

Reducing Memory Reference Energy with Opportunistic Virtual Caching

Arkaprava Basu Mark D. Hill Michael M. Swift

University of Wisconsin-Madison

{basu, markhill, swift}@cs.wisc.edu

Abstract

Most modern cores perform a highly-associative

translation look aside buffer (TLB) lookup on every

memory access. These designs often hide the TLB

lookup latency by overlapping it with L1 cache ac-

cess, but this overlap does not hide the power dissi-

pated by TLB lookups. It can even exacerbate the

power dissipation by requiring higher associativity

L1 cache. With today's concern for power dissipa-

tion, designs could instead adopt a virtual L1 cache,

wherein TLB access power is dissipated only after L1

cache misses. Unfortunately, virtual caches have

compatibility issues, such as supporting writeable

synonyms and x86’s physical page table walker.

This work proposes an Opportunistic Virtual Cache

(OVC) that exposes virtual caching as a dynamic

optimization by allowing some memory blocks to be

cached with virtual addresses and others with physi-

cal addresses. OVC relies on small OS changes to

signal which pages can use virtual caching (e.g., no

writeable synonyms), but defaults to physical caching

for compatibility. We show OVC's promise with anal-

ysis that finds virtual cache problems exist, but are

dynamically rare. We change 240 lines in Linux

2.6.28 to enable OVC. On experiments with Parsec

and commercial workloads, the resulting system

saves 94-99% of TLB lookup energy and nearly 23%

of L1 cache dynamic lookup energy.

1 Introduction

The current focus on energy efficiency motivates

reexamining processor design decisions from the

previous performance-first era, including considering

some optimizations that challenge compatibility

across layers. To this end, this paper uses small virtu-

al memory changes to save substantial translation

lookaside buffer (TLB) and L1 cache lookup power.

Almost all commercial processors today cache data

and instructions using physical addresses and consult

a TLB on every load, store, and instruction fetch.

Thus, a TLB access must be performed for each

cache access. However, processor designs are in-

creasingly constrained by power, and physically ad-

dressed caches lead to energy dissipation inefficien-

cies. TLB lookup must be fast, rarely miss—often

necessitating an energy-hungry highly associative

structure. Industrial sources report that 3-13% of core

power (including caches) is due to TLB [33], and an

early study finds that TLB power can be as high as

15-17% of the chip power [16,18]. Our own analysis

shows that a TLB lookup can consume 20-38% of the

energy of an L1 cache lookup.

Energy consumption is further exacerbated by efforts

to reduce the critical-path latency of a cache access.

Most current processors overlap the TLB lookup with

indexing the L1 cache and use the TLB output during

tag comparison [25,29]. Such a virtually indexed,

physically tagged cache requires that the virtual index

bits equal the physical index bits, which is only true

if the index comes from the page offset. Thus, the L1

cache size divided by its associativity must be less

than or equal to the page size. To satisfy this con-

straint, some L1 cache designs use a larger associa-

tivity than needed for good miss rates (e.g., 64KB

L1/4KB page size = 16-way), which leads to higher

energy consumption (Section 2.1).

Now that energy is a key constraint, it is worth revis-

iting virtual caching [5,38]. While most past virtual

cache research focused on its latency benefit

[5,13,35], we focus on its potential energy benefits. A

virtual L1 cache is accessed with virtual addresses

and thus requires address translation only on cache

misses. This design makes TLB accesses much less

frequent and reduces its energy consumption substan-

tially. Further, it can lower the L1 cache lookup ener-

gy by removing the associativity constraint on the L1

cache design described above.

However, virtual caches present several challenges

that have hindered their adoption. First, a physical

address may map to multiple virtual addresses (called

synonyms). An update to one synonym must be re-

flected in all others, which could be cached in differ-

ent places. Thus it requires additional hardware or

software support to guarantee correctness. Second,

virtual caches store page permissions with each cache

block, so that these can be checked on cache hits

without a TLB access. When page permissions

change, associated cache blocks must be updated or

invalidated beyond the normal TLB invalidation.

Third, virtual caches require extra mechanisms to

disambiguate homonyms (a single virtual address

mapped to different physical pages). Fourth, they

pose challenges in maintaining coherence, as coher-

ence is traditionally enforced using physical address-

es. Finally, virtual caches can be incompatible with

commercially important architectures. For example,

the x86 page-table walker uses physical addresses to

find page-table entries [40], which creates problem

for caching entries by virtual address.

We find, though, that many of these problems occur

rarely in practice. We analyze the behavior of appli-

cations running on real hardware with Linux operat-

ing system to understand how synonyms are actually

used and to measure the frequency and character of

page permission changes. As detailed in Section 3,

we find that synonyms are present in most processes,

but account for only 0-9% of static pages and 0-13%

of dynamic references. Furthermore, 95-100% of

synonym pages are read-only, for which update in-

consistencies are not possible. We also find that page

permission changes are relatively rare and most often

involve all pages of a process, which allows permis-

sion coherence to be maintained through cache flush-

es at low overhead. Thus, a virtual cache, even with-

out synonym support, could perform well, save ener-

gy, and almost always work correctly.

Since correctness must be absolute, we instead pro-

pose a best-of-both-worlds approach with opportunis-

tic virtual caching (OVC) that exposes virtual cach-

ing as a dynamic optimization rather than a hardware

design point. OVC hardware can cache a block with

either a virtual or physical address. Rather than pro-

vide complex support for synonyms in hardware

[13,35] or enforce limits on which virtual addresses

can be synonyms [23], OVC requires that the OS

(with optional hints from applications) declare which

addresses are not subject to read-write synonyms and

can use virtual caching; all others use physical ad-

dresses and a normal TLB. This flexibility provides

100% compatibility with existing software by de-

faulting to physical caching. The OS can then save

energy by enabling virtual caching when it is safe

(i.e., no read-write synonyms) and efficient (i.e., few

permission changes). OVC provides a graceful soft-

ware adoption strategy, where OVC can initially be

disabled, then used only in simple cases (e.g., read-

only and private pages) and later extended to more

complex uses (e.g., OS page caches).

With simple modifications to Linux (240 lines of

code), our evaluation shows that OVC can eliminate

94-99% of TLB lookup energy and saves more than

23% of L1 cache dynamic energy compared to a vir-

tually indexed, physically tagged cache.

This paper makes three contributions. First, we ana-

lyze modern workloads on real hardware to under-

stand virtual memory behavior. Second, based on this

analysis, we develop policies and mechanisms that

use physical caching for backward compatibility, but

virtual caching to save energy by avoiding many ad-

dress translations. Third, we develop necessary low-

level mechanisms for realizing OVC.

2 Background and Motivation

In this section we first describe the benefits and limi-

tations of existing physically and virtually addressed

L1 caches.

2.1 Physically Addressed Caches

A physical L1 cache requires the address translation

to finish before a cache lookup can be completed. In

one possible design, the address translation completes

before L1 cache lookup starts, which places the entire

TLB lookup latency in the critical path. However, a

more common design is to overlap the TLB lookup

with the cache access [25,29]. The processor sends

the virtual page number to the TLB for translation

while sending the page offset to the cache for index-

ing into the correct set. Then the output of the TLB is

used to find a matching way in the set. Such a design

is termed a virtually indexed/physically tagged cache.

In both designs, all cache accesses, both instruction

and data, require a TLB lookup. When latency (and

thus performance) is the single most important design

objective, a virtually indexed/physically tagged de-

sign is attractive as it hides the TLB lookup latency

from the critical path of cache lookups while avoid-

ing the complexities of implementing a virtual cache.

In the remainder of the paper, we focus on the second

commonly used design. Henceforth we use the term

physical cache to refer to a virtually indexed and

physically tagged cache.

When power is a first-class design constraint, two

aspects of this design lead to higher energy consump-

tion. First, TLB lookups are energy-hungry: they

occur frequently and often use a highly associative

(or even fully associative) design [3,25].

 4-way 8-way 16-way

Read Dynamic

Energy
1 1.309 1.858

Write Dynamic

Energy
1 1.111 1.296

Table 2. Normalized energy per access to L1
(32KB) with varying associativity (w.r.t. 4-way).

 4-way 8-way 16-way

Parsec 1 0.998 0.998

Commercial 1 0.998 0.996

Table 3. Normalized run time with varying L1
associativity (w.r.t. 4-way).

Limiting associativity can reduce energy consump-

tion, but complicates support for multiple page sizes

since indexing bits in a set-associative structure de-

pends upon the page size, which is unknown until the

translation completes [34]. TLBs can also cause to

thermal hotspots due to high power density [31]. As

increasing working sets put further pressure on TLB

reach [2], processors may require yet larger TLBs,

thus making TLB energy consumption worse. Se-

cond, to allow indexing with virtual addresses, the

address bits used for cache indexing must be part of

the page offset. This requires that cache size ÷ asso-

ciativity ≤ page size. For example, a 32KB L1 cache

requires at least an 8-way set-associative design for

4KB pages.

With the method explained in Section 5.2, we empir-

ically find that such a highly associative L1 cache can

lead to energy-inefficient cache designs that provide

little hit-rate improvement benefit from their in-

creased associativity. Table 1 shows the number of

misses per 1K cache references (MPKR) for Parsec

and commercial workloads for a 32 KB L1 cache

with varying associativity. For example, when asso-

ciativity increases from 4 to 8 the MPKR changes

very little (e.g., < 1 MPKR). Even ignoring extra

latency of higher-associativity lookups, this can at

best lead to a 0.2-0.4% speedup when associativity is

increased from 4 to 8 and 16 respectively (Table 3).

However, Table 2 shows that a cache lookup con-

sumes 30% more energy when the associativity is

increased from 4 to 8, and 86% more energy when

increased from 4 to 16. While extra misses can burn

more energy due to access to lower-level caches, the

high L1 hit rates makes this a non-issue. This data

shows that designing higher-associativity caches to

overlap TLB latency can lead to energy-inefficient

L1 caches.

2.2 Virtually Addressed Caches

A virtual L1 cache is both indexed and tagged by

virtual address, and consequently does not require

address translation to complete a cache hit. Instead,

virtual caches consult a TLB on a miss to pass the

physical addresses to the next level in the cache hier-

archy. The primary advantage of this design is that

TLB lookups are required only on misses. L1 cache

hit rates are generally high and thus a virtual L1

cache acts as an effective energy filter on the TLB.

Moreover, a virtual L1 cache removes the size and

associativity constraints on the L1, which enables

more energy-efficient designs.

However, several decades of research on virtual

caches have showed that they are hard:

Synonyms: Virtual-memory synonyms arise when

multiple, different virtual addresses map to the same

physical address. These synonyms can reside in mul-

tiple places (sets) in the cache under different virtual

addresses. If one synonym of a block is modified,

access to other synonyms with different virtual ad-

dresses may return stale data.

Homonyms: Homonyms occur when a virtual ad-

dress refers to multiple physical locations in different

address spaces. If not disambiguated, incorrect data

may be returned.

Page mapping and protection changes: The page

permissions must be stored with each cache block to

check permissions on cache hits. However, when

permissions change, these bits must be updated. This

is harder than with a TLB because many blocks may

be cached from a single page, each of which must be

updated. In addition, when the OS removes or chang-

es a page mapping, the virtual address for a cache

block must change.

L1 Data Misses per 1K Cache references

 4-way 8-way 16-way

Parsec 34.400 33.885 33.894

Commercial 41.634 40.721 39.636

L1 Instr. Misses per 1K Cache references

 4-way 8-way 16-way

Parsec 1.053 0.991 0.934

Commercial 12.202 12.011 11.938

 Table 1. L1 cache (32KB, 64B block) miss ratios
with varying associativity.

 Table 4. Virtual memory synonym analysis

Cache block eviction: Evicting a block cached with

a virtual address requires translating the address to a

physical address to perform writeback to physical

caches further down the hierarchy.

Maintaining cache coherence: Cache coherence is

generally performed with physical addresses. With a

virtual cache, the address carried by the coherence

messages cannot be directly used to access the cache.

Thus a reverse translation (physical-to-virtual) is log-

ically required.

Backward compatibility: Virtual caches can break

compatibility with existing processor architectures

and operating systems. For example, OSes on x86,

such as Linux, update a page table entry (PTE) using

cacheable virtual addresses. However, the x86's

hardware page-table walker uses only physical ad-

dresses to find PTEs in caches or memory [40]. With

a virtual cache, it is unclear how to make x86's page

table walker work both correctly (a virtual L1 cache

entry is like a synonym) and efficiently (if caching of

PTEs is disabled). Moreover, virtual caches often

break compatibility by requiring explicit OS actions

(e.g., cache flushes on permission changes) to main-

tain correctness.

These challenges hinder the adoption of virtual L1

caches despite their potential energy savings. In this

work, we seek an ideal situation that provides most of

the benefits of virtual caches by using it as a dynamic

optimization while avoiding their complexities to an

extent possible and maintaining compatibility.

3 Analysis: Virtual Cache Opportunity?

We set out to determine how often the expensive or

complex virtual cache events actually happen in the

real world by studying several modern workloads

running on real x86 hardware under Linux. First, we

measure the occurrences of virtual-memory syno-

nyms to determine how often and where they occur in

practice. As noted in Section 2.2, synonyms pose a

correctness problem for virtual caches. Second, we

measure the frequency of page protection/mapping

changes, as these events can be more expensive with

virtual caches.

We measured applications drawn from Parsec

benchmark suite [30], as well as some important

commercial applications (workloads explained in

Section 5.2) listed in Table 4 running on Linux. We

identified synonym pages by analyzing the kernel’s

page tables, and measured dynamic references to

synonyms using PIN [22].

3.1 Synonym Usage

Table 4 presents a characterization of synonyms for

our workloads. A page with a synonym is a virtual

page whose corresponding physical page is mapped

by at least one other user-space virtual address. We

make three observations from this data. First, all but

one application had synonym pages, but very few

pages (0.06-9%) had synonyms. Second, the dynamic

access rate of synonym pages was low (0-26%), indi-

cating that virtual caching could be effective for most

references. Finally, most synonym pages are mapped

read-only, and therefore cannot introduce inconsist-

encies. This occurs because these pages were often

from immutable shared library code (95-100% of the

synonym pages).

We also found that the OS kernel sometimes uses

synonyms in the kernel virtual address space to ac-

cess user memory. For example, to process a direct

I/O request that bypasses the operating system’s page

cache (used by databases), the kernel copies user data

using a kernel address-space synonym for the user-

space page. Kernel space synonyms are also used

during a copy-on-write page fault to copy content of

the old page to the newly allocated page. These ker-

nel-space synonyms are temporary but can introduce

inconsistency through read-write synonyms.

Finding 1: While synonyms are present in most ap-

plications, conflicting use of them is rare. This sug-

gests that virtual caches can be used safely for most,

but not all, memory references.

Applications

Percentage

of applica-

tion - allo-

cated pages

that contains

synonyms

Percentage

of syno-

nym con-

taining

pages that

are read-

only

Percentage

of all dy-

namic user

memory

accesses to

pages with

synonyms

canneal 0.06% 100% 0%

fluidanimate 0.28% 100% 0%

facesim 0.00% 100% 0%

streamcluster 0.23% 100% 0.01%

swaptions 5.90% 100% 26%

x264 1.40% 100% 1%

bind 0.01% 100% 0.16%

firefox 9% 95% 13%

memcached 0.01% 100% 0%

specjbb 1% 98% 2%

 Table 5. Frequency of TLB invalidations

3.2 Page Mapping and Protection Changes

The operating system maintains coherence between

the page-table permissions and the TLB by invalidat-

ing entries on mapping changes or protection down-

grades, or by flushing the entire TLB. Table 5 pre-

sents the average inter-arrival time of TLB invalida-

tions for our workloads (and its reciprocal – the TLB

invalidation request per sec). The inter-arrival time of

TLB invalidations varies widely across the work-

loads, but we make two broad observations. First,

even the smallest inter-arrival time between invalida-

tions (2.325ms for memcached) is an order of magni-

tudes longer than the typical time to flush and refill a

L1 cache (~ 5µs). Hence, flushing the cache is un-

likely to have much performance impact. Second, we

observe that almost all TLB invalidations (97.5-

100%) flush the entire TLB rather than a single entry.

Most TLB invalidations occur on context switches

that invalidate an entire address space, and only a few

are for page protection/permission changes. Conse-

quently, complex support to invalidate cache entries

from a single page may not be needed.

Finding 2: TLB invalidations that occur due to page

mapping or protection changes are infrequent and

are thus unlikely to create much overhead.

4 Opportunistic Virtual Caching

The empirical analyses in the previous section sug-

gest that while virtual cache challenges are real, they

occur rarely in practice. All the applications studied

provide ample dynamic opportunities for safe (i.e., no

read-write synonyms) and efficient (i.e., no page

permission/protection changes) use of virtual caches.

Unfortunately, correctness and backward compatibil-

ity must be absolute and not ―almost always‖.

To benefit from virtual caches and while sidestepping

their dynamically rare issues, we propose opportunis-

tic virtual caching (OVC). OVC hardware can cache

a block with either virtual or physical address (Sec-

tion 4.1). Virtual caching saves energy (no TLB

lookup on L1 hits and reduced L1 associativity).

Physical caching provides compatibility for read-

write synonyms and caching page-table entries (and

other structures) accessed by the processor with phys-

ical addresses.

To reap the benefits of OVC, the operating system

must enable virtual caching for memory regions that

are amenable to the use of virtual caching (Section

4.2). Importantly, we find that the OS kernel (Linux

in this study) already possesses most of the infor-

mation needed to determine which memory regions

are suitable for virtual caching and which are not.

While OVC defaults to physical-only caching to ena-

ble deployment of unmodified OSes and applications,

changes to support virtual caching affected only 240

lines of code in the Linux kernel (version 2.6.28-4).

4.1 OVC Hardware

OVC requires that hardware provide the following

services to realize the benefits of caching with virtual

addresses – (1) determining when to use virtual cach-

ing and when physical caching, (2) reducing power

when possible by bypassing the TLB and reducing

cache associativity (3) handling-virtual memory

homonyms and page permission/protection changes,

and (4) handling coherence requests for virtually

cached blocks.

Determining when to use virtual caching: The

hardware defines a one-bit register named

ovc_enable that an operating system can set to enable

OVC (default is unset). When OVC is enabled, we

take advantage of large virtual address space of mod-

ern 64-bit OSes to logically partition the address

space into two non-overlapping address ranges (parti-

tion Pphysical and Pvirtual). The highest order bit of the

virtual address range (e.g., VA47, the 48
th

 bit in Linux

for x86-64) determines the partition in which a virtu-

al address of a cache lookup belongs to (in Pphysical if

VA47 is unset and Pvirtual otherwise). Only cache

lookups with virtual address in the partition Pvirtual

can use the virtual address to cache data. Thus, there

is no added lookup cost to determine how an address

is cached.

 Mean time be-

tween TLB in-

validation in ms

(avg. TLB in-

validations per

sec per core)

Fraction of

TLB invali-

dations to a

single page

canneal 132.62 (7.5) 0%

facesim 75.64 (13.2) 0%

fluidanimate 52.63 (19.2) 0%

streamcluster 55.53 (18) 0%

swaptions 51.81 (19.3) 0%

x264 111.11 (9.4) 0%

bind 7.571 (132.1) 0.00%

firefox 4.761 (210.3) 0.10%

memcached 2.325 (430.1) 0%

specjbb 39.011 (25.6) 2.50%

Figure 2. Opportunistic smaller associative L1 cache
lookup using banked organization.

V
A

1
1

 …
 V

A
6

Tag Data Tag Data DataTag

Way0 Way1 Way3

L1 cache

D
e

c
o

d
e

r

Tag Data TagData DataTag

Way4 Way5 Way7

ovc_enable
VA47

VA12

Bank 0 Bank 1

V
A

1
1

 …
 V

A
6

D
e

c
o

d
e

r

EN EN

=?

Multiplexer

=? =? =?=? =?
AddrTag

Opportunistically reducing lookup energy: When

data can be cached using virtual address we take ad-

vantage of it in two ways. First, we avoid TLB

lookups on L1 cache hits. Second, we allow lower

associativity L1 cache lookups. As shown in Figure
1, when cache lookup address falls in partition Pvirtual

(i.e., ovc_enable and VA47 are set), the TLB lookup

is disabled and part of the virtual address is used for

cache tag match. Otherwise, conventional physical

cache lookup is performed where the TLB is per-

formed in parallel with indexing into the L1 cache.

On a miss to an address in Pvirtual a TLB lookup is

required before sending the request to the next cache.

Second, OVC dynamically lowers the associativity of

L1 cache lookups. We note that the cache associativi-

ty constraint of a physical cache, described in Section

2.1, need not hold true for virtually cached blocks.

Figure 2 shows an example of how a banked L1

cache organization can be leveraged to allow lower-

associativity cache lookup for a 32KB, 8-way set

associative cache. The 8-way set-associative cache is

organized in two banks each holding 4-ways of each

set. For virtual addresses (i.e., ovc_enable and VA47

are set), the processor only accesses one of the two

banks (i.e., 4 ways) based on the value of a single

virtual-address bit from the tag (VA12 in the exam-

ple). For other accesses using physical addressing,

the processor performs a full 8-way lookup as in a

conventional cache.

Handling homonyms and page permission chang-

es: OVC implementation uses conventional address-

space identifiers (ASIDs) to distinguish between dif-

ferent mappings of the same virtual address and

avoids cache flushes on context switches. Both the

ASID and the tag need to match for a cache hit to

occur. OVC uses an all-zero ASID for blocks cached

under the physical address (which results in an ASID

match for any physical cache access). To handle the

kernel address space, which is shared by all process-

es, we copy the global bit of the x86 PTE (which is

set for globally shared kernel memory) to each cache

block. Privileged mode access for blocks with this bit

set do not need an ASID match. ASID overflow can

be handled by modifying Linux’s existing ASID

management code to trigger a cache flush before re-

using an ASID.

Page permissions (e.g., read, write, execute, privi-

leged) augment the coherence state permissions for

each cache block and are checked along with coher-

ence permissions. A page permission miss-match

(e.g., write request for a block with read permission)

triggers a cache miss, which results in access to the

TLB. It is then handled appropriately as in conven-

tional physical cache for page permission miss-

matches. Page mapping or permission downgrades

trigger a cache flush.

Cache block eviction: Eviction of a dirty L1 block

invokes a write-back to a physical L2 cache. OVC—

like most virtual caches—logically augments each

virtually-tagged block with a physical tag to avoid

deadlock issues with doing an address translation at

eviction. This physical tag adds a small state (e.g., 28

bits on 544 bits state, tag, and data) and can either be

stored (a) in the L1 cache or (b) an auxiliary structure

(not shown) that mirrors L1 dimensions, but is ac-

cessed only on less frequent dirty evictions.

Coherence: L2 caches and beyond typically process

coherence with physical addresses. To access virtual-

ly-tagged L1 blocks, incoming (initiated by other

cache controllers) back-invalidations and forwarded

requests may require reverse address translation

(physical to virtual). Reverse translation can be

avoided by serially searching physical tags (added for

cache block eviction) for all sets that might hold a

block. Since OVC already provides the processor

with an associative lookup on physical addresses, it

Figure 1. OVC L1 cache and TLB organization allow
opportunistically bypassing TLB lookups.

TLB

(CAM)

VA47 VA46……VA0

Tag Data Tag Data DataTag

Way0 Way1 Way7

=? =?=?

o
v
c
_
e
n
a
b
le

D
e

c
o

d
e

r

Multiplexer

L1 cache

EN

AddrTag

associatively handles incoming coherence lookups

with the same mechanism. For example, an incoming

coherence request to the cache depicted in Figure 2,

would simply access the physical tags in both banks

(8-way total). Further, this action may be handled

with an auxiliary structure (option (b) for handling

eviction) and our empirical results find this occurs

less than once per 1K L1 cache accesses due to high

L1 hit rates and low read-write sharing. Note that,

coherence messages received due to local cache

misses (e.g., data reply, acks) use miss-status han-

dling register entries to find the corresponding loca-

tion in the cache and hence do not require reverse

translation lookup.

Space and Power Cost: As depicted in Figure 3,

OVC’s space overhead in the L1 cache stem primari-

ly from the addition of an ASID (16 bits) and physi-

cal tag (28 bits) per cache block. The primary tag

must be extended (8 bits) to accommodate larger vir-

tual address tag. We also add page permis-

sion/privileged bits (3 bits) and a global bit. This to-

tals approximately 10% space overhead for the L1

assuming 64-byte cache blocks. Given that L1 caches

comprise a small fraction of the total space (and thus

transistor count) for the cache hierarchy, which is

dominated by larger L2 and L3 caches, the overall

static power budget (which is grows roughly in pro-

portion to transistor count) of the on-chip caches

barely changes: ~ 1% overhead for the cache hierar-

chy in Table 6. Furthermore, the extra physical tag is

accessed only for uncommon events: back invalida-

tions, forwarded coherence messages and dirty evic-

tions. L1 cache lookups and L1 cache hits do not

accesses this physical tag. As a result, it leads ~ 1%

energy overhead on L1 cache lookups, because most

of the energy is spent on data access, which has not

changed. We will show that this overhead is out-

weighed by the benefits of OVC. We also note that

cycle time is not affected as data lookup latency

overshadows the tag lookup latency.

4.2 OVC Software

The operating system for OVC hardware has three

additional responsibilities: (1) predicting when virtu-

al caching of an address is desirable (safe and effi-

cient); (2) informing the hardware of which memory

can use virtual caching; and (3) ensuring continued

safety as memory usage changes. We extend the

Linux virtual-address allocator to address the first

two and make minimal changes to the page-fault

handler and scheduler for the third.

Deciding when to use virtual caches: The OS de-

cides whether virtual caching may be used at the

granularity of memory regions. These are an internal

OS abstraction for contiguous virtual-address ranges

with shared properties, such as for program code, the

stack, the heap, or a memory-mapped file. When al-

locating virtual addresses for a memory region the

OS virtual address range allocator predicts whether

the region could have read-write synonyms (unsafe)

or frequent permission/mapping changes (inefficient),

and if so, uses addresses that allows physical caching

and otherwise uses virtual caching.

While predicting future memory usage may seem

difficult, we observe that the OS already possesses

much of the information needed. The kernel virtual-

address allocator defines flags specifying how the

memory region will be used, which guides its as-

signment of page permissions for the region. For ex-

ample, in Linux, the VM_PRIVATE flag indicates

pages private to a single process, VM_SHARED indi-

cates a region may be shared with other processes,

and VM_WRITE/VM_MAYWRITE indicates that a

region is writable. From these flags, the kernel can

easily determine that read-write synonyms occur only

if the VM_SHARED and VM_WRITE/

VM_MAYWRITE flags are set, which causes the ker-

nel to use physical caching. For all other memory

regions kernel predicts to use virtual caching without

possibility of read-write synonyms. This enables a

straightforward identification of which memory re-

gions can use virtual caching.

Unfortunately, these flags do not provide hints about

efficiency: some regions, such as transiently mapped

files, may observe frequent page-mapping or protec-

tion changes (e.g., through mprotect() and mremap())

that can be expensive with virtual caches. We thus

add an additional flag, MAP_DYNAMIC, to the virtu-

al-address allocator to indicate that the mapping or

page permissions are likely to change. Applications

can use this flag while allocating memory to indicate

frequent protection/mapping changes or the need for

physical caching for other semantic or performance

reasons.

Communicating access type to hardware: The

kernel uses the prediction techniques described above

to select either virtually or physically cached ad-

dresses for a region. If MAP_DYNAMIC is specified,

physical caching is used irrespective of the predic-

tion. We minimally extend the OS virtual address

DataASID (Physical Tag)State
(V/P) TagPerm/

global

Figure 3. OVC overheads per L1 cache block.

Additions are shaded.

CPU 4-core, in-order, x86

L1 TLB
Private, Split Data and Instruction L1

TLB, 64 entries, Fully associative

L2 TLB
Private, 512 entries, 4-way set associ-

ative

L1 cache
Private, Data and Instruction L1

Cache, 32 KB, 8-way set associative

L2 cache Private, 256KB, 8-way set associative

L3 cache
Shared, 8MB, 16-way set-associative,

MESI Directory cache coherence

 Table 6. Baseline system parameters.

range allocator to allocate addresses from two non-

overlapping address pools, partitions Pphysical and Pvir-

tual (described in Section 4.1), depending on whether

physical or virtual caching is to be used.

Ensuring correctness: While the kernel only uses

virtual caching when it predicts that conflicting syno-

nyms will not arise, they may still be possible in

some rare cases. First, the kernel itself may use tem-

porary kernel address space synonyms to access some

user memory (Section 3.1). Second, the kernel allows

a program to later change how a memory region can

be used (e.g., through Linux’s mprotect() system

call). We provide a fallback mechanism to ensure

correctness in these cases by detecting when the

change occurs, and then flushing the cache between

conflicting uses of memory.

We insert two checks into the Linux kernel for con-

flicting synonyms. Within the page fault handler, we

add code to check whether a virtually cached page is

being mapped with write permissions at another ad-

dress in another process. Similarly, we put a check in

the kernel routine that creates temporary kernel map-

pings to user memory to detect conflicting synonyms.

If the above checks detect possibility of a conflicting

synonym in the page-fault handler, the OS marks the

process with write access to a synonym as tainted,

meaning that when it runs, it may modify synonym

pages. We modify the OS scheduler to flush the L1

cache before and after the tainted process runs. If

hyper-threading is enabled, scheduler needs to pro-

hibit tainted process from sharing the same core (and

thus L1 cache) with another process. This ensures

that address synonyms between the kernel and user-

mode code similarly: the kernel flushes caches before

and after using kernel-space synonyms.

For frequent and performance-sensitive synonym

uses, such as direct I/O, a program can prevent these

flushes by mapping I/O buffers using the

MAP_DYNAMIC flag, which will use physical cach-

ing. However, even if a user fails to do so, the above

mechanism ensures correctness anyways. We also

note that it is possible to have read-write synonyms

within single process’s address space (e.g., if same

file is simultaneously memory mapped by a single

process at different places in writable mode). If such

cases ever occur (we have encountered none), we

propose to turn off OVC capability (unset

ovc_enable) for the offending process.

5 Evaluation

5.1 Baseline architecture

We modeled a 4-core system with an in-order x86

CPU detailed in Table 6. The simulated system has

two levels of TLB and three levels of caches. Each

core sports separate L1 data and instruction TLB and

a unified L2 TLB. The cache hierarchy has a split L1

instruction and data cache private to each core. Each

core also has a private L2 cache that is kept exclusive

to the L1 cache. The L3 cache is logically shared

among all the cores, while physically distributed in

multiple banks across the die.

5.2 Methodology and Workloads

We used x86 full system simulation with gem5 [4] to

simulate a 4-core CMP with the configuration listed

in Table 6. We modified the Linux 2.6.28-4 kernel to

implement the operating system changes required for

leveraging OVC. We used CACTI 6.5 [28] with the

32nm process for computing energy numbers. For

TLBs, L1 caches, and L2 caches, we used high per-

formance transistors (―itrs-hp‖), while low static

power transistors (―itrs-lstp‖) were used for L3. L1

and L2 caches lookup both tag and data array in par-

allel for providing faster accesses. However, L3

caches lookup the tag array and data array in se-

quence.

We use several of RMS workloads (canneal, facesim,

fluidanimate, streamcluster, swaptions, x264) from

 L1 Data TLB L1 Instr. TLB

canneal 72.253 99.986

facesim 96.787 99.999

fluidanimate 99.363 99.999

streamcluster 95.083 99.994

swaptions 99.028 99.989

x264 95.287 99.304

specjbb 91.887 99.192

memcached 94.580 98.605

bind 97.090 98.310

Mean 93.484 99.486

 Table 7. Percentage of TLB lookup energy
saved by OVC

Parsec [30]. We also use a set of commercial work-

loads: SpecJBB 2005 [41], a server benchmark that

models Java middle-tier business-logic processing;

memcahed [26], an open source in-memory object

store used by many popular web services including

Facebook and Wikipedia; and bind, the BIND9 Do-

main Name Service (DNS) lookup service [9]. We

also analyzed the open-source web browser Firefox

[27] synonym usages and TLB invalidation charac-

terization. However, as an interactive workload, it

does not run on our simulator.

5.3 Results

To evaluate OVC, we seek to answer three questions:

(1) How much TLB lookup energy is saved? (2) How

much of L1 cache lookup energy is saved? (3) What

is the performance impact of the OVC?

In our evaluation we focus on dynamic (lookup) en-

ergy as TLBs and L1 caches are frequently accessed,

but relatively small, making OVC’s static-energy

impact insignificant.

TLB Energy savings: Table 7 shows the percentage

of L1 data and instruction TLB dynamic energy

saved by the OVC. We observe that more than 94%

of the L1 data TLB energy and more than 99% of L1

Instruction TLB lookup energy is saved by OVC. To

analyze this result, we first note that the cache ac-

cesses that use virtual addresses and hit in the L1

cache avoid burning energy for TLB lookups. Table 8

shows the percentage of data and instruction accesses

that can complete without needing address transla-

tion, while the L1 cache hit rates for accesses using

virtual addresses are listed in Table 9. We observe

that on average 97% of data accesses and 100% of

instruction accesses complete without needing ad-

dress translation, while a very high fraction these

accesses (0.96 and 0.99 respectively) hit in the

cache, saving TLB lookup energy.

L1 cache energy savings: OVC saves L1 cache

lookup energy by accessing only a subset of the ways

in a set when using virtual addresses (Section 2). Ta-

ble 10 presents percentage savings in dynamic energy

by OVC from opportunistic use of partial lookups (4-

ways out of 8-ways) in the L1 cache. The second

column shows that on average more than 22% of the

dynamic energy spent on L1 data cache lookups is

saved, while the third column shows similar savings

for an instruction cache. The rightmost column pro-

vides a more holistic view of the energy savings in

the chip by showing how much of dynamic energy of

TLBs and all the three levels of on-chip caches taken

 Data V-addr ac-

cess perct.

Instr V-addr

access perct.

canneal 80.791 100

facesim 99.843 100

fluidanimate 99.925 100

streamcluster 98.575 100

swaptions 99.990 100

x264 99.933 100

specjbb 96.650 100

memcached 99.291 100

bind 98.97 100

Mean 97.116 100

 Table 8. Percentage of access that use Virtual
address

 L1 Data $ L1 Instr. $

canneal 0.894 0.999

facesim 0.969 0.999

fluidanimate 0.994 0.999

streamcluster 0.964 0.999

swaptions 0.990 0.999

x264 0.953 0.993

specjbb 0.950 0.991

memcached 0.952 0.986

bind 0.980 0.983

Mean 0.961 0.994

Table 9. L1 cache hit rates for virtual accesses

Baseline

L1D

MPKR

OVC

L1D

MPKR

Baseline

L1I

MPKR

OVC

L1I

MPKR

Norm.

runtime

canneal 105.62 105.68 0.120 0.133 0.9994

facesim 30.476 30.613 0.084 0.093 0.9999

fluidanim. 5.735 5.622 0.003 0.006 0.9999

streamclus. 35.436 35.421 0.037 0.037 1.00001

swaptions 9.668 9.716 0.106 0.106 1.0004

x264 47.329 46.492 6.53 6.977 1.00099

specjbb 51.704 49.289 7.683 8.008 0.99330

memcached 49.699 47.349 14.235 13.947 0.99632

bind 20.527 19.630 13.981 16.893 1.00701

Mean 39.576 38.879 4.745 5.133 1.00017

Table 11. Miss ratio and runtime comparison be-
tween Baseline and OVC

together is saved. On average, more than 19% of the

dynamic energy spent on the on-chip cache hierarchy

and the TLBs is eliminated by the OVC. The savings

can be as high as 32% (swaptions) for applications

with small working sets that rarely access L2 or L3

caches. In total, OVC saves a considerable portion of

on-chip memory subsystem dynamic energy through

lower associative L1 cache lookups and TLB lookup

savings as these two frequent lookups account for

most of the dynamic energy in the on-chip memory.

Performance impact: We quantify the performance

implications of OVC in Table 11 which show the

number of misses per 1K cache reference (MPKR)

for the baseline and the OVC L1 data and instruction

caches. For the L1 data cache, the change in the

number of misses is within a negligible 0.7 misses

per 1K cache reference, while changes for instruction

caches are even smaller. Two of the workloads

(specjbb, memcached) experience larger L1-D cache

miss rate decrease with OVC (~2 misses per 1K ref-

erence, which translates to a minuscule hit-rate dif-

ference), while the L1 I-cache miss rate increases for

one workload (bind). We note that cache hit/miss

patterns are slightly perturbed due to use of a single

bit from the virtual page number in selection of the

bank where an access should go when virtual address

is used under OVC. More importantly from Table 11

(right-most column), we observe that OVC hardly

changes run time compared to the baseline system

(within 0.017%). The unchanged run time, coupled

with OVC’s small static power overhead to the whole

on-chip cache hierarchy (Section 4.1) indicates that

OVC leaves the static power consumption of the on-

chip memory subsystem largely unchanged while

saving substantial dynamic energy. Furthermore, for

these workloads, the operating system never needed

to use the taint bit (Section 4.2) as they do not use

direct I/O or make system calls to change page pro-

tection. Moreover, there were no cache flushes due to

memory-mapping changes.

6 Related Work

There has been decades of research on implementing

virtual caches, which are summarized by Cekleov

and Dubois for both uniprocessor [5] and multipro-

cessor systems [6]. Here we discuss a few of the most

related work on virtual caches. We also discuss rele-

vant work on reducing TLB power.

Goodman proposed an all-hardware solution for han-

dling synonyms by introducing dual-tag store for

finding reverse translations on possible synonyms

[13], while a similar technique uses back-pointers in

L2 physical caches for finding synonyms in L1 virtu-

al caches [35]. Kim et al. proposed the U-cache in

which a small physically-indexed cache was added to

hold reverse translations for pages with possible syn-

onyms [19]. A few other works advocate for side-

stepping the problem of synonyms by constraining

sharing (and thus synonyms) through shared seg-

ments only [10,38] or through constrained virtual to

physical memory mapping (page coloring) to ensure

synonyms always fall in the same cache set [23]. Qiu

et al. [32] proposed a small synonym lookaside buffer

in place of a TLB to handle synonyms in a virtual

cache hierarchy. On the other side of the spectrum,

 L1 Data $

dynamic

energy

savings

L1 Instr.

$ dynam-

ic energy

savings

TLBs + $

hierarchy

dynamic

energy sav-

ings

canneal 17.381 22.800 9.989

facesim 22.252 22.800 18.575

fluidanimate 22.727 22.801 30.672

streamcluster 21.805 22.802 16.709

swaptions 22.797 22.807 32.542

x264 27.737 23.230 25.446

specjbb 23.229 22.771 17.547

memcached 23.352 23.155 16.765

bind 22.812 22.784 28.283

Mean 22.624 22.883 19.546

 Table 10. Percentage of Dynamic energy savings
in the caches

single address space operating systems like Opal

[8,12] and Singularity [20] propose a new OS design

philosophy that does away with private per-process

address spaces altogether (and thus no possibility of

synonyms). Although many of the above techniques

for virtual caching are used in OVC; we expose vir-

tual caching as an optimization rather than a design

point to leverage benefits of virtual caching when

suitable and defaulting to physical cache when need-

ed for correctness, performance or compatibility.

Several past hardware proposals addressed the prob-

lem of TLB power consumption through TLB CAM

reorganization [16], by adding hardware filter or

buffering for TLB access [7,14] or by using banked

TLB organization [7,24]. Kadayif et al. [17] pro-

posed adding hardware translation registers to hold

frequently accessed address translations under com-

piler directions. Ekman et al. [11] evaluated possible

TLB energy savings by using virtual L1 caches as a

pure hardware technique while also proposing a page

grain structure to reduce the coherence snoop energy

in the cache. Wood et al. [38] advocated doing away

with TLBs by using virtual caches and using in-cache

address translation. Jacob et al. [15] proposed han-

dling address translation with software exceptions on

cache miss to also get rid of the TLB. OVC, on the

other hand, is a software-hardware co-design tech-

nique that aims to maintain full backward compatibil-

ity with existing software while opportunistically

allow both TLB and L1 cache lookup energy reduc-

tion.

Woo et al. [37] proposed using bloom filter to hold

synonym addresses to save L1 cache lookup energy

by allowing lower associativity. Ashok et al. [1] pro-

posed compiler directed static speculative address

translation and cache access support to save energy.

Different from their work, we do not burden the

hardware with the onus of ensuring correctness for

static miss-speculation; neither do we require recom-

pilation of application to take advantage of OVC.

Zhou et al. [39] proposed heterogeneously tagged

(both virtual and physical tag) to allow cache access

without TLB access for memory regions explicitly

annotated by the application. Unlike their work, ap-

plication modification is not necessary for OVC. Fur-

thermore, OVC saves L1 cache lookup energy

through reduced associativity. Lee et al. [21] pro-

posed to exploit the distinct characteristics of access-

es to different memory regions of a process (e.g.,

stack, heap etc.) to statically partition the TLB and

cache resources to save energy. OVC does not re-

quire static partitioning of hardware resources and

instead opportunistically use virtual caching to allow

substantial energy benefits.

Some older embedded processors from ARM also

allowed virtual caches, but had to flush caches on

context switch/page permission changes [36].

7 Conclusion

Our empirical analysis shows that virtual cache chal-

lenges are real, but occur rarely in practice. To bene-

fit from virtual caches and yet sidestep their rare cor-

rectness issues, we proposed the opportunistic virtual

cache (OVC) that can cache a block with either a

virtual (saving power) or physical address (ensuring

compatibility). We show that small OS changes ena-

ble effective OVC virtual caching, while OVC facili-

tates its own adoption by operating correctly with no

software changes.

8 Acknowledgement

We thank Derek R. Hower and Haris Volos for their

thoughtful comments and help during the project. We

thank Wisconsin Computer Architecture Affiliates

for their feedback on early version of the work. We

thank Megan Falater and Elizabeth Hagermoser for

proof-reading our drafts.

This work is supported in part by the National Sci-

ence Foundation (CNS-0720565, CNS-0916725, and

CNS-1117280, CNS-0834473), Sandia/DOE (#MSN

123960/DOE890426), and University of Wisconsin

(Kellett award to Hill). The views expressed herein

are not necessarily those of the NSF, Sandia or DOE.

Hill has a significant financial interest in AMD and

Swift has a significant financial interest in Microsoft.

9 References

1. Ashok, R., Chheda, S., and Moritz, C.A. Cool-Mem:

combining statically speculative memory accessing

with selective address translation for energy efficien-

cy. Proc. of the 10th International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, 2002.

2. Barr, T.W., Cox, A.L., and Rixner, S. SpecTLB: a

mechanism for speculative address translation. Proc.

of the 38th Annual Intnl. Symp. on Computer Archi-

tecture, 2011.

3. Bhargava, R., Serebrin, B., Spadini, F., and Manne, S.

Accelerating two-dimensional page walks for virtual-

ized systems. Proc. of the Thirteenth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2008.

4. Binkert, N., Beckmann, B., Black, G., et al. The gem5

simulator. Computer Architecture News, 2011.

5. Cekleov, M. and Dubois, M. Virtual-Address Caches

Part 1: Problems and Solutions in Uniprocessors.

IEEE Micro 17, 5 (1997).

6. Cekleov, M. and Dubois, M. Virtual-Address Caches,

Part 2: Multiprocessor Issues. IEEE Micro 17, 6

(1997).

7. Chang, Y.-J. and Lan, M.-F. Two new techniques

integrated for energy-efficient TLB design. IEEE

Trans. Very Large Scale Integr. System 15, 1 (2007).

8. Chase, J.S., Levy, H.M., Lazowska, E.D., and Baker-

Harvey, M. Lightweight shared objects in a 64-bit op-

erating system. Object-oriented programming sys-

tems, languages, and applications, 1992.

9. Consortium, I.S. Berkeley Internet Name Domain

(BIND). http://www.isc.org/software/bind .

10. Diefendorff, K., Oehler, R., and Hochsprung, and R.

Evolution of the PowerPC Architecture. IEEE Micro

14, 2 (1994).

11. Ekman, M., Dahlgren, F., and Stenstrom, P. TLB and

Snoop Energy-Reduction using Virtual Caches in

Low-Power Chip-Multiprocessors. In Proceedings of

International Symposium on Low Power Electronics

and Design, 2002, 243–246.

12. Eric J. Koldinger, J.S.C. and Eggers, S.J. Architecture

support for single address space operating systems. In

Proc. of the 5th international conference on Architec-

tural support for programming languages and operat-

ing systems, 1992.

13. Goodman, J.R. Coherency for multiprocessor virtual

address caches. Proc. of the 2nd international confer-

ence on Architectural support for programming lan-

guages and operating systems, 1987.

14. J. H. Lee, C.W. and Kim, S.D. Selective block buffer-

ing TLB system for embedded processors. IEE Proc.

Comput. Dig. Techniques 152, 4 (2002).

15. Jacob, B. and Mudge, T. Uniprocessor Virtual

Memory without TLBs. IEEE Trans. on Computer 50,

5 (2001).

16. Juan, T., Lang, T., and Navarro, J.J. Reducing TLB

power requirements. Proc. of the international sympo-

sium on Low power electronics and design, 1997.

17. Kadayif, I., Nath, P., Kandemir, M., and Sivasubra-

maniam, A. Reducing Data TLB Power via Compiler-

Directed Address Generation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems 26, 2 (2007).

18. Kadayif, I., Sivasubramaniam, A., Kandemir, M.,

Kandiraju, G., and Chen, G. Generating physical ad-

dresses directly for saving instruction TLB energy.

Proc. of the 35th annual ACM/IEEE international

symposium on Microarchitecture, 2002.

19. Kim, J., Min, S.L., Jeon, S., Ahn, B., Jeong, D.-K.,

and Kim, C.S. U-cache: a cost-effective solution to

synonym problem. 1st IEEE symposium on High-

Performance Computer Architecture, (HPCA) 1995.

20. Larus, G.H.J., Abadi, M., Aiken, M., et al. An Over-

view of the Singularity Project. Microsoft Research,

2005.

21. Lee, H.-H.S. and Ballapuram, C.S. Energy efficient

D-TLB and data cache using semantic-aware multilat-

eral partitioning. Proc. of the international symposium

on Low power electronics and design, 2003.

22. Luk, C.-K., Cohn, R., Muth, R., et al. Pin: Building

Customized Program Analysis Tools with Dynamic

Instrumentation. Proc. of the SIGPLAN 2005 Confer-

ence on Programming Language Design and Imple-

mentation, 2005.

23. Lynch, W.L. The Interaction of Virtual Memory and

Cache Memory. Stanford University, 1993.

24. Manne, S., Klauser, A., Grunwald, D., and Somenzi,

F. “Low power TLB design for high performance mi-

croprocessors." University of Colorado, Boulder,

1997.

25. McNairy, C. and Soltis, D. Itanium 2 Processor Mi-

croarchitecture. IEEE Micro 23, 2 (2003), 44–55.

26. memcached - a distributed memory object caching

system. www.memcached.org.

27. Mozilla, M. Firefox,. http://www.mozilla.org/ .

28. Muralimanohar, N., Balasubramonian, R., and Jouppi,

N.P. CACTI 6.0. Hewlett Packard Labs, 2009.

29. Patterson, D.A. and Hennessy, J.L. Computer Organi-

zation and Design: The Hardware/Software Interface.

Morgan Kaufmann, 2005.

30. Princeton Application Repository for Shared-Memory

Computers. http://parsec.cs.princeton.edu/.
31. Puttaswamy, K. and Loh, G.H. Thermal analysis of a

3D die-stacked high-performance microprocessor.

16th ACM Great Lakes symposium on VLSI, 2006.

32. Qiu, X. and Dubois, M. The Synonym Lookaside

Buffer: A Solution to the Synonym Problem in Virtual

Caches. IEEE Trans. on Computers 57, 12 (2008).

33. Sodani, A. Race to Exascale: Opportunities and Chal-

lenges. MICRO 2011 Keynote talk.

34. Talluri, M., Kong, S., Hill, M.D., and Patterson, D.A.

Tradeoffs in Supporting Two Page Sizes. Proc. of the

19th Annual International Symposium on Computer

Architecture, 1992.

35. Wang, W.H., Baer, J.-L., and Levy, and H.M. Organ-

ization and performance of a two-level virtual-real

cache hierarchy. Proc. of the 16th annual internation-

al symposium on Computer architecture, 1989.

36. Wiggins, A. and Heiser, G. Fast Address-Space

Switching on the StrongARM SA-1100 Processor.

Proc. of the 5th Australasian Computer Architecture

Conference, (1999).

37. Woo, D.H., Ghosh, M., Özer, E., Biles, S., and Lee,

H.-H.S. Reducing energy of virtual cache synonym

lookup using bloom filters. In Proceedings of the in-

ternational conference on Compilers, architecture

and synthesis for embedded systems (CASES), 2006.

38. Wood, D.A., Eggers, S.J., Gibson, G., Hill, M.D., and

Pendleton, J.M. An in-cache address translation

mechanism. ISCA’86 : 13th annual international sym-

posium on Computer architecture, (1986).

39. Zhou, X. and Petrov, P. Heterogeneously tagged

caches for low-power embedded systems with virtual

memory support. ACM Transactions on Design Auto-

mation of Electronic Systems (TODAES) 13, 2 (2008).

40. Intel 64 and IA-32 Architectures Software Develop-

er’s Manual, Volume 3A, Part1, Chapter 2. 2009.

41. SpecJBB 2005.http://www.spec.org/jbb2005/.

