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Abstract 

Most modern cores perform a highly-associative 

translation look aside buffer (TLB) lookup on every 

memory access. These designs often hide the TLB 

lookup latency by overlapping it with L1 cache ac-

cess, but this overlap does not hide the power dissi-

pated by TLB lookups. It can even exacerbate the 

power dissipation by requiring higher associativity 

L1 cache. With today's concern for power dissipa-

tion, designs could instead adopt a virtual L1 cache, 

wherein TLB access power is dissipated only after L1 

cache misses. Unfortunately, virtual caches have 

compatibility issues, such as supporting writeable 

synonyms and x86’s physical page table walker. 

This work proposes an Opportunistic Virtual Cache 

(OVC) that exposes virtual caching as a dynamic 

optimization by allowing some memory blocks to be 

cached with virtual addresses and others with physi-

cal addresses.  OVC relies on small OS changes to 

signal which pages can use virtual caching (e.g., no 

writeable synonyms), but defaults to physical caching 

for compatibility. We show OVC's promise with anal-

ysis that finds virtual cache problems exist, but are 

dynamically rare. We change 240 lines in Linux 

2.6.28 to enable OVC. On experiments with Parsec 

and commercial workloads, the resulting system 

saves 94-99% of TLB lookup energy and nearly 23% 

of L1 cache dynamic lookup energy.  

1 Introduction 

The current focus on energy efficiency motivates 

reexamining processor design decisions from the 

previous performance-first era, including considering 

some optimizations that challenge compatibility 

across layers. To this end, this paper uses small virtu-

al memory changes to save substantial translation 

lookaside buffer (TLB)  and L1 cache lookup power.  

Almost all commercial processors today cache data 

and instructions using physical addresses and consult 

a TLB on every load, store, and instruction fetch. 

Thus, a TLB access must be performed for each 

cache access. However, processor designs are in-

creasingly constrained by power, and physically ad-

dressed caches lead to energy dissipation inefficien-

cies. TLB lookup must be fast, rarely miss—often 

necessitating an energy-hungry highly associative 

structure. Industrial sources report that 3-13% of core 

power (including caches) is due to TLB [33], and an 

early study finds that TLB power can be as high as 

15-17% of the chip power [16,18]. Our own analysis 

shows that a TLB lookup can consume 20-38% of the 

energy of an L1 cache lookup. 

Energy consumption is further exacerbated by efforts 

to reduce the critical-path latency of a cache access. 

Most current processors overlap the TLB lookup with 

indexing the L1 cache and use the TLB output during 

tag comparison [25,29]. Such a virtually indexed, 

physically tagged cache requires that the virtual index 

bits equal the physical index bits, which is only true 

if the index comes from the page offset. Thus, the L1 

cache size divided by its associativity must be less 

than or equal to the page size. To satisfy this con-

straint, some L1 cache designs use a larger associa-

tivity than needed for good miss rates (e.g., 64KB 

L1/4KB page size = 16-way), which leads to higher 

energy consumption (Section 2.1). 

Now that energy is a key constraint, it is worth revis-

iting virtual caching [5,38]. While most past virtual 

cache research focused on its latency benefit 

[5,13,35], we focus on its potential energy benefits. A 

virtual L1 cache is accessed with virtual addresses 

and thus requires address translation only on cache 

misses. This design makes TLB accesses much less 

frequent and reduces its energy consumption substan-

tially. Further, it can lower the L1 cache lookup ener-

gy by removing the associativity constraint on the L1 

cache design described above. 

However, virtual caches present several challenges 

that have hindered their adoption. First, a physical 

address may map to multiple virtual addresses (called 

synonyms). An update to one synonym must be re-

flected in all others, which could be cached in differ-

ent places. Thus it requires additional hardware or 



 

 

software support to guarantee correctness. Second, 

virtual caches store page permissions with each cache 

block, so that these can be checked on cache hits 

without a TLB access. When page permissions 

change, associated cache blocks must be updated or 

invalidated beyond the normal TLB invalidation. 

Third, virtual caches require extra mechanisms to 

disambiguate homonyms (a single virtual address 

mapped to different physical pages). Fourth, they 

pose challenges in maintaining coherence, as coher-

ence is traditionally enforced using physical address-

es. Finally, virtual caches can be incompatible with 

commercially important architectures. For example, 

the x86 page-table walker uses physical addresses to 

find page-table entries [40], which creates problem 

for caching entries by virtual address. 

We find, though, that many of these problems occur 

rarely in practice. We analyze the behavior of appli-

cations running on real hardware with Linux operat-

ing system to understand how synonyms are actually 

used and to measure the frequency and character of 

page permission changes. As detailed in Section 3, 

we find that synonyms are present in most processes, 

but account for only 0-9% of static pages and 0-13% 

of dynamic references. Furthermore, 95-100% of 

synonym pages are read-only, for which update in-

consistencies are not possible. We also find that page 

permission changes are relatively rare and most often 

involve all pages of a process, which allows permis-

sion coherence to be maintained through cache flush-

es at low overhead. Thus, a virtual cache, even with-

out synonym support, could perform well, save ener-

gy, and almost always work correctly.  

Since correctness must be absolute, we instead pro-

pose a best-of-both-worlds approach with opportunis-

tic virtual caching (OVC) that exposes virtual cach-

ing as a dynamic optimization rather than a hardware 

design point. OVC hardware can cache a block with 

either a virtual or physical address. Rather than pro-

vide complex support for synonyms in hardware 

[13,35] or enforce limits on which virtual addresses 

can be synonyms [23], OVC requires that the OS  

(with optional hints from applications) declare which 

addresses are not subject to read-write synonyms and 

can use virtual caching; all others use physical ad-

dresses and a normal TLB. This flexibility provides 

100% compatibility with existing software by de-

faulting to physical caching. The OS can then save 

energy by enabling virtual caching when it is safe 

(i.e., no read-write synonyms) and efficient (i.e., few 

permission changes). OVC provides a graceful soft-

ware adoption strategy, where OVC can initially be 

disabled, then used only in simple cases (e.g., read-

only and private pages) and later extended to more 

complex uses (e.g., OS page caches).  

With simple modifications to Linux (240 lines of 

code), our evaluation shows that OVC can eliminate 

94-99% of TLB lookup energy and saves more than 

23% of L1 cache dynamic energy compared to a vir-

tually indexed, physically tagged cache.  

This paper makes three contributions. First, we ana-

lyze modern workloads on real hardware to under-

stand virtual memory behavior. Second, based on this 

analysis, we develop policies and mechanisms that 

use physical caching for backward compatibility, but 

virtual caching to save energy by avoiding many ad-

dress translations. Third, we develop necessary low-

level mechanisms for realizing OVC.  

2 Background and Motivation 

In this section we first describe the benefits and limi-

tations of existing physically and virtually addressed 

L1 caches.  

2.1 Physically Addressed Caches 

A physical L1 cache requires the address translation 

to finish before a cache lookup can be completed. In 

one possible design, the address translation completes 

before L1 cache lookup starts, which places the entire 

TLB lookup latency in the critical path. However, a 

more common design is to overlap the TLB lookup 

with the cache access [25,29]. The processor sends 

the virtual page number to the TLB for translation 

while sending the page offset to the cache for index-

ing into the correct set. Then the output of the TLB is 

used to find a matching way in the set. Such a design 

is termed a virtually indexed/physically tagged cache. 

In both designs, all cache accesses, both instruction 

and data, require a TLB lookup. When latency (and 

thus performance) is the single most important design 

objective, a virtually indexed/physically tagged de-

sign is attractive as it hides the TLB lookup latency 

from the critical path of cache lookups while avoid-

ing the complexities of implementing a virtual cache.  

In the remainder of the paper, we focus on the second 

commonly used design. Henceforth we use the term 

physical cache to refer to a virtually indexed and 

physically tagged cache. 

When power is a first-class design constraint, two 

aspects of this design lead to higher energy consump-

tion. First, TLB lookups are energy-hungry: they 

occur frequently and often use a highly associative 

(or even fully associative) design [3,25]. 



 

 

 4-way 8-way 16-way 

Read Dynamic 

Energy 
1 1.309 1.858 

Write Dynamic 

Energy 
1 1.111 1.296 

Table 2. Normalized energy per access to L1 
(32KB) with varying associativity (w.r.t. 4-way). 

 4-way 8-way 16-way 

Parsec 1 0.998 0.998 

Commercial 1 0.998 0.996 

Table 3. Normalized run time with varying L1 
associativity (w.r.t. 4-way). 

 

 

 

 

 

 

 

 

Limiting associativity can reduce energy consump-

tion, but complicates support for multiple page sizes 

since indexing bits in a set-associative structure de-

pends upon the page size, which is unknown until the 

translation completes [34]. TLBs can also cause to 

thermal hotspots due to high power density [31]. As 

increasing working sets put further pressure on TLB 

reach [2], processors may require yet larger TLBs, 

thus making TLB energy consumption worse.  Se-

cond, to allow indexing with virtual addresses, the 

address bits used for cache indexing must be part of 

the page offset. This requires that cache size ÷ asso-

ciativity ≤ page size. For example, a 32KB L1 cache 

requires at least an 8-way set-associative design for 

4KB pages.  

With the method explained in Section 5.2, we empir-

ically find that such a highly associative L1 cache can 

lead to energy-inefficient cache designs that provide 

little hit-rate improvement benefit from their in-

creased associativity. Table 1 shows the number of 

misses per 1K cache references (MPKR) for Parsec 

and commercial workloads for a 32 KB L1 cache 

with varying associativity.  For example, when asso-

ciativity increases from 4 to 8 the MPKR changes 

very little (e.g., < 1 MPKR).  Even ignoring extra 

latency of higher-associativity lookups, this can at 

best lead to a 0.2-0.4% speedup when associativity is 

increased from 4 to 8 and 16 respectively (Table 3).  

However, Table 2 shows that a cache lookup con-

sumes 30% more energy when the associativity is 

increased from 4 to 8, and 86% more energy when 

increased from 4 to 16. While extra misses can burn 

more energy due to access to lower-level caches, the 

high L1 hit rates makes this a non-issue. This data 

shows that designing higher-associativity caches to 

overlap TLB latency can lead to energy-inefficient 

L1 caches. 

 

 

2.2 Virtually Addressed Caches 

A virtual L1 cache is both indexed and tagged by 

virtual address, and consequently does not require 

address translation to complete a cache hit. Instead, 

virtual caches consult a TLB on a miss to pass the 

physical addresses to the next level in the cache hier-

archy. The primary advantage of this design is that 

TLB lookups are required only on misses. L1 cache 

hit rates are generally high and thus a virtual L1 

cache acts as an effective energy filter on the TLB. 

Moreover, a virtual L1 cache removes the size and 

associativity constraints on the L1, which enables 

more energy-efficient designs.  

However, several decades of research on virtual 

caches have showed that they are hard: 

Synonyms:  Virtual-memory synonyms arise when 

multiple, different virtual addresses map to the same 

physical address. These synonyms can reside in mul-

tiple places (sets) in the cache under different virtual 

addresses. If one synonym of a block is modified, 

access to other synonyms with different virtual ad-

dresses may return stale data. 

Homonyms: Homonyms occur when a virtual ad-

dress refers to multiple physical locations in different 

address spaces. If not disambiguated, incorrect data 

may be returned.  

Page mapping and protection changes: The page 

permissions must be stored with each cache block to 

check permissions on cache hits. However, when 

permissions change, these bits must be updated. This 

is harder than with a TLB because many blocks may 

be cached from a single page, each of which must be 

updated. In addition, when the OS removes or chang-

es a page mapping, the virtual address for a cache 

block must change. 

L1 Data Misses per 1K Cache references 

 4-way 8-way 16-way 

Parsec  34.400 33.885 33.894 

Commercial 41.634 40.721 39.636 

L1 Instr.  Misses per 1K Cache references 

 4-way 8-way 16-way 

Parsec 1.053 0.991 0.934 

Commercial 12.202 12.011 11.938 

 Table 1. L1 cache (32KB, 64B block) miss ratios 
with varying associativity. 

 

 



 

 

 Table 4. Virtual memory synonym analysis 

Cache block eviction: Evicting a block cached with 

a virtual address requires translating the address to  a 

physical address to perform writeback to physical 

caches further down the hierarchy.  

Maintaining cache coherence:  Cache coherence is 

generally performed with physical addresses. With a 

virtual cache, the address carried by the coherence 

messages cannot be directly used to access the cache. 

Thus a reverse translation (physical-to-virtual) is log-

ically required.  

Backward compatibility: Virtual caches can break 

compatibility with existing processor architectures 

and operating systems. For example, OSes on x86, 

such as Linux, update a page table entry (PTE) using 

cacheable virtual addresses. However, the x86's 

hardware page-table walker uses only physical ad-

dresses to find PTEs in caches or memory [40]. With 

a virtual cache, it is unclear how to make x86's page 

table walker work both correctly (a virtual L1 cache 

entry is like a synonym) and efficiently (if caching of 

PTEs is disabled). Moreover, virtual caches often 

break compatibility by requiring explicit OS actions 

(e.g., cache flushes on permission changes) to main-

tain correctness. 

These challenges hinder the adoption of virtual L1 

caches despite their potential energy savings. In this 

work, we seek an ideal situation that provides most of 

the benefits of virtual caches by using it as a dynamic 

optimization while avoiding their complexities to an 

extent possible and maintaining compatibility.  

3 Analysis: Virtual Cache Opportunity? 

We set out to determine how often the expensive or 

complex virtual cache events actually happen in the 

real world by studying several modern workloads 

running on real x86 hardware under Linux. First, we 

measure the occurrences of virtual-memory syno-

nyms to determine how often and where they occur in 

practice. As noted in Section 2.2, synonyms pose a 

correctness problem for virtual caches. Second, we 

measure the frequency of page protection/mapping 

changes, as these events can be more expensive with 

virtual caches. 

We measured applications drawn from Parsec 

benchmark suite [30], as well as some important 

commercial applications (workloads explained in 

Section 5.2) listed in Table 4 running on Linux. We 

identified synonym pages by analyzing the kernel’s 

page tables, and measured dynamic references to 

synonyms using PIN [22]. 

3.1 Synonym Usage 

Table 4 presents a characterization of synonyms for 

our workloads. A page with a synonym is a virtual 

page whose corresponding physical page is mapped 

by at least one other user-space virtual address. We 

make three observations from this data. First, all but 

one application had synonym pages, but very few 

pages (0.06-9%) had synonyms. Second, the dynamic 

access rate of synonym pages was low (0-26%), indi-

cating that virtual caching could be effective for most 

references. Finally, most synonym pages are mapped 

read-only, and therefore cannot introduce inconsist-

encies. This occurs because these pages were often 

from immutable shared library code (95-100% of the 

synonym pages).  

We also found that the OS kernel sometimes uses 

synonyms in the kernel virtual address space to ac-

cess user memory.  For example, to process a direct 

I/O request that bypasses the operating system’s page 

cache (used by databases), the kernel copies user data 

using a kernel address-space synonym for the user-

space page. Kernel space synonyms are also used 

during a copy-on-write page fault to copy content of 

the old page to the newly allocated page. These ker-

nel-space synonyms are temporary but can introduce 

inconsistency through read-write synonyms.   

Finding 1: While synonyms are present in most ap-

plications, conflicting use of them is rare. This sug-

gests that virtual caches can be used safely for most, 

but not all, memory references. 

Applications 

Percentage 

of applica-

tion - allo-

cated pages 

that contains 

synonyms 

Percentage  

of  syno-

nym con-

taining 

pages that 

are read-

only 

Percentage 

of all dy-

namic user 

memory 

accesses to 

pages with 

synonyms 

canneal 0.06% 100% 0% 

fluidanimate 0.28% 100% 0% 

facesim 0.00% 100% 0% 

streamcluster 0.23% 100% 0.01% 

swaptions 5.90% 100% 26% 

x264 1.40% 100% 1% 

bind 0.01% 100% 0.16% 

firefox 9% 95% 13% 

memcached 0.01% 100% 0% 

specjbb 1% 98% 2% 



 

 

 Table 5. Frequency of TLB invalidations 

3.2 Page Mapping and Protection Changes 

The operating system maintains coherence between 

the page-table permissions and the TLB by invalidat-

ing entries on mapping changes or protection down-

grades, or by flushing the entire TLB. Table 5 pre-

sents the average inter-arrival time of TLB invalida-

tions for our workloads (and its reciprocal – the TLB 

invalidation request per sec). The inter-arrival time of 

TLB invalidations varies widely across the work-

loads, but we make two broad observations. First, 

even the smallest inter-arrival time between invalida-

tions (2.325ms for memcached) is an order of magni-

tudes longer than the typical time to flush and refill a 

L1 cache (~ 5µs). Hence, flushing the cache is un-

likely to have much performance impact. Second, we 

observe that almost all TLB invalidations (97.5-

100%) flush the entire TLB rather than a single entry. 

Most TLB invalidations occur on context switches 

that invalidate an entire address space, and only a few 

are for page protection/permission changes. Conse-

quently, complex support to invalidate cache entries 

from a single page may not be needed. 

Finding 2: TLB invalidations that occur due to page 

mapping or protection changes are infrequent and 

are thus unlikely to create much overhead. 

4 Opportunistic Virtual Caching 

The empirical analyses in the previous section sug-

gest that while virtual cache challenges are real, they 

occur rarely in practice. All the applications studied 

provide ample dynamic opportunities for safe (i.e., no 

read-write synonyms) and efficient (i.e., no page 

permission/protection changes) use of virtual caches. 

Unfortunately, correctness and backward compatibil-

ity must be absolute and not ―almost always‖.  

To benefit from virtual caches and while sidestepping 

their dynamically rare issues, we propose opportunis-

tic virtual caching (OVC). OVC hardware can cache 

a block with either virtual or physical address (Sec-

tion 4.1). Virtual caching saves energy (no TLB 

lookup on L1 hits and reduced L1 associativity). 

Physical caching provides compatibility for read-

write synonyms and caching page-table entries (and 

other structures) accessed by the processor with phys-

ical addresses.  

To reap the benefits of OVC, the operating system 

must enable virtual caching for memory regions that 

are amenable to the use of virtual caching (Section 

4.2). Importantly, we find that the OS kernel (Linux 

in this study) already possesses most of the infor-

mation needed to determine which memory regions 

are suitable for virtual caching and which are not. 

While OVC defaults to physical-only caching to ena-

ble deployment of unmodified OSes and applications, 

changes to support virtual caching affected only 240 

lines of code in the Linux kernel (version 2.6.28-4).  

4.1 OVC Hardware 

OVC requires that hardware provide the following 

services to realize the benefits of caching with virtual 

addresses – (1) determining when to use virtual cach-

ing and when physical caching, (2) reducing power 

when possible by bypassing the TLB and reducing 

cache associativity (3) handling-virtual memory 

homonyms and page permission/protection changes, 

and (4) handling coherence requests for virtually 

cached blocks. 

Determining when to use virtual caching: The 

hardware defines a one-bit register named 

ovc_enable that an operating system can set to enable 

OVC (default is unset).  When OVC is enabled, we 

take advantage of large virtual address space of mod-

ern 64-bit OSes to logically partition the address 

space into two non-overlapping address ranges (parti-

tion Pphysical and Pvirtual). The highest order bit of the 

virtual address range (e.g., VA47, the 48
th

 bit in Linux 

for x86-64) determines the partition in which a virtu-

al address of a cache lookup belongs to (in Pphysical  if 

VA47  is unset and Pvirtual  otherwise). Only cache 

lookups with virtual address in the partition Pvirtual 

can use the virtual address to cache data. Thus, there 

is no added lookup cost to determine how an address 

is cached.  

 Mean time be-

tween TLB in-

validation in ms 

(avg. TLB in-

validations per 

sec per core) 

Fraction of 

TLB invali-

dations to a 

single page 

canneal 132.62  (7.5) 0% 

facesim 75.64  (13.2) 0% 

fluidanimate 52.63  (19.2) 0% 

streamcluster 55.53  (18) 0% 

swaptions 51.81  (19.3) 0% 

x264 111.11  (9.4 ) 0% 

bind 7.571 (132.1 ) 0.00% 

firefox 4.761  (210.3) 0.10% 

memcached 2.325  (430.1) 0% 

specjbb 39.011  (25.6) 2.50% 

 



 

 

 

Figure 2. Opportunistic smaller associative L1 cache 
lookup using banked organization. 
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Opportunistically reducing lookup energy: When 

data can be cached using virtual address we take ad-

vantage of it in two ways. First, we avoid TLB 

lookups on L1 cache hits. Second, we allow lower 

associativity L1 cache lookups. As shown in Figure 
1, when cache lookup address falls in partition Pvirtual 

(i.e., ovc_enable and VA47 are set), the TLB lookup 

is disabled and part of the virtual address is used for 

cache tag match. Otherwise, conventional physical 

cache lookup is performed where the TLB is per-

formed in parallel with indexing into the L1 cache. 

On a miss to an address in Pvirtual a TLB lookup is 

required before sending the request to the next cache.  

Second, OVC dynamically lowers the associativity of 

L1 cache lookups. We note that the cache associativi-

ty constraint of a physical cache, described in Section 

2.1, need not hold true for virtually cached blocks. 

Figure 2 shows an example of how a banked L1 

cache organization can be leveraged to allow lower-

associativity cache lookup for a 32KB, 8-way set 

associative cache. The 8-way set-associative cache is 

organized in two banks each holding 4-ways of each 

set. For virtual addresses (i.e., ovc_enable and VA47 

are set), the processor only accesses one of the two 

banks (i.e., 4 ways) based on the value of a single 

virtual-address bit from the tag (VA12 in the exam-

ple).  For other accesses using physical addressing, 

the processor performs a full 8-way lookup as in a 

conventional cache. 

Handling homonyms and page permission chang-

es: OVC implementation uses conventional address-

space identifiers (ASIDs) to distinguish between dif-

ferent mappings of the same virtual address and 

avoids cache flushes on context switches. Both the 

ASID and the tag need to match for a cache hit to 

occur. OVC uses an all-zero ASID for blocks cached 

under the physical address (which results in an ASID 

match for any physical cache access). To handle the 

kernel address space, which is shared by all process-

es, we copy the global bit of the x86 PTE (which is 

set for globally shared kernel memory) to each cache 

block. Privileged mode access for blocks with this bit 

set do not need an ASID match. ASID overflow can 

be handled by modifying Linux’s existing ASID 

management code to trigger a cache flush before re-

using an ASID. 

Page permissions (e.g., read, write, execute, privi-

leged) augment the coherence state permissions for 

each cache block and are checked along with coher-

ence permissions. A page permission miss-match 

(e.g., write request for a block with read permission) 

triggers a cache miss, which results in access to the 

TLB. It is then handled appropriately as in conven-

tional physical cache for page permission miss-

matches. Page mapping or permission downgrades 

trigger a cache flush.  

Cache block eviction:  Eviction of a dirty L1 block 

invokes a write-back to a physical L2 cache. OVC—

like most virtual caches—logically augments each 

virtually-tagged block with a physical tag to avoid 

deadlock issues with doing an address translation at 

eviction. This physical tag adds a small state (e.g., 28 

bits on 544 bits state, tag, and data) and can either be 

stored (a) in the L1 cache or (b) an auxiliary structure 

(not shown) that mirrors L1 dimensions, but is ac-

cessed only on less frequent dirty evictions.  

Coherence:  L2 caches and beyond typically process 

coherence with physical addresses. To access virtual-

ly-tagged L1 blocks, incoming (initiated by other 

cache controllers) back-invalidations and forwarded 

requests may require reverse address translation 

(physical to virtual). Reverse translation can be 

avoided by serially searching physical tags (added for 

cache block eviction) for all sets that might hold a 

block. Since OVC already provides the processor 

with an associative lookup on physical addresses, it 

 

Figure 1. OVC L1 cache and TLB organization allow 
opportunistically bypassing TLB lookups. 
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associatively handles incoming coherence lookups 

with the same mechanism. For example, an incoming 

coherence request to the cache depicted in Figure 2, 

would simply access the physical tags in both banks 

(8-way total). Further, this action may be handled 

with an auxiliary structure (option (b) for handling 

eviction) and our empirical results find this occurs 

less than once per 1K L1 cache accesses due to high 

L1 hit rates and low read-write sharing.  Note that, 

coherence messages received due to local cache 

misses (e.g., data reply, acks) use miss-status han-

dling register entries to find the corresponding loca-

tion in the cache and hence do not require reverse 

translation lookup.   

Space and Power Cost: As depicted in Figure 3, 

OVC’s space overhead in the L1 cache stem primari-

ly from the addition of an ASID (16 bits) and physi-

cal tag (28 bits) per cache block. The primary tag 

must be extended (8 bits) to accommodate larger vir-

tual address tag. We also add page permis-

sion/privileged bits (3 bits) and a global bit. This to-

tals approximately 10% space overhead for the L1 

assuming 64-byte cache blocks. Given that L1 caches 

comprise a small fraction of the total space (and thus 

transistor count) for the cache hierarchy, which is 

dominated by larger L2 and L3 caches, the overall 

static power budget (which is grows roughly in pro-

portion to transistor count) of the on-chip caches 

barely changes:  ~ 1% overhead for the cache hierar-

chy in Table 6. Furthermore, the extra physical tag is 

accessed only for uncommon events: back invalida-

tions, forwarded coherence messages and dirty evic-

tions. L1 cache lookups and L1 cache hits do not 

accesses this physical tag. As a result, it leads ~ 1% 

energy overhead on L1 cache lookups, because most 

of the energy is spent on data access, which has not 

changed. We will show that this overhead is out-

weighed by the benefits of OVC. We also note that 

cycle time is not affected as data lookup latency 

overshadows the tag lookup latency. 

4.2 OVC Software 

The operating system for OVC hardware has three 

additional responsibilities:  (1) predicting when virtu-

al caching of an address is desirable (safe and effi-

cient); (2) informing the hardware of which memory 

can use virtual caching; and (3) ensuring continued 

safety as memory usage changes. We extend the 

Linux virtual-address allocator to address the first 

two and make minimal changes to the page-fault 

handler and scheduler for the third. 

Deciding when to use virtual caches:  The OS de-

cides whether virtual caching may be used at the 

granularity of memory regions. These are an internal 

OS abstraction for contiguous virtual-address ranges 

with shared properties, such as for program code, the 

stack, the heap, or a memory-mapped file. When al-

locating virtual addresses for a memory region the 

OS virtual address range allocator predicts whether 

the region could have read-write synonyms (unsafe) 

or frequent permission/mapping changes (inefficient), 

and if so, uses addresses that allows physical caching 

and otherwise uses virtual caching. 

While predicting future memory usage may seem 

difficult, we observe that the OS already possesses 

much of the information needed. The kernel virtual-

address allocator defines flags specifying how the 

memory region will be used, which guides its as-

signment of page permissions for the region. For ex-

ample, in Linux, the VM_PRIVATE flag indicates 

pages private to a single process, VM_SHARED indi-

cates a region may be shared with other processes, 

and VM_WRITE/VM_MAYWRITE indicates that a 

region is writable. From these flags, the kernel can 

easily determine that read-write synonyms occur only 

if the VM_SHARED and VM_WRITE/ 

VM_MAYWRITE flags are set, which causes the ker-

nel to use physical caching. For all other memory 

regions kernel predicts to use virtual caching without 

possibility of read-write synonyms. This enables a 

straightforward identification of which memory re-

gions can use virtual caching. 

Unfortunately, these flags do not provide hints about 

efficiency: some regions, such as transiently mapped 

files, may observe frequent page-mapping or protec-

tion changes (e.g., through mprotect() and mremap()) 

that can be expensive with virtual caches. We thus 

add an additional flag, MAP_DYNAMIC, to the virtu-

al-address allocator to indicate that the mapping or 

page permissions are likely to change.  Applications 

can use this flag while allocating memory to indicate 

frequent protection/mapping changes or the need for 

physical caching for other semantic or performance 

reasons.  

Communicating access type to hardware: The 

kernel uses the prediction techniques described above 

to select either virtually or physically cached ad-

dresses for a region. If MAP_DYNAMIC is specified, 

physical caching is used irrespective of the predic-

tion. We minimally extend the OS virtual address 

DataASID (Physical Tag)State
(V/P) TagPerm/

global

Figure 3. OVC overheads per L1 cache block. 

Additions are shaded. 



 

 

CPU 4-core, in-order, x86 

L1 TLB 
Private, Split Data and Instruction L1 

TLB, 64 entries, Fully associative 

L2 TLB 
Private, 512 entries, 4-way set associ-

ative 

L1 cache 
Private, Data and Instruction L1 

Cache, 32 KB, 8-way set associative 

L2 cache Private, 256KB, 8-way set associative 

L3 cache 
Shared, 8MB, 16-way set-associative, 

MESI Directory cache coherence 

  Table 6. Baseline system parameters. 

 

range allocator to allocate addresses from two non-

overlapping address pools, partitions Pphysical and Pvir-

tual (described in Section 4.1), depending on whether 

physical or virtual caching is to be used.  

Ensuring correctness: While the kernel only uses 

virtual caching when it predicts that conflicting syno-

nyms will not arise, they may still be possible in 

some rare cases. First, the kernel itself may use tem-

porary kernel address space synonyms to access some 

user memory (Section 3.1). Second, the kernel allows 

a program to later change how a memory region can 

be used (e.g., through Linux’s mprotect() system 

call). We provide a fallback mechanism to ensure 

correctness in these cases by detecting when the 

change occurs, and then flushing the cache between 

conflicting uses of memory. 

We insert two checks into the Linux kernel for con-

flicting synonyms. Within the page fault handler, we 

add code to check whether a virtually cached page is 

being mapped with write permissions at another ad-

dress in another process. Similarly, we put a check in 

the kernel routine that creates temporary kernel map-

pings to user memory to detect conflicting synonyms. 

If the above checks detect possibility of a conflicting 

synonym in the page-fault handler, the OS marks the 

process with write access to a synonym as tainted, 

meaning that when it runs, it may modify synonym 

pages. We modify the OS scheduler to flush the L1 

cache before and after the tainted process runs. If 

hyper-threading is enabled, scheduler needs to pro-

hibit tainted process from sharing the same core (and 

thus L1 cache) with another process. This ensures 

that address synonyms between the kernel and user-

mode code similarly: the kernel flushes caches before 

and after using kernel-space synonyms.  

For frequent and performance-sensitive synonym 

uses, such as direct I/O, a program can prevent these 

flushes by mapping I/O buffers using the 

MAP_DYNAMIC flag, which will use physical cach-

ing. However, even if a user fails to do so, the above 

mechanism ensures correctness anyways.  We also 

note that it is possible to have read-write synonyms 

within single process’s address space (e.g., if same 

file is simultaneously memory mapped by a single 

process at different places in writable mode). If such 

cases ever occur (we have encountered none), we 

propose to turn off OVC capability (unset 

ovc_enable) for the offending process.  

5 Evaluation 

5.1 Baseline architecture 

We modeled a 4-core system with an in-order x86 

CPU detailed in Table 6. The simulated system has 

two levels of TLB and three levels of caches. Each 

core sports separate L1 data and instruction TLB and 

a unified L2 TLB. The cache hierarchy has a split L1 

instruction and data cache private to each core. Each 

core also has a private L2 cache that is kept exclusive 

to the L1 cache.  The L3 cache is logically shared 

among all the cores, while physically distributed in 

multiple banks across the die.  

5.2 Methodology and Workloads 

We used x86 full system simulation with gem5 [4] to 

simulate a 4-core CMP with the configuration listed 

in Table 6. We modified the Linux 2.6.28-4 kernel to 

implement the operating system changes required for 

leveraging OVC. We used CACTI 6.5 [28] with the 

32nm process for computing energy numbers. For 

TLBs, L1 caches, and L2 caches, we used high per-

formance transistors (―itrs-hp‖), while low static 

power transistors (―itrs-lstp‖) were used for L3. L1 

and L2 caches lookup both tag and data array in par-

allel for providing faster accesses. However, L3 

caches lookup the tag array and data array in se-

quence.        

We use several of RMS workloads (canneal, facesim, 

fluidanimate, streamcluster, swaptions, x264) from 



 

 

 L1 Data TLB  L1 Instr. TLB 

canneal 72.253 99.986 

facesim 96.787 99.999 

fluidanimate 99.363 99.999 

streamcluster 95.083 99.994 

swaptions 99.028 99.989 

x264 95.287 99.304 

specjbb 91.887 99.192 

memcached 94.580 98.605 

bind 97.090 98.310 

Mean 93.484 99.486 

     Table 7. Percentage of TLB lookup energy 
saved by OVC 

Parsec [30]. We also use a set of commercial work-

loads:  SpecJBB 2005 [41], a server benchmark that 

models Java middle-tier business-logic processing; 

memcahed [26], an open source in-memory object 

store used by many popular web services including 

Facebook and Wikipedia; and bind, the BIND9 Do-

main Name Service (DNS) lookup service [9]. We 

also analyzed the open-source web browser Firefox 

[27] synonym usages and TLB invalidation charac-

terization. However, as an interactive workload, it 

does not run on our simulator.     

5.3 Results 

To evaluate OVC, we seek to answer three questions:  

(1) How much TLB lookup energy is saved? (2) How 

much of L1 cache lookup energy is saved? (3) What 

is the performance impact of the OVC?  

In our evaluation we focus on dynamic (lookup) en-

ergy as TLBs and L1 caches are frequently accessed, 

but relatively small, making OVC’s static-energy 

impact insignificant.  

TLB Energy savings:  Table 7 shows the percentage 

of L1 data and instruction TLB dynamic energy 

saved by the OVC. We observe that more than 94% 

of the L1 data TLB energy and more than 99% of L1 

Instruction TLB lookup energy is saved by OVC. To 

analyze this result, we first note that the cache ac-

cesses that use virtual addresses and hit in the L1 

cache avoid burning energy for TLB lookups. Table 8 

shows the percentage of data and instruction accesses 

that can complete without needing address transla-

tion, while the L1 cache hit rates for accesses using 

virtual addresses are listed in Table 9. We observe 

that on average 97% of data accesses and 100% of  

 

 

 

 

 

 

 

 

 

 

instruction accesses complete without needing ad-

dress translation, while a very high fraction these 

accesses (0.96 and 0.99 respectively)  hit in the 

cache, saving TLB lookup energy. 

L1 cache energy savings: OVC saves L1 cache 

lookup energy by accessing only a subset of the ways 

in a set when using virtual addresses (Section 2). Ta-

ble 10 presents percentage savings in dynamic energy 

by OVC from opportunistic use of partial lookups (4-

ways out of 8-ways) in the L1 cache. The second 

column shows that on average more than 22% of the 

dynamic energy spent on L1 data cache lookups is 

saved, while the third column shows similar savings 

for an instruction cache.  The rightmost column pro-

vides a more holistic view of the energy savings in 

the chip by showing how much of dynamic energy of 

TLBs and all the three levels of on-chip caches taken 

 

 

 

 

 

 

 

 

 

 Data V-addr ac-

cess perct. 

Instr V-addr 

access  perct. 

canneal 80.791 100 

facesim 99.843 100 

fluidanimate 99.925 100 

streamcluster 98.575 100 

swaptions 99.990 100 

x264 99.933 100 

specjbb 96.650 100 

memcached 99.291 100 

bind 98.97 100 

Mean 97.116 100 

     Table 8. Percentage of access that use Virtual 
address 

 

 L1 Data $ L1 Instr. $ 

canneal 0.894 0.999 

facesim 0.969 0.999 

fluidanimate 0.994 0.999 

streamcluster 0.964 0.999 

swaptions 0.990 0.999 

x264 0.953 0.993 

specjbb 0.950 0.991 

memcached 0.952 0.986 

bind 0.980 0.983 

Mean 0.961 0.994 

Table 9. L1 cache hit rates for virtual accesses 

 



 

 

 

Baseline 

L1D 

MPKR 

OVC 

L1D 

MPKR 

Baseline 

L1I 

MPKR 

OVC 

L1I 

MPKR 

Norm. 

runtime 

canneal 105.62 105.68 0.120 0.133 0.9994 

facesim 30.476 30.613 0.084 0.093 0.9999 

fluidanim. 5.735 5.622 0.003 0.006 0.9999 

streamclus. 35.436 35.421 0.037 0.037 1.00001 

swaptions 9.668 9.716 0.106 0.106 1.0004 

x264 47.329 46.492 6.53 6.977 1.00099 

specjbb 51.704 49.289 7.683 8.008 0.99330 

memcached 49.699 47.349 14.235 13.947 0.99632 

bind 20.527 19.630 13.981 16.893 1.00701 

Mean 39.576 38.879 4.745 5.133 1.00017 

Table 11. Miss ratio and runtime comparison be-
tween Baseline and OVC 

 

 

 

 

 

 

 

 

 

 

 

together is saved. On average, more than 19% of the 

dynamic energy spent on the on-chip cache hierarchy 

and the TLBs is eliminated by the OVC.  The savings 

can be as high as 32% (swaptions) for applications 

with small working sets that rarely access L2 or L3 

caches. In total, OVC saves a considerable portion of 

on-chip memory subsystem dynamic energy through 

lower associative L1 cache lookups and TLB lookup 

savings as these two frequent lookups account for 

most of the dynamic energy in the on-chip memory. 

Performance impact: We quantify the performance 

implications of OVC in Table 11 which show the 

number of misses per 1K cache reference (MPKR) 

for the baseline and the OVC L1 data and instruction 

caches. For the L1 data cache, the change in the 

number of misses is within a negligible 0.7 misses 

per 1K cache reference, while changes for instruction 

caches are even smaller. Two of the workloads 

(specjbb, memcached) experience larger L1-D cache 

miss rate decrease with OVC (~2 misses per 1K ref-

erence, which translates to a minuscule hit-rate dif-

ference), while the L1 I-cache miss rate increases for 

one workload (bind). We note that cache hit/miss 

patterns are slightly perturbed due to use of a single 

bit from the virtual page number in selection of the 

bank where an access should go when virtual address 

is used under OVC. More importantly from Table 11 

(right-most column), we observe that OVC hardly 

changes run time compared to the baseline system 

(within 0.017%).  The unchanged run time, coupled 

with OVC’s small static power overhead to the whole 

on-chip cache hierarchy (Section 4.1) indicates that 

OVC leaves the static power consumption of the on- 

chip memory subsystem largely unchanged while 

saving substantial dynamic energy. Furthermore, for 

these workloads, the operating system never needed 

to use the taint bit (Section 4.2) as they do not use 

direct I/O or make system calls to change page pro-

tection. Moreover, there were no cache flushes due to 

memory-mapping changes. 

6 Related Work 

There has been decades of research on implementing 

virtual caches, which are summarized by Cekleov 

and Dubois for both uniprocessor [5] and multipro-

cessor systems [6]. Here we discuss a few of the most 

related work on virtual caches.  We also discuss rele-

vant work on reducing TLB power.  

Goodman proposed an all-hardware solution for han-

dling synonyms by introducing dual-tag store for 

finding reverse translations on possible synonyms 

[13], while a similar technique uses back-pointers in 

L2 physical caches for finding synonyms in L1 virtu-

al caches [35].  Kim et al. proposed the U-cache in 

which a small physically-indexed cache was added to 

hold reverse translations for pages with possible syn-

onyms [19].  A few other works advocate for side-

stepping the problem of synonyms by constraining 

sharing (and thus synonyms) through shared seg-

ments only [10,38] or through constrained virtual to 

physical memory mapping (page coloring) to ensure 

synonyms always fall in the same cache set [23]. Qiu 

et al. [32] proposed a small synonym lookaside buffer 

in place of a TLB to handle synonyms in a virtual 

cache hierarchy. On the other side of the spectrum, 

 L1 Data $ 

dynamic 

energy 

savings 

L1 Instr.  

$ dynam-

ic energy 

savings 

TLBs + $ 

hierarchy 

dynamic 

energy sav-

ings 

canneal 17.381 22.800 9.989 

facesim 22.252 22.800 18.575 

fluidanimate 22.727 22.801 30.672 

streamcluster 21.805 22.802 16.709 

swaptions 22.797 22.807 32.542 

x264 27.737 23.230 25.446 

specjbb 23.229 22.771 17.547 

memcached 23.352 23.155 16.765 

bind 22.812 22.784 28.283 

Mean 22.624 22.883 19.546 

      Table 10. Percentage of Dynamic energy savings 
in the caches 

 



 

 

single address space operating systems like Opal 

[8,12] and Singularity [20] propose a new OS design 

philosophy that does away with private per-process 

address spaces altogether (and thus no possibility of 

synonyms). Although many of the above techniques 

for virtual caching are used in OVC; we expose vir-

tual caching as an optimization rather than a design 

point to leverage benefits of virtual caching when 

suitable and defaulting to physical cache when need-

ed for correctness, performance or compatibility.  

Several past hardware proposals addressed the prob-

lem of TLB power consumption through TLB CAM 

reorganization [16], by adding hardware filter or 

buffering for TLB access [7,14] or by using banked 

TLB organization [7,24].  Kadayif et al. [17] pro-

posed adding hardware translation registers to hold 

frequently accessed address translations under com-

piler directions. Ekman et al. [11] evaluated possible 

TLB energy savings by using virtual L1 caches as a 

pure hardware technique while also proposing a page 

grain structure to reduce the coherence snoop energy 

in the cache. Wood et al. [38]  advocated doing away 

with TLBs by using virtual caches and using in-cache 

address translation. Jacob et al. [15] proposed han-

dling address translation with software exceptions on 

cache miss to also get rid of the TLB. OVC, on the 

other hand, is a software-hardware co-design tech-

nique that aims to maintain full backward compatibil-

ity with existing software while opportunistically 

allow both TLB and L1 cache lookup energy reduc-

tion.   

Woo et al. [37] proposed using bloom filter to hold 

synonym addresses to save L1 cache lookup energy 

by allowing lower associativity.  Ashok et al. [1] pro-

posed compiler directed static speculative address 

translation and cache access support to save energy.  

Different from their work, we do not burden the 

hardware with the onus of ensuring correctness for 

static miss-speculation; neither do we require recom-

pilation of application to take advantage of OVC.  

Zhou et al. [39] proposed heterogeneously tagged 

(both virtual and physical tag) to allow cache access 

without TLB access for memory regions explicitly 

annotated by the application. Unlike their work, ap-

plication modification is not necessary for OVC. Fur-

thermore, OVC saves L1 cache lookup energy 

through reduced associativity.   Lee et al. [21] pro-

posed to exploit the distinct characteristics of access-

es to different memory regions of a process (e.g., 

stack, heap etc.) to statically partition the TLB and 

cache resources to save energy. OVC does not re-

quire static partitioning of hardware resources and 

instead opportunistically use virtual caching to allow 

substantial energy benefits.   

Some older embedded processors from ARM also 

allowed virtual caches, but had to flush caches on 

context switch/page permission changes [36].      

7 Conclusion 

Our empirical analysis shows that virtual cache chal-

lenges are real, but occur rarely in practice. To bene-

fit from virtual caches and yet sidestep their rare cor-

rectness issues, we proposed the opportunistic virtual 

cache (OVC) that can cache a block with either a 

virtual (saving power) or physical address (ensuring 

compatibility). We show that small OS changes ena-

ble effective OVC virtual caching, while OVC facili-

tates its own adoption by operating correctly with no 

software changes.  
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