
Evaluating the Reuse Cache for mobile processors

Urmish Thakker, Lokesh Jindal, Swapnil Haria
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI, USA
{uthakker, lokeshjindal15, swapnilh}@cs.wisc.edu

Abstract—There has been a lot of research over the years on
novel cache architectures to improve cache performance or reduce
cache area. However, the focus of these efforts has been on desktop
processors and compute workloads. Today, mobile processors
represent a significant chunk of the market, and are becoming
as complex as their desktop counterparts. Area optimizations
are crucial to drive down costs and improve profits in this highly
competitive market. Caches, which occupy 20-30% of the die area
of mobile SOCs, are ideal candidates for downsizing. Hence, our
work intends to extend the Reuse Cache architecture for use in
a mobile processor as it promises reductions in cache size with
minimal performance degradation.

In this report, we confirm that the observations regarding
high percentage of dead lines in the shared Last-Level Cache
hold true for mobile workloads running on mobile processors.
We propose new techniques to measure the utilization of cache
lines to overcome the limitations of the original work. Our version
of the reuse cache architecture was implemented in gem5, and
the performance was evaluated for several memory-intensive
Android applications from the AsimBench mobile benchmark
suite. Compared to the baseline model with 4MB conventional
L2 cache, our reuse cache design with 1MB data array and 4MB
tag array is able to demonstrate 50% area reductions, 10% power
savings at the cost of only 5% performance loss.

I. INTRODUCTION

Lately, the mobile SOC market has been growing at a
breathless pace, and the competitive nature of the market
is fueling immense innovation in mobile processors. Mobile
processors like NVIDIA’s Denver are trying to make their mark
using techniques like dynamic code optimization. However,
the market is still split between processors which sacrifice
some power-efficiency for high performance (typically seen
in tablets and high-end smartphones), and processors which
deliver adequate performance under constrained power budgets
(seen in most low-end smartphones). We believe that optimiz-
ing caches in these mobile processors for area and energy
efficiency will help sustain aggressive processor techniques
which deliver high performance.

Furthermore, given the low profit margins per chip in this
volume-driven industry, there is a huge incentive for design
innovations that help lower production costs. Reducing the die
size is an obvious means of achieving this. Till recently, this
was achieved primarily through technology scaling. However,
the considerable issues associated with scaling beyond modern
nanometer sizes have resulted in increasing costs and dimin-
ishing returns. Architectural innovations that can optimize the
area of on-chip hardware are needed to drive costs down in
this very competitive market. However, there seems to be a
paucity of research work in this domain.

Shared-memory chip multiprocessors (CMPs) dominate the
mobile processor market. A shared last-level cache (SLLC)
is present in most CMPs to service miss requests from the
private caches of all the cores, and also manages coherence.
Previous studies have observed that the usefulness of the SLLC
is mostly due to a few highly accessed cache lines, and that
most of the cache lines are never accessed while cached in the
SLLC. The spatial and temporal locality of memory accesses
gets filtered out by the upper cache levels. This key observation
is exploited by Alberico et al as the Reuse Cache [1] design.
The reuse cache is based on the idea that the second reference
to a particular line is indicative of future reuse, and only
caches lines on their second reference. The current work aims
at validating the observations regarding inefficient SLLCs for
the mobile setup, and subsequently evaluating the merits of
the reuse cache organization for mobile workloads.

Most mobile processors have smaller, simpler caches than
their desktop counterparts. Also they have an L2 cache as
the SLLC, unlike conventional CMPs which provide an L3
cache as the SLLC. Hence in this report, we first confirm that
the cache access patterns being exploited by the reuse cache
organisation hold true for mobile processors and workloads.
An additional metric of evaluating SLLC efficiency is proposed
to overcome the shortcomings of metrics used in the original
paper. Then the reuse cache design is tweaked to fit into the
mobile setup. The replacement policies are enhanced using
ideas borrowed from the Shadow Directory proposal [2] to
further improve cache performance.

Our implementation of the reuse cache is evaluated using
a four-core CMP system running several memory-intensive
applications from a mobile benchmarks suite, AsimBench [3].
We also simulate SPEC CPU2006 workloads to compare
against the original paper. The reuse cache successfully iden-
tifies useful cache lines, while steering clear of dead lines.
This results in about 50% cache area savings, and 10% energy
reductions, with about 5% degradation in performance.

The report is structured in the following manner. Section
II provides a brief background regarding the principles of the
reuse cache and the shadow directory. Section III presents
the evidence of the efficiency of the SLLC, in terms of ratio
of live and dead lines present in the cache when running
mobile workloads on our baseline system. Section IV describes
our implementation of the reuse cache, giving details of
the replacement policies as well as modifications needed to
support the MOESI coherence protocol. Section V outlines
the experimental methodology, the baseline model and the
workloads simulated, and the experiments and results obtained
are discussed in Section VI. Finally, section VII points out the

Fig. 1: Working principle of Reuse Caches, taken from[[1]]

key takeaways from our work, and identifies potential future
directions to extend this work.

II. BACKGROUND

A. Reuse Cache

Reuse Cache was proposed by Albericio et al for the L3
cache, which was the Shared Last Level Cache (SLLC) in
their model. They observed that the reference stream seen by
the SLLC for a Chip Multi-Processor (CMP) does not exhibit
much temporal or spatial locality. As a result, most lines in
the SLLC are dead and most hits come from a very small
subset of cache lines. However, they found that the SLLC
accesses do demonstrate a large amount of reuse locality-
very few lines in SLLC get re-referenced and once a line
receives a hit, there is a high probability that it will get
referenced again. Thus, they proposed the reuse cache which
improves the utilitization of the SLLC by only fetching data
for lines that exhibit reuse (Figure 1). This selective data
allocation policy has improved the efficiency of the cache
without negatively affecting performance. The performance of
the reuse cache organization was demonstrated on an eight core
CMP running multiprogrammed and multithreaded workloads.
The results show that the reuse cache with a 4MB tag array
and a 1MB data array could achieve the same performance as
a conventional 8 MB L3 cache, reducing the area footprint of
the SLLC by about 84%.

B. Shadow Directory

To further explore the ways to intelligently use the infor-
mation stored in the tag array (with greater number of entries
compared to the data array), we implemented and studied
the performance of Shadow Directory [2]. Shadow Directory
is a concept introduced in 1984 by Pomerene et al, which
provides an improvement over the popular LRU algorithm.
The shadow directory aims to distinguish between transient
lines that pollute the cache, and lines that become active after
long periods of inactivity. Thus it tries to protect data that
has been dormant for a while, but which would be referenced
again. A traditional LRU algorithm would evict such blocks
and degrade performance.

The Shadow Directory maintains a copy of the actual
cache, except that the copy only contains the directory but

no data. The duplicate cache has the same organization as the
original cache. It contains tags that have been evicted from
the original cache. On a miss, a lookup is made to the shadow
directory in order to evaluate whether this tag was originally
present in the cache. If the tag is found in the shadow area,
it is considered a shadow miss. Such tags are protected from
eviction.

III. MOTIVATION

As discussed in the previous section, SLLC exhibits a
large proportion of dead lines. In this section, we analyze
the observations made by the original paper regarding the
percentage of dead lines in SLLC. Cache Access patterns
were studied for the L2 SLLC after simulating benchmarks
from SPEC CPU2006 as well as simulating mobile workloads
from the Asimbench suite (Figure 2). A two pronged approach
is proposed to compute the upper and lower bounds for
estimating the proportion of dead lines.

The original paper categorized a cache line as live at a
particular moment if it received at least one additional access
during the rest of its stay in the cache; otherwise it is labelled
as a dead line. In their work, the proportion of live lines
in the SLLC was measured by simulating SPEC CPU2006
benchmarks on an 8 core system for 700M cycles, sampling
the instantaneous number of live lines every 100K cycles.
They reported that on an average, only 17.4% of the lines
in the SLLC are live. To determine whether a line is live
or dead, they looked at the state of the lines at sample time
and categorized them appropriately based on their reference
count. Their observations indicated that only 5% of all the
lines loaded in SLLC are useful, receiving one or more hits.
The remaining 95% of the loaded lines are useless as they will
not receive any hit during their lifetime. This implied that a lot
of space in SLLC was getting used up in caching data that did
not serve any useful purpose. The whole idea of reuse cache
was motivated to exploit this observation to reduce the SLLC
data array size.

In this study, we compute the lower bound of the number
of dead lines by analyzing them at the time of eviction. There
might be lines sitting in the SLLC that might never get reused
in the future. These are not accounted for as they never get
evicted due to the applications working set size being smaller
than the SLLC. In order to arrive at a better statistic, we
propose another technique which is the upper bound of the
number of dead lines. For this second method, we count the
number of new lines being fetched into the SLLC. Further,
whenever any cache line in the SLLC sees a second reference,
we categorize it as a live line. We consider all the other lines
as dead. This is the optimistic count of dead lines as the lines
which are not live currently may be reused in the future. The
above two ways of computing dead lines can be represented
mathematically in the following way:

%Dead Lines(on Fetch) = 1− # Lines Reused

Lines Fetched

%Dead Lines(on Eviction) =
#Not Reused Evicted Lines

Line Evicted

We ran SPEC CPU2006 and Asimbench [3] workloads

Fig. 2: Liveness of lines in the L2 SLLC for mobile workloads

for 10 Billion instructions after warmup and used the above
metrics to observe the liveness of cache lines. As shown in
Figure 2, for each benchmark run, we obtained a range for the
number of dead lines in the SLLC. Thus, the observation in
original paper was found to be true - a minimum of 85% of
lines in the SLLC are dead, which could be in excess of 90%
in certain scenarios. Thus, we see that the reference stream
forwarded to SLLC does not exhibit significant spatial and
temporal locality. This creates an opportunity to conserve space
by shrinking SLLCs data array and modifying the data block
allocation policy to store only the lines that will get reused.
With the reuse cache implementation, the percentage of live
lines in SLLC was observed to increase to about 50% for
the performance-optimal design. These results are discussed
in detail in Section VI.

IV. IMPLEMENTATION

A. Organization

Traditional Caches maintain a tight coupling between the
tag and the data array. This results in a one to one mapping
between a tag set and a data set. However, the reuse cache
attacks this implicit notion. Here, a tag does not always
have a data block associated with it. A particular coherence
state helps identify this scenario. Since the tag and data are
decoupled, the organization of the two arrays needs to be
different. In order to assist in replacement and lookup, forward
and backward pointers are maintained. The tag metadata is
additionally increased in order to accommodate bits to detect
shadow hits. Figure 3 shows an overview of the reuse cache
organization, and Table I shows the extra metadata stored in
the tag array. The forward pointer ensures that no additional

Tag Forward Pointer Coherence State Recently Evicted Shadow Hit

TABLE I: Tag Metadata

lookup is required in the data array. This enables the use of
a fully associative data array. An increased associativity helps

the replacement policy by providing more blocks to ch ose
from. However, increasing associativity increases the size of
the pointers stored by the arrays. Our results show that a 4:1
mapping is optimum, i.e., 4 sets of tag map to 1 set of data.
Due of this fixed mapping, a backward pointer from the data
block to a tag block is only 2 bits long.

Fig. 3: Reuse Cache Overview, taken from [1]

B. Replacement

Different tags and data array imply that replacement policy
can be different. In this project we use a Not Recently Reused
policy [4] for the tag array and a modified Least Recently
Used policy for the data array. The LRU policy is enhanced
by borrowing concepts from shadow directory. This modified
replacement policy differentiates between data that was a
shadow hit and data that was a reuse hit. The shadow hit
data is given the highest priority to protect it from eviction
during dormant phases. During data eviction, the state of the
corresponding tag is changed to tag only and its state is
modified to indicate the recent eviction.

Figure 4 depicts the scenario prevented by the shadow
directory. When the data is initially accessed, the cache line is
in the tag only state. The second access changes its state to tag
and data. However, the data is not referenced for a while and
is thus evicted from the cache. When the data is referenced
again, it takes 2 accesses to fetch the data back into the cache.
A traditional LRU could not detect such patterns. Shadow
Directory is specifically designed to identify such patterns and
protect data in state 4 (of the figure).

Fig. 4: Incorporation of Shadow Directory in replacement
policy

In order to implement a Shadow Directory, extra metadata
is stored in the tag along with the usual coherence and valid
bits. The metadata consists of two bits, recently evicted and
shadow hit. If a data of a tag is eliminated, the recently evicted
bit is set. If this tag is referenced again, then the access is a
shadow hit. Thus the corresponding bit is set while the recently
evicted bit is cleared.

C. Coherence

Conventional cache coherence protocols assume that each
line in a cache has an entry in both the tag and the data array.
However, this assumption is not valid for the reuse cache. As
a result an additional state of tag only needs to be maintained
for coherence. We have modified the MOESI based coherence
protocol to include such a state. Table II below describes the
different states in our coherence protocol.

Name Cache Memory Data
M Modified, not shared Stale Yes
O Shared, modified Stale Yes
S Shared Up-to-date Yes
E Exclusive, unmodified Up-to-Date Yes
I Invalid or not present - No

TO Only Tag, No Data Up-to-Date No

TABLE II: States of the TO-MOESI example coherence pro-
tocol

D. Hardware Cost

In this section, the actual reduction in size offered by a
reuse cache is compared against a conventional cache, by
considering the reduction due to reduced data array entries and
the increase brought about mainly by forward and backward

pointers. We consider the case of a 4MB, 8-way conventional
cache, and a reuse cache with a 4 MB, 8-way tag array and a
1 MB, 8-way data array. The cache line size for both caches
is 64 bytes, and we assume 40 bits of physical address in a
64-bit address space.

A tag entry in a reuse cache is similar to a conventional
tag entry, with the addition of a forward pointer, a shadow
bit and an extra bit for the Tag-Only coherent state. The data
entry in a reuse cache requires additional bits for the backward
pointer, a valid bit, a bit for the LRU replacement policy
along with the 512 bits for data. We optimize the number of
additional bits required for the forward and backward pointers
by maintaining the same level of associativity between the tag
and the data arrays. In such an arrangement, since there is a
4:1 ratio between the number of tag and data entries, 4 tag sets
can be mapped to one data set. Thus, the forward pointer needs
to be only 3 bits to identify the correct way in the appropriate
data set. Conversely, the backward pointer needs to have 5
bits, 2 to select between the four potential tag sets, and 3 to
point at the correct way in the set. The exact distribution of
bits in the tag and data arrays in the two cache designs is
compiled in Table III. Thus, the reuse cache with 4MB of tag
entries and 1MB of data entries needs 10736 Kbits, which is
about 30.72% of the storage capacity of the conventional 4MB
cache.

Component Conventional 4MB Reuse 4MB + 1MB
Tag * 40-(13+6)= 21 21

Coherence 4 5
Full map vector 8 8

Replacement 1 1
Fwd pointer - 3 (8-way data)
Total (bits) 34 38

Component
Data 512 512
Valid - 1

Replacement - 1
Rev Pointer - 2+3 = 5
Total (bits) 512 519

Tag Array (K entries 64 64
Data Array (K entries 64 16

Total Size (Kbits) 34944 10736

TABLE III: Hardware Cost of Reuse Cache

V. METHODOLOGY

Figure 5 gives an overview of the methodology used
to evaluate the reuse cache implementation in this study.
The Reuse Cache architecture described in section IV was
implemented using the Classic Memory model in gem5. The
ruby memory model of gem5 provides greater flexibility, but
lacked support for ARM architecture at the time of writing.
gem5 is the most widely used simulator in CPU architecture
research today with support for ARM ISA (our target ISA for
the study). It is being actively developed by several corporate
organizations including ARM Holdings and is capable of
booting a full fledged Linux Kernel as well as Googles Android
operating system.

The performance statistics obtained from gem5 were used
to analyze the IPC of the baseline conventional cache as
well as the reuse cache. A system based on the A15 ARM

gem5
(Classic Memory

Model)

McPAT

CACTI v6.5

Performance
Statistics

Area/Timing Data

Power Results

Fig. 5: Block Diagram of the methodology used

CPU was modelled in McPAT, an integrated power, area and
timing modelling framework. The gem5 statistics from running
different benchmarks were used with McPAT [5] to generate
the power numbers. The original paper did not analyze the
power consumption of reuse caches, which is an aspect covered
in the current project. Cacti v6.5 [6] was used to calculate the
area of the reuse and conventional cache models.

For our baseline system, we did a survey of the com-
mon mobile SoCs in market from leading companies like
Qualcomm, Nvidia and Samsung. Finally an ARM A15-like
processor model with the following parameters was chosen as
the baseline:

• 32 KB/4 way L1 I-Cache

• 32 KB/4 way L1 D-Cache

• 4 MB/8 way L2 Cache (Shared Last Level Cache)

• 8 wide Out-Of-Order pipeline

• 1.4 GHz operating frequency

• 32 nm technology node

Precautions were taken to avoid sources of error in a full
system simulations by following guidelines reported in [7].

To evaluate and compare the reuse cache against the
baseline, benchmarks from 2 suites were simulated - SPEC
CPU2006 and Asimbench (recently renamed to Moby) [3].
SPEC CPU2006 is the popular choice for evaluating processor
optimizations and has been chosen to establish a direct line
of comparison against the results from the original paper.
AsimBench is a benchmark suite composed of mobile appli-
cations. The suite focuses on popular mobile applications and
is designed to study the behavior of mobile applications on
simulators like gem5. All the applications contained in Asim-
Bench are popular mobile applications with high downloads
on Google play store and span 10 categories, including web
browser, social network, online shopping, email, audio, video,

document, map and game. These results are of primary interest
for our study as they represent realistic workloads running on
mobile systems. For realistic performance estimation, Asim-
Bench applications were simulated in Full System mode for 10
billion instructions, after a checkpointed boot to simulate about
6 seconds of real time. A snapshot of the gaming application,
Frozen Bubble, being simulated in gem5 with the reuse cache
implementation can be seen in figure 6. The results obtained
are discussed at length in Section VI.

Fig. 6: Snapshot from simulation of Frozen Bubble

During the course of implementing the reuse cache in
gem5, microbenchmarks were heavily used to validate the
implementation. These were self written tests in C which made
sequential memory accesses directed at generating a deter-
ministic memory trace. The statistics regarding the number
of SLLC hits and misses for tag and data were obtained
by simulating the microbenchmark. These simulation results
were compared for correctness against theoretically calculated
values. Microbenchmarks proved to be a highly effective tool
to flush implementation issues.

VI. RESULTS

Firstly, we identify the optimal tag and data array size,
reporting the results in Section VI A. Then, we look at the
optimal size ratio between the tag and data arrays (Section
VI B). We also compare the performance of a pseudo LRU
replacement policy for data with the modified LRU+Shadow
Directory guided replacement policy. Subsequently in sections
VI D and VI E, performance of the optimal reuse cache
organization is compared with our baseline model, described
in section V. In section VI F, we demonstrate that the reuse
cache architecture has significantly improved the liveliness of
the cache. Finally in section VI G, we discuss our results in
relation to the results reported in the original reuse cache paper.

A. Tag Array Size

We ran simulations for various tag array sizes in order to
evaluate the performance of reuse cache. Figure 7 compares the
performance of 3 different tag arrays for different SPEC2006
runs. We observe that the 4MB tag array provides the best
performance. The reuse cache aims to provide reduced cache
area without significant reduction in performance. Thus, we
believe that the ideal tag array size for the reuse cache in the
current scenario should be 4MB.

Fig. 7: Performance comparison for different tag array sizes

Fig. 8: Performance comparison for AsimBench applications

B. Tag Array to Data Array Ratio

In this section, we explore which data array size achieves
the best performance for a 4MB tag array size. Figure 10
compares the performance of a reuse cache with 2 MB
data array with a reuse cache with 1 MB data array. Apart
from libquantum, there is no other benchmark that achieves
significant speedup. Also, the average power consumption of
the system increases by 3% when we move to 2MB from
1MB. We also ran similar tests for a data array size of 512kB
and found that the performance degradation was significant.
Going by these results, the reuse cache organization with a
4MB Tag Array and a 1MB Data array is the most optimal

design considered for the rest of the study.

C. Data Replacement Policy

We now evaluate the impact of incorporating Shadow
Directory into our replacement policy. From Figure 11, we
observe that the performance improves by a factor of 2-3%.
Although this improvement is very small, we believe that
the performance improvement would be significantly better
for an application running for a longer period of time. The
reason for this is that the Shadow Directory is incorporated
to protect useful lines which are dormant for long intervals.
Additionally, this feature could be incorporated without any

Fig. 9: Power Consumption

Fig. 10: Performance comparison for different tag array to
data array ratios

additional hardware cost. If we view a reuse cache as a
combination of data free tags and coupled tag-data blocks, it
is clear that this organization inherently supports the structures
required for the implementation of a shadow directory. By
adding a single bit to metadata of the tag, we could implement
this feature easily. Thus, all the results from this point onwards
would assume an replacement policy which is a combination
of the Shadow Directory and LRU algorithm.

Fig. 11: Performance Evaluation of Shadow Directory

D. Comparison with baseline - IPC

Figures 8, 12 and 13 show the performance of reuse cache
with respect to our baseline model. We observe that the average
performance degradation for SPEC benchmarks is about 10%.
For a multi core scenario, the average performance loss drops
to around 15%. However, for mobile workloads, the average
performance degradation is only 4%. This marginal perfor-
mance degradation is acceptable considering the significant
gains in area and power (discussed in the next section).

Fig. 12: Performance comparison for SPEC2006 benchmarks

E. Comparison with Baseline - Power and Area

As expected, the reuse cache leads to significant reduction
in cache area. The results presented in Table IV have been
obtained using Cacti 6.5. The reduction of area is observed to
be about 50%. This reduction in area is not proportional to the
scaling factor of the data array. The decrease in the size of the
data array is slightly offset by the increase in the size of the tag
array due to the additional metadata. The backward pointers
and the valid bit add to the size of each individual data block as

Fig. 13: Performance results for multi-core scenarios

well. Finally, the hardware involved in the lookup such as the
multiplexer and comparator logic is not directly proportional
to the size of the cache.

The reduced data array also greatly decreases the leakage
power of the cache. However, this reduction in leakage power
is offset by the increase in DRAM access energy due to two
DRAM accesses for every reused cache line. Figure 9 shows
the relative gain in power consumption for our reuse cache. We
see an average power reduction of 10% in SPEC benchmarks.
The power results for the reuse cache should improve with
simulation time as the cost of the two DRAM accesses will be
amortized across the number of hits made to these reuse lines.

Conventional (4M) Reuse (4M+1M)
Area (in mm2) 2.37 1.5

Access Latency (in ns) 2.97 3.28

TABLE IV: Cache area and latency comparisons

F. Improvement in Cache Utilization

Reuse Cache aims to improve the utilization of the cache
by fetching only relevant lines from DRAM. This improvement
is clearly visible in figure 14. The number of live lines is taken
as the average of the two bounds proposed in Section II. We
observe that the average number of live lines improves from
9.54% in the conventional cache to 47.95% in the reuse cache
implementation.

G. Comparison with the Original Paper

The original paper chose a baseline model with a con-
ventional 8MB, 16-way set associative L3 cache. A major
difference between our work and the original study is that we
focus on mobile processors fow which L2 cache is the SLLC.
The performance evaluation in the original study was done
by simulating SPEC benchmarks for 700 million instructions,
following a warmup period of 300 million instructions. This
is a very short amount of time to evaluate the performance
of reuse cache, as the benefits of this design come from
repeated accesses to the reused lines. Also, there will not

Fig. 14: Live lines

be sufficient accesses to the L3 cache in their simulations,
as the L1 and L2 caches will serve most of the memory
accesses. With this approach, they demonstrate that the 4MB +
1MB reuse cache shows performance comparable to an 8MB
conventional cache. In the current project, we simulated our
workloads for 10 billion instructions with a warmup period
of 300 million instructions. This setup is far more suited to
accurately evaluating the performance of our design, as the
number of L2 misses seen is a couple of orders of magnitude
greater than the number of cache blocks in the L2 cache. Our
results showing a performance degradation of about 5-10%
are less impressive than the results reported by Albericio et
al, but we believe our results are more indicative of the actual
performance of the reuse cache model.

The original paper also claimed 84% reduction in the cache
area, but this was based on a back of the envelope calculation
by considering only the number of bits saved in the reuse
cache design. Our results of 50% area savings, generated by
modelling our cache design in Cacti v6.5, are significantly
more representative of the actual area benefits offered by the
reuse cache. This current work also focuses on the power
consumption of the reuse cache, which was an aspect not

considered in the original study.

VII. RELATED WORK

In addition to the original paper on reuse caches, there
are two other studies related to our project [8] [9]. These
exploit the decoupling of tag and data arrays to retain the
inclusion property of tags while modifying the data allocation
policy on a cache miss. Multiple tag/data decoupling designs
are proposed in the non-inclusive cache, inclusive directory
[NCID] architecture [9]. One such proposal does reduce cache
size by allocating tag as well as data for a random X% of the
cache lines, while maintaining the tag information for the other
lines. Alberico et al found the performance of such a design to
be comparable to their reuse cache design for the case of X=5.
A selective data allocation policy was employed by Lodde et
al [8]. They categorized cache lines as shared or private based
on the coherence state, and used this information to selectively
allocate data for shared lines. However, this approach doesn’t
consider reuse locality, and allows transient cache lines to
pollute the cache contents.

VIII. CONCLUSION AND FUTURE WORK

From this work, we believe that the reuse cache is an idea
that demonstrates great potential for optimizing the L2 cache of
a mobile processor. The observations regarding the efficiency
of the SLLC made in the original reuse cache paper have been
validated for the mobile environment, and about 85-90% of
L2 cache lines are found to be dead. Two techniques have
been proposed to study the live-ness of cache lines with better
accuracy. Extra tag bits available in the reuse cache have been
exploited to incorporate the Shadow Directory for improved
replacement. The decoupled tag and data organization could
be explored further to look into various replacement policies
and their impact on performance. Better ideas need to be found
to further exploit the decoupling of the tag and data arrays, as
well as use the extra tag entries.

Realistic performance estimation has been performed here,
by simulating 10 billion instructions after boot in gem5’s Full
System mode. For the purpose of this study, the simulation
infrastructure was created from scratch. Enhancing the infras-
tructure to run simulations more efficiently using simpoints
and to evaluate reuse cache on multi-core systems would lead
to a more practical study of the proposed design.

Cache area is computed using Cacti, which results in
highly accurate area estimates. A crucial area that needs to
be explored further is the energy analysis of the reuse cache
design. The original work by Albericio et al did not discuss the
power/energy impact of reuse cache. The reuse cache leads to
increased DRAM accesses, which are very expensive in terms
of energy. For a constrained energy and power environment,
like a mobile SoC, this could be a cause for concern. The
power numbers presented in the paper, have been generated
by incorporating a very large error margin. This results in
a modest power improvement of 10%. However, an accurate
study for such a design calls for detailed modeling of the reuse
cache design in McPAT. Given the limited time frame of the
project, this study has been marked for future work.

Thus, we see that for mobile workloads, the reuse cache
promises significant cache area reduction of about 50% and

decent power savings of 10% for the marginal performance
loss of about 6%.

ACKNOWLEDGMENT

The authors would like to thank Professor David Wood,
for taking us on a grand tour of computer architecture through
the CS752 course at UW-Madison, and for guiding us as we
worked our way through this project.

REFERENCES

[1] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, “The reuse cache:
Downsizing the shared last-level cache,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-46. New York, NY, USA: ACM, 2013, pp. 310–321. [Online].
Available: http://doi.acm.org/10.1145/2540708.2540735

[2] J. Pomerene, T. Puzak, R. Rechtschaffen, and F. Sparacio,
“Prefetching mechanism for a high speed buffer store,” Oct. 9
1985, eP Patent App. EP19,850,102,204. [Online]. Available:
http://www.google.im/patents/EP0157175A2?cl=ru

[3] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark
suite for architectural simulators,” in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, March
2014, pp. 45–54.

[4] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, “Exploiting reuse
locality on inclusive shared last-level caches,” ACM Trans. Archit. Code
Optim., vol. 9, no. 4, pp. 38:1–38:19, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2400682.2400697

[5] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, Dec
2009, pp. 469–480.

[6] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to model
large caches.”

[7] A. Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C. Sudanthi, C. Em-
mons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, March 2014, pp. 13–22.

[8] M. Lodde, J. Flich, and M. E. Acacio, “Dynamic last-level cache
allocation to reduce area and power overhead in directory coherence
protocols,” in Proceedings of the 18th International Conference on
Parallel Processing, ser. Euro-Par’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 206–218.

[9] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng, “Ncid: A
non-inclusive cache, inclusive directory architecture for flexible and
efficient cache hierarchies,” in Proceedings of the 7th ACM International
Conference on Computing Frontiers, ser. CF ’10. New York, NY, USA:
ACM, 2010, pp. 121–130.

