
Tolerating File-System Mistakes with EnvyFS

Lakshmi N. Bairavasundaram†, Swaminathan Sundararaman,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

†NetApp, Inc. University of Wisconsin-Madison

Abstract

We introduceEnvyFS, an N-version local file system designed
to improve reliability in the face of file-system bugs. EnvyFS,
implemented as a thin VFS-like layer near the top of the stor-
age stack, replicates file-system metadata and data across exist-
ing and diverse commodity file systems (e.g., ext3, ReiserFS,
JFS). It uses majority-consensus to operate correctly despite the
sometimes faulty behavior of an underlying commoditychild
file system. Through experimentation, we show EnvyFS is ro-
bust to a wide range of failure scenarios, thus delivering onits
promise of increased fault tolerance; however, performance and
capacity overheads can be significant. To remedy this issue,
we introduceSubSIST, a novel single-instance store designed
to operate in an N-version environment. In the common case
where all child file systems are working properly, SubSIST co-
alesces most blocks and thus greatly reduces time and space
overheads. In the rare case where a child makes a mistake,
SubSIST does not propagate the error to other children, and
thus preserves the ability of EnvyFS to detect and recover from
bugs that affect data reliability. Overall, EnvyFS and SubSIST
combine to significantly improve reliability with only modest
space and time overheads.

1 Introduction

File systems make mistakes. A modern file system con-
sists of many tens of thousands of lines of complex code;
such a system must handle memory-allocation failure,
disk faults, and system crashes, and in all cases pre-
serve the integrity of both user data and its own meta-
data. Thus, it is perhaps no surprise that many recent
studies have uncovered hundreds of bugs in file sys-
tems [14, 18, 34, 49, 51].

Bugs manifest in numerous ways. In the best case, a
system immediately crashes; recent research has shown
how to cope with such “fail-stop” behavior by both iso-
lating said file system from the rest of the kernel and
transparently restarting it [16, 44]. However, in more

insidious scenarios, file-system bugs have been shown
to accidentally corrupt the on-disk state of one or more
blocks [34, 49, 51]; such “fail-silent” behavior is much
more challenging to detect and recover from, and thus
can lead to both data loss (due to a corrupt directory) or
bad data passed back to the user.

One method to improve file systems and reduce fail-
silent mistakes is thorough testing and other bug-finding
techniques. For example, recent research has introduced
a number of increasingly sophisticated and promising
bug-finding tools [18, 29, 49, 51]. However, until such
approaches are able to identifyall file-system bugs, prob-
lems are likely to persist. Hence, file-system mistakes are
here to stay; the challenge is how to cope with them.

In this paper, we advocate an approach based on the
classic idea of N-version programming [1]. Specifically,
we present the design and implementation of EnvyFS,
a software layer that multiplexes file-system operations
across multiplechild file systems. EnvyFS issues all user
operations to each child, determines the majority result,
and delivers it to the user. By design, we thus elimi-
nate the reliance on a single complex file system, instead
placing it on a much simpler and smaller software layer.

A significant challenge in N-version systems is to for-
mulate the common specification and to create the differ-
ent versions. EnvyFS overcomes this challenge by using
the Virtual File System (VFS) layer as the common spec-
ification and by leveraging existing Linux file systems
already written by different open-source development
groups (e.g., ext3 [46], JFS [8], ReiserFS [36]). In this
manner, we build on work that leverages existing soft-
ware bases to build N-version services, including NFS
servers [37] and transaction-processing systems [47].

An important design goal in building EnvyFS is to
keep it simple, thereby reducing the likelihood of bugs
that arise from the sheer complexity of file-system code.
At the same time, EnvyFS should leverage the VFS layer
and existing file systems to the extent possible. We find
that EnvyFS is indeed simple, being only a fraction of the



size as its child file systems, and can leverage much of
the common specification. However, limitations do arise
from the nature of the specification in combination with
our goal of simplicity. For example, because child file
systems issue different inode numbers for files, EnvyFS
is tasked with issuing inode numbers as well; in the inter-
est of simplicity, EnvyFS does not maintain these inode
numbers persistently (i.e., the inode number for a file is
the same within, but not across, mounts).

A second challenge for EnvyFS is to minimize the
performance and disk-space overheads of storing and
retrieving data from its underlying child file systems.
Our solution is to develop a variant of a single-instance
store (an SIS) [11, 17, 35]. By utilizing content hashes
to detect duplicate data, an SIS can significantly re-
duce the space and performance overheads introduced
by EnvyFS. However, using an SIS underneath EnvyFS
mandates a different approach, as we wish to reduce
overhead without sacrificing the ability to tolerate mis-
takes in a child file system. We achieve this by imple-
menting a novel SIS (which we call SubSIST) that en-
sures that a mistake in one file system (e.g., filling a
block with the wrong contents) does not propagate to
other children, and thus preserves the ability of EnvyFS
to detect faults in an underlying file system through vot-
ing. Thus, in the common case where all file systems
work properly, SubSIST coalesces most blocks and can
greatly reduce time and space overheads; in the rare case
where a single child makes a mistake, SubSIST does not
do so, enabling EnvyFS to detect and recover from the
problem.

We have implemented EnvyFS and SubSIST for
Linux; currently, EnvyFS employs any combination of
ext3, JFS, and ReiserFS as child file systems. Through
fault injection, we have analyzed the reliability of
EnvyFS and have found that it can recover from a range
of faults in nearly all scenarios; many of these faults
cause irreparable data loss or unmountable file systems
in the affected child. We have also analyzed the per-
formance and space overheads of EnvyFS both with and
without SubSIST. We have found across a range of work-
loads that, in tandem, they usually incur modest perfor-
mance overheads. However, since our current implemen-
tation of SubSIST does not persist its data structures, the
performance improvements achieved through SubSIST
represent the best case. We find that SubSIST also re-
duces the space overheads of EnvyFS significantly by
coalescing all data blocks. Finally, we have discovered
that EnvyFS may also be a useful diagnostic tool for file-
system developers; in particular, it helped us to readily
identify and fix a bug in a child file system.

The rest of the paper is organized as follows. In Sec-
tion 2, we present extended motivation. We present the
design and implementation of EnvyFS and SubSIST in

Sections 3 and 4 respectively. We evaluate our system
for reliability in Section 5 and performance in Section 6.
We then discuss related work in Section 7 and conclude
in Section 8.

2 Do File Systems Make Mistakes?

Before describing EnvyFS, we first briefly explain why
we believe file systems do indeed make mistakes, and
why those mistakes lead file systems to deliver corrupt
data to users or corrupt metadata to themselves. Such
failures are silent, and thus challenging to detect.

Recent work in analyzing file systems has uncov-
ered numerous file system bugs, many of which lead
to silent data corruption. For example, Prabhakaran et
al. found that a single transient disk error could cause
a file system to return corrupt data to the calling appli-
cation [33, 34]. Further, a single transient write failure
could corrupt an arbitrary block of the file system, due
to weaknesses in the failure-handling machinery of the
journaling layer [34]. Similar bugs have been discovered
by others [50, 51].

Another piece of evidence that file systems corrupt
their own data structures is the continued presence of
file system check-and-repair tools such as fsck [30]. De-
spite the fact that modern file systems either use journal-
ing [21] or copy-on-write [12, 19, 25, 38] to ensure con-
sistent update of on-disk structures, virtually all modern
file systems ship with a tool to find and correct inconsis-
tencies in on-disk data structures [20]. One might think
inconsistencies arise solely from faulty disks [6, 7]; how-
ever, even systems that contain sophisticated machinery
to detect and recover from disk faults ship with repair
tools [24]. Thus, even if one engineers a reliable storage
system, on-disk structures can still become corrupt.

In addition to bugs, file systems may accidentally
corrupt their on-disk structures due to faulty memory
chips [31, 39]. For example, if a bit is flipped while a
block is waiting to be written out, either metadata or data
will become silently corrupted when the block is finally
written to disk.

Thus, both due to poor implementations as well as bad
memory, file systems can corrupt their on-disk state. The
type of protection an N-version system provides is thus
complementary to the machinery of checksums and par-
ity and mirroring that could be provided in the storage
system [28, 41], because these problems occurbefore
such protection can be enacted. These problems cannot
be handled via file-system backups either; backups po-
tentially provide a way to recover data, but they do not
help detect that currently-available data is corrupt. To
detect (and perhaps recover) from these problems, some-
thing more is required.



3 EnvyFS: An N-Version File System

N-version programming [1, 2, 4, 5, 13, 15, 48] is used to
build reliable systems that can tolerate software bugs. A
system based on N-version programming usesN differ-
ent versions of the same software and determines a ma-
jority result. The different versions of the software are
created byN different developers or development teams
for the same software specification. It is assumed (and
encouraged using the specification) that different devel-
opers will design and implement the specification differ-
ently, lowering the chances that the versions will contain
the same bugs or will fail in a similar fashion.

Developing N-version systems has three important
steps (a) producing the specification for the software, (b)
implementing theN different versions of the software,
and (c) creating the environment that executes the differ-
ent versions and determines a consensus result [1].

We believe the use of N-version programming is par-
ticularly attractive for building reliable file systems since
the design and development effort required for the first
two steps (i.e., specification and version development)
can be much lower than for the typical case.

First, many existing commodity file systems adhere
to a common interface. All Linux file systems adhere
to the POSIX interface, which internally translates to
the Virtual File System (VFS) interface. Thus, if an N-
version file system is able to leverage the POSIX/VFS
interface, then no additional effort will be needed to
develop a new common specification. However, be-
cause the POSIX/VFS interface was not designed with
N-versioning in mind, we do find that EnvyFS must ac-
count for differences between file systems.

Second, many diverse file systems are available for
Linux today. For example, in Linux 2.6, there are at
least 30 different file systems (depending upon how one
counts), such as ext2, ext3, JFS, ReiserFS, XFS, FAT,
and HFS; new ones are being implemented as well, such
as btrfs. All have been built for the POSIX/VFS inter-
face. These different file systems have drastically differ-
ent data structures, both on disk and in memory, which
reduces the chances of common file-system bugs. Fur-
thermore, previous research has shown that file systems
behave differently when they encounter partial-disk fail-
ures; for example, Prabhakaran et al. show that when di-
rectory data is corrupted, ReiserFS and JFS detect the
problem while ext3 does not [34].

3.1 Design Goals and Assumptions
The design of EnvyFS is influenced by the following
goals and assumptions:
Simplicity: As systems have shown time and again,
complexity is the source of many bugs. Therefore, an
N-version file system should be as simple as possible. In

EnvyFS, this goal primarily translates to avoiding persis-
tent metadata; this simplification allows us to not allo-
cate disk blocks and to not worry about failures affecting
EnvyFS metadata.
No application modifications: Applications should not
need to be modified to use EnvyFS instead of a single lo-
cal file system. This goal supports our decision to lever-
age the POSIX specification as our specification.
Single disk: The N-version file system is intended to
improve the reliability of desktop systems in the face of
file-system mistakes. Therefore, it replicates data across
multiple local file systems that use the same disk drive.
This goal translates to a need for reducing disk-space
overheads; thus, we develop a new single-instance store
(Section 4) for our environment.
Non-malicious file systems:We assume that child file
systems are not malicious. Thus, we must only guard
against accidents and not intentional attempts to corrupt
user data or file-system metadata.
Bug isolation: We also assume that the bugs do not prop-
agate to the rest of the kernel. If such corruption were in-
deed a major issue, one could apply isolation techniques
as found in previous work to contain them [16, 44].

3.2 Basic Architecture
EnvyFS receives application file operations, issues the
operations to multiplechild file systems, compares the
results of the operation on all file systems, and returns
the majority result to the application. Each child stores
its data and metadata in its own disk partition.

We have built EnvyFS within Linux 2.6, and Figure 1
shows the basic architecture. EnvyFS consists of a soft-
ware layer that operates underneath the virtual file sys-
tem (VFS) layer. This layer executes file operations
that it receives on multiple children. We use ext3 [46],
JFS [9], and ReiserFS [36] for this purpose. We chose
these file systems due to their popularity and their dif-
ferences in how they handle failures [34]. However, the
EnvyFS design does not preclude the use of other file
systems that use the VFS interface.

Similar to stackable file systems [22], EnvyFS inter-
poses transparently on file operations; it acts as a normal
file system to the VFS layer and as the VFS layer to the
children. It thus presents file-system data structures and
interfaces that the VFS layer operates with and in turn
manages the data structures of the child file systems. We
have implemented wrappers for nearly all file and direc-
tory operations. These wrappers verify the status of nec-
essary objects in the children before issuing the operation
to them. For example, for an unlink operation, EnvyFS
first verifies that both the file and its parent directory are
consistent with majority opinion.

Each operation is issued in series to the child file sys-
tems; issuing an operation in parallel to all file systems



V F SE n v y F S
s u b S I S TD r i v e rR ei serFS JFSext3

Figure 1: N-version file system in Linux. The figure
presents the architecture of a 3-version file system with ext3,
ReiserFS and JFS as the children. The core layer is EnvyFS;
it is responsible for issuing file operations to all three filesys-
tems, determining a majority result from the ones returned by
the file systems, and returning it to the VFS layer. The optional
layer beneath the file systems (SubSIST) is a single-instance
store built to work in an N-version setting; it coalesces user
data stored by the different file systems in order to reduce per-
formance and space overheads.

increases complexity and is unlikely to realize much,
if any, performance benefit when the children share the
same disk drive. When the operations complete, the re-
sults are semantically compared to determine the major-
ity result; this result is then returned to the user. When
no majority result is obtained, an I/O error is returned.

Our current implementation does not support the
mmap operation. While supportingmmap is not funda-
mentally difficult, it does present a case where child file
systems cannot be trivially leveraged. Specifically, an
implementation ofmmap in EnvyFS would likely involve
the use of fileread andwrite operations of children,
rather than theirmmap operations.

We now discuss how our implementation addresses
each of the three steps of N-version programming. In
particular, we discuss how EnvyFS deals with the com-
plexities of leveraging the existing POSIX specifica-
tion/VFS layer and of using existing Linux file systems
while keeping EnvyFS simple.

3.3 Leveraging the POSIX Specification
EnvyFS leverages the existing POSIX specification and
operates underneath VFS as it provides core functional-
ity (like ordering of file operations) that is challenging to
replicate without modifying applications. Thus, EnvyFS
relies upon the correct operation of the VFS layer. We
believe the VFS layer has been heavily tested over the
years and is likely to have fewer bugs that the file sys-
tems themselves; this optimism is partially validated by
Yang et al., who find two bugs in the VFS layer and
nearly thirty in ext3, ReiserFS, and JFS [51].

One issue that EnvyFS must handle is that the POSIX
specification is imprecise for use in an N-version setting;
that is, the child file systems we leverage differ in vari-
ous user-visible aspects that are not a part of the POSIX
interface. For example, POSIX does not specify the or-
der in which directory entries are to be returned when a
directory is read; thus, different children may return di-
rectory entries in a different order. As another example,
the inode number of a file is available to users and appli-
cations through thestat system call; yet, different file
systems issue different inode numbers for the same file.

One approach to addressing this problem would be
to make the specification more precise and change the
file systems to adhere to the new specification. This ap-
proach has a number of problems. First, refining the
specification discourages diversity across the different
file systems. For example, if the specification details
how inode numbers should be assigned to files, then all
file systems will be forced to use the same algorithm
to allocate inode numbers, perhaps causing them to also
use the same data structures and inviting common bugs.
Second, even given a more precise specification, non-
determinism and differences in operation ordering can
easily cause different results. Finally, changing the spec-
ification would greatly increase the amount of develop-
ment effort to produce an N-version file system, since
each existing Linux file system would need to be changed
to use it as a child file system.

3.3.1 Semantic Result Comparison
Our solution is to have EnvyFS deal with the imprecise
POSIX specification: when EnvyFS compares and re-
turns results from the child file systems, it does so using
semantic knowledge of how the POSIX/VFS interface
operates. In other words, EnvyFS examines the VFS data
structures returned by each child file system and does a
semantic comparison of individual fields.

For example, for a file read operation, EnvyFS com-
pares (a) the size of data read (or the error code re-
turned), (b) the actual content read, and (c) the file po-
sition at the end of the read. For all file operations where
inodes may be updated, EnvyFS compares (and copies
to its VFS inode) the contents of the individual inodes.
We have developed comparators for different file-system
data types like superblocks, inodes, and directories. For
example, an inode comparator checks whether the fields
i nlink, i mode, i uid, and so forth in the child in-
odes are the same. While EnvyFS compares results re-
turned to it, it does not verify that the operation com-
pleted correctly in each file system; for example, it does
not re-read data written to a file to verify that all file sys-
tems actually wrote the correct data.

As mentioned above, directory entries and inodes
are especially interesting cases. We now describe how



EnvyFS handles these structures in more detail and we
also describe how EnvyFS optimizes its comparison of
data blocks across file systems.
Directory Entries: POSIX does not specify the order in
which directory entries are to be returned. Thus, EnvyFS
reads all directory entries from all file systems; it then
returns individual entries that occur in a majority of file
systems. The disadvantage of this approach is that it in-
creases the overhead for thegetdirentries system
call for very large directories. We note that we could
optimize the performance of this case (at the expense of
code simplicity), by reading from child file systems only
until EnvyFS finds matches for exactly as many entries
as the user provides space for.
Inode Numbers: POSIX does not specify how inode
numbers should be assigned to files, yet inode numbers
are visible to user applications. Since EnvyFS cannot
always use the inode number produced by any one child
file system (because it may fail), it assigns a virtual inode
number when a new object is encountered and tracks this
mapping. Keeping with our simplicity goal, inode num-
bers so assigned are not persistent; that is, an object has
a specific virtual inode number only between a mount
and the corresponding unmount. This decision impacts
only a few applications that depend on the persistence of
file-system inode numbers. If applications using EnvyFS
do require persistent inode numbers, one simple solution
that could be explored is to store the inode mapping in a
hidden file in the root directory of each file system and
load the mapping at mount time. A specific example in
this context is an NFS server using protocol versions 2 or
3; the server uses persistent inode numbers to create file
handles for clients that can be used across server crashes.
Even so, in protocol version 4, a “volatile file handle”
option was introduced, thereby eliminating the need for
persistent inode numbers. Interestingly, some local file
systems, like the High Sierra file system for CD-ROMs,
do not have persistent inode numbers [32].
Reads of Data Blocks:In performing read operations,
we would like to avoid the performance overhead of al-
locating memory to store the results returned by all of the
file systems (especially when the data read is already in
cache). Therefore, EnvyFS reuses the memory provided
by the application for theread system call. Reusing the
memory influences two subsequent decisions. First, to
determine whether the child file systems return the same
data from theread, EnvyFS computes checksums on
the data returned by the child file systems and compares
them; a more thorough byte-by-byte comparison would
require memory for all copies of data. Second, EnvyFS
issues the read operation in series to child file systems
only until a majority opinion is reached (i.e., usually to
two children); this choice eliminates the problem of is-
suing reads again in case the last file system returns in-

correct data; in addition, in the common case, when file
systems agree, the third read is avoided. It is important
to note that we choose not to take the same issue-only-
until-majority approach with other VFS operations such
as lookup since the limited performance gain for such
operations is not worth the complexity involved, say in
tracking and issuing a sequence of lookups for the en-
tire path when a lookup returns erroneous results in one
file system. A future implementation could include a
“verify-all” option that causes EnvyFS to issue the read
to all file systems ignoring the performance cost.

In choosing the checksum algorithm for comparing
data, one must remember that the cost of checksumming
can be significant for reads that are satisfied from the
page cache. We have measured that this cost is espe-
cially high for cryptographic checksums such as MD5
and SHA-1; therefore, in keeping with our goal of pro-
tecting against bugs but not maliciousness, we use a sim-
ple TCP-like checksum (sum of bytes) for comparisons.

3.3.2 Operation Ordering
Our placement of EnvyFS beneath VFS simplifies the is-
sue of ordering file operations. As in many replication-
based fault tolerance schemes, determining an order-
ing of operations is extremely important; in fact, recent
work in managing heterogeneous database replicas fo-
cuses primarily on operation ordering [47]. In the context
of a file system, consider the scenario where multiple file
operations are issued for the same object: if an ordering
is not predetermined for these operations, their execu-
tion may be interleaved such that the different children
perform the operations in a different order and therefore
produce different results even in the absence of bugs.

Unlike databases, the dependence between operations
can be predetermined for file systems. In EnvyFS, we
rely on the locking provided by the Linux VFS layer to
order metadata operations. As explained earlier, this re-
liance cannot be avoided without modifying applications
(to issue operations to multiple replicas of VFS that ex-
ecute an agreement algorithm). In addition to the VFS-
level locking, we perform file locking within EnvyFS for
reads and writes to the same file. This locking is neces-
sary since the VFS layer does not (and has no need to)
order file reads and writes.

3.4 Using Existing File Systems
Our decision to leverage existing Linux file systems
for child file systems greatly simplifies the development
costs of the system. However, it does restrict our behav-
ior in some cases.

One problem with using multiple local file systems is
that the different file systems execute within the same ad-
dress space. This exposes EnvyFS to two problems: (a)
a kernel panic induced by a child file system, and (b) a
memory bug in a child file system that corrupts the rest



of the kernel. A solution to both problems would be to
completely isolate the children using a technique such as
Nooks [43]. However, due to the numerous interactions
between the VFS layer and the file systems, such isola-
tion comes at a high performance cost.

Therefore, we explore a more limited solution to han-
dle kernel panics. We find the current practice of file sys-
tems issuing a call topanic whenever they encounter
errors to be too drastic, and developers seem to agree.
For example, ext3 code had the following comment:
“Given ourselves just enough room to cope with inodes
in which i blocks is corrupt: we’ve seen disk corruptions
in the past which resulted in random data in an inode
which looked enough like a regular file for ext3 to try to
delete it. Things will go a bit crazy if that happens, but at
least we should try not to panic the whole kernel”. In the
case of ext3 and JFS, a mount option (errors) can spec-
ify the action to take when a problem is encountered;
one could specifyerrors=continueto ensure that panic
is not called by the file systems. However, this option
is not available on all file systems. Our solution is to
replace calls topanic, BUG, andBUG ON by child file
systems with a call to anvfs child panic routine
in EnvyFS. This simple replacement is performed in file-
system source code. Thenvfs child panic routine
disables issuing of further file operations to the failed file
system.

Another limitation of using existing file systems is
that different file systems use different error codes for
the same underlying problems (e.g., “Input/output error”,
“Permission denied”, or “Read-only file system”). A
consistent error code representing each scenario would
enable EnvyFS to take further action. In our current im-
plementation EnvyFS simply reports the majority error
code or reports an I/O error if there is no majority.

3.5 Keeping EnvyFS Simple
EnvyFS has its own data structures (e.g., in-memory in-
odes anddentrystructures), which are required for inter-
acting with the VFS layer. In turn, EnvyFS manages the
allocation and deallocation of such structures for child
file systems; this management includes tracking the sta-
tus of each object: whether it matches with the majority
and whether it needs to be deallocated.

In keeping with our simplicity goal, we have designed
EnvyFS so that it does not maintain any persistent data
structures of its own. This decision affects various parts
of the design; we previously discussed how this impacts
the management of inode numbers (Section 3.3.1); we
now discuss how it impacts the handling of faulty file
systems and system crashes.

3.5.1 Handling Disagreement
An important part of EnvyFS is the handling of cases
where a child file system disagrees with the majority re-

sult. This part is specifically important for local file sys-
tems since the ability to perform successive operations
may depend on the result of the current operation (e.g., a
file read cannot be issued when open fails).

When an error is detected, in order to restore EnvyFS
to full replication, the erroneous child file system should
be repaired. The repair functionality within EnvyFS fixes
incorrect data blocks and inodes in child file systems.
Specifically, if EnvyFS observes that the file contents in
one file system differs from the other file systems dur-
ing a file read, it issues a write of the correct data to the
corrupt file system before returning the data to the user.
With respect to inodes, EnvyFS repairs a subset of var-
ious possible corruptions; it fixes inconsistencies in the
permission flags (which are imode, iuid, i gid) with the
majority result from other file systems. It also fixes size
mismatches where the correct size is larger than the cor-
rupt one by copying the data from correct file systems.
On the other hand, issuing a file truncate for the case
where the correct size is smaller may result in more cor-
ruption in an already corrupt file system (e.g., the blocks
being freed by truncate may actually be in use by a dif-
ferent file as a result of a prior corruption).

As the above example demonstrates, efficient repair
for all inconsistencies is challenging. If EnvyFS can-
not repair the erroneous object in a child file system, it
operates indegraded-modefor the associated object. In
degraded mode, future operations are not performed for
that object in the file system with the error, but EnvyFS
continues to perform operations on other objects for that
file system. For example, if a child’s file inode is de-
clared faulty, then read operations for that file are not is-
sued to that file system. As another example, if a lookup
operation completes successfully for only one file sys-
tem, its corresponding in-memory dentry data structure
is deallocated, and any future file create operation for that
dentry is not issued to that file system.

For simplicity, the validity information for objects is
not maintained persistently. With this approach, after a
reboot, the child file system will try to operate on the
faulty objects again. If the object is faulty due to a perma-
nent failure, then the error is likely to be detected again,
as desired. Alternately, if the problem was due to a tran-
sient error, the child will return to normal operation as
long as the object has not been modified in the interim.
Our current approach to fully repair inconsistencies that
cannot be repaired in-flight requires that the entire erro-
neous child file system be re-created from the other (cor-
rect) children, an expensive process.

Some further challenges with efficient repair may arise
from limitations of the VFS layer. Consider the fol-
lowing scenario. A file with two hard links to it may
have incorrect contents. If EnvyFS detects the corrup-
tion through one of the links, it may create a new file in



the file system to replace the erroneous one. However,
there is no simple way to identify the directory where the
other link is located, so that it can be fixed as well (ex-
cept through an expensive scan of the entire file system).
In the future, we plan to investigate how one can provide
hooks into the file system to enable fast repair.

3.5.2 System Crashes
When a system crash occurs, EnvyFS file-system recov-
ery consists of performing file-system recovery for all
child file systems before EnvyFS is mounted again. In
our current approach, EnvyFS simply leverages the re-
covery methods inherent to each individual file system,
such as replaying the journal. This approach leads to
a consistent state within each of the children, but it is
possible for different file systems to recover to different
states. Specifically, when a crash occurs in the middle
of a file operation, EnvyFS could have issued (and com-
pleted) the operation for only a subset of the file systems,
thereby causing children to recover to different states. In
addition, file systems like ext3 maintain their journal in
memory, flushing the blocks to disk periodically; jour-
naling thus provides consistency and not durability.

An alternative approach for solving this problem
would be for EnvyFS itself to journal operations and re-
play them during recovery. However, this would require
EnvyFS to maintain persistent state.

In EnvyFS, the state modifications that occur durably
for a majority of file systems before the crash are consid-
ered to have completed. The differences in the minority
set can be detected when the corresponding objects are
read, either during user file operations or during a proac-
tive file-system scan. There are corner cases where a ma-
jority result will not be obtained when a system crash oc-
curs. In these cases, choosing the result of any one file
system will not affect file-system semantics. At the same
time, these cases cannot be distinguished from other real
file-system errors. Therefore, EnvyFS returns an error
code when these differences are detected; future imple-
mentations could choose to use the result from a desig-
nated “primary” child.

4 SubSIST: A Single-Instance Store

Two issues that arise in using an N-version file system are
the disk-space and performance overheads. Since data
is stored inN file systems, there is anN -fold increase
(approximately) in disk space used. Since each file op-
eration is performed on all file systems (except for file
reads), the likely disk traffic isN times that for a sin-
gle file system. For those environments where the user
is willing to trade-off some data reliability for disk space
and performance, we develop a variant of single-instance
storage [11, 17, 35]. Note that SubSIST is not manda-

tory; if the performance and space overheads of EnvyFS
are acceptable, there is no reason to make use of Sub-
SIST (indeed, the less code relied upon the better).

With SubSIST, the disk operations of the multiple chil-
dren pass through SubSIST, which is implemented as
a block-level layer. As is common in single-instance
stores, SubSIST computes a content hash (MD5) for all
disk blocks being written and uses the content hash to
detect duplicate data.

Using an SIS greatly reduces disk usage underneath
an N-version file system. At the same time, despite co-
alescing data blocks, an SIS retains much of the bene-
fit of EnvyFS for two reasons. First, the reliability of
file-systemmetadatais not affected by the use of an
SIS. Since metadata forms the access path to multiple
units of data, its reliability may be considered more im-
portant than that of data blocks. Because the format of
file-system metadata is different across different file sys-
tems, metadata blocks of different file systems have dif-
ferent hash values and are stored separately; thus, the SIS
layer can distinguish between data and metadata blocks
without any knowledge of file-system data structures.
Second, since file systems maintain different in-memory
copies of data, file-system bugs that corrupt data blocks
in-memory cause the data in different file systems to have
different content hashes; therefore, individual file sys-
tems are still protected against each other’s in-memory
file-data corruptions.

4.1 Requirements and Implications
The design of SubSIST for an N-version file system
should satisfy slightly different requirements than a con-
ventional SIS. We discuss four important observations
and their impact on the design of SubSIST.

First, child file systems often replicate important meta-
data blocks so that they can recover from failures. For ex-
ample, JFS replicates its superblock and uses the replica
to recover from a latent sector error to the primary. Thus,
SubSIST does not coalesce disk blocks with the same
content if they belong to the same file system.

Second, an SIS coalesces common data written at
approximately the same time by different file systems.
Therefore, in SubSIST, the content hash information for
each disk block is not stored persistently; the content
hashes are maintained in memory and deleted after some
time has elapsed (or afterN file systems have written the
same content). This ephemeral nature of content hashes
also reduces the probability of data loss or corruption due
hash collisions [10, 23].

Third, in an N-version file system, reads of the same
data blocks occur at nearly the same time. Thus, Sub-
SIST services reads from different file systems by main-
taining a small read cache. This read cache holds only
those disk blocks whose reference count (number of file



systems that use the block) is more than one. It also
tracks the number of file systems that have read a block
and removes a block from cache as soon as this number
reaches the reference count for the block.

Finally, the child file systems using SubSIST are un-
modified and therefore have no knowledge of content ad-
dressing; therefore, SubSIST virtualizes the disk address
space; it exports a virtual disk to the file system, and
maintains a mapping from each file system’s virtual disk
address to the corresponding physical disk address, along
with a reference count for each physical disk block. Sub-
SIST uses file-system virtual addresses as well as previ-
ously mapped physical addresses as hints when assign-
ing physical disk blocks to maintain as much sequential-
ity and spatial locality as possible. When these hints do
not provide a free disk block, SubSIST selects the closest
free block to the previously mapped physical block.

4.2 Implementation
SubSIST has numerous important data structures, includ-
ing: (i) a table of virtual-to-physical mappings, (ii) al-
location information for each physical disk block in the
form of reference count maps, (iii) a content-hash cache
of recent writes and the identities of the file systems that
performed the write, and (iv) a small read cache.

We have built SubSIST as a pseudo-device driver in
Linux. It exports virtual disks that are used by the file
systems. Our current implementation does not store
virtual-to-physical mappings and reference-count maps
persistently; in the future, we plan to explore reliably
writing this information to disk.

5 Reliability Evaluation

We evaluate the reliability improvements of a 3-version
EnvyFS (EnvyFS3) that uses ext3, JFS, and Reis-
erFS (v3) as children. All our experiments use the ver-
sions of these file systems that are available as part of the
Linux 2.6.12 kernel.

We evaluate the reliability of EnvyFS3 in two ways:
First, we examine whether it recovers from scenarios
where file-system content is different in one of the three
children. Second, we examine whether it can recover
from corruption to on-disk data structures of one child.

5.1 Differing File System Content
The first set of experiments is intended to mimic the sce-
nario where one of the file systems has an incorrect disk
image. Such a scenario might occur either when (i) a
system crash occurs and one of the children has written
more or less to disk than the others, (ii) a bug causes one
of the file systems to corrupt file data, say by perform-
ing a misdirected write of data belonging to one file to
another file, or (iii) soft memory errors cause corruption.

Difference in content Num Correct Correct
Tests success error

code

None 28 17 / 17 11 / 11
Dir contents differ in one 13 6 / 6 7 / 7
Dir present in only two 13 6 / 6 7 / 7
Dir present in only one 9 4 / 4 5 / 5
File contents differ in one 15 11 / 11 4 / 4
File metadata differ in one 45 33 / 33 12 / 12
File present in only two 15 11 / 11 4 / 4
File present in only one 9 3 / 3 6 / 6

Total 147 91 / 91 56 / 56

Table 1: File-system Content Experiments.This table
presents the results of issuing file operations to EnvyFS3 ob-
jects that differ in data or metadata content across the different
children. The first column describes the difference in file-system
content. The second column presents the total number of exper-
iments performed for this content difference; this is the number
of applicable file operations for the file or directory object. For
metadata differences, 15 operations each are performed fordif-
ferences in mode, nlink, and size fields of the inode. The third
column is the fraction of operations that return correct data
and/or successfully complete. The fourth column is the frac-
tion of operations that correctly return an error code (and it is
the expected error code) (e.g., ENOENT when an unlink oper-
ation is performed for a non-existent file). We see that EnvyFS3

successfully uses the majority result in all 147 experiments.

We first experiment by creating different file-system
images as the children and executing a set of file oper-
ations on EnvyFS3 that uses the children. We have ex-
plored various file-system content differences, including
extra or missing files or directories, and differences in
file or directory content. The different file operations per-
formed include all possible file operations for the object
(irrespective of whether the operation causes the differ-
ent content to be read). Our file operations include those
that are expected to succeed as well as those that are ex-
pected to fail with a specific error code.

Table 1 shows that EnvyFS3 correctly detects all dif-
ferences and always returns the majority result to the user
(whether the expected data or error code). EnvyFS3 can
also be successfully mounted and unmounted in all cases.
We find that the results are the same irrespective of which
child (ext3, JFS, ReiserFS) has incorrect contents.

We then explore whether EnvyFS3 continues to detect
and recover from differences caused by in-memory cor-
ruption when SubSIST is added. We experiment by mod-
ifying data (or metadata) as it being written to a child file
system and then causing the data (or metadata) to be read
back. Table 2 presents the results of the experiments.
We find that EnvyFS3 used along with SubSIST returns
the correct results in all scenarios. Also, in most sce-



Corruption Type Num Correct Fix
Tests success

File contents differ in one 3 3 / 3 3 / 3
Dir contents differ in one 3 3 / 3 0 / 3
Inode contents differ in one 15 15 / 15 9 / 15

Total 21 21 / 21 12 / 21

Table 2: File-system Corruption Experiments. This
table presents the results of corrupting one of the file objects
in EnvyFS3 that results in different data or metadata content
across the different children with SubSIST underneath it. The
first column describes the type of corruption. The second col-
umn presents the total number of experiments performed; The
third column is the fraction of operations that return correct
data and/or successfully complete (which also include identifi-
cation of mismatch in file system contents). The fourth column
is the fraction of operations that EnvyFS was able to repair
after detecting corruption.

narios when file contents or inode contents are different,
EnvyFS3 successfully repairs the corrupt child during
file-system operation (Section 3.5.1 describes scenarios
in which EnvyFS repairs a child during file-system op-
eration). The use of SubSIST does not affect protection
against in-memory corruption; a data block corrupted in
memory will cause SubSIST to generate a different con-
tent hash for the bad block when it is written out, thereby
avoiding the usual coalescing step.

5.2 Disk Corruption
The second set of experiments analyzes whether
EnvyFS3 recovers when a child’s on-disk data structures
are corrupt. Such corruption may be due to a bug in the
file system or the rest of the storage stack. We inject cor-
ruption into JFS and ext3 data structures by interposing
a pseudo-device driver that has knowledge of the data
structures of each file system. This driver zeroes the en-
tire buffer being filled in response to a disk request by
the file system, but does not return an error code (i.e.,
the corruption is silent). All results, except that for data
blocks, are applicable to using EnvyFS3 with SubSIST.

5.2.1 Corruption in JFS
Figures 2a and 2b compare the user-visible results of in-
jecting corruptions into JFS data structures when JFS is
used stand-alone and when EnvyFS3 is used (that is com-
posed of JFS, ext3, and ReiserFS).

Each row in the figures corresponds to the JFS data
structure for which the fault is injected. Each column in
the figures corresponds to different file operations. The
different symbols represent the user-visible results of the
fault; examples of user-visible results include data loss,
and a non-mountable file system. For example, in Fig-
ure 2a, when an inode block is corrupted during path
traversal (column 1), the symbol indicates that (i) the

operation fails and (ii) the file system is remounted in
read-only mode. In addition to the symbols for each
column, the symbol next to the data-structure name for
all the rows indicates whether or not the loss of the disk
block causes irreparable data or metadata loss.

As shown in Figure 2a, JFS is rarely able to recover
from corruptions: JFS can continue normal operation
when the read to the block-allocation bitmap fails during
truncate and unlink. Often, the operation fails and JFS
remounts the file system in read-only mode. The corrup-
tion of some data structures also results in a file system
that cannot be mounted. In one interesting case, JFS de-
tects the corruption to an internal (indirect) block of a file
and remounts the file system in read-only mode, but still
returns corrupt data to the user. Data loss is indicated for
many of the JFS rows.

In comparison to stand-alone JFS, EnvyFS3 recovers
from all but one of the corruptions (Figure 2b). EnvyFS3

detects errors reported by JFS and also detects corrupt
data returned by JFS when the internal block or data
block is corrupted during file read. In all these cases,
EnvyFS3 uses the two other file systems to continue nor-
mal operation. Therefore, no data loss occurs when any
of the data structures is corrupted.

In one interesting fault-injection experiment, a system
crash occurs both when using JFS stand-alone and when
using it in EnvyFS3. In this experiment, the first aggre-
gate inode block (AGGR-INODE-1) is corrupted, and
the actions of JFS lead to a kernel panic during paging.
Since this call topanic is not in JFS code, it cannot
been replaced as described in Section 3.4. Therefore,
the kernel panic occurs both when using JFS stand-alone
and when using EnvyFS3. Thus, we find a case where
EnvyFS3 is not completely resilient to underlying child
failure; faults that lead to subsequent panics in the main
kernel cannot be handled with N-version techniques.

5.2.2 Corruption in Ext3
Figures 2c and 2d show the results of injecting corrup-
tion into ext3 data structures. As in the case of JFS, the
figures compare ext3 against EnvyFS3.

Overall, we find that ext3 does not handle corruption
well. Figure 2c shows that no corruption error leads to
normal operation without data loss for ext3. In most
cases, there is unrecoverable data loss and either the op-
eration fails (ext3 reports an error) or the file system is
remounted in read-only mode or both. In some cases,
the file system cannot even be mounted. In other cases,
ext3 fails to detect corruption (e.g.,IMAP, INDIRECT),
thereby either causing data loss (IMAP) or returning cor-
rupt data to the user (INDIRECT). Finally, in one sce-
nario (corruptINODE during unlink), the failure to
handle corruption leads to a system crash upon unmount.

In comparison, Figure 2d shows that EnvyFS3 contin-



(a) JFS (b) EnvyFS3

1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

INODE

DIR

BMAP

IMAP

INTERNAL

DATA

SUPER

JSUPER

JDATA

AGGR-INODE-1

IMAPDESC

IMAPCNTL

a a a

(c) EXT3 (d) EnvyFS3

1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6
ge

td
ire

nt
rie

s
7

cr
ea

t
8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

INODE

DIR

BMAP

IMAP

INDIRECT

DATA

SUPER

JSUPER

GDESC

e e e e e e

LEGEND

Later operations fail
Operation fails
Data corrupted or corrupt data returned
Data or metadata loss
Normal operation

Not applicable
e Data loss <or> Data corruption
a Data loss <or> operation fails and ROFS

Read-only file system (ROFS)
System crash
Non-mountable file system

Figure 2:Disk corruption experiments. The figures show the results of injecting corruption for JFS and ext3 on-disk data
structures. JFS is used stand-alone in (a) and is one of the children in EnvyFS3 in (b). ext3 is used stand-alone in (c) and is one
of the children in EnvyFS3 in (d). Each row in the figures corresponds to the data structure for which the fault is injected; each
column corresponds to a file operation; each symbol represents the user-visible result of the fault injection. Note that(i) the column
SET-1 denotes file operations access, chdir, chroot, stat, statfs, lstat, and open; SET-2 denotes chmod, chown, and utimes; SET-3
denotes fsync and sync, (ii) some symbols are a combination of two symbols, one of which is the light-gray square for “read-only
file system.”



ues normal operation in every single experiment, includ-
ing in the system-crash case. EnvyFS3 again shows great
resilience to faults in a single child file system.

We also found EnvyFS3 to be surprisingly helpful
in isolating a non-trivial bug in ext3. As reported
above, when an ext3 inode block is corrupted before
anunlink, the system crashes when the file system is
later unmounted. The system crash does not occur in
EnvyFS3; one might suspect that EnvyFS3 is robust be-
cause ext3 was modified to callnvfs child panic.
However, this is not the case; instead, EnvyFS3 com-
pletely avoids the code paths that cause the panic; in
particular, EnvyFS3 detects that the inode returned by
ext3 in response to a lookup (that is performed by VFS
prior to the actual unlink) is faulty (i.e., semantically dif-
fers from the inodes returned by the other file systems).
Therefore, it does not issue the subsequent unlink opera-
tion to ext3, hence avoiding actions that cause the panic.
Interestingly, the bug that causes the crash is actually in
the lookup operation, the first point where EnvyFS3 de-
tects a problem. Note that in the absence of an N-version
file system, one would find that the system crashed on an
unmount, but will not have information linking the crash
to the unlink system call or the bug inext3 lookup.
Checking the ext3 source code, we found that this bug in
Linux 2.6.12 was subsequently fixed in 2.6.23. This ex-
perience highlights the potential for using N-versioning
to localize bugs in file systems.

5.3 Discussion
Our experiments show that EnvyFS3 can recover from
various kinds of corruptions in a child file system. Since
this improvement in reliability is achieved through addi-
tional layers of code, any bugs in these layers could off-
set the reliability improvements. Therefore, an important
goal in our design is to keep EnvyFS simple. We now
compare the amount of code used to construct EnvyFS
and SubSIST against other file systems in order to es-
timate the complexity (and therefore, the likelihood of
bugs) in such a system.

The EnvyFS layer is about 3,900 lines of code, while
SubSIST is about 2,500 lines of code. In comparison,
ext3 contains 10,423 lines, JFS has 15,520 lines, Reis-
erFS has 18,537 lines, and XFS, a complex file system,
has 44,153 lines.

6 Time and Space Overheads

Although reliable file-system operation is our major goal,
we are also concerned with the overheads innate to an N-
version approach. In this section, we quantify the perfor-
mance costs of EnvyFS and the reduction in disk-space
overheads due to SubSIST.

ext3 JFS Reiser Envy3 +SIS
Cached read 2.1 2.1 2.2 5.7 5.7
Cached write 3.7 2.5 2.2 8.8 8.8
Seq. read-4K 17.8 17.7 18.2 424.1 33.7
Seq. read-1M 17.8 17.7 18.2 75.4 33.7
Seq. write 26.0 18.7 24.4 74.9 29.7
Rand. read 163.6 163.5 165.1 434.2 164.2
Rand. write 20.4 18.9 20.4 61.4 7.0
OpenSSH 25.3 25.7 25.6 26.4 26.0
Postmark-10K 14.7 39.0 9.6 128.8 26.4
Postmark-100K 29.0 107.2 33.6 851.4 430.0
Postmark-100K* 128.3 242.5 78.3 405.5 271.1

Table 3: Performance. This table compares the execution
time (in seconds) for various benchmarks for EnvyFS3 (with-
out and with SubSIST) against the child file systems, ext3, JFS,
and ReiserFS. All our experiments use Linux 2.6.12 installed
on a machine with an AMD Opteron 2.2 GHz processor, 2 GB
RAM, Hitachi Deskstar 7200-rpm SATA disks, and 4-GB disk
partitions for each file system. Cached reads and writes in-
volve 1 million reads/writes to 1 file data block. Sequential
read-4K/writes are 4 KB at a time to a 1-GB file. Sequential
read-1M is 1MB at a time to a 1-GB file. Random reads/writes
are 4 KB at a time to 100 MB of a 1-GB file. OpenSSH is a
copy, untar, and make of OpenSSH-4.5. Postmark was config-
ured to create 2500 files of sizes between 4KB and 40KB. We
ran it with 10K and 100K transactions. All workloads except
ones named “Cached” use a cold file-system cache.

We now quantify the performance overheads of
EnvyFS3 both with and without SubSIST, in contrast to
each of the child file systems (ext3, JFS, and ReiserFS)
running alone. Table 3 presents the results.

We now highlight the interesting points from the table:

• When reads hit in the cache (cached reads),
EnvyFS3 pays a little more than twice the cost (as it
accesses data from only two children and performs
a checksum comparison to find a majority).

• EnvyFS3 performance undercached writes is
roughly the sum across the children; such writes go
to all three child file systems, and thus are repli-
cated in the buffer cache three times. This aspect
of EnvyFS3 is bad for performance (and increases
cache pressure), but at the same time increases fault
resilience; a corruption to one copy of the data while
in memory will not corrupt the other two copies.

• SubSIST does not help with either cached workload
as it only interposes on disk traffic.

• EnvyFS3 has terrible performance undersequen-
tial disk reads, as it induces seeks (and loses disk
track prefetches) between two separate sequential
streams especially with small block sizes; much
of this cost could be alleviated with additional
prefetching or with larger block sizes. Increasing



the read size from 4KB to 1MB significantly im-
proves the performance of EnvyFS3.

• Sequential writesperform much better on EnvyFS3

compared to sequential reads, due to batching of op-
erations (and hence fewer seeks).

• In many cases where EnvyFS3 performance suffers
(sequential reads and writes, random reads), Sub-
SIST greatly improves performance through coa-
lescing of I/O. Indeed, in one case (random writes),
SubSIST improves performance of EnvyFS3 as
compared to any other single file system, as for this
specific case its layout policy transforms random
writes into a more sequential pattern to disk (see
Section 4.1). These performance improvements
likely represent the best case since the numbers do
not show the costs that would be incurred in a Sub-
SIST implementation that maintains data structures
persistently.

• Application performance, as measured on the
OpenSSHbenchmark, is quite acceptable, even
without SubSIST.

• In the case ofPostmarkbenchmark, both workload
size and dirty page writeout intervals affect the per-
formance of EnvyFS3. For smaller workloads (i.e.,
Postmark-10K), performance of EnvyFS3 with Sub-
SIST is comparable with other file systems. But
with increase in workload size (Postmark-100K),
performance of EnvyFS3 worsens as it is forced to
write back more data due to increase in cache pres-
sure along with shorter dirty page writeout inter-
nals. If we provide EnvyFS3 with thrice the amount
of memory and change the writeback intervals ac-
cordingly, we see that EnvyFS3 performance (with
SubSIST) is comparable to the slowest of the three
children (JFS).

We also tracked the storage requirement across these
benchmarks. For those workloads that generated writes
to disk, we found that SubSIST reduced the storage re-
quirement of EnvyFS by roughly a factor of three.

7 Related Work

Over the years, N-version programming has been used
in various real systems and research prototypes to reduce
the impact of software bugs on system reliability. As
noted by Avižienis [1], N-version computing has very old
roots (going back to Babbage and others in the 1800s).

The concept was (re)introduced in computer systems
by Avižienis and Chen in 1977 [2]. Since then, various
other efforts, many from the same research group, have
explored the process as well as the efficacy of N-version
programming [3, 5, 4, 13, 27].

Avižienis and Kelly [4] study the results of using dif-
ferent specification languages; they use 3 different spec-
ification languages to develop 18 different versions of an
airport scheduler program. They perform 100 demand-
ing transactions with different sets of 3-version units and
determined that while at least one version failed in 55.1%
of the tests, a collective failure occurred only in 19.9% of
the cases. This demonstrates that the N-version approach
reduces the chances of failure. Avižienis et al.also deter-
mine the usefulness of developing the different software
versions in different languages like Pascal, C etc. [5]. As
in the earlier study, the different versions developed had
faults, but only very few of these faults were common
and the source of the common faults were traced to am-
biguities in the initial specification.

N-version computing has been employed in many sys-
tems. For many years, such uses have primarily been in
mission-critical or safety-critical systems [48, 52]. More
recently, with the increasing cost of system failures and
the rising impact of software bugs, many research ef-
forts have focused on solutions that use N-version pro-
gramming for improving system security and for han-
dling failures [15, 26, 37, 47]. Joukov et al. [26] store
data across different local file systems with different op-
tions for storing the data redundantly. However, un-
like our approach, they do not protect against file-system
bugs, and inherently rely on each individual file system
to report any errors, so that data recovery may be ini-
tiated in RAID-like fashion. Rodrigues et al. [37] de-
velop a framework to allow the use heterogeneous net-
work file systems as replicas for Byzantine-fault toler-
ance. Vandiver et al. [47] explore the use of hetero-
geneous database systems for Byzantine-fault tolerance.
They specifically address the issue of ordering of op-
erations usingcommit barriers. In EnvyFS, this issue
is made simpler due to two reasons: (i) in the absence
of transactions, file systems are not expected to provide
atomicity across multiple operations on the same file, and
(ii) the VFS layer can easily identify conflicts through
locking of file-system data structures.

8 Conclusion

“A three-ply cord is not easily severed.”
King Solomon [Ecclesiastes 4:12]

We have proposed EnvyFS, an approach that harnesses
the N-version approach to tolerate file-system bugs. Cen-
tral to our approach is building a reliable whole out
of existing and potentially unreliable parts, thereby sig-
nificantly reducing the cost of development. We have
also proposed the use of a single-instance store to re-
duce the performance and disk-space overheads of an
N-version approach. SubSIST, the single-instance store,



is designed to retain much of the reliability improve-
ments obtained from EnvyFS. We have built and eval-
uated EnvyFS for Linux file systems and shown that it
is significantly more reliable than file systems of which
it is composed; with SubSIST, performance and capacity
overheads are brought into the acceptable range. As a
fringe benefit, we also show that the N-version approach
can be used to locate bugs in file systems.

Modern file systems are becoming more complex by
the day; mechanisms to achieve data-structure consis-
tency [45], scalability and flexible allocation of disk
blocks [9, 42], and the capability to snapshot the file sys-
tem [25, 40] significantly increase the amount of code
and complexity in a file system. Such complexity could
lead to bugs in the file system that render any data protec-
tion further down the storage stack useless. N-versioning
can help; by building reliability on top of existing pieces,
EnvyFS takes an end-to-end approach and thus delivers
reliability in spite of the unreliability of the underlying
components.

Of course, our approach is not a panacea. Each file
system may have features that N-versioning hides or
makes difficult to realize. For example, some file sys-
tems are tailored for specific workloads (e.g., LFS[38]).
In the future, it would be interesting if one could enable
the N-version layer to be cognizant of such differences;
for example, if one file system is optimized for write per-
formance, all writes could initially be directed to it, and
only later (in the background) would other file systems
be updated. In such a manner, we could truly achieve
the best of both worlds: reliability of the N-version ap-
proach but without the loss of characteristics that makes
each file system unique.

Acknowledgments
We thank the anonymous reviewers and Sean Rhea (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the ADSL research group
for their insightful comments.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-0621487,
CNS-0509474, CCR-0133456, as well as by generous dona-
tions from NetApp and Sun Microsystems.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors anddo
not necessarily reflect the views of NSF or other institutions.
†Author worked on EnvyFS as a UW-Madison student.

References

[1] A. A. Avižienis. The Methodology of N-Version Programming.
In M. R. Lyu, editor,Software Fault Tolerance, chapter 2. John
Wiley & Sons Ltd., 1995.

[2] A. A. Avižienis and L. Chen. On the Implementation of N-
Version Programming for Software Fault Tolerance During Ex-

ecution. In Proceedings of 1st Annual International Com-
puter Software and Applications Conference (COMPSAC’77),
Chicago, USA, 1977.

[3] A. A. Avižienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J.
Traverse, K. S. Tso, and U. Voges. The UCLA DEDIX system:
A Distributed Testbed for Multiple-version Software. InDigest
of 15th International Symposium on Fault-Tolerant Computing
(FTCS’85), pages 126–134, Ann Arbor, MI, June 1985.

[4] A. A. Avižienis and J. P. J. Kelly. Fault Tolerance by Design
Diversity: Concepts and Experiments.IEEE Computer, 17(8),
August 1984.

[5] A. A. Avižienis, M. R. Lyu, and W. Schütz. In Search of Ef-
fective Diversity: A Six-Language Study of Fault-TolerantFlight
Control Software. InDigest of 18th International Symposium on
Fault-Tolerant Computing (FTCS ’88), Tokyo, Japan, June 1988.

[6] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk Drives.
In Proceedings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), San Diego, California, June 2007.

[7] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. InProceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 223–238, San Jose, California, February 2008.

[8] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-
jfs.html, 2000.

[9] S. Best. JFS Overview. http://jfs.sourceforge.net/project/pub/jfs.pdf,
2000.

[10] J. Black. Compare-by-hash: a reasoned analysis. InProceed-
ings of the USENIX Annual Technical Conference (USENIX ’06),
pages 7–12, Boston, Massachusetts, June 2006.

[11] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Sin-
gle Instance Storage in Windows 2000. InProceedings of the
4th USENIX Windows Systems Symposium, Seattle, Washington,
August 2000.

[12] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems.
http://opensolaris.org/os/community/zfs/docs/zfslast.pdf, 2007.

[13] L. Chen and A. A. Avižienis. N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation. In Di-
gest of 8th International Symposium on Fault-Tolerant Comput-
ing (FTCS’78), Toulouse, France, 1978.

[14] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An Em-
pirical Study of Operating System Errors. InProceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), pages 73–88, Banff, Canada, October 2001.

[15] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davdison,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-Variant Systems-
A Secretless Framework for Security through Diversity. InPro-
ceedings of the 15th USENIX Security Symposium (Sec ’06), Van-
couver, British Columbia, Aug. 2006.

[16] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell.
CuriOS: Improving Reliability through Operating System Struc-
ture. InProceedings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

[17] EMC. Centera Family. http://www.emc.com/products/family/emc-
centera-family.htm, 2009.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as Deviant Behavior: A General Approach to Inferring Errorsin
Systems Code. InProceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages 57–72, Banff,
Canada, October 2001.



[19] J. Gray and A. Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[20] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, and R.H.
Arpaci-Dusseau. SQCK: A Declarative File System Checker. In
Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California, Decem-
ber 2008.

[21] R. Hagmann. Reimplementing the Cedar File System UsingLog-
ging and Group Commit. InProceedings of the 11th ACM Sympo-
sium on Operating Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

[22] J. S. Heidemann and G. J. Popek. File-system development
with stackable layers.ACM Transactions on Computer Systems,
12(1):58–89, 1994.

[23] V. Henson. An Analysis of Compare-by-hash. InProceedings
of the 9th Workshop on Hot Topics in Operating Systems (Ho-
tOS’03), Lihue, Hawaii, May 2003.

[24] V. Henson. The Many Faces of fsck.
http://lwn.net/Articles/248180/, September 2007.

[25] D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. InProceedings of the USENIX Win-
ter Technical Conference (USENIX Winter ’94), San Francisco,
California, January 1994.

[26] N. Joukov, A. Rai, and E. Zadok. Increasing DistributedStorage
Survivability with a Stackable RAID-like File System. InPro-
ceedings of the 1st International Workshop on Cluster Security
(Cluster-Sec’05), Cardiff, UK, 2005.

[27] J. P. J. Kelly and A. A. Avižienis. A Specification-Oriented Multi-
version Software Experiment. InDigest of 13th International
Symposium on Fault-Tolerant Computing (FTCS ’83), Milano,
Italy, June 1983.

[28] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-
vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Parity Lost and Parity Regained. InProceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 127–141, San Jose, California, February 2008.

[29] Z. Li, Z. Chen, S. M. Srivivasan, and Y. Zhou. C-miner: Min-
ing block correlations in storage systems. InProceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST
’04), pages 173–186, San Francisco, California, April 2004.

[30] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, April 1986.

[31] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increas-
ing Relevance of Memory Hardware Errors: A Case for Recover-
able Programming Models. In9th ACM SIGOPS European Work-
shop ’Beyond the PC: New Challenges for the Operating System’ ,
Kolding, Denmark, September 2000.

[32] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow. The NFS Version 4
Protocol. InProceedings of the 2nd International System Admin-
istration and Networking Conference (SANE 2000), May 2000.

[33] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model-Based Failure Analysis of Journaling File Sys-
tems. InProceedings of the International Conference on Depend-
able Systems and Networks (DSN ’05), pages 802–811, Yoko-
hama, Japan, June 2005.

[34] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. InProceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[35] S. Quinlan and S. Dorward. Venti: A New Approach to Archival
Storage. InProceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), Monterey, California, Jan-
uary 2002.

[36] H. Reiser. ReiserFS. www.namesys.com, 2004.

[37] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using Abstrac-
tion to Improve Fault Tolerance. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Banff,
Canada, October 2001.

[38] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System.ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[39] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errorsin
the wild: A Large-Scale Field Study. InProceedings of the 2009
Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS/Performance ’09), Seattle,
Washington, June 2007.

[40] Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

[41] R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, February 2006.

[42] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. InProceedings
of the USENIX Annual Technical Conference (USENIX ’96), San
Diego, California, January 1996.

[43] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. InProceedings
of the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing (Lake George), New York, October
2003.

[44] M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering device
drivers. InProceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04), pages 1–16, San
Francisco, California, December 2004.

[45] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3Filesys-
tem. InProceedings of the USENIX Annual Technical Conference
(FREENIX Track), Monterey, California, June 2002.

[46] S. C. Tweedie. Journaling the Linux ext2fs File System.In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[47] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden.Tol-
erating Byzantine Faults in Transaction Processing Systems us-
ing Commit Barrier Scheduling. InProceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), Steven-
son, Washington, October 2007.

[48] U. Voges, editor. Software Diversity in Computerized Control
Systems. Springer, Wien, New York, Dec. 1988.

[49] J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errors. In
Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November
2006.

[50] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automati-
cally Generating Malicious Disks using Symbolic Execution. In
IEEE Security and Privacy (SP ’06), Berkeley, California, May
2006.

[51] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. InProceedings of
the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI ’04), San Francisco, California, December 2004.

[52] Y. C. Yeh. Triple-Triple Redundant 777 Primary Flight Com-
puter. InProceedings of the 1996 IEEE Aerospace Applications
Conference, 1996.

14


