and 4-GB disk
Interestingly, the bug that causes the crash is actually jipartitions fo_r each file system. Cfiched reads and writes _|n-
the lookup operation, the first point where Envyfd- volve 1 m|I.I|on reads/writes to. 1 file data b|0(.2k. Sequent!al
tects a problem. Note that in the absence of an N-versioffad-4K/writes are 4 KB at a time to a 1-GB file. Sequential
file system, one would find that the system crashed on affad-1M is IMB at a time to a 1-GB file. Random reads/writes
unmount, but will not have information linking the crash @€ 4 KB at a time to 100 MB of a 1-GB file. OpenSSH is a
to the unlink system call or the bug &xt 3_1 ookup. copy, untar, and makg of OpgnSSH-4.5. Postmark was config-
Checking the ext3 source code, we found that this bug mjred to create 2500 files of sizes between 4KB and 40KB. We
Linux 2.6.12 was subsequently fixed in 2.6.23. This ex-an it with 10K and 100K transactions. All workloads except
perience highlights the potential for using N-versioning ©nes named “Cached” use a cold file-system cache.

to localize bugs in file systems.

) _ We now quantify the performance overheads of
5.3 Discussion EnvyFS both with and without SubSIST, in contrast to
Our experiments show that EnvyE$8an recover from each of the child file systems (ext3, JFS, and ReiserFS)
various kinds of corruptions in a child file system. Since running alone. Table 3 presents the results.
this improvement in reliability is achieved through addi- We now highlight the interesting points from the table:

tional Iaye_rs of cgde, any bugs in these Iayers_could off- e When reads hit in the cachecached reads

set thle rellab|I|t3_/ improvements. Therefore, an important EnvyFS, pays a little more than twice the cost (as it

goal in our design is to keep EnvyFS simple. We now accesses data from only two children and performs

compare the amount of code_ used to construct EnvyFS a checksum comparison to find a majority).

and SubSIST against other file systems in order to es- o

timate the complexity (and therefore, the likelihood of ® EnvyFS performance underf:ached wrltes_ 1S

bugs) in such a system. roughly the sum across the children; such writes go
The EnvyFsS layer is about 3,900 lines of code, while to all t_hree child file systems, a'_‘d thus are repli-

SubSIST is about 2,500 lines of code. In comparison, cated in the_ buffer cache three times. T.h's aspect

ext3 contains 10,423 lines, JFS has 15,520 lines, Reis- of EnvyFS is bad for performance (and increases

erFS has 18,537 lines, and XFS, a complex file system, cache pre§sure), bu_t atthe same time increases fault
has 44.153 lines. resilience; a corruption to one copy of the data while

in memory will not corrupt the other two copies.
e SubSIST does not help with either cached workload

6 Time and Space Overheads as it only interposes on disk traffic.
e EnvyFS has terrible performance undsequen-
Although reliable file-system operation is our major goal, tial disk reads as it induces seeks (and loses disk

we are also concerned with the overheads innate to an N- track prefetches) between two separate sequential
version approach. In this section, we quantify the perfor- streams especially with small block sizes; much
mance costs of EnvyFS and the reduction in disk-space of this cost could be alleviated with additional
overheads due to SubSIST. prefetching or with larger block sizes. Increasing

the read size from 4KB to 1MB significantly im- Avizienis and Kelly [4] study the results of using dif-
proves the performance of EnvygS ferent specification languages; they use 3 different spec-

e Sequential writeperform much better on Envygs ification languages to develop 18 different versions of an
compared to sequential reads, due to batching of opairport scheduler program. They perform 100 demand-
erations (and hence fewer seeks). ing transactions with different sets of 3-version units and

determined that while at least one version failed in 55.1%

of the tests, a collective failure occurred only in 19.9% of

the cases. This demonstrates that the N-version approach
lescing of /0. Indeed, in one cas@idom write3, re_duces the chances of failure. _Aviiienis_ et al.also deter

SubSIST improves performance of EnvyF@s mine the.use.fulness of develop|.ng the different software

compared to any other single file system, as for this Srs1ons in different Iangl_Jages like Pgscal, Cetc. [5]. As

specific case its layout policy transforms random" the earlier study, the different versions developed had
faults, but only very few of these faults were common

writes into a more sequential pattern to disk (see
Section 4.1). These performance improvement nd the source of the common faults were traced to am-
o iguities in the initial specification.

likely represent the best case since the numbers d : ina has b lovedi
not show the costs that would be incurred in a Sub-_\-Version computing has been employed in many sys-

SIST implementation that maintains data structureste_ms_' For many years, suc_h_ uses have primarily been in
persistently. mission-critical or safety-critical systems [48, 52]. Mor

o recently, with the increasing cost of system failures and
* Application performan(;e, as measured on thethe rising impact of software bugs, many research ef-
OpenSSHbenchmark, is quite acceptable, EV€Nforts have focused on solutions that use N-version pro-
without SubSIST. gramming for improving system security and for han-
¢ In the case oPostmarkbenchmark, both workload dling failures [15, 26, 37, 47]. Joukov et al. [26] store
size and dirty page writeout intervals affect the per-qata across different local file systems with different op-
formance of EnvyF§& For smaller workloads (i.e., tions for storing the data redundantly. However, un-
Postmark-10K), performance of EnvyF8ith Sub- |ike our approach, they do not protect against file-system
SIST is comparable with other file systems. Butpygs, and inherently rely on each individual file system
with increase in workload size (Postmark-100K), to report any errors, so that data recovery may be ini-
performance of EnvyFSworsens as it is forced to tjated in RAID-like fashion. Rodrigues et al. [37] de-
write back more data due to increase in cache presye|op a framework to allow the use heterogeneous net-
sure along with shorter dirty page writeout inter- work file systems as replicas for Byzantine-fault toler-
nals. If we provide EnvyFSwith thrice the amount ance. Vandiver et al. [47] explore the use of hetero-
of memory and change the writeback intervals ac-geneous database systems for Byzantine-fault tolerance.
cordingly, we see that Envyg®erformance (with They specifically address the issue of ordering of op-
SubSIST) is comparable to the slowest of the threegrations usingcommit barriers In EnvyFS, this issue
children (JFS). is made simpler due to two reasons: (i) in the absence

of transactions, file systems are not expected to provide

b Wehalsoktracked r:he storal%e rgquir:ement acrozs th_esﬁomicity across multiple operations on the same file, and
enchmarks. For those workloads that generate erteai) the VFS layer can easily identify conflicts through
to disk, we found that SubSIST reduced the storage "locking of file-system data structures

quirement of EnvyFS by roughly a factor of three.

¢ In many cases where Envyg8erformance suffers
(sequential reads and writes, random regdSub-
SIST greatly improves performance through coa-

8 Conclusion
7 Related Work

“A three-ply cord is not easily severed”

Over the years, N-version programming has been used King Solomon [Ecclesiastes 4:12]
in various real systems and research prototypes to reduce
the impact of software bugs on system reliability. As We have proposed EnvyFS, an approach that harnesses
noted by Avizienis [1], N-version computing has very old the N-version approach to tolerate file-system bugs. Cen-
roots (going back to Babbage and others in the 1800s). tral to our approach is building a reliable whole out

The concept was (re)introduced in computer system®f existing and potentially unreliable parts, thereby sig-
by Avizienis and Chen in 1977 [2]. Since then, variousnificantly reducing the cost of development. We have
other efforts, many from the same research group, havalso proposed the use of a single-instance store to re-
explored the process as well as the efficacy of N-versiorduce the performance and disk-space overheads of an
programming [3, 5, 4, 13, 27]. N-version approach. SubSIST, the single-instance store,

is designed to retain much of the reliability improve-
ments obtained from EnvyFS. We have built and eval-
uated EnvyFS for Linux file systems and shown that it

is significantly more reliable than file systems of which 3l
it is composed; with SubSIST, performance and capacity
overheads are brought into the acceptable range. As a
fringe benefit, we also show that the N-version approach
can be used to locate bugs in file systems.

Modern file systems are becoming more complex by
the day; mechanisms to achieve data-structure consis-
tency [45], scalability and flexible allocation of disk
blocks [9, 42], and the capability to snapshot the file sys-
tem [25, 40] significantly increase the amount of code
and complexity in a file system. Such complexity could [6]
lead to bugs in the file system that render any data protec-
tion further down the storage stack useless. N-versioning
can help; by building reliability on top of existing pieces,
EnvyFS takes an end-to-end approach and thus deliversy
reliability in spite of the unreliability of the underlying
components.

Of course, our approach is not a panacea. Each file
system may have features that N-versioning hides or[g]
makes difficult to realize. For example, some file sys-
tems are tailored for specific workloads (e.g., LFS[38]). 9]
In the future, it would be interesting if one could enable
the N-version layer to be cognizant of such differencesjig)
for example, if one file system is optimized for write per-
formance, all writes could initially be directed to it, and
only later (in the background) would other file systems[11]
be updated. In such a manner, we could truly achieve
the best of both worlds: reliability of the N-version ap-
proach but without the loss of characteristics that makeg; 5]
each file system unique.

[4]

Acknowledgments [13]

We thank the anonymous reviewers and Sean Rhea (our shep-
herd) for their tremendous feedback and comments, whick hav
substantially improved the content and presentation sfphi [14]
per. We also thank the members of the ADSL research group
for their insightful comments.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-062148 [15]
CNS-0509474, CCR-0133456, as well as by generous dona-
tions from NetApp and Sun Microsystems.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authorgland

. . o 16

not necessarily reflect the views of NSF or other institusion [16]
f Author worked on EnvyFS as a UW-Madison student.

References [17]

[1] A. A. Avizienis. The Methodology of N-Version Progranimng. 18]

In M. R. Lyu, editor,Software Fault Tolerangechapter 2. John
Wiley & Sons Ltd., 1995.

[2] A. A. Avizienis and L. Chen. On the Implementation of N-
Version Programming for Software Fault Tolerance During Ex

ecution. In Proceedings of 1st Annual International Com-
puter Software and Applications Conference (COMPSAC'77)
Chicago, USA, 1977.

A. A. AviZienis, P. Gunningberg, J. P. J. Kelly, L. Stig P. J.
Traverse, K. S. Tso, and U. Voges. The UCLA DEDIX system:
A Distributed Testbed for Multiple-version Software. Digest

of 15th International Symposium on Fault-Tolerant Compuyiti
(FTCS’85) pages 126-134, Ann Arbor, MI, June 1985.

A. A. Avizienis and J. P. J. Kelly. Fault Tolerance by [gs
Diversity: Concepts and Experiment$EEE Computer 17(8),
August 1984.

A. A. Avizienis, M. R. Lyu, and W. Schiitz. In Search of Ef
fective Diversity: A Six-Language Study of Fault-Toleraight
Control Software. IrDigest of 18th International Symposium on
Fault-Tolerant Computing (FTCS '88Jokyo, Japan, June 1988.

L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and

J. Schindler. An Analysis of Latent Sector Errors in Disk\2s.

In Proceedings of the 2007 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS
'07), San Diego, California, June 2007.

L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. Rroceedings of the

6th USENIX Symposium on File and Storage Technologies (FAST
'08), pages 223-238, San Jose, California, February 2008.

S. Best. JFS Overview. www.ibm.com/developerworksdry/I-
jfs.html, 2000.

S. Best. JFS Overview. http://jfs.sourceforge.nefject/publjfs.pdf,
2000.

J. Black. Compare-by-hash: a reasoned analysisPrtrceed-
ings of the USENIX Annual Technical Conference (USENIX '06)
pages 7-12, Boston, Massachusetts, June 2006.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceum- Si
gle Instance Storage in Windows 2000. Pmoceedings of the
4th USENIX Windows Systems SymposiBeattle, Washington,
August 2000.

J. Bonwick and B. Moore. ZFS: The Last Word in File System
http://opensolaris.org/os/community/zfs/docs/Est.pdf, 2007.

L. Chen and A. A. AviZienis. N-Version Programming: At-
Tolerance Approach to Reliability of Software Operation.Di-
gest of 8th International Symposium on Fault-Tolerant Comp
ing (FTCS'78) Toulouse, France, 1978.

A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Englen Bm-
pirical Study of Operating System Errors. Rroceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
'01), pages 73-88, Banff, Canada, October 2001.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Dagdin,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-Variant Systems
A Secretless Framework for Security through Diversity. Plro-
ceedings of the 15th USENIX Security Symposium (Secvas)
couver, British Columbia, Aug. 2006.

F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell.
CuriOS: Improving Reliability through Operating Systemust

ture. InProceedings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI 'Q83an Diego, California,
December 2008.

EMC. Centera Family. http://www.emc.com/producsfily/emc-
centera-family.htm, 2009.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.g8u
as Deviant Behavior: A General Approach to Inferring Erriors
Systems Code. IRroceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP 0gages 57-72, Banff,
Canada, October 2001.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

J. Gray and A. Reuter.Transaction Processing: Concepts and [35]
TechniquesMorgan Kaufmann, 1993.

H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, andR.
Arpaci-Dusseau. SQCK: A Declarative File System Checker. |
Proceedings of the 8th Symposium on Operating SystemsrDesig[36]
and Implementation (OSDI '085an Diego, California, Decem- 137]
ber 2008.

R. Hagmann. Reimplementing the Cedar File System Usig
ging and Group Commit. IRroceedings of the 11th ACM Sympo-
sium on Operating Systems Principles (SOSP,'8Uistin, Texas,
November 1987.

J. S. Heidemann and G. J. Popek. File-system developmen
with stackable layersACM Transactions on Computer Systems [39]
12(1):58-89, 1994.

V. Henson. An Analysis of Compare-by-hash. Rmoceedings
of the 9th Workshop on Hot Topics in Operating Systems (Ho-
tO0S’03) Lihue, Hawaii, May 2003.

V. Henson. The Many Faces
http://lwn.net/Articles/248180/, September 2007.

D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. IRroceedings of the USENIX Win-
ter Technical Conference (USENIX Winter '9&an Francisco,
California, January 1994.

(38]

[40]

of fsck.

[41]

[42]

N. Joukov, A. Rai, and E. Zadok. Increasing Distribug&drage
Survivability with a Stackable RAID-like File System. Fro-
ceedings of the 1st International Workshop on Cluster Sgcur
(Cluster-Sec’05)Cardiff, UK, 2005.

J. P.J. Kelly and A. A. AviZienis. A Specification-Onieed Multi-
version Software Experiment. IBigest of 13th International
Symposium on Fault-Tolerant Computing (FTCS ,88lilano,
Italy, June 1983.

A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, Kingr

vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Parity Lost and Parity RegainedPtoceedings of the

6th USENIX Symposium on File and Storage Technologies (FAST
'08), pages 127-141, San Jose, California, February 2008. [45]

Z. Li, Z. Chen, S. M. Srivivasan, and Y. Zhou. C-miner: riMi

ing block correlations in storage systems.Hroceedings of the

3rd USENIX Symposium on File and Storage Technologies (FAS'HG]
'04), pages 173-186, San Francisco, California, April 2004.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabrycks
The UNIX File System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, April 1986.

D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. leas-

ing Relevance of Memory Hardware Errors: A Case for Recover-
able Programming Models. Bth ACM SIGOPS European Work-
shop 'Beyond the PC: New Challenges for the Operating System
Kolding, Denmark, September 2000.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, MleEis
D. Noveck, D. Robinson, and R. Thurlow. The NFS Version 4
Protocol. InProceedings of the 2nd International System Admin-
istration and Networking Conference (SANE 20003y 2000.

V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model-Based Failure Analysis of Journaling Fls-S

tems. InProceedings of the International Conference on Depend-
able Systems and Networks (DSN ;0pages 802-811, Yoko-
hama, Japan, June 2005. (51]

(43]

[44]

[47]

(48]

al
k=]

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, HG8-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. IfProceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP '0%ges 206220, Brighton,
United Kingdom, October 2005.

(52]

14

] J. Yang, C. Sar, and D. Engler.

S. Quinlan and S. Dorward. Venti: A New Approach to Arcii
Storage. InProceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST 'ORjonterey, California, Jan-
uary 2002.

H. Reiser. ReiserFS. www.namesys.com, 2004.

R. Rodrigues, M. Castro, and B. Liskov. BASE: Using Abst
tion to Improve Fault Tolerance. PRroceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP Batjff,
Canada, October 2001.

M. Rosenblum and J. Ousterhout. The Design and Implemen
tation of a Log-Structured File SystemACM Transactions on
Computer System&0(1):26-52, February 1992.

B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM erriors
the wild: A Large-Scale Field Study. Rroceedings of the 2009
Joint International Conference on Measurement and Modelin
of Computer Systems (SIGMETRICS/Performance, 'S88jttle,
Washington, June 2007.

Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, February 2006.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimot
and G. Peck. Scalability in the XFS File System Pimceedings
of the USENIX Annual Technical Conference (USENIX,'$@)n
Diego, California, January 1996.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. PRroceedings

of the 19th ACM Symposium on Operating Systems Principles
(SOSP '03)Bolton Landing (Lake George), New York, October
2003.

M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering e
drivers. InProceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI 'Og¢pges 1-16, San
Francisco, California, December 2004.

T. Ts'o and S. Tweedie. Future Directions for the ExtBil@sys-
tem. InProceedings of the USENIX Annual Technical Conference
(FREENIX Track) Monterey, California, June 2002.

S. C. Tweedie. Journaling the Linux ext2fs File SystdmThe
Fourth Annual Linux ExpaDurham, North Carolina, May 1998.

B. Vandiver, H. Balakrishnan, B. Liskov, and S. Maddefol-
erating Byzantine Faults in Transaction Processing Systesn
ing Commit Barrier Scheduling. IRroceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP33&)en-
son, Washington, October 2007.

U. Voges, editor. Software Diversity in Computerized Control
SystemsSpringer, Wien, New York, Dec. 1988.

EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errars. |
Proceedings of the 7th Symposium on Operating SystemsrDesig
and Implementation (OSDI '06¥eattle, Washington, November
2006.

J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Aatbm
cally Generating Malicious Disks using Symbolic Executidn
IEEE Security and Privacy (SP '06Berkeley, California, May
2006.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Usingddb
Checking to Find Serious File System Errors.Aroceedings of
the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI '04) San Francisco, California, December 2004.

Y. C. Yeh. Triple-Triple Redundant 777 Primary Flighb@-
puter. InProceedings of the 1996 IEEE Aerospace Applications
Conference1996.

