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Abstract
The inexorable demand for computing power has lead to increas-
ing interest in accelerator-based designs. An accelerator is spe-
cialized hardware unit that can perform a set of tasks with much
higher performance or power efficiency than a general-purpose
CPU. They may be embedded in the pipeline as a functional unit,
as in SIMD instructions, or attached to the system as a separate
device, as in a cryptographic co-processor.

Current operating systems provide little support for accelera-
tors: whether integrated into a processor or attached as a device,
they are treated as CPU or a device and given no additional con-
sideration. However, future processors may have designs that
require more management by the operating system. For exam-
ple, heterogeneous processors may only provision some cores
with accelerators, and IBM’s wire-speed processor allows user-
mode code to launch computations on a shared accelerator with-
out kernel involvement. In such systems, the OS can improve
performance by allocating accelerator resources and scheduling
access to the accelerator as it does for memory and CPU time.

In this paper, we discuss the challenges presented by adopting
accelerators as an execution resource managed by the operating
system. We also present the initial design of our system, which
provides flexible control over where and when code executes and
can apply power and performance policies. It presents a simple
software interface that can leverage new hardware interfaces as
well as sharing of specialized units in a heterogeneous system.

1 Introduction
For many years, processor performance improved as pre-
dicted by Moore’s law [17]. The recent decline in Den-
nard’s scaling [6] motivated the creation of many-core
processors to reduce power consumption. However, the
continued rise in transistor density has provided proces-
sors with more transistors than they can use simultane-
ously.

This situation motivates the use ofacceleratorsto fur-
ther improve performance. Accelerators are fixed- or
programmable-function hardware that improves power or
performance significantly for a small set of codes. While
common for widely used functions, such as floating-point
computation and video decoding, accelerators are receiv-

ing more interest because they promise an efficient use for
the transistors becoming available on future processors.

Accelerators can take on many forms. At the finest
granularity, specialized instructions, such as SIMD or
CRC32 support in Intel x86, provide accelerated compu-
tation over small data items at low latency. In contrast,
coarse-grained accelerators may be accessed through a
kernel-mode device driver, as in cryptography accelera-
tors in Sun/Oracle Niagara processors and H.264 video
encoders for mobile devices [22]. Recent years have
seen a flurry of accelerator architectures, from GPUs for
offloading data-parallel computations [15] to specialized
units like c-cores [21] and DySER [10] to shared acceler-
ators in IBM’s wire-speed processor [9].

Currently, accelerators are ignored by the operating
system: the OS is unaware that a computation can exe-
cute either on a general purpose core or an accelerator,
and provides no assistance in finding the “best” place for
a computation. For example, a program that can either
use a shared accelerator or execute on a CPU may choose
to execute on the CPU for lower latency rather than wait
for more efficient execution on the accelerator. In addi-
tion, processors that provide direct access to accelerators
from user mode, such as wire-speed, may suffer from con-
tention without OS involvement.

We propose that operating systems should abstract and
manage accelerators, rather than leaving it up to compil-
ers, runtimes, and drivers. First, many proposed accel-
erator systems are inherently asymmetric in that not ev-
ery core is provisioned with identical accelerators. In a
general-purpose system, the OS must manage contention
for limited accelerator resources. Second, it may be useful
to choose at runtime between execution on an accelerator
and on a CPU. Supporting this capability requires the OS
make accelerator usage information available. Finally, OS
abstractions designed for accelerators can also be applied
to heterogeneous systems by treating a CPU as an acceler-
ator and scheduling or allocating its use. This provides a
unified framework for all forms of hardware acceleration.

In the remainder of this paper, we first discuss motivat-
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ing hardware features and analyze the different classes of
accelerators and the system challenges posed by accelera-
tors. We then discuss the design of our proposed system.

2 Motivation
Our work is motivated by the increasing interest in ac-
celerators from the hardware community and the lack of
support for accelerators in the systems community.

2.1 Rise of Accelerators

The choice of providing accelerators in the package is at-
tractive for two reasons (i) they are power efficient (ii)
with the increasing transistor count, all of them cannot
powered on simultaneously [3, 5].

Accelerators provide dramatically better efficiency than
processors. Compared to custom-designed ASICs, a CPU
may be 500 times less energy efficient due to costs such as
instruction fetch and programmable data paths [12]. Thus,
specialized units within processors can be used to execute
specific functions efficiently.

In addition, Moore’s law continues to provide addi-
tional transistors, even though processors lack the power
to use them all concurrently. As a result, general-purpose
multicore architectures and even GPUs cannot continue
to scale performance because of the limited power avail-
able to processors [8]. Thus, there may be ample transis-
tors available to provide accelerators even for uncommon
workloads.

2.2 Accelerator Types

There are currently several types of accelerators that re-
quire different software interfaces. Table1 gives the char-
acteristics of three types of accelerators.

Acceleration devices. Shared accelerators are com-
monly implemented as devices and accessed through
memory-mapped or port I/O instructions from a kernel
device driver. For example, the Oracle/Sun Niagara cryp-
tography accelerator requires a kernel device driver for
access, as do GPUs for accelerating data-parallel compu-
tations. Such accelerators promise the greatest power, as
they are freed from the design constraints of executing in
the processor pipeline. However, access through the ker-
nel and I/O instructions increases the latency of access and
limits these accelerators to coarse-grained computations.

Furthermore, as acceleration devices execute outside
the processor, they may not have access to virtual address-
ing. Thus, invoking the accelerator may require pinning
data in memory and translating virtual addresses in ad-
vance of launching the accelerated computation.

Co-processors. Several accelerator designs augment
the processor pipeline with acceleration logic to of-

fload program logic. A simple example is vector SIMD
instructions, which provide data-parallel execution for
greater performance and efficiency. More recently, c-
cores executes specific application logic with greater ef-
ficiency [21], and DySER provides a specialized data
path [10].

These accelerators provide low-latency access directly
from registers or virtual memory. However, co-processor
designs may still contend for power if not all co-
processors or cores can be active simultaneously. In
addition, heterogeneous system with a variety of accel-
erators attached to different cores may also experience
contention. Finally, programmable accelerators, such as
DySER, require a configuration step that may limit its
ability to accelerate short code fragments.

Independent cores. Finally, asymmetric or heteroge-
neous processors can also be considered accelerator-based
systems. Rather than specializing hardware to a specific
computation, such a system provides a variety of general-
purpose cores with different performance and power char-
acteristics. For example, NVidia’s Kal-El processor pro-
vides a low-power companion core [18]. On such a sys-
tem, a program may execute faster or with lower power
if it switches to a specific core for phases of its execu-
tion. Similar to other designs, these systems can experi-
ence contention if many processes desire a limited set of
cores.

2.3 Lack of OS Support

We examine how the following activities are handled in
todays operating systems: (i) task invocation, (ii) virtual-
ization, and (iii) scheduling.

Task Invocation. We refer to the function block or code
region that executes on an accelerator, like encrypting a
chunk of data as a task. Currently, each accelerator type
presents a different interface to the programmer. For ex-
ample, functional units are accessed via new instructions,
while devices require a system call into the kernel. Thus,
it is difficult to write programs that can use a variety of
accelerators.

Furthermore, it may be desirable to decide at runtime
whether to execute a computation on an accelerator or a
CPU. If there is contention for an accelerator, it reduce
latency to execute code on a general-purpose CPU rather
than to wait for the accelerator. In addition, a process may
desire to use both the accelerator and idle CPUs simulta-
neously to further speed execution.

Operating systems do not currently provide runtime
support to allow programs to decide whether to use accel-
eration. Instead, a program may be written or compiled
with calls to specific accelerators, as in a GPU.
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Properties Acceleration Devices Co-Processor Independent Core

Systems - Accelerated Processing Unit
like AMD Llano processors,
GPU on a separate die from
the processor cores like Fermi
GPUs
- Crypto accelerators in Sun
Niagara chips

- Consevation Cores
- DySER
- SIMD units like SSE

- NVIDIA’s Kal-El processor
- Over Provisioned Multicore
System
- Scalable Cores like WiDGET,
ForwardFlow

Granularity Suitable for coarse-grained ac-
celeration

Fine-grained acceleration is
possible since the instructions
are avaiable in ISA to access
the special units

Thread is migrated to the spe-
cial core for performance or to
conserve energy

Resource Contention Multiple applications might
want to make use of the de-
vices at any instant

Per-core resource will not in-
cur contention whereas sharing
of resource like DySER block,
c-cores by multiple cores can
incur contention

Multiple threads might want to
access the powerful core

Accessibility Device driver is used to com-
municate with the device and
the required data is trans-
ferred to the device’s memory
through techniques like DMA
or zero copy

Special functional units are
integrated with the core’s
pipeline and can be accessed
through instructions in ISA.
So, no special support is
needed from OS

Thread needs to be migrated to
the special core and all states
are readily available due to
cache coherency

Usage Latency Overhead of transferring data
to device memory

Latency of reconfiguring the
hardware logic to fit the com-
putational loop. But this can
be avoided if reconfiguration is
done during compile time

Time taken for migrating
thread onto the newer core and
additional latency caused by
cache misses due to cold cache
effect

Capability They are similar to other exter-
nal devices accepting instruc-
tions from OS and returning
back the result. Most of the
current devices are not able to
run OS code on them

Special functional unit that
makes sense in context of some
core. It cannot function inde-
pendently

Regular core that can execute
threads, handle interrupts, ac-
cess system memory

Table 1:Types of Accelerators

Virtualization. Several processors provide user-mode
access to accelerator devices [20, 9, 4]. These systems
provide new instructions that enqueue requests to a shared
accelerator. This reduces the communication latency to a
great extent since the path through driver/system is com-
pletely avoided.

However, direct access from user mode raises several
issues with virtualization. First, a shared accelerator must
be able to translate virtual addresses from multiple pro-
cesses, and the OS must provide those translations. Sec-
ond, a process may be preempted after launching an ac-
celerated computation, and may not be able to receive the
output. Thus, the OS must be aware when the computa-
tion completes so it can reclaim the process’s resources.

Scheduling. Accelerator-based systems raise several
new scheduling problems. First, operating systems work
best with uniform resources, such as identical cores or

identical memory performance. When systems are het-
erogeneous, as in NUMA designs, the OS must predict fu-
ture execution patterns in order to optimize performance,
and works less well. Accelerator-based systems are fun-
damentally heterogeneous, as they require mapping a mix
of workloads to a mix of accelerators. Scheduler work on
ACMP systems has approached this problem where they
dynamically decide on the type of core to execute on [13].
But, generalizing this issue to all types of accelerators is
difficult because predicting performance on a variety of
accelerators may be more difficult.

Second, an accelerator-based systems requires policies
to provide fairness and performance isolation for acceler-
ator access in addition to CPU and memory. The OS must
decide which processes deserve access to the accelerator
and for how long. User-mode access to shared acceler-
ators complicates such scheduling decisions, because the
OS cannot interpose on every request.
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Third, the OS must provide usage information to in-
form application of what accelerators are available and
for how long. This allows applications to make informed
decisions about whether to use an accelerator or rely on
direct execution on the CPU instead for low-latency oper-
ation.

In addition, device scheduling and sharing is imple-
mented by device drivers. In a contended system where
multiple processes desire acceleration, this prevents the
OS from imposing a scheduling policy on accelerator ac-
cess. Recent work on abstractions for GPUs have ad-
dressed this problem [11, 19] with mechanisms that apply
to other device, that works well for acceleration devices
accessed through drivers.

3 Design
We propose a simple accelerator programming model
with operating system support. The model treats the use
of an accelerator as a function call that can be dynami-
cally dispatched to an accelerator or executed in-line on
the CPU. Based on this model, we discuss kernel and run-
time support mechanisms for flexible use of accelerators.
Figure 1 shows the different components in our system
and how they interact.

3.1 Programming Model

The goal of our model is to allow accelerators to be in-
tegrated into common programming paradigms with little
effort yet provide flexibility on how accelerators are ac-
cessed and when they are used. Thus, we treat accelerator
invocation as a non-blocking procedure call, similar to a
parallel function invocation in Cilk [2]. The calling func-
tion may block, if the accelerated function can execute on
the local core, or may return immediately. The calling
function can then wait for the computation to complete,
similar to handling work units in an event driven model
or futures in asynchronous systems [16]. The task to be
accelerated is scheduled on an appropriate available ac-
celerator unit and the main thread can continue with its
execution or wait for the results.

This model provides great flexibility in how acceler-
ators are invoked, as the mechanism is hidden behind a
function call. Furthermore, an accelerated procedure may
have multiple implementations depending on the acceler-
ators available, which can be selected dynamically. Fur-
thermore, the abstraction is simple enough that it fits many
uses of accelerators, such as cryptography libraries invok-
ing a kernel-mode driver. Finally, it can leverage existing
parallel runtimes, to provide synchronization and schedul-
ing.

The PTask dataflow model assumes coarse-grained
tasks that must be executed completely by accelera-

tors [19]. In contrast, our model identifies the right ex-
ecution resource to choose based on the system condition
and also the task properties. Thus, both these models can
co-exist to provide better benefits to the system.

3.2 Accelerator Stub

The procedure call a program makes to invoke an accel-
erated function does not directly execute the function. To
provide a dynamic choice of how to execute the task, our
system interposesaccelerator stubson every invocation.
The responsibility of the stub is to (i) select the best im-
plementation of the task, either with an accelerator or na-
tively, (ii) pass data to the implementation, and (iii) imple-
ment synchronization mechanisms if necessary to block
the caller until the result is available. An accelerator stub
is functionally similar to an RPC stub [1], which similarly
dispatches a function to execute elsewhere.

Stubs abstract the presence of different execution re-
sources present in the system and instead expose a sin-
gle procedural interface to applications. Furthermore,
the stub enables the system to make online decisions of
which implementation to choose based on power and per-
formance considerations. For example, a simple policy
would be to allow a web server with high priority to make
complete use of a cryptography accelerator, but allow its
use by other tasks when idle.

The mechanism for selecting the implementation of a
task is calledbinding, and may occur early, when the pro-
gram loads, or late, when the task is invoked (or later).
For example, a program may link its stubs against imple-
mentations that invoke an accelerator when the program
loads, and all subsequent invocations of those tasks will
use the accelerator. If, however, binding is deferred un-
til call time, then the program can choose on every call
whether to use an accelerator or execute natively. This
decision can even be based on the parameters to the func-
tion. Binding can be deferred further if tasks enqueued,
because the choice of implementation can be made when
executing a task rather than submitting it. The stub can
also send tasks directly to the accelerator if it supports di-
rect user-mode access from applications.

3.3 Accelerator Agent

Every accelerator has anagentthat manages the accelera-
tor. In the case of an acceleration device, it may be a driver
that communicates with the device. For a co-processor, it
may be a thread scheduled on the core with the acceler-
ator. The role of the agent is to (i) provide mechanisms
to bind programs to the accelerator and create communi-
cation channels, (ii) expose accelerator usage to the OS,
to guide policy decisions, and (iii) implement scheduling
decisions for the accelerator based on OS policy.
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Figure 1:System Design

Before using an accelerator, a program must establish a
communication channel to the accelerator. For example,
many drivers establish a ring buffer of requests in a shared
memory region to communicate with a device. A program
establishes a connection with the agent in advance of us-
ing an accelerator, and the agent performs access-control
checks and notifies the OS that the program is interested
in using the accelerator. To ensure security and that one
process does not interrupt another process’s communica-
tion channel, an agent creates a separate channel for each
requesting process.

Once bound, the stubs for an accelerator task can use
the communication channel to invoke the accelerator. For
a device accelerator, it may make a system call to the
agent. For a co-processor or independent core, it may
send data to the agent thread running on the accelerator’s
core or it may ask the agent to migrate the thread to the
accelerator core for execution.

The agent provides policies to schedule the accelera-
tor between processes. For a device with a kernel-mode
driver, it may decide which queued requests to send to
the device, while for a co-processor it may decide which
tasks to execute on the desired core. If an accelerator
supports direct communication from user-mode, then the
agent may need additional hardware support to schedule
its use. One possibility is to virtualize communication
channels: when the accelerator is in use by one process,
the channels of all other processes are disconnected from
the accelerator. Alternatively, the agent can act as a proxy
for the accelerator. In this scenario, the agent receives re-
quests via shared memory and decides when to pass them
to the accelerator. As communication can be overlapped
with the accelerator’s work, this does not increase latency.
In this case, the agent can also decide to assign the accel-

erator to a single application if there are no competing
requests from other applications.

Agents aid in virtualization by providing the mecha-
nisms to map virtual memory for accelerator devices and
to monitor communication channels. Thus, if a process is
preempted while using an accelerator, the agent can take
responsibility for eventually delivering the result.

3.4 Accelerator Monitor

Theaccelerator monitoris a centralized kernel service re-
sponsible for monitoring and scheduling access to multi-
ple accelerators. Thus, it provides the global policy that
decides which process should have access to an accelera-
tor and when. It notifies agents of which processes should
receive access, and it is up to the agent to put the policy
into practice.

The monitor is responsible for system-wide energy and
performance goals. It tracks accelerator usage by inter-
rogating agents about their recent use. This provides in-
formation about the utilization of accelerators, and can be
exposed to applications to help them choose whether to
use an accelerator. Thus, the monitor acts as an online
modeling tool that can return dynamic information such
as queuing delay for the accelerators. This helps the sys-
tem to decide on a better execution resource on which to
schedule the task at that point of time.

4 Related Work
Past work on OS support for accelerators has targeted a
narrow set of accelerators. PTasks [19] and Pegasus [11]
treat the GPU as first class resource and provide schedul-
ing policies to ensure fair sharing among applications.
However, these systems assume that GPUs must be used
for the desired computation, and do not provide support
for dynamically choosing between GPU or CPU imple-
mentations of a computation.

Frameworks like Merge [14] and Harmony [7] provide
runtime support to incorporate different task implemen-
tations on different accelerators. However, they make
decision based on the application parameters, such as
task granularity. Thus, they do not consider other users
of acceleration hardware that might be present in multi-
programmed systems.

Recently, there have been growing interests in design-
ing hardware interfaces to target the segment between
fine-grained and coarse-grained acceleration like wire-
speed processor [9]. This architecture is a good fit for our
design, as it provides shared accelerators with user-mode
access, and thus requires additional support from the OS
to manage contention from multiple clients.
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5 Conclusion
Accelerators provide opportunities to achieve power effi-
ciency without hurting performance. While different so-
lutions exist for different type of accelerators, a common
interface to leverage multiple accelerators is not avail-
able. Moreover, current systems cannot ensure perfor-
mance isolation for accelerators. We propose a simple
procedural interface to accelerators that can dynamically
select an implementation at runtime. An accelerator agent
abstracts the accelerator to the operating system, allowing
it to participate in scheduling and resource allocation de-
cisions. Finally, the accelerator monitor enforces global
properties such as fairness, performance isolation, and
power efficiency. With these mechanisms, the difference
between regular cores and accelerators will be blurred,
and new accelerators can be gracefully integrated into ex-
isting code.
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