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Abstract ing more interest because they promise fiicient use for

The inexorable demand for computing power has lead to increlf2€ transistors becoming available on future processors.
ing interest in accelerator-based designs. An accelerator is speiCcelerators can take on many forms. At the finest
cialized hardware unit that can perform a set of tasks with mu@ranularity, specialized instructions, such as SIMD or
higher performance or poweffiency than a general-purposéCRC32 support in Intel x86, provide accelerated compu-
CPU. They may be embedded in the pipeline as a functional utéttion over small data items at low latency. In contrast,
as in SIMD instructions, or attached to the system as a sepa@@rse-grained accelerators may be accessed through a
device, as in a cryptographic co-processor. kernel-mode device driver, as in cryptography accelera-
Current operating systems provide little support for accelerl%-rs in SuriOracle Niagara processors and H.264 video

tors: whether integrated into a processor or attached asa dev {feoders for mobile device®7]. Recent years have
they are treated as CPU or a device and given no additional con- .

. . . een a flurry of accelerator architectures, from GPUs for
sideration. However, future processors may have designs t%ﬁf ding dat llel tati ¢ ialized
require more management by the operating system. For ex loading data-parallel computatiorisy] to specialize

ple, heterogeneous processors may only provision some cdtBYs like c-cores21] and DySER L) to shared acceler-

with accelerators, and IBM’s wire-speed processor allows usafors in IBM’s wire-speed processd]|

mode code to launch computations on a shared accelerator withCurrently, accelerators are ignored by the operating

out kernel involvement. In such systems, the OS can improsgstem: the OS is unaware that a computation can exe-

performance by allocating accelerator resources and scheduoge either on a general purpose core or an accelerator,

access to the accelerator as it does for memory and CPU timgnd provides no assistance in finding the “best” place for
In this paper, we discuss the challenges presented by adopfingomputation. For example, a program that can either

accelerators as an execution resource managed by the opergfind, shared accelerator or execute on a CPU may choose
system. We also present the initial design of our system, whiﬁy

rovides flexible control over where and when code executes ndexecute on the CPU for lower latency rather than wait
P - > 30F more dficient execution on the accelerator. In addi-
can apply power and performance policies. It presents a sim

e . .

software interface that can leverage new hardware interfaceﬁgg’ processors that pfOV"?'e direct access to accelerators

well as sharing of specialized units in a heterogeneous systeffOM USer mode, such as wire-speed, majesdrom con-
tention without OS involvement.

1 Introduction We propose that operating systems should abstract and

For many years, processor performance improved as gr&nage accelerators, rather than leaving it up to compil-
dicted by Moore’s law 17]. The recent decline in Den-€rs, runtimes, and (_jnvers. First, many .pr.oposed accel-
nard’s scaling §] motivated the creation of many-coreerator systems are inherently asymmetric in that not ev-
processors to reduce power consumption. However, 8% core is provisioned with identical accelerators. In a
continued rise in transistor density has provided procé&i¢neral-purpose system, the OS must manage contention
sors with more transistors than they can use simultaffetlimited accelerator resources. Second, it may be useful
ously. to choose at runtime between execution on an accelerator
This situation motivates the use afceleratorsto fur- and on a CPU. Supporting this capability requires the OS
ther improve performance. Accelerators are fixed- Btake accelerator usage information available. Finally, OS
programmable-function hardware that improves power @pstractions designed for accelerators can also be applied
performance significantly for a small set of codes. Whil@ heterogeneous systems by treating a CPU as an acceler-
common for widely used functions, such as floating-poiator and scheduling or allocating its use. This provides a

computation and video decoding, accelerators are recalpified framework for all forms of hardware acceleration.
In the remainder of this paper, we first discuss motivat-



ing hardware features and analyze théedent classes of fload program logic. A simple example is vector SIMD
accelerators and the system challenges posed by accelasdructions, which provide data-parallel execution for
tors. We then discuss the design of our proposed systegneater performance andhieiency. More recently, c-
oo cores executes specific application logic with greater ef-
2 Motivation ficiency [21], and DySER provides a specialized data
Our work is motivated by the increasing interest in agath [L0].
celerators from the hardware community and the lack ofThese accelerators provide low-latency access directly
support for accelerators in the systems community.  from registers or virtual memory. However, co-processor
2.1 Rise of Accelerators designs may still contend for power if not all co-
. - . . processors or cores can be active simultaneously. In
The _ch0|ce of providing agcelerators in the papkagg IS Hdition, heterogeneous system with a variety of accel-
tractive for two reasons (i) they are powefigent (ii) erators attached to fiierent cores may also experience

with the increasing transistor count, all of them C"’mn%ntention. Finally, programmable accelerators, such as

pox\vereld on S|multan(jeogslgz,[5]: v b . h DySER, require a configuration step that may limit its
ccelerators provide dramatically bettéii@ency than ability to accelerate short code fragments.

processors. Compared to custom-designed ASICs, a CPU
may be 500 times less energieient due to costs such agndependent cores. Finally, asymmetric or heteroge-
instruction fetch and programmable data pafl#.[Thus, N€OUS processors can also be considered accelerator-based
specialized units within processors can be used to execiigtems. Rather than specializing hardware to a specific
specific functions @iciently. computation, such a system provides a variety of general-
In addition, Moore’s law continues to provide addiPurpose cores with fierent performance and power char-
tional transistors, even though processors lack the po@gferistics. For example, NVidia's Kal-El processor pro-
to use them all concurrently. As a result, general-purpo4ges a low-power companion corgg]. On such a sys-
multicore architectures and even GPUs cannot contirf§8", @ program may execute faster or with lower power
to scale performance because of the limited power avdlit Switches to a specific core for phases of its execu-
able to processor$]. Thus, there may be ample transision. Similar to other designs, these systems can experi-
tors available to provide accelerators even for uncomm@fce contention if many processes desire a limited set of
workloads. cores.

2.2 Accelerator Types 2.3 Lack of OS Support

There are currently several types of accelerators that Y& €xamine how the following activities are handled in
quire diferent software interfaces. Talilgjives the char- 0days operating systems: (i) task invocation, (ii) virtual-
acteristics of three types of accelerators. ization, and (iii) scheduling.

Acceleration devices. Shared accelerators are comlask Invocation. We refer to the function block or code

monly implemented as devices and accessed thromﬁ%ﬁion that executes on an accelerator, like encrypting a
memory-mapped or port® instructions from a kernel © unk of data as a task. Currently, each accelerator type
device driver. For example, the OraSen Niagara cryp- Presents a dierent interface to the programmer. For ex-
tography accelerator requires a kernel device driver fmple, functional units are accessed via new instructions,
access, as do GPUs for accelerating data-parallel comptiile devices require a system call into the kernel. Thus,
tations. Such accelerators promise the greatest powert 4 difficult to write programs that can use a variety of
they are freed from the design constraints of executing@fcelerators.
the processor pipeline. However, access through the kerfurthermore, it may be desirable to decide at runtime
nel and JO instructions increases the latency of access afpether to execute a computation on an accelerator or a
limits these accelerators to coarse-grained computatiofs”U. If there is contention for an accelerator, it reduce
Furthermore, as acceleration devices execute outdi€ncy to execute code on a general-purpose CPU rather
the processor, they may not have access to virtual addrddaD to wait for the accelerator. In addition, a process may
ing. Thus, invoking the accelerator may require pinnirdgSsire to use both the accelerator and idle CPUs simulta-
data in memory and translating virtual addresses in drgously to further speed execution.

vance of launching the accelerated computation. Operating systems do not currently provide runtime
c S | | desi support to allow programs to decide whether to use accel-
O-processors. Several accelerator designs augmeplio, Instead, a program may be written or compiled

the processor pipeline with acceleration logic to ofiith calls to specific accelerators, as in a GPU.



| Properties | Acceleration Devices | Co-Processor | Independent Core |
Systems - Accelerated Processing Unijt - Consevation Cores - NVIDIA's Kal-El processor
like AMD Llano processors, - DySER - Over Provisioned Multicore
GPU on a separate die from- SIMD units like SSE System
the processor cores like Fermi - Scalable Cores like WIiDGET|
GPUs ForwardFlow
- Crypto accelerators in Sun
Niagara chips
Granularity Suitable for coarse-grained a¢-Fine-grained acceleration is Thread is migrated to the spe-

celeration possible since the instructionscial core for performance or to
are avaiable in ISA to accegsconserve energy
the special units
Resource Contention Multiple applications might| Per-core resource will not int Multiple threads might want tq
want to make use of the de- cur contention whereas sharirjgaccess the powerful core
vices at any instant of resource like DySER block
c-cores by multiple cores cap
incur contention
Accessibility Device driver is used to com: Special functional units are Thread needs to be migrated to
municate with the device and integrated with the core’s the special core and all states
the required data is trang- pipeline and can be accessedare readily available due tp
ferred to the device’s memory through instructions in ISA] cache coherency
through techniques like DMA So, no special support is

or zero copy needed from OS
Usage Latency Overhead of transferring data Latency of reconfiguring the Time taken for migrating
to device memory hardware logic to fit the com: thread onto the newer core and

putational loop. But this can additional latency caused by
be avoided if reconfiguration is cache misses due to cold cache
done during compile time effect
Capability They are similar to other exter- Special functional unit that Regular core that can execute
nal devices accepting instru¢- makes sense in context of somethreads, handle interrupts, a
tions from OS and returning core. It cannot function inder cess system memory

back the result. Most of the pendently
current devices are not able fo
run OS code on them

Ty

Table 1:Types of Accelerators

Virtualization. Several processors provide user-modédentical memory performance. When systems are het-
access to accelerator devic&d[9, 4]. These systemserogeneous, as in NUMA designs, the OS must predict fu-
provide new instructions that enqueue requests to a shared execution patterns in order to optimize performance,
accelerator. This reduces the communication latency tarad works less well. Accelerator-based systems are fun-
great extent since the path through driggstem is com- damentally heterogeneous, as they require mapping a mix
pletely avoided. of workloads to a mix of accelerators. Scheduler work on
However, direct access from user mode raises seveX@8MP systems has approached this problem where they
issues with virtualization. First, a shared accelerator magtnamically decide on the type of core to execute18).[
be able to translate virtual addresses from multiple pmBut, generalizing this issue to all types of accelerators is
cesses, and the OS must provide those translations. Sif@cult because predicting performance on a variety of
ond, a process may be preempted after launching an axcelerators may be morefitult.
celerated computation, and may not be able to receive th&econd, an accelerator-based systems requires policies
output. Thus, the OS must be aware when the computaprovide fairness and performance isolation for acceler-
tion completes so it can reclaim the process’s resourceator access in addition to CPU and memory. The OS must

Scheduling. Accelerator-based systems raise severdafFCide which processes deserve access to the accelerator
new scheduling problems. First, operating systems wéRd for how long. User-mode access to shared acceler-

best with uniform resources, such as identical cores YPrs complicates such scheduling decisions, because the
OS cannot interpose on every request.



Third, the OS must provide usage information to irters [19]. In contrast, our model identifies the right ex-
form application of what accelerators are available aedution resource to choose based on the system condition
for how long. This allows applications to make informednd also the task properties. Thus, both these models can
decisions about whether to use an accelerator or rely amexist to provide better benefits to the system.
direct execution on the CPU instead for low-latency oPe§-5> Accelerator Stub

ation.

In addition, device scheduling and sharing is impld-"€ Procedure call a program makes to invoke an accel-
mented by device drivers. In a contended system whé&rated function does not directly execute the function. To
multiple processes desire acceleration, this prevents Bi@vide a dynamic choice of how to execute the task, our
OS from imposing a scheduling policy on accelerator agYStém interposeaccelerator stubsn every invocation.
cess. Recent work on abstractions for GPUs have ddi€ responsibility of the stub is to (i) select the best im-
dressed this problend ], 19] with mechanisms that applyPlementation of the task, either with an accelerator or na-
to other device, that works well for acceleration devicd¥elY; (ii) pass data to the implementation, and (iii) imple-

accessed through drivers. ment synchronization mechanisms if necessary to block
] the caller until the result is available. An accelerator stub
3 Design is functionally similar to an RPC stuld]], which similarly

We propose a simple accelerator programming modigpatches a function to execute elsewhere.

with operating system support. The model treats the uséStubs abstract the presence offetient execution re-

of an accelerator as a function call that can be dynarfipurces present in the system and instead expose a sin-
cally dispatched to an accelerator or executed in-line 8l¢ procedural interface to applications. Furthermore,
the CPU. Based on this model, we discuss kernel and rtfi¢ stub enables the system to make online decisions of
time support mechanisms for flexible use of acceleratoydlich implementation to choose based on power and per-

Figure 1 shows the dferent components in our systenformance considerations. For example, a simple policy
and how they interact. would be to allow a web server with high priority to make

complete use of a cryptography accelerator, but allow its
use by other tasks when idle.
The goal of our model is to allow accelerators to be in- The mechanism for selecting the implementation of a
tegrated into common programming paradigms with littigsk is calledbinding and may occur early, when the pro-
effort yet provide flexibility on how accelerators are aggram loads, or late, when the task is invoked (or later).
cessed and when they are used. Thus, we treat accelefgplexample, a program may link its stubs against imple-
invocation as a non-blocking procedure call, similar toraentations that invoke an accelerator when the program
parallel function invocation in Cilkg]. The calling func- |oads, and all subsequent invocations of those tasks will
tion may block, if the accelerated function can execute @8e the accelerator. If, however, binding is deferred un-
the local core, or may return immediately. The callingl call time, then the program can choose on every call
function can then wait for the computation to complethether to use an accelerator or execute natively. This
similar to handling work units in an event driven modelecision can even be based on the parameters to the func-
or futures in asynchronous systeni$|[ The task to be tion. Binding can be deferred further if tasks enqueued,
accelerated is scheduled on an appropriate available ggcause the choice of implementation can be made when
celerator unit and the main thread can continue with ésecuting a task rather than submitting it. The stub can
execution or wait for the results. also send tasks directly to the accelerator if it supports di-
This model provides great flexibility in how accelerrect user-mode access from applications.
ators are invoked, as the mechanism is hidden behing 8 Accelerator Agent
function call. Furthermore, an accelerated procedure may
have multiple implementations depending on the accelBiery accelerator has agentthat manages the accelera-
ators available, which can be selected dynamically. Fi!- Inthe case of an acceleration device, it may be a driver
thermore, the abstraction is simple enough that it fits mafigt communicates with the device. For a co-processor, it
uses of accelerators, such as cryptography libraries invekay be a thread scheduled on the core with the acceler-
ing a kernel-mode driver. Finally, it can leverage existirgfor. The role of the agent is to (i) provide mechanisms
parallel runtimes, to provide synchronization and schedif-bind programs to the accelerator and create communi-
ing. cation channels, (ii) expose accelerator usage to the OS,
The PTask dataflow model assumes coarse-graifi@éd@uide policy decisions, and (i) implement scheduling
tasks that must be executed completely by accelefigcisions for the accelerator based on OS policy.

3.1 Programming Model

4



erator to a single application if there are no competing
requests from other applications.

Agents aid in virtualization by providing the mecha-
CPU cores Accelerator f¢-------------- , . ) !
! nisms to map virtual memory for accelerator devices and
to monitor communication channels. Thus, if a process is
i preempted while using an accelerator, the agent can take
Kernel space | OtherKemel | JAccelerator|, jAccelerator| 1 ragponsibility for eventually delivering the result.
Components Agent Monitor '
I I / i 3.4 Accelerator Monitor
! . B . B
Stub i Theaccelerator monitors a centralized kernel service re-
1 . . . . .
Userspace | Process making| o sponsible for monitoring and scheduling access to multi-
Direct Communication with | . . .
use of TR erator s possible " ple accelerators. Thus, it provides the global policy that
Accelerator decides which process should have access to an accelera-
Communication Channel tor and when. It notifies agents of which processes should

receive access, and it is up to the agent to put the policy
into practice.
The monitor is responsible for system-wide energy and

Before using an accelerator, a program must establispeiformance goals. It tracks accelerator usage by inter-
communication channel to the accelerator. For examplegating agents about their recent use. This provides in-
many drivers establish a ring thar of requests ina Sharedormation about the utilization of aCCGleratOfS, and can be
memory region to communicate with a device. A prografixposed to applications to help them choose whether to
establishes a connection with the agent in advance of U§e an accelerator. Thus, the monitor acts as an online
ing an accelerator, and the agent performs access-corfftgfeling tool that can return dynamic information such
checks and notifies the OS that the program is interes@gqueuing delay for the accelerators. This helps the sys-
in using the accelerator. To ensure security and that 3" to decide on a better execution resource on which to
process does not interrupt another process’s communigghedule the task at that point of time.
tion channel, an agent creates a separate channel for gachre|ated Work

requesting process.
Once bound, the stubs for an accelerator task can f&@st Work on OS support for accelerators has targeted a

the communication channel to invoke the accelerator. FEHTOW set of accelerators. PTasks][and Pegasusifl]
a device accelerator, it may make a system call to {igat the GPU as first class resource and provide schedul-
agent. For a co-processor or independent core, it {29 policies to ensure fair sharing among applications.
send data to the agent thread running on the acceleratbiyvever, these systems assume that GPUs must be used
core or it may ask the agent to migrate the thread to ffg§ the desired computation, and do not provide support
accelerator core for execution. for dynamically choosing between GPU or CPU imple-
The agent provides policies to schedule the accelefgntations of a computation. _
tor between processes. For a device with a kernel-mod&rameworks like Mergel] and Harmony 7] provide
driver, it may decide which queued requests to send#!time support to incorporatefigrent task implemen-
the device, while for a co-processor it may decide whidftions on diferent accelerators. However, they make
tasks to execute on the desired core. If an accelerdi§fision based on the application parameters, such as
supports direct communication from user-mode, then tiask granularity. Thus, they do not consider other users
agent may need additional hardware support to schedefiécceleration hardware that might be present in multi-
its use. One possibility is to virtualize communicatioRrogrammed systems. o _ _
channels: when the accelerator is in use by one proces§i€cently, there have been growing interests in design-
the channels of all other processes are disconnected f{Bfh hardware interfaces to target the segment between
the accelerator. Alternatively, the agent can act as a prdigf-grained and coarse-grained acceleration like wire-
for the accelerator. In this scenario, the agent receives$8€€d processod]. This architecture is a good fit for our
quests via shared memory and decides when to pass ti§$/9n. s it provides shared accelerators with user-mode
to the accelerator. As communication can be overlappgdgfess, and thus requires additional support from the OS
with the accelerator's work, this does not increase latent§,Mmanage contention from multiple clients.
In this case, the agent can also decide to assign the accel-

Figure 1:System Design



5 Conclusion

(6]

Accelerators provide opportunities to achieve powér e
ciency without hurting performance. Whileftéirent so-
lutions exist for diterent type of accelerators, a common
interface to leverage multiple accelerators is not avail-
able. Moreover, current systems cannot ensure perf 7]
mance isolation for accelerators. We propose a simple
procedural interface to accelerators that can dynamically
select an implementation at runtime. An accelerator agent
abstracts the accelerator to the operating system, allowing
it to participate in scheduling and resource allocation de-
cisions. Finally, the accelerator monitor enforces globd8]
properties such as fairness, performance isolation, and
power dficiency. With these mechanisms, théfelience
between regular cores and accelerators will be blurred
and new accelerators can be gracefully integrated into e[(g]
isting code.
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