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Abstract
Device-driver development and testing is a complex and
error-prone undertaking. For example, testing error-
handling code requires simulating faulty inputs from the
device. A single driver may support dozens of devices,
and a developer may not have access to any of them. Con-
sequently, many Linux driver patches include the com-
ment “compile tested only.”

SymDrive is a system for testing Linux and FreeBSD
drivers without their devices present. The system uses
symbolic execution to remove the need for hardware, and
extends past tools with three new features. First, Sym-
Drive uses static-analysis and source-to-source transfor-
mation to greatly reduce the effort of testing a new driver.
Second, SymDrive checkers are ordinary C code and ex-
ecute in the kernel, where they have full access to kernel
and driver state. Finally, SymDrive provides an execution-
tracing tool to identify how a patch changes I/O to the
device and to compare device-driver implementations. In
applying SymDrive to 21 Linux drivers and 5 FreeBSD
drivers, we found 39 bugs.

1 Introduction
Device drivers are critical to operating-system reliability,
yet are difficult to test and debug. They run in kernel
mode, which prohibits the use of many runtime program-
analysis tools available for user-mode code, such as Val-
grind [34]. Their need for hardware can prevent testing
altogether: over two dozen driver Linux and FreeBSD
patches include the comment “compile tested only,” in-
dicating that the developer was unable or unwilling to run
the driver. Even with hardware, it is difficult to test error-
handling code that runs in response to a device error or
malfunction. Thorough testing of failure-handling code
is time consuming and requires exhaustive fault-injection
tests with a range of faulty inputs.

Complicating matters, a single driver may support
dozens of devices with different code paths. For exam-
ple, one of the 18 supported medium access controllers
in the E1000 network driver requires an additional EEP-
ROM read operation while configuring flow-control and
link settings. Testing error handling in this driver requires
the specific device, and consideration of its specific failure

modes.
Static analysis tools such as Coverity [17] and Mi-

crosoft’s Static Driver Verifier [31] can find many bugs
quickly. However, these tools are tuned for fast, rela-
tively shallow analysis of large amounts of code and there-
fore only approximate the behavior of some code features,
such as pointers. Furthermore, they have difficulty with
bugs that span multiple invocations of the driver. Hence,
static analysis misses large aspects of driver behavior.

We address these challenges using symbolic execution
to test device drivers. This approach executes driver code
on all possible device inputs, allows driver code to execute
without the device present, and provides more thorough
coverage of driver code, including error handling code.
DDT [26] and S2E [14, 15] previously applied symbolic
execution to driver testing, but these systems require sub-
stantial developer effort to test new classes of drivers and,
in many cases, even specific new drivers.

This paper presents SymDrive, a system to test Linux
and FreeBSD drivers without devices. SymDrive uses
static analysis to identify key features of the driver code,
such as entry-point functions and loops. With this analy-
sis, SymDrive produces an instrumented driver with call-
outs to test code that allows many drivers to be tested with
no modifications. The remaining drivers require a few
annotations to assist symbolic execution at locations that
SymDrive identifies.

We designed SymDrive for three purposes. First, a
driver developer can use SymDrive to test driver patches
by thoroughly executing all branches affected by the code
changes. Second, a developer can use SymDrive as a de-
bugging tool to compare the behavior of a functioning
driver against a non-functioning driver. Third, SymDrive
can serve as a general-purpose bug-finding tool and per-
form broad testing of many drivers with little developer
input.

SymDrive is built with the S2E system by Chipounov
et al. [14, 15] , which can make any data within a vir-
tual machine symbolic and explore its effect. SymDrive
makes device inputs to the driver symbolic, thereby elim-
inating the need for the device and allowing execution on
the complete range of device inputs. In addition, S2E en-
ables SymDrive to further enhance code coverage by mak-



ing other inputs to the driver symbolic, such as data from
the applications and the kernel. When it detects a failure,
either through an invalid operation or an explicit check,
SymDrive reports the failure location and inputs that trig-
ger the failure.

SymDrive extends S2E with three major components.
First, SymDrive uses SymGen, a static-analysis and code
transformation tool, to analyze and instrument driver code
before testing. SymGen automatically performs nearly
all the tasks previous systems left for developers, such as
identifying the driver/kernel interface, and also provides
hints to S2E to speed testing. Consequently, little effort
is needed to apply SymDrive to additional drivers, driver
classes, or buses. As evidence, we have applied SymDrive
to eleven classes of drivers on five buses in two operating
systems.

Second, SymDrive provides a test framework that al-
lows checkers that validate driver behavior to be writ-
ten as ordinary C code and execute in the kernel. These
checkers have access to kernel state and the parameters
and results of calls between the driver and the kernel. A
checker can make pre- and post-condition assertions over
driver behavior, and raise an error if the driver misbe-
haves. Using bugs and kernel programming requirements
culled from code, documentation, and mailing lists, we
wrote 49 checkers comprising 564 lines of code to en-
force rules that maintainers commonly check during code
reviews, such as matched allocation/free calls across entry
points, no memory leaks, and proper use of kernel APIs.

Finally, SymDrive provides an execution-tracing mech-
anism for logging the path of driver execution, including
the instruction pointer and stack trace of every I/O op-
eration. These traces can be used to compare execution
across different driver revisions and implementations. For
example, a developer can debug where a buggy driver di-
verges in behavior from a previous working one. We have
also used this facility to compare driver implementations
across operating systems.

We demonstrate SymDrive’s value by applying it to 26
drivers, and find 39 bugs, including two security vulner-
abilities. We also find two driver/device interface viola-
tions when comparing Linux and FreeBSD drivers. To the
best of our knowledge, no symbolic execution tool has ex-
amined as many drivers. In addition, SymDrive achieved
over 80% code coverage in most drivers, and is largely
limited by the ability of user-mode tests to invoke driver
entry points. When we use SymDrive to execute code
changed by driver patches, SymDrive achieves over 95%
coverage on 12 patches in 3 drivers.

2 Motivation
The goal of our work is to improve driver quality through
thorough testing and validation. To be successful, Sym-
Drive must demonstrate (i) usefulness, (ii) simplicity, and

(iii) efficiency. First, SymDrive must be able to find bugs
that are hard to find using other mechanisms, such as nor-
mal testing or static analysis tools. Second, SymDrive
must require low developer effort to test a new driver and
therefore support many device classes, buses, and operat-
ing systems. Finally, SymDrive must be fast enough to
apply to every patch.

2.1 Symbolic Execution

SymDrive uses symbolic execution to execute device-
driver code without the device being present. Symbolic
execution allows a program’s input to be replaced with a
symbolic value, which represents all possible values the
data may have. A symbolic-execution engine runs the
code and tracks which values are symbolic and which
have concrete (i.e., fully defined) values, such as initial-
ized variables. When the program compares a symbolic
value, the engine forks execution into multiple paths, one
for each outcome of the comparison. It then executes each
path with the symbolic value constrained by the chosen
outcome of the comparison. For example, the predicate
x > 5 forks execution by copying the running program. In
one copy, the code executes the path where x  5 and the
other executes the path where x > 5. Subsequent com-
parisons can further constrain a value. In places where
specific values are needed, such as printing a value, the
engine can concretize data by producing a single value
that satisfies all constraints over the data.

Symbolic execution detects bugs either through ille-
gal operations, such as dereferencing a null pointer, or
through explicit assertions over behavior, and can show
the state of the executing path at the failure site.

Symbolic execution with S2E. SymDrive is built on a
modified version of the S2E symbolic execution frame-
work. S2E executes a complete virtual machine as the
program under test. Thus, symbolic data can be used any-
where in the operating system, including drivers and ap-
plications. S2E is a virtual machine monitor (VMM) that
tracks the use of symbolic data within an executing virtual
machine. The VMM tracks each executing path within the
VM, and schedules CPU time between paths. Each path
is treated like a thread, and the scheduler selects which
path to execute and when to switch execution to a differ-
ent path.

S2E supports plug-ins, which are modules loaded into
the VMM that can be invoked to record information or to
modify execution. SymDrive uses plugins to implement
symbolic hardware, path scheduling, and code-coverage
monitoring.

2.2 Why Symbolic Execution?

Symbolic execution is often used to achieve high cover-
age of code by testing on all possible inputs. For device
drivers, symbolic execution provides an additional bene-



fit: executing without the device. Unlike most code, driver
code can not be loaded and executed without its device
present. Furthermore, it is difficult to force the device to
generate specific inputs, which makes it difficult to thor-
oughly test error handling.

Symbolic execution eliminates the hardware require-
ment, because it can use symbolic data for all device in-
put. An alternate approach is to code a software model
of the device [33], which allows more accurate testing but
greatly increases the effort required. In contrast, symbolic
execution uses the driver itself as a model of device be-
havior: any device behavior used by the driver will be
exposed as symbolic data.

Symbolic execution may provide inputs that correctly
functioning devices may not. However, because hardware
can provide unexpected or faulty driver input [25], this un-
constrained device behavior is reasonable: drivers should
not crash simply because the device provided an errant
value.

In comparison to static analysis tools, symbolic execu-
tion provides several benefits. First, it uses existing ker-
nel code as a model of kernel behavior rather than requir-
ing a programmer-written model. Second, because driver
and kernel code actually execute, it can reuse kernel de-
bugging facilities, such as deadlock detection, and exist-
ing test suites. Thus, many bugs can be found without
any explicit description of correct driver behavior. Third,
symbolic execution can invoke a sequence of driver entry
points, which allows it to find bugs that span invocations,
such as resource leaks. In contrast, most static analysis
tools concentrate on bugs occurring within a single entry
point.

2.3 Why not Symbolic Execution?

While symbolic execution has previously been applied to
drivers with DDT and S2E, there remain open problems
that preclude its widespread use:

Efficiency. The engine creates a new path for every
comparison, and branchy code may create hundreds or
thousands of paths, called path explosion. This explosion
can be reduced by distinguishing and prioritizing paths
that complete successfully. This approach enables execut-
ing deeper into the driver: if driver initialization fails, the
operating system could not otherwise invoke most driver
entry points. S2E and DDT require complex, manually
written annotations to provide this information. These an-
notations depend on kernel function names and behavioral
details, which are difficult for programmers to provide.
For example, the annotations often examine kernel func-
tion parameters, and modify the memory of the current
path on the basis of the parameters. The path-scheduling
strategies in DDT and S2E favor exploring new code, but
may not execute far enough down a path to test all func-
tionality.

Simplicity. Existing symbolic testing tools require ex-
tensive developer effort to test a single class of drivers,
plus additional effort to test each individual driver.
For example, supporting Windows NDIS drivers in
S2E requires over 1,000 lines of code specific to this
driver class. For example, the S2E wrapper for the
NdisReadConfiguration Windows function consists
of code to (a) read all of the call’s parameters, which is
not trivial because the code is running outside the ker-
nel, (b) fork additional paths for different possible sym-
bolic return codes, (c) bypass the call to the function
along these additional paths, and (d) register a separate
wrapper function, of comparable complexity, to execute
when this call returns. Since developers need to imple-
ment similarly complex code for many other functions in
the driver/kernel interface, testing many drivers becomes
impractical in these systems. Thus, these tools have only
been applied to a few driver classes and drivers. Expand-
ing testing to many more drivers requires new techniques
to automate the testing effort.

Specification. Finally, symbolic execution by itself
does not provide any specification of correct behavior: a
“hello world” driver does nothing wrong, nor does it do
anything right, such as registering a device with the ker-
nel. In existing tools, tests must be coded like debugger
extensions, with calls to read and write remote addresses,
rather than as normal test code. Allowing developers to
write tests in the familiar kernel environment simplifies
the specification of correct behavior.

Thus, our work focuses on improving the state of the art
to greatly simplify the use of symbolic execution for test-
ing, and to broaden its applicability to almost any driver
in any class on any bus.

3 Design
The SymDrive architecture focuses on thorough testing
of drivers to ensure the code does not incorrectly use the
kernel/driver interface, crash, or hang. We target test sit-
uations where the driver code is available, and use that
code to simplify testing with a combination of symbolic
execution, static code analysis and transformation, and an
extensible test frameworkexecuting in the kernel.

The design of SymDrive is shown in Figure 1. The OS
kernel and driver under test, as well as user-mode test pro-
grams, execute in a virtual machine. The symbolic ex-
ecution engine provides symbolic devices for the driver.
SymDrive provides stubs that invoke checkers on every
call into or out of the driver. A test framework tracks exe-
cution state and passes information to plugins running in
the engine to speed testing and improve test coverage.

During the development of SymDrive, we considered
a more limited design in which symbolic execution was
limited to driver code. In this model, exploring multiple
paths through the kernel was not possible; callbacks to
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Figure 1: The SymDrive architecture. A developer produces
the transformed driver with SymGen and can write checkers
and test programs to verify correctness.

Component LoC
Changes to S2E 1,954
SymGen 2,681
Test framework 3,002
Checkers 564
Support Library 1,579
Linux kernel changes 153
FreeBSD kernel changes 81

Table 1: Implementation size of SymDrive.

the kernel instead required a model of kernel behavior to
allow them to execute on multiple branches. After imple-
menting a prototype of this design, we concluded that full-
system symbolic execution is preferable because it greatly
reduces the effort to test drivers by using real kernel code
rather than a kernel model.

We implemented SymDrive for Linux and FreeBSD, as
these kernels provide a large number of drivers to test.
Only the test framework code running in the kernel is spe-
cialized to the OS. We made small, conditionally com-
piled changes to both kernels to print failures and stack
traces to the S2E log and to register the module under test
with S2E. The breakdown of SymDrive code is shown in
Table 1.

SymDrive consists of five components: (i) a modified
version of the S2E symbolic-execution engine, which con-
sists of a SymDrive-specific plugin plus changes to S2E;
(ii) symbolic devices to provide symbolic hardware in-
put to the driver; (iii) a test framework executing within
the kernel that guides symbolic execution; (iv) the Sym-
Gen static-analysis and code transformation tool to ana-
lyze and prepare drivers for testing; and (v) a set of OS-
specific checkers that interpose on the driver/kernel inter-
face for verifying and validating driver behavior.

3.1 Virtual Machine

SymDrive uses S2E [15] version 1.1-10.09.2011, itself
based on QEMU [7] and KLEE [10], for symbolic ex-
ecution. S2E provides the execution environment, path
forking, and constraint solving capability necessary for
symbolic execution. All driver and kernel code, including

the test framework, executes within an S2E VM. Changes
to S2E fall into two categories: (i) improved support for
symbolic hardware, and (ii) the SymDrive path-selection
mechanism, which is an S2E plugin.

SymDrive uses invalid x86 opcodes for communication
with the VMM and S2E plugins to provide additional con-
trol over the executing code. We augment S2E with new
opcodes for the test framework that pass information into
our extensions. These opcodes are inserted into driver
code by SymGen and also invoked directly by the test
framework.

The purpose of the opcodes is to communicate source-
level information to the SymDrive plugins, which uses the
information to guide the driver’s execution. The opcodes
(i) control whether memory regions are symbolic, as when
mapping data for DMA; (ii) influence path scheduling by
adjusting priority, search strategy, or killing other paths;
and (iii) support tracing by turning it on/off and providing
stack information.

3.2 Symbolic Devices

Drivers interact with devices according to well-defined,
narrow interfaces. For PCI device drivers, this interface is
comprised of I/O memory accessed via normal loads and
stores, port I/O instructions, bus operations, DMA mem-
ory, and interrupts. Drivers using other buses, such as SPI
and I2C, use functions provided by the bus for similar op-
erations.

SymDrive provides a symbolic device for the driver un-
der test, while at the same time emulating the other de-
vices in the system. A symbolic device provides three
key behaviors. First, it can be discovered, so the kernel
loads the appropriate driver. Second, it provides methods
to read from and write to the device and return symbolic
data from reads. Third, it supports interrupts and DMA, if
needed. SymDrive currently supports 5 buses on Linux:
PCI (and its variants), I2C (including SMBus), Serial Pe-
ripheral Interface (SPI), General Purpose I/O (GPIO), and
Platform;1 and the PCI bus on FreeBSD.

Device Discovery. When possible, SymDrive creates
symbolic devices in the S2E virtual machine and lets ex-
isting bus code discover the new device and load the ap-
propriate driver. For some buses, such as I2C, the kernel
or another driver normally creates a statically configured
device object during initialization. For such devices, we
created a small kernel module, consisting of 715 lines of
code, that creates the desired symbolic device.

SymDrive can make the device configuration space
symbolic after loading the driver by returning sym-
bolic data from PCI bus functions with the test frame-

1The “platform bus” is a Linux-specific term that encompasses many
embedded devices. Linux’s ARM implementation, for example, sup-
ports a variety of SoCs, each with its own set of integrated devices. The
drivers for these devices are often of the “platform” type.



work(similar to S2E’s NDIS driver support). PCI devices
use this region of I/O memory for plug-and-play informa-
tion, such as the vendor and device identifiers. If this data
is symbolic, the device ID will be symbolic and cause the
driver to execute different paths for each of its supported
devices. Other buses have similar configuration data, such
as “platform data” on the SPI bus. A developer can copy
this data from the kernel source and provide it when cre-
ating the device object, or make it symbolic for additional
code coverage.

Symbolic I/O. Most Linux and FreeBSD drivers do
a mix of programmed I/O and DMA. SymDrive sup-
ports two forms of programmed I/O. For drivers that per-
form I/O through hardware instructions, such as inb, or
through memory-mapped I/O, SymDrive directs S2E to
ignore write operations, because they do not return val-
ues that influence driver execution, and to return symbolic
data from reads. The test framework overrides bus I/O
functions, such as those used in I2C drivers, to function
analogously.

Symbolic Interrupts. After a driver registers an inter-
rupt handler, the test framework invokes the interrupt han-
dler on every transition from the driver into the kernel.
This model represents a trade-off between realism and
simplicity: it ensures the interrupt handler is called of-
ten enough to keep the driver executing successfully, but
may generate spurious interrupts when the driver does not
expect them.

Symbolic DMA. When a driver invokes a DMA map-
ping function, such as dma alloc coherent, the test
framework uses a new S2E opcode to make the memory
act like a memory-mapped I/O region: each read returns a
new symbolic value and writes have no effect. Discarding
writes to DMA memory reflects the ability of the device
to write the data via DMA at any time. The driver should
not assume that data written here will be available sub-
sequently. When the driver unmaps the memory, the test
framework directs S2E to revert the region to normal sym-
bolic data, so writes are seen by subsequent reads.

3.3 Test Framework

The test framework is a kernel module executing with
the virtual machine that assists symbolic execution and
executes checkers. SymDrive relies on the test frame-
work to guide and monitor symbolic execution in three
ways. First, the test framework implements policy regard-
ing which paths to prioritize or deprioritize. Second, the
test framework may inject additional symbolic data to in-
crease code coverage. As mentioned above, it implements
symbolic I/O interfaces for some device classes. Finally,
it provides the VMM with a stack trace for execution trac-
ing, which produces a trace of the driver’s I/O operations.

The test framework supports several load-time param-

eters for controlling its behavior. When loading the test
framework with insmod or FreeBSD’s kldload, de-
velopers can direct the test framework to enable high-
coverage mode (described in Section 3.3.1), tracing, or
a specific symbolic device. To configure the device, de-
velopers pass the device’s I/O capabilities and name as
parameters. Thus, developers can script the creation of
symbolic devices to automate testing.

SymDrive has to address two conflicting goals in test-
ing drivers: (i) executing as far as possible along a path to
complete initialization and expose the rest of the driver’s
functionality; and (ii) executing as much code as possible
within each function for thoroughness.

3.3.1 Reaching Deeply

A key challenge in fully testing drivers is symbolically
executing branch-heavy code, such as loops and initializa-
tion code that probes hardware. SymDrive relies on two
techniques to limit path explosion in these cases: favor-
success scheduling and loop elision. These techniques al-
low developers to execute further into a driver, and test
functionality that is only available after initialization.

Favor-success scheduling. Executing past driver ini-
tialization is difficult because the code often has many
conditionals to support multiple chips and configurations.
Initializing a sound driver, for example, may execute more
than 1,000 branches on hardware-specific details. Each
branch creates additional paths to explore.

SymDrive mitigates this problem with a favor-success
path-selection algorithm that prioritizes successfully exe-
cuting paths, making it a form of best-first search. Noti-
fications from the test framework increase the priority of
the current path at every successful function return, both
within the driver and at the driver/kernel interface. Higher
priority causes the current path to be explored further be-
fore switching to another path. This strategy works best
for small functions, where a successful path through the
function is short.

At every function exit, the test framework notifies S2E
of whether the function completed successfully, which en-
ables the VMM to prioritize successful paths to facilitate
deeper exploration of code. The test framework deter-
mines success based on the function’s return value. For
functions returning integers, the test framework detects
success when the function returns a value other than an
errno, which are standard Linux and FreeBSD error val-
ues. On success, the test framework will notify the VMM
to prioritize the current path. If the developer wishes to
prioritize paths using another heuristic, he/she can add an
annotation prioritizing any piece of code. We use this
approach in some network drivers to select paths where
the carrier is on, which enables execution of the driver’s
packet transmission code.

In order to focus symbolic execution on the driver, the



test framework prunes paths when control returns to the
kernel successfully. It kills all other paths still executing
in the driver and uses an opcode to concretize all data in
the virtual machine, so the kernel executes on real values
and will not fork new paths. This ensures that a single
path runs in the kernel and allows developers to interact
with the system and run user-mode tests.

Loop elision. Loops are challenging for symbolic exe-
cution because each iteration may fork new paths. S2E
provides an “EdgeKiller” plugin that a developer may use
to terminate complex loops early, but requires developers
to identify each loop’s offset in the driver binary [15] and
hence incur substantial developer effort.

SymDrive addresses loops explicitly by prioritizing
paths that exit the loop quickly. Suppose an execution
path A enters a loop, executes it once, and during this it-
eration more paths are created. If path A does not exit
the loop after one iteration, SymDrive executes it for a
second iteration and, unless it breaks out early, depriori-
tizes the second iteration because it appears stuck in the
loop. SymDrive then selects some other path B that path
A forked, and executes it. SymDrive repeats this process
until it finds a path that exits the loop. If no paths exit
the loop promptly, SymDrive selects some path arbitrarily
and prioritizes it on each subsequent iteration, in the hope
that it will exit the loop eventually. If this path still does
not exit the loop within 20 iterations, SymDrive prints a
warning about excessive path forking as there is no evi-
dent way to execute the loop efficiently without manual
annotation.

This approach executes hardware polling loops effi-
ciently and automatically, and warns developers when
loops cause performance problems. However, this ap-
proach may fail if a loop is present in uninstrumented ker-
nel code. It can also result in worse coverage of code that
executes only if a polling loop times out. Moreover, loops
that produce a value, such as a checksum calculation,
cannot exit early without stopping the driver’s progress.
However, we have not found these problems to be signifi-
cant.

SymDrive’s approach extends the EdgeKiller plugin in
two directions. First, it allows developers to annotate
driver source rather than having to parse compiled code.
Second, source annotations persist across driver revisions,
whereas the binary offsets used in the EdgeKiller plugin
need updating each time the driver changes.

Annotating code manually to improve its execution per-
formance does reduce SymDrive’s ability to find bugs
in that code. Wherever annotations were needed in the
drivers we examined, we strove to write them in such a
way as to execute the problematic loop at least once before
terminating early. For example, after a checksum loop,
we would add a line to return a symbolic checksum value,
which could then be compared against a correct one.

3.3.2 Increasing Coverage

SymDrive provides a high-coverage mode for testing spe-
cific functions, for example those modified by a patch.
This mode changes the path-prioritization policy and the
behavior of kernel functions. When the developer loads
the test framework module, he/she can specify any driver
function to execute in this mode.

When execution enters the specified function, the test
framework notifies S2E to favor unexecuted code (the de-
fault S2E policy) rather than favoring successful paths.
The test framework terminates all paths that return to the
kernel in order to focus execution within the driver. In ad-
dition, when the driver invokes a kernel function, the test
framework makes the return value symbolic. This mode is
similar to the local consistency mode in S2E [15], but re-
quires no developer-provided annotations or plugins, and
supports all kernel functions that return standard error val-
ues. For example, kmalloc returns a symbolic value con-
strained to be either NULL or a valid address, which tests
error handling in the driver.

For the small number of kernel functions that return
non-standard values, SymGen has a list of exceptions and
how to treat their return values. The full list of excep-
tions for Linux currently contains 100 functions across all
supported drivers. Of these, 64 are hardware-access func-
tions, such as inb and readl, that always return sym-
bolic data. A further 14 are arithmetic operations, such as
div32. The remaining 22 functions return negative num-
bers in successful cases, or are used by the compiler to
trigger a compilation failure when used incorrectly, such
as bad percpu size.

SymDrive also improves code coverage by introduc-
ing additional symbolic data in order to execute code that
requires specific inputs from the kernel or applications.
SymDrive can automatically make a Linux driver’s mod-
ule parameters symbolic, executes the driver with all pos-
sible parameters. Checkers can also make parameters to
the driver symbolic, such as ioctl command values. This
allows all ioctl code to be tested with a single invoca-
tion of the driver, because each comparison of the com-
mand will fork execution. In addition, S2E allows using
symbolic data anywhere in the virtual machine, so a user-
mode test can pass symbolic data to the driver.

3.3.3 Execution Tracing

The test framework can generate execution traces, which
are helpful to compare the execution of two versions of
a driver. For example, when a driver patch introduces
new bugs, the traces can be used to compare its behavior
against previous versions. In addition, developers can use
other implementations of the driver, even from another
operating system, to find discrepancies that may signify
incorrect interaction with the hardware.

A developer can enable tracing via a command-line tool



that uses a custom opcode to notify SymDrive to begin
recording. In this mode, an S2E plugin records every
driver I/O operation, including reads and writes to port,
MMIO, and DMA memory, and the driver stack at the op-
eration. The test framework passes the current stack to
S2E on every function call.

The traces are stored as a trie (prefix tree) to repre-
sent multiple paths through the code compactly, and can
be compared using the diff utility. SymDrive annotates
each trace entry with the driver call stack at the I/O op-
eration. This facilitates analysis of specific functions and
comparing drivers function-by-function, which is useful
since traces are subject to timing variations and different
thread interleavings.

3.4 SymGen

All features of the test framework that interact with code,
such as favor-success scheduling, loop prioritization, and
making kernel return values symbolic are handled auto-
matically via static analysis and code generation. The
SymGen tool analyzes driver code to identify code rel-
evant to testing, such as function boundaries and loops,
and instruments code with calls to the test framework and
checkers. SymGen is built using CIL [32].

Stubs. SymDrive interposes on all calls into and out
of the driver with stubs that call the test framework and
checkers. For each function in the driver, SymGen gener-
ates two stubs: a preamble, invoked at the top of the func-
tion, and a postscript, invoked at the end. The generated
code passes the function’s parameters and return value to
these stubs to be used by checkers. For each kernel func-
tion the driver imports, SymGen generates a stub function
with the same signature that wraps the function.

To support pre- and post-condition assertions, stubs
invoke checkers when the kernel calls into the driver
or the driver calls into the kernel. Checkers associ-
ated with a specific function function x are named
function x check. On the first execution of a stub, the
test framework looks for a corresponding checker in the
kernel symbol table. If such a function exists, the stub
records its address for future invocations. While targeted
at functions in the kernel interface, this mechanism can
invoke checkers for any driver function.

Stubs employ a second lookup to find checkers as-
sociated with a function pointer passed from the driver
to the kernel, such as a PCI probe function. Kernel
stubs, when passed a function pointer, record the function
pointer and its purpose in a table. For example, the Linux
pci register driver function associates the address
of each function in the pci driver parameter with the
name of the structure and the field containing the function.
The stub for the probe method of a pci driver struc-
ture is thus named pci driver probe check. FreeBSD
drivers use a similar technique.

s2e_loop_before(__LINE__, loop_id); 
while(work--) { 
  tmp___17 = readb(cp->regs + 55); 
  if(!(tmp___17 & 16)) goto return_label; 
  stub_schedule_timeout_uninterruptible(10L); 
  s2e_loop_body(__LINE__, loop_id); 
} 
s2e_loop_after(__LINE__, loop_id); 

Figure 2: SymGen instruments the start, end, and body of
loops automatically. This code, from the 8139cp driver, was
modified slightly since SymGen produces preprocessed out-
put.

Stubs detect that execution enters the driver by track-
ing the depth of the call stack. The first function in the
driver notifies the test framework at its entry that driver
execution is starting, and at its exit notifies the test frame-
work that control is returning to the kernel. Stubs also
communicate this information to the VMM so that it can
make path-scheduling decisions based on function return
values.

Instrumentation. The underlying principle behind
SymGen’s instrumentation is to inform the VMM of
source level information as it executes the driver so it can
make better decisions about which paths to execute. Sym-
Gen instruments the start and end of each driver function
with a call into the stubs. As part of the rewriting, it con-
verts functions to have a single exit point. It generates
the same instrumentation for inline functions, which are
commonly used in the Linux and FreeBSD kernel/driver
interfaces.

SymGen also instruments the start, end, and body
of each loop with calls to short functions that execute
SymDrive-specific opcodes. These opcodes direct the
VMM to prioritize and deprioritize paths depending on
whether they exit the loop quickly. This instrumentation
replaces most of the per-driver effort required by S2E to
identify loops, as well as the per-class effort of writing a
consistency model for every function in the driver/kernel
interface. SymGen also inserts loop opcodes into the
driver, as shown in Figure 2, to tell S2E which paths exit
the loop, and should receive a priority boost.2

For complex code that slows testing, SymGen supports
programmer-supplied annotations to simplify or disable
the code temporarily. Short loops and those that do not
generate states require no manual developer effort. Only
loops that must execute for many iterations and gener-
ate new paths on each iteration need manual annotation,
which we implement through C #ifdef statements. For
example, the E1000 network driver verifies a checksum
over EEPROM, and we modified it to accept any check-
sum value. We have found these cases to be rare.

2One interesting alternative is to prioritize paths that execute loops
in their entirety. The problem with this approach is that it may generate
many states in the process, and slow testing.



3.5 Limitations

SymDrive is neither sound nor complete. The false posi-
tives we have experienced fall into two major categories.
First, symbolic execution is slow, which may cause the
kernel to print timing warnings and cause driver timers
to fire at the wrong time. Second, our initial checkers
were imprecise and disallowed (bizarre) behavior the ker-
nel considers legal. We have since fixed the checkers, and
have not seen them generate false positives.

Although we have observed no false negatives among
the checkers we wrote, SymDrive cannot check for all
kinds of bugs. Of 11 common security vulnerabili-
ties [12], SymDrive cannot detect integer overflows and
data races between threads, though support for overflow
detection is possible in principle because the underlying
VMM interprets code rather than executing it directly. In
addition, SymDrive cannot achieve full path coverage for
all drivers because SymDrive’s aggressive path pruning
may terminate paths that lead to bugs. SymDrive may
also miss race conditions, such as those requiring the in-
terrupt handler to interleave with another thread in a spe-
cific way.

4 Checkers
SymDrive detects driver/kernel interface violations with
checkers, which are functions interposing on control
transfer between the driver and kernel that verify and vali-
date driver behavior. Each function in the driver/kernel in-
terface can, but need not, have its own checker. Drivers in-
voke the checkers from stubs, described above, which call
separate checkers at every function in the driver/kernel in-
terface. Since checkers run in the VM alongside the sym-
bolically executing driver, they can verify runtime proper-
ties along each tested path.

The checkers use a support library that simplifies their
development by providing much of their functionality.
The library provides state variables to track the state of
the driver and current thread, such as whether it has regis-
tered itself successfully and whether it can be rescheduled.
The library also provides an object tracker to record kernel
objects currently in use in the driver. This object tracker
provides an easy mechanism to track whether locks have
been initialized and to discover memory leaks. Finally, the
library provides generic checkers for common classes of
kernel objects, such as locks and allocators. The generic
checkers encode the semantics of these objects, and thus
do much of the work. For example, checkers for a mutex
lock and a spin lock use the same generic checker, as they
share semantics.

Writing a checker requires implementing checks within
a call-out function. We have implemented 49 checkers
comprising 564 lines of code for a variety of common
device-driver bugs using the library API. Test #1 in Fig-
ure 3 shows an example call-out for pci register -

/* Test #1 */ void __pci_register_driver_check(...) { 
  if (precondition) { 
    assert (state.registered == NOT_CALLED); 
    set_state (&state.registered, IN_PROGRESS); 
    set_driver_bus (DRIVER_PCI); 
  } else /* postcondition */ { 
    if (retval == 0) set_state (&state.registered, OK); 
    else set_state (&state.registered, FAILED); 
  } 
} 
 
/* Test #2 */ void __kmalloc_check 
  (..., void *retval, size_t size, gfp_t flags) { 
  if (precondition) 
    mem_flags_test(GFP_ATOMIC, GFP_KERNEL, flags); 
  else /* postcondition */ 
    generic_allocator(retval, size, ORIGIN_KMALLOC); 
} 
 
/* Test #3 */ void _spin_lock_irqsave_check 
  (..., void *lock) { 
  // generic_lock_state supports pre/post-conditions 
  generic_lock_state(lock, 
    ORIGIN_SPIN_LOCK, SPIN_LOCK_IRQSAVE, 1); 
} 

Figure 3: Example checkers. The first checker ensures
that PCI drivers are registered exactly once. The second
verifies that a driver allocates memory with the appropri-
ate mem flags parameter. The third ensures lock/unlock
functions are properly matched. Unlike Static Driver Veri-
fier checkers [31], these checkers can track any path-specific
run-time state expressible in C.

driver. The driver-function stub invokes the checker
function with the parameters and return value of the ker-
nel function and sets a precondition flag to indicate
whether the checker was called before or after the func-
tion. In addition, the library provides the global state
variable that a checker can use to record information about
the driver’s activity. As shown in this example, a checker
can verify that the state is correct as a precondition, and
update the state based on the result of the call. Checkers
have access to the runtime state of the driver and can store
arbitrary data, so they can find interprocedural, pointer-
specific bugs that span multiple driver invocations.

Not every behavior requirement needs a checker. Sym-
bolic execution leverages the extensive checks already in-
cluded as kernel debug options, such as for memory cor-
ruption and locking. Most of these checks execute within
functions called from the driver, and thus will be invoked
on multiple paths. In addition, any bug that causes a ker-
nel crash or panic will be detected by the operating system
and therefore requires no checker.

We next describe a few of the 49 checkers we have im-
plemented with SymDrive.

Execution Context. Linux prohibits the calling of func-
tions that block when executing in an interrupt handler or
while holding a spinlock. The execution-context checker
verifies that flags passed to memory-allocation functions
such as kmalloc are valid in the context of the currently



executing code. The support library provides a state ma-
chine to track the driver’s current context using a stack.
When entering the driver, the library updates the context
based on the entry point. The library also supports locks
and interrupt management. When the driver acquires or
releases a spinlock, for example, the library pushes or
pops the necessary context.

Kernel API Misuse. The kernel requires that drivers
follow the proper protocol for kernel APIs, and errors
can lead to a non-functioning driver or a resource leak.
The support library state variables provide context for
these tests. For example, a checker can track the suc-
cess and failure of significant driver entry points, such as
the init module and PCI probe functions, and ensure
that if the driver is registered on initialization, it is prop-
erly unregistered on shutdown. Test #1 in Figure 3 shows
a use of these states to ensure that a driver only invokes
pci register driver once.

Collateral Evolutions. Collateral evolutions occur
when a small change to a kernel interface necessitates
changes in many drivers simultaneously. A developer can
use SymDrive to verify that collateral evolutions [35] are
correctly applied by ensuring that patched drivers do not
regress on any tests.

SymDrive can also ensure that the desired effect of a
patch is reflected in the driver’s execution. For exam-
ple, recent kernels no longer require that network drivers
update the net device->trans start variable in their
start xmit functions. We wrote a checker to verify that
trans start is constant across start xmit calls.

Memory Leaks. The leak checker uses the support li-
brary’s object tracker to store an allocation’s address and
length. We implemented checkers to verify allocation and
free requests from 19 pairs of functions, and ensure that
an object’s allocation and freeing use paired routines.

The API library simplifies writing checkers for addi-
tional allocators down to a few lines of code. Test #2 in
Figure 3 shows the generic allocator call to the li-
brary used when checking kmalloc, which records that
kmalloc allocated the returned memory. A correspond-
ing checker for kfree verifies that kmalloc allocated the
supplied address.

5 Evaluation
The purpose of the evaluation is to verify that SymDrive
achieves its goals: (i) usefulness, (ii) simplicity, and (iii)
efficiency.

5.1 Methodology

As shown in Table 2, we tested SymDrive on 26 drivers in
11 classes from several Linux kernel revisions (13 drivers
from 2.6.29, 4 from 3.1.1, and 4 that normally run only on
Android-based phones) and from FreeBSD 9 (5 drivers).

Of the 26 drivers, we chose 19 as examples of a specific
bus or class and the remaining 7 because we found fre-
quent patches to them and thus expected to find bugs.

All tests took place on a machine running Ubuntu 10.10
x64 equipped with a quad-core Intel 2.50GHz Intel Q9300
CPU and 8GB of memory. All results are obtained while
running SymDrive in a single-threaded mode, as Sym-
Drive does not presently work with S2E’s multicore sup-
port.3

To test each driver, we carry out the following opera-
tions:

1. Run SymGen over the driver and compile the output.
2. Define a virtual hardware device with the desired pa-

rameters and boot the SymDrive virtual machine.
3. Load the driver with insmod and wait for initializa-

tion to complete successfully. Completing this step
entails executing at least one successful path and re-
turning success, though it is likely that other failed
paths also run and are subsequently discarded.

4. Execute a workload (optional). We ensure all net-
work drivers attempt to transmit and that sound
drivers attempt to play a sound.

5. Unload the driver.
If SymDrive reports warnings about too many paths

from complex loops, we annotate the driver code and re-
peat the operations. For most drivers, we run SymGen
over only the driver code. For drivers that have fine-
grained interactions with a library, such as sound drivers
and the pluto2 media driver, we run SymGen over both
the library and the driver code. We annotated each driver
at locations SymDrive specified, and tested each Linux
driver with 49 checkers for a variety of common bugs.
For FreeBSD drivers, we only used the operating system’s
built-in test functionality.

5.2 Bug Finding

Across the 26 drivers listed in Table 2, we found the 39
distinct bugs described in Table 3. Of these bugs, S2E
detected 17 via a kernel warning or crash, and the check-
ers caught the remaining 22. Although these bugs do not
necessarily result in driver crashes, they all represent is-
sues that need addressing and are difficult to find without
visibility into driver/kernel interactions.

These results show the value of symbolic execution.
Of the 39 bugs, 56% spanned multiple driver invoca-
tions. For example, the akm8975 compass driver calls
request irq before it is ready to service interrupts. If an
interrupt occurs immediately after this call, the driver will
crash, since the interrupt handler dereferences a pointer

3This limitation is an engineering issue and prevents SymDrive from
exploring multiple paths simultaneously. However, because SymDrive’s
favor-success scheduling often explores a single path deeply rather than
many paths at once, S2E’s multi-threaded mode would have little per-
formance benefit.



Driver Class Bugs LoC Ann Load Unld.
akm8975* Compass 4 629 0 0:22 0:08
mmc31xx* Compass 3 398 0 0:10 0:04
tle62x0* Control 2 260 0 0:06 0:05
me4000 Data Ac. 1 5,394 2 1:17 1:04
phantom Haptic 0 436 0 0:16 0:13
lp5523* LED Ctl. 2 828 0 2:26 0:19
apds9802* Light 0 256 1 0:31 0:21
8139cp Net 0 1,610 1 1:51 0:37
8139too Net 2 1,904 3 3:28 0:35
be2net Net 7 3,352 2 4:49 1:39
dl2k Net 1 1,985 5 2:52 0:35
e1000 Net 3 13,971 2 4:29 2:01
et131x Net 2 8,122 7 6:14 0:47
forcedeth Net 1 5,064 2 4:28 0:51
ks8851* Net 3 1,229 0 2:05 0:13
pcnet32 Net 1 2,342 1 2:34 0:27
smc91x* Net 0 2,256 0 10:41 0:22
pluto2 Media 2 591 3 1:45 1:01
econet Proto. 2 818 0 0:11 0:11
ens1371 Sound 0 2,112 5 27:07 4:48
a1026* Voice 1 1,116 1 0:34 0:03
ed Net 0 5,014 0 0:49 0:13
re Net 0 3,440 3 16:11 0:21
rl Net 0 2,152 1 2:00 0:08
es137x Sound 1 1,688 2 57:30 0:09
maestro Sound 1 1,789 2 17:51 0:27

Table 2: Drivers tested. Those in italics run on Android-
based phones, those followed by an asterisk are for embed-
ded systems and do not use the PCI bus. Drivers above the
line are for Linux and below the line are for FreeBSD. Line
counts come from CLOC [1]. Times are in minute:second
format, and are an average of three runs.

Kernel / Cross
Bug Type Bugs Checker EntPt Paths Ptrs
Hardware Dep. 7 6 / 1 4 6 6
API Misuse 15 7 / 8 6 5 1
Race 3 3 / 0 3 2 3
Alloc. Mismatch 3 0 / 3 3 0 3
Leak 7 0 / 7 6 1 7
Driver Interface 3 0 / 3 0 2 0
Bad pointer 1 1 / 0 0 0 1
Totals 39 17 / 22 22 16 21

Table 3: Summary of bugs found. For each category, we
present the number of bugs found by kernel crash/warning
or a checker and the number that crossed driver entry points
(“Cross EntPt”), occurred only on specific paths, or required
tracking pointer usage.

that is not yet initialized. In addition, 41% of the bugs
occurred on a unique path through a driver other than
one that returns success, and 54% involved pointers and
pointer properties that may be difficult to detect statically.

Bug Validation. Of the 39 bugs found, at least 17 were
fixed between the 2.6.29 and 3.1.1 kernels, which indi-
cates they were significant enough to be addressed. We
were unable to establish the current status of 7 others be-
cause of significant driver changes. We have submitted
bug reports for 5 unfixed bugs in mainline Linux drivers,
all of which have been confirmed as genuine by kernel de-
velopers. The remaining bugs are from drivers outside the
main Linux kernel that we have not yet reported.

5.3 Developer Effort

One of the goals of SymDrive is to minimize the effort
to test a driver. The effort of testing comes from three
sources: (i) annotations to prepare the driver for testing,
(ii) testing time, and (iii) updating code as kernel inter-
faces change.

To measure the effort of applying SymDrive to a new
driver, we tested the phantom haptic driver from scratch.
The total time to complete testing was 1h:45m, despite
having no prior experience with the driver and not having
the hardware. In this time, we configured the symbolic
hardware, wrote a user-mode test program that passes
symbolic data to the driver’s entry points, and executed
the driver four times in different configurations. Of this
time, the overhead of SymDrive compared to testing with
a real device was an additional pass during compilation
to run SymGen, which takes less than a minute, and 38
minutes to execute. Although not a large driver, this test
demonstrates SymDrive’s usability from the developer’s
perspective.

Annotations. The only per-driver coding SymDrive re-
quires is annotations on loops that slow testing and anno-
tations that prioritize specific paths. Table 2 lists the num-
ber of annotation sites for each driver. Of the 26 drivers,
only 6 required more than two annotations, and 9 required
no annotations. In all cases, SymDrive printed a warning
indicating where an annotation would benefit testing.

Testing time. Symbolic execution can be much slower
than normal execution. Hence, we expect it to be used
near the end of development, before submitting a patch,
or on periodic scans through driver code. We report the
time to load, initialize, and unload a driver (needed for
detecting resource leaks) in Table 2. Initialization time is
the minimum time for testing, and thus presents a lower
bound.

Overall, the time to initialize a driver is roughly pro-
portional to the size of the driver. Most drivers initialize
in 5 minutes or less, although the ens1371 sound driver
required 27 minutes, and the corresponding FreeBSD
es137x driver required 58 minutes. These two results
stem from the large amount of device interaction these
drivers perform during initialization. Excluding these re-
sults, execution is fast enough to be performed for every
patch, and with a cluster could be performed on every
driver affected by a collateral evolution [35].

Kernel evolution. Near the end of development, we up-
graded SymDrive from Linux 2.6.29 to Linux 3.1.1. If
much of the code in SymDrive was specific to the ker-
nel interface, porting SymDrive would be a large effort.
However, SymDrive’s use of static analysis and code gen-
eration minimized the effort to maintain tests as the ker-
nel evolves: the only changes needed were to update a



Touched Time
Driver Funcs. Coverage CPU Latency
8139too 93% 83% 2h36m 1h00m
a1026 95% 80% 15m 13m
apds9802 85% 90% 14m 7m
econet 51% 61% 42m 26m
ens1371 74% 60% *8h23m *2h16m
lp5523 95% 83% 21m 5m
me4000 82% 68% *26h57m *10h25m
mmc31xx 100% 83% 14m 26m
phantom 86% 84% 38m 32m
pluto2 78% 90% 19m 6m
tle62x0 100% 85% 16m 12m
es137x 97% 70% 1h22m 58m
rl 84% 71% 13m 10m

Table 4: Code coverage.

few checkers whose corresponding kernel functions had
changed. The remainder of the system, including Sym-
Gen and the test framework, were unchanged. The num-
ber of lines of code changed was less than 100.

Furthermore, porting SymDrive to a new operating sys-
tem is not difficult. We also ported the SymDrive infras-
tructure, checkers excluded, to FreeBSD 9. The entire
process took three person-weeks. The FreeBSD imple-
mentation largely shares the same code base as the Linux
version, with just a few OS-specific sections. This result
confirms that the techniques SymDrive uses are compati-
ble across operating systems.

5.4 Coverage

While SymDrive primarily uses symbolic execution to
simulate the device, a second benefit is higher code cov-
erage than standard testing. Table 4 shows coverage re-
sults for one driver of each class, and gives the fraction of
functions executed (“Touched Funcs.”) and the fraction
of basic blocks within those functions (“Coverage”).4 In
addition, the table gives the total CPU time to run the tests
on a single machine (CPU) and the latency of the longest
run if multiple machines are used (Latency). In all cases,
we ran drivers multiple times and merged the coverage
results. We terminated each run once it reached a steady
state and stopped testing the driver once coverage did not
meaningfully improve between runs.

Overall, SymDrive executed a large majority (80%) of
driver functions in most drivers, and had high coverage
(80% of basic blocks) in those functions. These results are
below 100% for two reasons. First, we could not invoke
all entry points in some drivers. For example, econet
requires user-mode software to trigger additional driver
entry points that SymDrive is unable to call on its own.
In other cases, we simply did not spend enough time un-
derstanding how to invoke all of a driver’s code, as some
functionality requires the driver to be in a specific state
that is difficult to realize, even with symbolic execution.

4* Drivers with an asterisk ran unattended, and their total execution
time is not representative of the minimum.

Touched Time
Driver Funcs. Coverage Serial Parallel
8139too 100% 96% 9m 5m
ks8851 100% 100% 16m 8m
lp5523 100% 97% 12m 12m

Table 5: Patched code coverage.

Second, of the functions SymDrive did execute, additional
inputs or symbolic data from the kernel were needed to
test all paths. Following S2E’s relaxed consistency model
by making more of the kernel API symbolic could help
improve coverage.

As a comparison, we tested the 8139too driver on a
real network card using gcov to measure coverage with
the same set of tests. We loaded and unloaded the driver,
and ensured that transmit, receive, and all ethtool func-
tions executed. Overall, these tests executed 77% of driver
functions, and covered 75% of the lines in the functions
that were touched, as compared to 93% of functions and
83% of code for SymDrive. Although not directly compa-
rable to the other coverage results due to differing method-
ologies, this result shows that SymDrive can provide cov-
erage better than running the driver on real hardware.

5.5 Patch Testing

The second major use of SymDrive is to verify driver
patches similar to a code reviewer. For this use, we seek
high coverage in every function modified by the patch in
addition to the testing described previously. We evaluate
SymDrive’s support for patch testing by applying all the
patches between the 3.1.1 and 3.4-rc6 kernel releases that
applied to the 8139too (net), ks8851 (net) and lp5523

(LED controller) drivers, of which there were 4, 2, and 6,
respectively. The other drivers lacked recent patches, had
only trivial patches, or required upgrading the kernel, so
we did not consider them.

In order to test the functions affected by a patch, we
used favor-success scheduling to fast-forward execution
to a patched function and then enabled high coverage
mode. The results, shown in Table 5, demonstrate that
SymDrive is able to quickly test patches as they are ap-
plied to the kernel, by allowing developers to test nearly
all the changed code without any device hardware. Sym-
Drive was able to execute 100% of the functions touched
by all 12 patches across the 3 drivers, and an average of
98% of the code in each function touched by the patch.
In addition, tests took an average of only 12 minutes to
complete.

Execution tracing. Execution tracing provides an alter-
nate means to verify patches by comparing the behav-
ior of a driver before and after applying the patch. We
used tracing to verify that SymDrive can distinguish be-
tween patches that change the driver/device interactions
and those that do not, such as a collateral evolution. We
tested five patches to the 8139too network driver that



refactor the code, add a feature, or change the driver’s
interaction with the hardware. We executed the original
and patched drivers and record the hardware interactions.
Comparing the traces of the before and after-patch drivers,
differing I/O operations clearly identify the patches that
added a feature or changed driver/device interactions, in-
cluding which functions changed. As expected, there
were no differences in the refactoring patches.

We also apply tracing to compare the behavior of
drivers for the same device across operating systems.
Traces of the Linux 8139too driver and the FreeBSD rl

driver show differences in how these devices interact with
the same hardware that could lead to incorrect behavior.
In one case, the Linux 8139too driver incorrectly treats
one register as 4 bytes instead of 1 byte, while in the other,
the rl FreeBSD driver uses incorrect register offsets for a
particular supported chipset. Developers fixed the Linux
bug independently after we discovered it, and we vali-
dated the FreeBSD bug with a FreeBSD kernel developer.
We do not include these bugs in the previous results as
they were not identified automatically by SymDrive.

These bugs demonstrate a new capability to find
hardware-specific bugs by comparing independent driver
implementations. While we manually compared the
traces, it may be possible to automate this process.

5.6 Comparison to other tools.

We compare SymDrive against other driver testing/bug-
finding tools to demonstrate its usefulness, simplicity, and
efficiency.

S2E. In order to demonstrate the value of SymDrive’s
additions to S2E, we executed the 8139too driver with
only annotations to the driver source guiding path explo-
ration but without the test framework or SymGen to pri-
oritize relevant paths. In this configuration, S2E executes
using strict consistency, wherein the only source of sym-
bolic data is the hardware, and maximizes coverage with
the MaxTbSearcher plugin. This mode is the default when
a developer does not write API-specific plugins; results
improve greatly when these plugins are available [15].
We ran S2E until it ran out of memory to store paths and
started thrashing after 23 minutes.

During this test, only 33% of the functions in the driver
were executed, with an average coverage of 69%. In com-
parison, SymDrive executed 93% of functions with an av-
erage coverage of 83% in 2½ hours. With S2E alone, the
driver did not complete initialization and did not attempt
to transmit packets. In addition, S2E’s annotations could
not be made on the driver source, but must be made on
the binary instead. Thus, annotations must be regenerated
every time a driver is compiled.

Adding more RAM and running the driver longer
would likely have allowed the driver to finish executing
the initialization routine. However, many uninteresting

paths would remain, as S2E has no automatic way to prune
them. Thus, the developer would still have considerable
difficulty invoking other driver entry points, since S2E
would continue to execute failing execution paths.

In order for S2E to achieve higher coverage in this
driver, we would need a plugin to implement a relaxed
consistency model. However, the 8139too driver (v3.1.1)
calls 73 distinct kernel functions, which would require de-
veloper effort to code corresponding functions in the plu-
gin.

Static-analysis tools. Static analysis tools are able to
find many driver bugs, but require a large effort to im-
plement a model of operating system behavior. For ex-
ample, Microsoft’s Static Driver Verifier (SDV) requires
39,170 lines of C code to implement an operating sys-
tem model [31]. SymDrive instead relies on models only
for the I/O bus implementations, which together account
for 715 lines of code for 5 buses. SymDrive supports
FreeBSD with only 491 lines of OS-specific code, primar-
ily for the test framework, and can check drivers with the
debugging facilities already included in the OS.

In addition, SDV achieves much of its speed through
simplifying its analysis, and consequently its checkers are
unable to represent arbitrary state. Thus, it is difficult to
check complex properties such as whether a variable has
matched allocation/free calls across different entry points.

Kernel debug support. Most kernels provide debug-
ging to aid kernel developers, such as tools to detect dead-
lock, track memory leaks, or uncover memory corruption.
Some of the test framework checkers are similar to debug
functionality built into Linux. Compared to the Linux leak
checker, kmemleak, the test framework allows testing a
single driver for leaks, which can be drowned out when
looking at a list of leaks across the entire kernel. Further-
more, writing checkers for SymDrive is much simpler: the
Linux 3.1.1 kmemleak module is 1,113 lines, while, the
test framework object tracker, including a complete hash
table implementation, is only 722 lines yet provides more
precise results.

6 Related Work
SymDrive draws on past work in a variety of areas, in-
cluding symbolic execution, static and dynamic analysis,
test frameworks, and formal specification.

DDT and S2E. The DDT and S2E systems have been
used for finding bugs in binary drivers [14, 15, 26]. Sym-
Drive is built upon S2E but significantly extends its ca-
pabilities in three ways by leveraging driver source code.
First and most important, SymDrive automatically detects
the driver/kernel interface and generates code to interpose
checkers at that interface. In contrast, S2E requires pro-
grammers to identify the interface manually and write plu-
gins that execute outside the kernel, where kernel symbols



are not available, though S2E and SymDrive both sup-
port re-using existing testing tools. Second, SymDrive
automatically detects and annotates loops, which in S2E
must be identified manually and specified as virtual ad-
dresses. As a result, the effort to test a driver is much
reduced compared to S2E. Third, checkers in SymDrive
are implemented as standard C code executing in the ker-
nel, making them easy to write, and are only necessary
for kernel functions of interest. When the kernel interface
changes, only the checkers affected by interface changes
must be modified. In contrast, checkers in S2E are written
as plugins outside the kernel, and the consistency model
plugins must be updated for all changed functions in the
driver interface, not just those relevant to checks.

Symbolic testing. There are numerous prior approaches
to symbolic execution [9, 10, 13, 20, 26, 39, 40, 43, 45].
However, most apply to standalone programs with lim-
ited environmental interaction. Drivers, in contrast, exe-
cute as a library and make frequent calls into the kernel.
BitBlaze supports environment interaction but not I/O or
drivers [37].

To limit symbolic execution to a manageable amount of
state, previous work limited the set of symbolically exe-
cuted paths by applying smarter search heuristics and/or
by limiting program inputs [11, 21, 26, 27, 28, 44], which
is similar to SymDrive’s path pruning and prioritization.

Other systems combine static analysis with symbolic
execution [16, 18, 19, 36]. SymDrive uses static analy-
sis to insert checkers and to dynamically guide the path
selection policy from code features such as loops and re-
turn values. In contrast, these systems use the output of
static analysis directly within the symbolic execution en-
gine to select paths. Execution Synthesis [45] combines
symbolic execution with static analysis, but is designed
to reproduce existing bug reports with stack traces, and is
thus complementary to SymDrive.

Static analysis tools. Static analysis tools can find spe-
cific kinds of bugs common to large classes of drivers,
such as misuses of the driver/kernel [3, 4, 5, 31, 35] or
driver/device interface [25] and ignored error codes [23,
41]. Static bug-finding tools are often faster and more
scalable than symbolic execution [8].

We see three key advantages of testing drivers with
symbolic execution. First, symbolic execution is better
able to find bugs that arise from multiple invocations of
the driver, such as when state is corrupted during one
call and accessed during another. It also has a low false-
positive rate because it makes few approximations. Sec-
ond, symbolic execution has full access to driver and ker-
nel state, which facilitates checking driver behavior. Fur-
thermore, checkers that verify behavior can be written as
ordinary C, which simplifies their development, and can
track arbitrary runtime state such as pointers and driver

data. Symbolic execution also supports the full function-
ality of C including pointer arithmetic, aliasing, inline as-
sembly code, and casts. In contrast, most static analysis
tools operate on a restricted subset of the language. Thus,
symbolic execution often leads to fewer false positives.
Finally, static tools require a model of kernel behavior,
which in Linux changes regularly [22]. In contrast, Sym-
Drive executes checkers written in C and has no need for
an operating system model, since it executes kernel code
symbolically. Instead, SymDrive relies only on models
for each I/O bus, which are much simpler and shorter to
write.

Test frameworks. Test frameworks such as the Linux
Test Project (LTP) [24] and Microsoft’s Driver Verifier
(DV) [29, 30] can invoke drivers and verify their behavior,
but require the device be present. In addition, LTP tests at
the system-call level and thus cannot verify properties of
individual driver entry points. SymDrive can use these
frameworks, either as checkers, in the case of DV, or as a
test program, in the case of LTP.

Formal specifications for drivers. Formal specifica-
tions express a device’s or a driver’s operational require-
ments. Once specified, other parts of the system can ver-
ify that a driver operates correctly [6, 38, 42]. However,
specifications must be created for each driver or device.
Amani et al. argue that the existing driver architecture is
too complicated to be formally specified, and propose a
new architecture to simplify verification [2]. Many of the
challenges to static verification also complicate symbolic
testing, and hence their architecture would address many
of the issues solved by SymDrive.

7 Conclusions
SymDrive uses symbolic execution combined with a test
framework and static analysis to test Linux and FreeBSD
driver code without access to the corresponding device.
Our results show that SymDrive can find bugs in mature
driver code of a variety of types, and allow developers to
test driver patches deeply. Hopefully, SymDrive will en-
able more developers to patch driver code by lowering the
barriers to testing. In the future, we plan to implement
an automated testing service for driver patches that sup-
plements manual code reviews, and investigate applying
SymDrive’s techniques to other kernel subsystems.
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