
FlashTier: a Lightweight, Consistent and Durable Storage Cache

Mohit Saxena, Michael M. Swift and Yiying Zhang

University of Wisconsin-Madison

{msaxena,swift,yyzhang}@cs.wisc.edu

Abstract

The availability of high-speed solid-state storage has intro-

duced a new tier into the storage hierarchy. Low-latency and

high-IOPS solid-state drives (SSDs) cache data in front of

high-capacity disks. However, most existing SSDs are de-

signed to be a drop-in disk replacement, and hence are mis-

matched for use as a cache.

This paper describes FlashTier, a system architecture

built upon solid-state cache (SSC), a flash device with an

interface designed for caching. Management software at the

operating system block layer directs caching. The FlashTier

design addresses three limitations of using traditional SSDs

for caching. First, FlashTier provides a unified logical ad-

dress space to reduce the cost of cache block management

within both the OS and the SSD. Second, FlashTier provides

cache consistency guarantees allowing the cached data to be

used following a crash. Finally, FlashTier leverages cache

behavior to silently evict data blocks during garbage collec-

tion to improve performance of the SSC.

We have implemented an SSC simulator and a cache

manager in Linux. In trace-based experiments, we show

that FlashTier reduces address translation space by 60% and

silent eviction improves performance by up to 167%. Fur-

thermore, FlashTier can recover from the crash of a 100 GB

cache in only 2.4 seconds.

Categories and Subject Descriptors D.4.2 [Operating Sys-

tems]: Storage Management; C.4 [Computer Systems Or-

ganization]: Performance of Systems

Keywords Solid-State Cache, Device Interface, Consis-

tency, Durability

1. Introduction

Solid-state drives (SSDs) composed of multiple flash mem-

ory chips are often deployed as a cache in front of cheap and
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slow disks [9, 22]. This provides the performance of flash

with the cost of disk for large data sets, and is actively used

by Facebook and others to provide low-latency access to

petabytes of data [10, 32, 36]. Many vendors sell dedicated

caching products that pair an SSD with proprietary software

that runs in the OS to migrate data between the SSD and

disks [12, 19, 30] to improve storage performance.

Building a cache upon a standard SSD, though, is hin-

dered by the narrow block interface and internal block man-

agement of SSDs, which are designed to serve as a disk re-

placement [1, 34, 39]. Caches have at least three different

behaviors that distinguish them from general-purpose stor-

age. First, data in a cache may be present elsewhere in the

system, and hence need not be durable. Thus, caches have

more flexibility in how they manage data than a device dedi-

cated to storing data persistently. Second, a cache stores data

from a separate address space, the disks’, rather than at na-

tive addresses. Thus, using a standard SSD as a cache re-

quires an additional step to map block addresses from the

disk into SSD addresses for the cache. If the cache has to

survive crashes, this map must be persistent. Third, the con-

sistency requirements for caches differ from storage devices.

A cache must ensure it never returns stale data, but can also

return nothing if the data is not present. In contrast, a storage

device provides ordering guarantees on when writes become

durable.

This paper describes FlashTier, a system that explores the

opportunities for tightly integrating solid-state caching de-

vices into the storage hierarchy. First, we investigate how

small changes to the interface and internal block manage-

ment of conventional SSDs can result in a much more effec-

tive caching device, a solid-state cache. Second, we inves-

tigate how such a dedicated caching device changes cache

managers, the software component responsible for migrat-

ing data between the flash caching tier and disk storage. This

design provides a clean separation between the caching de-

vice and its internal structures, the system software manag-

ing the cache, and the disks storing data.

FlashTier exploits the three features of caching workloads

to improve over SSD-based caches. First, FlashTier provides

a unified address space that allows data to be written to the

SSC at its disk address. This removes the need for a separate

table mapping disk addresses to SSD addresses. In addition,



Device Access Latency Capacity Price Endurance
Read Write Bytes $/GB Erase Cycles

DRAM 50 ns 50 ns 8-16 GB $15 ∞

Flash 40-100 µs 60-200 µs TB $3 10
4

Disk 500-5000 µs 500-5000 µs TB $0.3 ∞

Table 1. Device Attributes: Price, performance and endurance of

DRAM, Flash SSDs and Disk. (GB: gigabyte, TB: terabyte).

an SSC uses internal data structures tuned for large, sparse

address spaces to maintain the mapping of block number to

physical location in flash.

Second, FlashTier provides cache consistency guarantees

to ensure correctness following a power failure or system

crash. It provides separate guarantees for clean and dirty

data to support both write-through and write-back caching.

In both cases, it guarantees that stale data will never be re-

turned. Furthermore, FlashTier introduces new operations

in the device interface to manage cache contents and direct

eviction policies. FlashTier ensures that internal SSC meta-

data is always persistent and recoverable after a crash, allow-

ing cache contents to be used after a failure.

Finally, FlashTier leverages its status as a cache to re-

duce the cost of garbage collection. Unlike a storage device,

which promises to never lose data, a cache can evict blocks

when space is needed. For example, flash must be erased

before being written, requiring a garbage collection step to

create free blocks. An SSD must copy live data from blocks

before erasing them, requiring additional space for live data

and time to write the data. In contrast, an SSC may instead

silently evict the data, freeing more space faster.

We implemented an SSC simulator and a cache manager

for Linux and evaluate FlashTier on four different storage

traces. We measure the cost and benefits of each of our

design techniques. Our results show that:

• FlashTier reduces total memory usage by more than 60%

compared to existing systems using an SSD cache.

• FlashTier’s free space management improves perfor-

mance by up to 167% and requires up to 57% fewer

erase cycles than an SSD cache.

• After a crash, FlashTier can recover a 100 GB cache in

less than 2.4 seconds, much faster than existing systems

providing consistency on an SSD cache.

The remainder of the paper is structured as follows.

Section 2 describes our caching workload characteristics

and motivates FlashTier. Section 3 presents an overview

of FlashTier design, followed by a detailed description in

Section 4 and 5. We evaluate FlashTier design techniques in

Section 6, and finish with related work and conclusions.

2. Motivation

Flash is an attractive technology for caching because its

price and performance are between DRAM and disk: about

five times cheaper than DRAM and an order of magni-
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Figure 1. Logical Block Addresses Distribution: The distribu-

tion of unique block accesses across 100,000 4 KB block regions

of the disk address space.

tude (or more) faster than disk (see Table 1). Furthermore,

its persistence enables cache contents to survive crashes

or power failures, and hence can improve cold-start per-

formance. As a result, SSD-backed caching is popular in

many environments including workstations, virtualized en-

terprise servers, database backends, and network disk stor-

age [22, 29, 30, 36, 37].

Flash has two characteristics that require special manage-

ment to achieve high reliability and performance. First, flash

does not support in-place writes. Instead, a block of flash

must be erased (a lengthy operation) before it can be writ-

ten. Second, to support writing a block multiple times, flash

devices use address mapping to translate block addresses re-

ceived from a host into physical locations in flash. This map-

ping allows a block to be written out-of-place to a pre-erased

block rather than erasing and rewriting in-place. As a result,

SSDs employ garbage collection to compact data and pro-

vide free, erased blocks for upcoming writes.

The motivation for FlashTier is the observation that

caching and storage have different behavior and different

requirements. We next study three aspects of caching behav-

ior to distinguish it from general-purpose storage. Our study

uses traces from two different sets of production systems

downstream of an active page cache over 1-3 week periods

[24, 27]. These systems have different I/O workloads that

consist of a file server (homes workload), an email server

(mail workload) and file servers from a small enterprise data

center hosting user home and project directories (usr and

proj). Table 3 summarizes the workload statistics. Trends

observed across all these workloads directly motivate our

design for FlashTier.

Address Space Density. A hard disk or SSD exposes an

address space of the same size as its capacity. As a result,

a mostly full disk will have a dense address space, because

there is valid data at most addresses. In contrast, a cache

stores only hot data that is currently in use. Thus, out of

the terabytes of storage, a cache may only contain a few



gigabytes. However, that data may be at addresses that range

over the full set of possible disk addresses.

Figure 1 shows the density of requests to 100,000-block

regions of the disk address space. To emulate the effect of

caching, we use only the top 25% most-accessed blocks

from each trace (those likely to be cached). Across all four

traces, more than 55% of the regions get less than 1% of

their blocks referenced, and only 25% of the regions get

more than 10%. These results motivate a change in how

mapping information is stored within an SSC as compared to

an SSD: while an SSD should optimize for a dense address

space, where most addresses contain data, an SSC storing

only active data should instead optimize for a sparse address

space.

Persistence and Cache Consistency. Disk caches are most

effective when they offload workloads that perform poorly,

such as random reads and writes. However, large caches and

poor disk performance for such workloads result in exceed-

ingly long cache warming periods. For example, filling a

100 GB cache from a 500 IOPS disk system takes over 14

hours. Thus, caching data persistently across system restarts

can greatly improve cache effectiveness.

On an SSD-backed cache, maintaining cached data per-

sistently requires storing cache metadata, such as the state of

every cached block and the mapping of disk blocks to flash

blocks. On a clean shutdown, this can be written back at low

cost. However, to make cached data durable so that it can

survive crash failure, is much more expensive. Cache meta-

data must be persisted on every update, for example when

updating or invalidating a block in the cache. These writes

degrade performance, and hence many caches do not pro-

vide crash recovery [5, 14], and discard all cached data after

a crash.

A hard disk or SSD provides crash recovery with sim-

ple consistency guarantees to the operating system: barriers

ensure that preceding requests complete before subsequent

ones are initiated. For example, a barrier can ensure that a

journal commit record only reaches disk after the journal

entries [7]. However, barriers provide ordering between re-

quests to a single device, and do not address consistency be-

tween data on different devices. For example, a write sent

both to a disk and a cache may complete on just one of the

two devices, but the combined system must remain consis-

tent.

Thus, the guarantee a cache makes is semantically differ-

ent than ordering: a cache should never return stale data, and

should never lose dirty data. However, within this guarantee,

the cache has freedom to relax other guarantees, such as the

persistence of clean data.

Wear Management. A major challenge with using SSDs

as a disk cache is their limited write endurance: a single

MLC flash cell can only be erased 10,000 times. In addition,

garbage collection is often a contributor to wear, as live data

must be copied to make free blocks available. A recent study

Figure 2. FlashTier Data Path: A cache manager forwards

block read/write requests to disk and solid-state cache.

showed that more than 70% of the erasures on a full SSD

were due to garbage collection [8].

Furthermore, caching workloads are often more intensive

than regular storage workloads: a cache stores a greater frac-

tion of hot blocks, which are written frequently, as compared

to a general storage workload. In looking at the top 25%

most frequently referenced blocks in two write-intensive

storage traces, we find that the average writes per block is

4 times greater than for the trace as a whole, indicating that

caching workloads are likely to place greater durability de-

mands on the device. Second, caches operate at full capac-

ity while storage devices tend to be partially filled. At full

capacity, there is more demand for garbage collection. This

can hurt reliability by copying data more frequently to make

empty blocks [16, 18].

3. Design Overview

FlashTier is a block-level caching system, suitable for use

below a file system, virtual memory manager, or database.

A cache manager interposes above the disk device driver in

the operating system to send requests to the either the flash

device or the disk, while a solid-state cache (SSC) stores and

assists in managing cached data. Figure 2 shows the flow

of read and write requests from the application to SSC and

disk-storage tiers from the cache manager.

3.1 Cache Management

The cache manager receives requests from the block layer

and decides whether to consult the cache on reads, and

whether to cache data on writes. On a cache miss, the man-

ager sends the request to the disk tier, and it may optionally

store the returned data in the SSC.

FlashTier supports two modes of usage: write-through

and write-back. In write-through mode, the cache manager

writes data to the disk and populates the cache either on

read requests or at the same time as writing to disk. In this

mode, the SSC contains only clean data, and is best for

read-heavy workloads, where there is little benefit to caching

writes, and when the cache is not considered reliable, as in

a client-side cache for networked storage. In this mode, the

cache manager consults the SSC on every read request. If the

data is not present, the SSC returns an error, and the cache

manager fetches the data from disk. On a write, the cache

manager must either evict the old data from the SSC or write

the new data to it.



In write-back mode, the cache manager may write to the

SSC without updating the disk. Thus, the cache may contain

dirty data that is later evicted by writing it back to the disk.

This complicates cache management, but performs better

with write-heavy workloads and local disks. In this mode,

the cache manager must actively manage the contents of

the cache to ensure there is space for new data. The cache

manager maintains a table of dirty cached blocks to track

which data is in the cache and ensure there is enough space in

the cache for incoming writes. The manager has two options

to make free space: it can evict a block, which guarantees

that subsequent reads to the block will fail, and allows the

manager to direct future reads of the block to disk. Or, the

manager notifies the SSC that the block is clean, which then

allows the SSC to evict the block in the future. In the latter

case, the manager can still consult the cache on reads and

must evict/overwrite the block on writes if it still exists in

the cache.

3.2 Addressing

With an SSD-backed cache, the manager must maintain a

mapping table to store the block’s location on the SSD.

The table is indexed by logical block number (LBN), and

can be used to quickly test whether block is in the cache.

In addition, the manager must track free space and evict

data from the SSD when additional space is needed. It does

this by removing the old mapping from the mapping table,

inserting a mapping for a new LBN with the same SSD

address, and then writing the new data to the SSD.

In contrast, an SSC does not have its own set of ad-

dresses. Instead, it exposes a unified address space: the cache

manager can write to an SSC using logical block numbers

(or disk addresses), and the SSC internally maps those ad-

dresses to physical locations in flash. As flash devices al-

ready maintain a mapping table to support garbage collec-

tion, this change does not introduce new overheads. Thus

the cache manager in FlashTier no longer needs to store the

mapping table persistently, because this functionality is pro-

vided by the SSC.

The large address space raises the new possibility that

cache does not have capacity to store the data, which means

the cache manager must ensure not to write too much data

or the SSC must evict data to make space.

3.3 Space Management

As a cache is much smaller than the disks that it caches,

it requires mechanisms and policies to manage its contents.

For write-through caching, the data is clean, so the SSC may

silently evict data to make space. With write-back caching,

though, there may be a mix of clean and dirty data in the

SSC. An SSC exposes three mechanisms to cache managers

for managing the cached data: evict, which forces out a

block; clean, which indicates the data is clean and can be

evicted by the SSC, and exists, which tests for the presence

of a block and is used during recovery. As described above,

for write-through caching all data is clean, whereas with

write-back caching, the cache manager must explicitly clean

blocks after writing them back to disk.

The ability to evict data can greatly simplify space man-

agement within the SSC. Flash drives use garbage collection

to compact data and create freshly erased blocks to receive

new writes, and may relocate data to perform wear level-

ing, which ensures that erases are spread evenly across the

physical flash cells. This has two costs. First, copying data

for garbage collection or for wear leveling reduces perfor-

mance, as creating a single free block may require reading

and writing multiple blocks for compaction. Second, an SSD

may copy and compact data that is never referenced again.

An SSC, in contrast, can evict data rather than copying it.

This speeds garbage collection, which can now erase clean

blocks without copying their live data because clean cache

blocks are also available in disk. If the data is not later ref-

erenced, this has little impact on performance. If the data

is referenced later, then it must be re-fetched from disk and

cached again.

Finally, a cache does not require overprovisioned blocks

to make free space available. Most SSDs reserve 5-20% of

their capacity to create free erased blocks to accept writes.

However, because an SSC does not promise a fixed capacity,

it can flexibly dedicate space either to data, to reduce miss

rates, or to the log, to accept writes.

3.4 Crash Behavior

Flash storage is persistent, and in many cases it would be

beneficial to retain data across system crashes. For large

caches in particular, a durable cache can avoid an extended

warm-up period where all data must be fetched from disks.

However, to be usable after a crash, the cache must retain

the metadata mapping disk blocks to flash blocks, and must

guarantee correctness by never returning stale data. This can

be slow, as it requires synchronous metadata writes when

modifying the cache. As a result, many SSD-backed caches,

such as Solaris L2ARC and NetApp Mercury, must be reset

after a crash [5, 14].

The challenge in surviving crashes in an SSD-backed

cache is that the mapping must be persisted along with

cached data, and the consistency between the two must also

be guaranteed. This can greatly slow cache updates, as re-

placing a block requires writes to: (i) remove the old block

from the mapping, (ii) write the new data, and (iii) add the

new data to the mapping.

3.5 Guarantees

FlashTier provides consistency and durability guarantees

over cached data in order to allow caches to survive a sys-

tem crash. The system distinguishes dirty data, for which the

newest copy of the data may only be present in the cache,

from clean data, for which the underlying disk also has the

latest value.



1. A read following a write of dirty data will return that data.

2. A read following a write of clean data will return either

that data or a not-present error.

3. A read following an eviction will return a not-present

error.

The first guarantee ensures that dirty data is durable and will

not be lost in a crash. The second guarantee ensures that it

is always safe for the cache manager to consult the cache

for data, as it must either return the newest copy or an er-

ror. Finally, the last guarantee ensures that the cache man-

ager can invalidate data in the cache and force subsequent

requests to consult the disk. Implementing these guarantees

within the SSC is much simpler than providing them in the

cache manager, as a flash device can use internal transaction

mechanisms to make all three writes at once [33, 34].

4. System Design

FlashTier has three design goals to address the limitations of

caching on SSDs:

• Address space management to unify address space trans-

lation and block state between the OS and SSC, and op-

timize for sparseness of cached blocks.

• Free space management to improve cache write perfor-

mance by silently evicting data rather than copying it

within the SSC.

• Consistent interface to provide consistent reads after

cache writes and eviction, and make both clean and dirty

data as well as the address mapping durable across a sys-

tem crash or reboot.

This section discusses the design of FlashTier’s address

space management, block interface and consistency guaran-

tees of SSC, and free space management.

4.1 Unified Address Space

FlashTier unifies the address space and cache block state

split between the cache manager running on host and firmware

in SSC. Unlike past work on virtual addressing in SSDs [21],

the address space in an SSC may be very sparse because

caching occurs at the block level.

Sparse Mapping. The SSC optimizes for sparseness in the

blocks it caches with a sparse hash map data structure, de-

veloped at Google [13]. This structure provides high per-

formance and low space overhead for sparse hash keys. In

contrast to the mapping structure used by Facebook’s Flash-

Cache, it is fully associative and thus must encode the com-

plete block address for lookups.

The map is a hash table with t buckets divided into t/M
groups of M buckets each. Each group is stored sparsely as

an array that holds values for allocated block addresses and

an occupancy bitmap of size M , with one bit for each bucket.

A bit at location i is set to 1 if and only if bucket i is non-

empty. A lookup for bucket i calculates the value location

from the number of 1s in the bitmap before location i. We

set M to 32 buckets per group, which reduces the overhead

of bitmap to just 3.5 bits per key, or approximately 8.4 bytes

per occupied entry for 64-bit memory pointers [13]. The

runtime of all operations on the hash map is bounded by the

constant M , and typically there are no more than 4-5 probes

per lookup.

The SSC keeps the entire mapping in its memory. How-

ever, the SSC maps a fixed portion of the flash blocks at a

4 KB page granularity and the rest at the granularity of an

256 KB erase block, similar to hybrid FTL mapping mecha-

nisms [18, 25]. The mapping data structure supports lookup,

insert and remove operations for a given key-value pair.

Lookups return the physical flash page number for the log-

ical block address in a request. The physical page number

addresses the internal hierarchy of the SSC arranged as flash

package, die, plane, block and page. Inserts either add a new

entry or overwrite an existing entry in the hash map. For a

remove operation, an invalid or unallocated bucket results in

reclaiming memory and the occupancy bitmap is updated ac-

cordingly. Therefore, the size of the sparse hash map grows

with the actual number of entries, unlike a linear table in-

dexed by a logical or physical address.

Block State. In addition to the logical-to-physical map, the

SSC maintains additional data for internal operations, such

as the state of all flash blocks for garbage collection and us-

age statistics to guide wear-leveling and eviction policies.

This information is accessed by physical address only, and

therefore can be stored in the out-of-band (OOB) area of

each flash page. This is a small area (64–224 bytes) asso-

ciated with each page [6] that can be written at the same

time as data. To support fast address translation for physi-

cal addresses when garbage collecting or evicting data, the

SSC also maintains a reverse map, stored in the OOB area

of each page and updates it on writes. With each block-level

map entry in device memory, the SSC also stores a dirty-

block bitmap recording which pages within the erase block

contain dirty data.

4.2 Consistent Cache Interface

FlashTier provides a consistent cache interface that reflects

the needs of a cache to (i) persist cached data across a sys-

tem reboot or crash, and (ii) never return stale data because

of an inconsistent mapping. Most SSDs provide the read-

/write interface of disks, augmented with a trim command to

inform the SSD that data need not be saved during garbage

collection. However, the existing interface is insufficient for

SSD caches because it leaves undefined what data is re-

turned when reading an address that has been written or

evicted [28]. An SSC, in contrast, provides an interface with

precise guarantees over consistency of both cached data and

mapping information. The SSC interface is a small extension

to the standard SATA/SCSI read/write/trim commands.



4.2.1 Interface

FlashTier’s interface consists of six operations:

write-dirty Insert new block or update existing

block with dirty data.

write-clean Insert new block or update existing

block with clean data.

read Read block if present or return error.

evict Evict block immediately.

clean Allow future eviction of block.

exists Test for presence of dirty blocks.

We next describe these operations and their usage by the

cache manager in more detail.

Writes. FlashTier provides two write commands to sup-

port write-through and write-back caching. For write-back

caching, the write-dirty operation guarantees that data is

durable before returning. This command is similar to a stan-

dard SSD write, and causes the SSC also update the map-

ping, set the dirty bit on the block and save the mapping

to flash using logging. The operation returns only when the

data and mapping are durable in order to provide a consis-

tency guarantee.

The write-clean command writes data and marks the

block as clean, so it can be evicted if space is needed. This

operation is intended for write-through caching and when

fetching a block into the cache on a miss. The guarantee of

write-clean is that a subsequent read will return either the

new data or a not-present error, and hence the SSC must en-

sure that data and metadata writes are properly ordered. Un-

like write-dirty, this operation can be buffered; if the power

fails before the write is durable, the effect is the same as

if the SSC silently evicted the data. However, if the write

replaces previous data at the same address, the mapping

change must be durable before the SSC completes the re-

quest.

Reads. A read operation looks up the requested block in

the device map. If it is present it returns the data, and other-

wise returns an error. The ability to return errors from reads

serves three purposes. First, it allows the cache manager

to request any block, without knowing if it is cached. This

means that the manager need not track the state of all cached

blocks precisely; approximation structures such as a Bloom

Filter can be used safely to prevent reads that miss in the

SSC. Second, it allows the SSC to manage space internally

by evicting data. Subsequent reads of evicted data return an

error. Finally, it simplifies the consistency guarantee: after a

block is written with write-clean, the cache can still return

an error on reads. This may occur if a crash occurred after

the write but before the data reached flash.

Eviction. FlashTier also provides a new evict interface to

provide a well-defined read-after-evict semantics. After is-

suing this request, the cache manager knows that the cache

cannot contain the block, and hence is free to write updated

versions to disk. As part of the eviction, the SSC removes

the forward and reverse mappings for the logical and physi-

cal pages from the hash maps and increments the number of

invalid pages in the erase block. The durability guarantee of

evict is similar to write-dirty: the SSC ensures the eviction is

durable before completing the request.

Explicit eviction is used to invalidate cached data when

writes are sent only to the disk. In addition, it allows the

cache manager to precisely control the contents of the SSC.

The cache manager can leave data dirty and explicitly evict

selected victim blocks. Our implementation, however, does

not use this policy.

Block cleaning. A cache manager indicates that a block

is clean and may be evicted with the clean command. It

updates the block metadata to indicate that the contents are

clean, but does not touch the data or mapping. The operation

is asynchronous, after a crash cleaned blocks may return to

their dirty state.

A write-back cache manager can use clean to manage

the capacity of the cache: the manager can clean blocks

that are unlikely to be accessed to make space for new

writes. However, until the space is actually needed, the data

remains cached and can still be accessed. This is similar to

the management of free pages by operating systems, where

page contents remain usable until they are rewritten.

Testing with exists. The exists operation allows the the

cache manager to query the state of a range of cached blocks.

The cache manager passes a block range, and the SSC re-

turns the dirty bitmaps from mappings within the range. As

this information is stored in the SSC’s memory, the opera-

tion does not have to scan flash. The returned data includes

a single bit for each block in the requested range that, if set,

indicates the block is present and dirty. If the block is not

present or clean, the bit is cleared. While this version of ex-

ists returns only dirty blocks, it could be extended to return

additional per-block metadata, such as access time or fre-

quency, to help manage cache contents.

This operation is used by the cache manager for recov-

ering the list of dirty blocks after a crash. It scans the en-

tire disk address space to learn which blocks are dirty in the

cache so it can later write them back to disk.

4.2.2 Persistence

SSCs rely on a combination of logging, checkpoints, and

out-of-band writes to persist its internal data. Logging allows

low-latency writes to data distributed throughout memory,

while checkpointing provides fast recovery times by keep-

ing the log short. Out-of-band writes provide a low-latency

means to write metadata near its associated data.

Logging. An SSC uses an operation log to persist changes

to the sparse hash map. A log record consists of a monotoni-

cally increasing log sequence number, the logical and physi-

cal block addresses, and an identifier indicating whether this

is a page-level or block-level mapping.



For operations that may be buffered, such as clean and

write-clean, an SSC uses asynchronous group commit [17]

to flush the log records from device memory to flash de-

vice periodically. For operations with immediate consistency

guarantees, such as write-dirty and evict, the log is flushed

as part of the operation using a synchronous commit. For ex-

ample, when updating a block with write-dirty, the SSC will

create a log record invalidating the old mapping of block

number to physical flash address and a log record insert-

ing the new mapping for the new block address. These are

flushed using an atomic-write primitive [33] to ensure that

transient states exposing stale or invalid data are not possi-

ble.

Checkpointing. To ensure faster recovery and small log

size, SSCs checkpoint the mapping data structure periodi-

cally so that the log size is less than a fixed fraction of the

size of checkpoint. This limits the cost of checkpoints, while

ensuring logs do not grow too long. It only checkpoints the

forward mappings because of the high degree of sparseness

in the logical address space. The reverse map used for inval-

idation operations and the free list of blocks are clustered on

flash and written in-place using out-of-band updates to indi-

vidual flash pages. FlashTier maintains two checkpoints on

dedicated regions spread across different planes of the SSC

that bypass address translation.

Recovery. The recovery operation reconstructs the differ-

ent mappings in device memory after a power failure or re-

boot. It first computes the difference between the sequence

number of the most recent committed log record and the log

sequence number corresponding to the beginning of the most

recent checkpoint. It then loads the mapping checkpoint and

replays the log records falling in the range of the computed

difference. The SSC performs roll-forward recovery for both

the page-level and block-level maps, and reconstructs the

reverse-mapping table from the forward tables.

4.3 Free Space Management

FlashTier provides high write performance by leveraging

the semantics of caches for garbage collection. SSDs use

garbage collection to compact data and create free erased

blocks. Internally, flash is organized as a set of erase blocks,

which contain a number of pages, typically 64. Garbage

collection coalesces the live data from multiple blocks and

erases blocks that have no valid data. If garbage collection

is performed frequently, it can lead to write amplification,

where data written once must be copied multiple times,

which hurts performance and reduces the lifetime of the

drive [16, 18].

The hybrid flash translation layer in modern SSDs sep-

arates the drive into data blocks and log blocks. New data

is written to the log and then merged into data blocks with

garbage collection. The data blocks are managed with block-

level translations (256 KB) while the log blocks use finer-

grained 4 KB translations. Any update to a data block is per-

formed by first writing to a log block, and later doing a full

merge that creates a new data block by merging the old data

block with the log blocks containing overwrites to the data

block.

Silent eviction. SSCs leverage the behavior of caches by

evicting data when possible rather than copying it as part

of garbage collection. FlashTier implements a silent eviction

mechanism by integrating cache replacement with garbage

collection. The garbage collector selects a flash plane to

clean and then selects the top-k victim blocks based on a

policy described below. It then removes the mappings for

any valid pages within the victim blocks, and erases the

victim blocks. Unlike garbage collection, FlashTier does not

incur any copy overhead for rewriting the valid pages.

When using silent eviction, an SSC will only consider

blocks written with write-clean or explicitly cleaned. If there

are not enough candidate blocks to provide free space, it re-

verts to regular garbage collection. Neither evict nor clean

operations trigger silent eviction; they instead update meta-

data indicating a block is a candidate for eviction during the

next collection cycle.

Policies. We have implemented two policies to select vic-

tim blocks for eviction. Both policies only apply silent evic-

tion to data blocks. The first policy, SE-Util selects the erase

bock with the smallest number of valid pages (i.e., low-

est utilization). This minimizes the number of valid pages

purged, although it may evict recently referenced data. This

policy only creates erased data blocks and not log blocks,

which still must use normal garbage collection.

The second policy, SE-Merge uses the same policy for se-

lecting candidate victims (utilization), but allows the erased

blocks to be used for either data or logging. This allows the

number of log blocks to increase, which reduces garbage

collection costs: with more log blocks, garbage collection

of them is less frequent, and there may be fewer valid pages

in each log block. However, this approach increases memory

usage to store fine-grained translations for each block in the

log. With SE-Merge, new data blocks are created via switch

merges, which convert a sequentially written log block into

a data block without copying data.

4.4 Cache Manager

The cache manager is based on Facebook’s FlashCache for

Linux [10]. It provides support for both write-back and

write-through caching modes and implements a recovery

mechanism to enable cache use after a crash.

The write-through policy consults the cache on every

read. As read misses require only access to the in-memory

mapping, these incur little delay. The cache manager, fetches

the data from the disk on a miss and writes it to the SSC

with write-clean. Similarly, the cache manager sends new

data from writes both to the disk and to the SSC with write-

clean. As all data is clean, the manager never sends any clean

requests. We optimize the design for memory consumption



assuming a high hit rate: the manager stores no data about

cached blocks, and consults the cache on every request. An

alternative design would be to store more information about

which blocks are cached in order to avoid the SSC on most

cache misses.

The write-back mode differs on the write path and in

cache management; reads are handled similarly to write-

through caching. On a write, the cache manager use write-

dirty to write the data to the SSC only. The cache manager

maintains an in-memory table of cached dirty blocks. Using

its table, the manager can detect when the percentage of

dirty blocks within the SSC exceeds a set threshold, and if

so issues clean commands for LRU blocks. Within the set

of LRU blocks, the cache manager prioritizes cleaning of

contiguous dirty blocks, which can be merged together for

writing to disk. The cache manager then removes the state

of the clean block from its table.

The dirty-block table is stored as a linear hash table con-

taining metadata about each dirty block. The metadata con-

sists of an 8-byte associated disk block number, an optional

8-byte checksum, two 2-byte indexes to the previous and

next blocks in the LRU cache replacement list, and a 2-byte

block state, for a total of 14-22 bytes.

After a failure, a write-through cache manager may im-

mediately begin using the SSC. It maintains no transient in-

memory state, and the cache-consistency guarantees ensure

it is safe to use all data in the SSC. Similarly, a write-back

cache manager can also start using the cache immediately,

but must eventually repopulate the dirty-block table in order

to manage cache space. The cache manager scans the entire

disk address space with exists. This operation can overlap

normal activity and thus does not delay recovery.

5. Implementation

The implementation of FlashTier entails three components:

the cache manager, an SSC functional emulator, and an SSC

timing simulator. The first two are Linux kernel modules

(kernel 2.6.33), and the simulator models the time for the

completion of each request.

We base the cache manager on Facebook’s FlashCache [10].

We modify its code to implement the cache policies de-

scribed in the previous section. In addition, we added a trace-

replay framework invokable from user-space with direct I/O

calls to evaluate performance.

We base the SSC simulator on FlashSim [23]. The simu-

lator provides support for an SSD controller, and a hierarchy

of NAND-flash packages, planes, dies, blocks and pages.

We enhance the simulator to support page-level and hybrid

mapping with different mapping data structures for address

translation and block state, write-ahead logging with syn-

chronous and asynchronous group commit support for insert

and remove operations on mapping, periodic checkpointing

from device memory to a dedicated flash region, and a roll-

forward recovery logic to reconstruct the mapping and block

state. We have two basic configurations of the simulator, tar-

geting the two silent eviction policies. The first configura-

tion (termed SSC in the evaluation) uses the SE-Util policy

and statically reserves a portion of the flash for log blocks

and provisions enough memory to map these with page-level

mappings. The second configuration, SSC-R, uses the SE-

Merge policy and allows the fraction of log blocks to vary

based on workload but must reserve memory capacity for

the maximum fraction at page level. In our tests, we fix log

blocks at 7% of capacity for SSC and allow the fraction to

range from 0-20% for SSC-R.

We implemented our own FTL that is similar to the

FAST FTL [25]. We integrate silent eviction with back-

ground and foreground garbage collection for data blocks,

and with merge operations for SE-Merge when recycling log

blocks [16]. We also implement inter-plane copy of valid

pages for garbage collection (where pages collected from

one plane are written to another) to balance the number of

free blocks across all planes. The simulator also tracks the

utilization of each block for the silent eviction policies.

The SSC emulator is implemented as a block device and

uses the same code for SSC logic as the simulator. In order to

emulate large caches efficiently (much larger than DRAM),

it stores the metadata of all cached blocks in memory but dis-

cards data on writes and returns fake data on reads, similar

to David [2].

6. Evaluation

We compare the cost and benefits of FlashTier’s design com-

ponents against traditional caching on SSDs and focus on

three key questions:

• What are the benefits of providing a sparse unified cache

address space for FlashTier?

• What is the cost of providing cache consistency and re-

covery guarantees in FlashTier?

• What are the benefits of silent eviction for free space

management and write performance in FlashTier?

We describe our methods and present a summary of our

results before answering these questions in detail.

6.1 Methods

We emulate an SSC with the parameters in Table 2, which

are taken from the latencies of the third generation Intel 300

series SSD [20]. We scale the size of each plane to vary the

SSD capacity. On the SSD, we over provision by 7% of the

capacity for garbage collection. The SSC does not require

over provisioning, because it does not promise a fixed-size

address space. The performance numbers are not parame-

ters but rather are the measured output of the SSC timing

simulator, and reflect performance on an empty SSD/SSC.

Other mainstream SSDs documented to perform better rely

on deduplication or compression, which are orthogonal to

our design [31].



Page read/write 65/85 µs Block erase 1000 µs

Bus control delay 2 µs Control delay 10 µs

Flash planes 10 Erase block/plane 256

Pages/erase block 64 Page size 4096 bytes

Seq. Read 585 MB/sec Rand. Read 149,700 IOPS

Seq. Write 124 MB/sec Rand. Write 15,300 IOPS

Table 2. Emulation parameters.

Workload Range Unique Blocks Total Ops. % Writes

homes 532 GB 1,684,407 17,836,701 95.9

mail 277 GB 15,136,141 462,082,021 88.5

usr 530 GB 99,450,142 116,060,427 5.9

proj 816 GB 107,509,907 311,253,714 14.2

Table 3. Workload Characteristics: All requests are sector-

aligned and 4,096 bytes.

We compare the FlashTier system against the Native sys-

tem, which uses uses the unmodified Facebook FlashCache

cache manager and the FlashSim SSD simulator. We ex-

periment with both write-through and write-back modes of

caching. The write-back cache manager stores its metadata

on the SSD, so it can recover after a crash, while the write-

through cache manager cannot.

We use four real-world traces with the characteristics

shown in Table 3. These traces were collected on systems

with different I/O workloads that consist of a departmental

email server (mail workload), and file server (homes work-

load) [24]; and a small enterprise data center hosting user

home directories (usr workload) and project directories (proj

workload) [27]. Workload duration varies from 1 week (usr

and proj) to 3 weeks (homes and mail). The range of logical

block addresses is large and sparsely accessed, which helps

evaluate the memory consumption for address translation.

The traces also have different mixes of reads and writes (the

first two are write heavy and the latter two are read heavy) to

let us analyze the performance impact of the SSC interface

and silent eviction mechanisms. To keep replay times short,

we use only the first 20 million requests from the mail work-

load, and the first 100 million requests from usr and proj

workloads.

6.2 System Comparison

FlashTier improves on caching with an SSD by improving

performance, reducing memory consumption, and reducing

wear on the device. We begin with a high-level comparison

of FlashTier and SSD caching, and in the following sections

provide a detailed analysis of FlashTier’s behavior.

Performance. Figure 3 shows the performance of the two

FlashTier configurations with SSC and SSC-R in write-back

and write-through modes relative to the native system with

an SSD cache in write-back mode. For the write-intensive

homes and mail workloads, the FlashTier system with SSC

outperforms the native system by 59-128% in write-back

mode and 38-79% in write-through mode. With SSC-R, the

FlashTier system outperforms the native system by 101-
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Figure 3. Application Performance: The performance of write-

through and write-back FlashTier systems normalized to native

write-back performance. We do not include native write-through

because it does not implement durability.

167% in write-back mode and by 65-102% in write-through

mode. The write-back systems improve the performance of

cache writes, and hence perform best on these workloads.

For the read-intensive usr and proj workloads, the native

system performs almost identical to the FlashTier system.

The performance gain comes largely from garbage collec-

tion, as we describe in Section 6.5, which is offset by the cost

of FlashTier’s consistency guarantees, which are described

in Section 6.4.

Memory consumption. Table 4 compares the memory us-

age on the device for the native system and FlashTier. Over-

all, Flashtier with the SSC consumes 11% more device mem-

ory and with SSC-R consumes 160% more. However, both

FlashTier configurations consume 89% less host memory.

We describe these results more in Section 6.3.

Wearout. For Figure 3, we also compare the number of

erases and the wear differential (indicating a skewed write

pattern) between the native and FlashTier systems. Overall,

on the write-intensive homes and mail workloads, FlashTier

with SSC performs 45% fewer erases, and with SSC-R per-

forms 57% fewer. On the read-intensive usr and proj work-

loads, the SSC configuration performs 3% fewer erases and

6% fewer with SSC-R. The silent-eviction policy accounts

for much of the difference in wear: in write-heavy workloads

it reduces the number of erases but in read-heavy workloads

may evict useful data that has to be written again. We de-

scribe these results more in Section 6.5.

6.3 FlashTier Address Space Management

In this section, we evaluate the device and cache manager

memory consumption from using a single sparse address

space to maintain mapping information and block state.

Device memory usage. Table 4 compares the memory us-

age on the device for the native system and FlashTier. The

native system SSD stores a dense mapping translating from



Size SSD SSC SSC-R Native FTCM

Workload GB Device (MB) Host (MB)

homes 1.6 1.13 1.33 3.07 8.83 0.96

mail 14.4 10.3 12.1 27.4 79.3 8.66

usr 94.8 66.8 71.1 174 521 56.9

proj 102 72.1 78.2 189 564 61.5

proj-50 205 144 152 374 1,128 123

Table 4. Memory Consumption: Total size of cached data, and

host and device memory usage for Native and FlashTier systems

for different traces. FTCM: write-back FlashTier Cache Manager.

SSD logical block address space to physical flash addresses.

The FlashTier system stores a sparse mapping from disk

logical block addresses to physical flash addresses using a

sparse hash map. Both systems use a hybrid layer mapping

(HLM) mixing translations for entire erase blocks with per-

page translations. We evaluate both SSC and SSC-R config-

urations.

For this test, both SSD and SSC map 93% of the cache

using 256 KB blocks and the remaining 7% is mapped using

4 KB pages. SSC-R stores page-level mappings for a total of

20% for reserved space. As described earlier in Section 4.3,

SSC-R can reduce the garbage collection cost by using the

SE-Merge policy to increase the percentage of log blocks. In

addition to the target physical address, both SSC configura-

tions store an eight-byte dirty-page bitmap with each block-

level map entry in device memory. This map encodes which

pages within the erase block are dirty.

We measure the device memory usage as we scale the

cache size to accommodate the 25% most popular blocks

from each of the workloads, and top 50% for proj-50. The

SSD averages 2.8 bytes/block, while the SSC averages 3.1

and SSC-R averages 7.4 (due to its extra page-level map-

pings). The homes trace has the lowest density, which leads

to the highest overhead (3.36 bytes/bock for SSC and 7.7

for SSC-R), while the proj-50 trace has the highest density,

which leads to lower overhead (2.9 and 7.3 bytes/block).

Across all cache sizes from 1.6 GB to 205 GB, the sparse

hash map in SSC consumes only 5–17% more memory than

SSD. For a cache size as large as 205 GB for proj-50, SSC

consumes no more than 152 MB of device memory, which

is comparable to the memory requirements of an SSD. The

performance advantages of the SSC-R configuration comes

at the cost of doubling the required device memory, but is

still only 374 MB for a 205 GB cache.

The average latencies for remove and lookup operations

are less than 0.8 µs for both SSD and SSC mappings. For

inserts, the sparse hash map in SSC is 90% slower than SSD

due to the rehashing operations. However, these latencies are

much smaller than the bus control and data delays and thus

have little impact on the total time to service a request.

Host memory usage. The cache manager requires memory

to store information about cached blocks. In write-through

mode, the FlashTier cache manager requires no per-block

state, so its memory usage is effectively zero, while the
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Figure 4. Consistency Cost: No-consistency system does not

provide any consistency guarantees for cached data or metadata.

Native-D and FlashTier-D systems only provide consistency for

dirty data. FlashTier-C/D provides consistency for both clean and

dirty data.

native system uses the same amount of memory for both

write-back and write-through. Table 4 compares the cache-

manager memory usage in write-back mode for native and

FlashTier configured with a dirty percentage threshold of

20% of the cache size (above this threshold the cache man-

ager will clean blocks).

Overall, the FlashTier cache manager consumes less than

11% of the native cache manager. The native system requires

22 bytes/block for a disk block number, checksum, LRU in-

dexes and block state. The FlashTier system stores a similar

amount of data (without the Flash address) for dirty blocks,

but nothing for clean blocks. Thus, the FlashTier system con-

sumes only 2.4 bytes/block, an 89% reduction. For a cache

size of 205 GB, the savings with FlashTier cache manager

are more than 1 GB of host memory.

Overall, the SSC provides a 78% reduction in total mem-

ory usage for the device and host combined. These savings

come from the unification of address space and metadata

across the cache manager and SSC. Even with the additional

memory used for the SSC-R device, it reduces total memory

use by 60%. For systems that rely on host memory to store

mappings, such as FusionIO devices [11], these savings are

immediately realizable.

6.4 FlashTier Consistency

In this section, we evaluate the cost of crash consistency and

recovery by measuring the overhead of logging, checkpoint-

ing and the time to recover. On a system with non-volatile

memory or that can flush RAM contents to flash on a power

failure, consistency imposes no performance cost because

there is no need to write logs or checkpoints.

Consistency cost. We first measure the performance cost

of FlashTier’s consistency guarantees by comparing against

a baseline no-consistency system that does not make the

mapping persistent. Figure 4 compares the throughput of

FlashTier with the SSC configuration and the native sys-



tem, which implements consistency guarantees by writing

back mapping metadata, normalized to the no-consistency

system. For FlashTier, we configure group commit to flush

the log buffer every 10,000 write operations or when a syn-

chronous operation occurs. In addition, the SSC writes a

checkpoint if the log size exceeds two-thirds of the check-

point size or after 1 million writes, whichever occurs earlier.

This limits both the number of log records flushed on a com-

mit and the log size replayed on recovery. For the native sys-

tem, we assume that consistency for mapping information is

provided by out-of-band (OOB) writes to per-page metadata

without any additional cost [16].

As the native system does not provide persistence in

write-through mode, we only evaluate write-back caching.

For efficiency, the native system (Native-D) only saves meta-

data for dirty blocks at runtime, and loses clean blocks across

unclean shutdowns or crash failures. It only saves metadata

for clean blocks at shutdown. For comparison with such a

system, we show two FlashTier configurations: FlashTier-D,

which relaxes consistency for clean blocks by buffering log

records for write-clean, and FlashTier-C/D, which persists

both clean and dirty blocks using synchronous logging.

For the write-intensive homes and mail workloads, the

extra metadata writes by the native cache manager to persist

block state reduce performance by 18-29% compared to the

no-consistency system. The mail workload has 1.5x more

metadata writes per second than homes, therefore, incurs

more overhead for consistency. The overhead of consistency

for persisting clean and dirty blocks in both FlashTier sys-

tems is lower than the native system, at 8-15% for FlashTier-

D and 11-16% for FlashTier-C/D. This overhead stems

mainly from synchronous logging for insert/remove oper-

ations from write-dirty (inserts) and write-clean (removes

from overwrite). The homes workload has two-thirds fewer

write-clean operations than mail, and hence there is a small

performance difference between the two FlashTier configu-

rations.

For read-intensive usr and proj workloads, the cost of

consistency is low for the native system at 2-5%. The native

system does not incur any synchronous metadata updates

when adding clean pages from a miss and batches sequential

metadata updates. The FlashTier-D system performs identi-

cal to the native system because the majority of log records

can be buffered for write-clean. The FlashTier-C/D system’s

overhead is only slightly higher at 7%, because clean writes

following a miss also require synchronous logging.

We also analyze the average request response time for

both the systems. For write-intensive workloads homes and

mail, the native system increases response time by 24-37%

because of frequent small metadata writes. Both FlashTier

configurations increase response time less, by 18-32%, due

to logging updates to the map. For read-intensive workloads,

the average response time is dominated by the read latencies

of the flash medium. The native and FlashTier systems incur

 0

 5

 10

 15

 20

 25

 30

homes mail usr proj

R
e

c
o

v
e

ry
 T

im
e

 (
s
)

FlashTier
Native-FC

Native-SSD

Figure 5. Recovery Time: Native-FC accounts for only recover-

ing FlashCache cache manager state. Native-SSD accounts for only

recovering the SSD mapping.

a 3-5% increase in average response times for these work-

loads respectively. Overall, the extra cost of consistency for

the request response time is less than 26 µs for all workloads

with FlashTier.

Recovery time. Figure 5 compares the time for recovering

after a crash. The mapping and cache sizes for each work-

load are shown in Table 4.

For FlashTier, the only recovery is to reload the map-

ping and block state into device memory. The cache manager

metadata can be read later. FlashTier recovers the mapping

by replaying the log on the most recent checkpoint. It recov-

ers the cache manager state in write-back mode using exists

operations. This is only needed for space management, and

thus can be deferred without incurring any start up latency.

In contrast, for the native system both the cache manager and

SSD must reload mapping metadata.

Most SSDs store the logical-to-physical map in the OOB

area of a physical page. We assume that writing to the OOB

is free, as it can be overlapped with regular writes and hence

has little impact on write performance. After a power fail-

ure, however, these entries must be read to reconstruct the

mapping [16], which requires scanning the whole SSD in

the worst case. We estimate the best case performance for

recovering using an OOB scan by reading just enough OOB

area to equal the size of the mapping table.

The recovery times for FlashTier vary from 34 ms for a

small cache (homes) to 2.4 seconds for proj with a 102 GB

cache. In contrast, recovering the cache manager state alone

for the native system is much slower than FlashTier and

takes from 133 ms for homes to 9.4 seconds for proj. Re-

covering the mapping in the native system is slowest be-

cause scanning the OOB areas require reading many sepa-

rate locations on the SSD. It takes from 468 ms for homes to

30 seconds for proj.

6.5 FlashTier Silent Eviction

In this section, we evaluate the impact of silent eviction

on caching performance and wear management. We com-
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Figure 6. Garbage Collection Performance: Comparing

the impact of garbage collection on caching performance for

different workloads on SSD, SSC and SSC-R devices.

pare the behavior of caching on three devices: SSD, SSC

and SSC-R, which use garbage collection and silent evic-

tion with SE-Util and SE-Merge policies. For all traces, we

replay the trace on a cache sized according to Table 4. To

warm the cache, we replay the first 15% of the trace before

gathering statistics, which also ensures there are no available

erased blocks. To isolate the performance effects of silent

eviction, we disabled logging and checkpointing for these

tests and use only write-through caching, in which the SSC

is entirely responsible for replacement.

Garbage Collection. Figure 6 shows the performance im-

pact of silent eviction policies on SSC and SSC-R. We fo-

cus on the write-intensive homes and mail workloads, as

the other two workloads have few evictions. On these work-

loads, the Flashtier system with SSC outperforms the na-

tive SSD by 34-52%, and SSC-R by 71-83%. This improve-

ment comes from the reduction in time spent for garbage

collection because silent eviction avoids reading and rewrit-

ing data. This is evidenced by the difference in write ampli-

fication, shown in Table 5. For example, on homes, the na-

tive system writes each block an additional 2.3 times due to

garbage collection. In contrast, with SSC the block is writ-

ten an additional 1.84 times, and with SSC-R, only 1.3 more

times. The difference between the two policies comes from

the additional availability of log blocks in SSC-R. As de-

scribed in Section 4.3, having more log blocks improves per-

formance for write-intensive workloads by delaying garbage

collection and eviction, and decreasing the number of valid

blocks that are discarded by eviction. The performance on

mail is better than homes because the trace has 3 times more

overwrites per disk block, and hence more nearly empty

erase blocks to evict.

Cache Misses. The time spent satisfying reads is similar

in all three configurations across all four traces. As usr and

proj are predominantly reads, the total execution times for

these traces is also similar across devices. For these traces,

the miss rate, as shown in Table 5, increases negligibly.

On the write-intensive workloads, the FlashTier device

has to impose its policy on what to replace when making

space for new writes. Hence, there is a larger increase in miss

rate, but in the worst case, for homes, is less than 2.5 percent-

age points. This increase occurs because the SSC eviction

policy relies on erase-block utilization rather than recency,

and thus evicts blocks that were later referenced and caused

a miss. For SSC-R, though, the extra log blocks again help

performance by reducing the number of valid pages evicted,

and the miss rate increases by only 1.5 percentage points on

this trace. As described above, this improved performance

comes at the cost of more device memory for page-level

mappings. Overall, both silent eviction policies keep useful

data in the cache and greatly increase the performance for

recycling blocks.

Wear Management. In addition to improving performance,

silent eviction can also improve reliability by decreasing

the number of blocks erased for merge operations. Table 5

shows the total number of erase operations and the maxi-

mum wear difference (indicating that some blocks may wear

out before others) between any two blocks over the execu-

tion of different workloads on SSD, SSC and SSC-R.

For the write-intensive homes and mail workloads, the to-

tal number of erases reduce for SSC and SSC-R. In addition,

they are also more uniformly distributed for both SSC and

SSC-R. We find that most erases on SSD are during garbage

collection of data blocks for copying valid pages to free log

blocks, and during full merge operations for recycling log

blocks. While SSC only reduces the number of copy opera-

tions by evicting the data instead, SSC-R provides more log

blocks. This reduces the total number of full merge opera-

tions by replacing them with switch merges, in which a full

log block is made into a data block. On these traces, SSC

and SSC-R reduce the total number of erases by an average

of 26% and 35%, and the overhead of copying valid pages

by an average of 32% and 52% respectively, as compared to

the SSD.

For the read-intensive usr and proj workloads, most

blocks are read-only, so the total number of erases and wear

difference is lower for all three devices. The SSC increases

erases by an average of 5%, because it evicts data that must

later be brought back in and rewritten. However the low

write rate for these traces makes reliability less of a concern.

For SSC-R, the number of erases decrease by an average of

2%, again from reducing the number of merge operations.

Both SSC and SSC-R greatly improve performance and

on important write-intensive workloads, also decrease the

write amplification and the resulting erases. Overall, the

SSC-R configuration performs better, has a lower miss rate,

and better reliability and wear-leveling achieved through

increased memory consumption and a better replacement

policy.



Erases Wear Diff. Write Amp. Miss Rate

Workload SSD SSC SSC-R SSD SSC SSC-R SSD SSC SSC-R SSD SSC SSC-R

homes 878,395 829,356 617,298 3,094 864 431 2.30 1.84 1.30 10.4 12.8 11.9

mail 880,710 637,089 525,954 1,044 757 181 1.96 1.08 0.77 15.6 16.9 16.5

usr 339,198 369,842 325,272 219 237 122 1.23 1.30 1.18 10.6 10.9 10.8

proj 164,807 166,712 164,527 41 226 17 1.03 1.04 1.02 9.77 9.82 9.80

Table 5. Wear Distribution: For each workload, the total number of erase operations, the maximum wear difference between

blocks, the write amplification, and the cache miss rate is shown for SSD, SSC and SSC-R.

7. Related Work

The FlashTier design draws on past work investigating the

use of solid-state memory for caching and hybrid systems.

SSD Caches. Guided by the price, power and performance

of flash, cache management on flash SSDs has been pro-

posed for fast access to disk storage. Windows and Solaris

have software cache managers that use USB flash drives

and solid-state disks as read-optimized disk caches managed

by the file system [3, 14]. Oracle has a write-through flash

cache for databases [32] and Facebook has started the de-

ployment of their in-house write-back cache manager to ex-

pand the OS cache for managing large amounts of data on

their Timeline SQL servers [10, 36]. Storage vendors have

also proposed the use of local SSDs as write-through caches

to centrally-managed storage shared across virtual machine

servers [5, 29]. However, all these software-only systems are

still limited by the narrow storage interface, multiple levels

of address space, and free space management within SSDs

designed for persistent storage. In contrast, FlashTier pro-

vides a novel consistent interface, unified address space, and

silent eviction mechanism within the SSC to match the re-

quirements of a cache, yet maintaining complete portability

for applications by operating at block layer.

Hybrid Systems. SSD vendors have recently proposed new

flash caching products, which cache most-frequently ac-

cessed reads and write I/O requests to disk [12, 30]. Flash-

Cache [22] and the flash-based disk cache [35] also propose

specialized hardware for caching. Hybrid drives [4] provi-

sion small amounts of flash caches within a hard disk for

improved performance. Similar to these systems, FlashTier

allows custom control of the device over free space and wear

management designed for the purpose of caching. In addi-

tion, FlashTier also provides a consistent interface to persist

both clean and dirty data. Such an interface also cleanly sep-

arates the responsibilities of the cache manager, the SSC

and disk, unlike hybrid drives, which incorporate all three

in a single device. The FlashTier approach provides more

flexibility to the OS and applications for informed caching.

Informed Caching. Past proposals for multi-level caches

have argued for informed and exclusive cache interfaces to

provide a single, large unified cache in the context of storage

arrays [38, 40]. Recent work on storage tiering and differen-

tiated storage services has further proposed to classify I/O

and use different policies for cache allocation and eviction

on SSD caches based on the information available to the OS

and applications [15, 26]. However, all these systems are still

limited by the narrow storage interface of SSDs, which re-

stricts the semantic information about blocks available to the

cache. The SSC interface bridges this gap by exposing prim-

itives to the OS for guiding cache allocation on writing clean

and dirty data, and an explicit evict operation for invalidating

cached data.

Storage Interfaces. Recent work on a new nameless-write

SSD interface and virtualized flash storage for file systems

have argued for removing the costs of indirection within

SSDs by exposing physical flash addresses to the OS [41],

providing caching support [28], and completely delegating

block allocation to the SSD [21]. Similar to these systems,

FlashTier unifies multiple levels of address space, and pro-

vides more control over block management to the SSC. In

contrast, FlashTier is the first system to provide internal flash

management and a novel device interface to match the re-

quirements of caching. Furthermore, the SSC provides a vir-

tualized address space using disk logical block addresses,

and keeps its interface grounded within the SATA read-

/write/trim space without requiring migration callbacks from

the device into the OS like these systems.

8. Conclusions

Flash caching promises an inexpensive boost to storage per-

formance. However, traditional SSDs are designed to be a

drop-in disk replacement and do not leverage the unique be-

havior of caching workloads, such as a large, sparse address

space and clean data that can safely be lost. In this paper, we

describe FlashTier, a system architecture that provides a new

flash device, the SSC, which has an interface designed for

caching. FlashTier provides memory-efficient address space

management, improved performance and cache consistency

to quickly recover cached data following a crash. As new

non-volatile memory technologies become available, such as

phase-change and storage-class memory, it will be important

to revisit the interface and abstraction that best match the re-

quirements of their memory tiers.
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