
IMPLEMENTING ALGORITHMS FOR SIGNAL AND IMAGE
RECONSTRUCTION ON GRAPHICAL PROCESSING UNITS

SANGKYUN LEE AND STEPHEN J. WRIGHT∗

Abstract. Several highly effective algorithms that have been proposed recently for compressed
sensing and image processing applications can be implemented efficiently on commodity graphical
processing units (GPUs). The properties of algorithms and application that make for efficient GPU
implementation are discussed, and computational results for several algorithms are presented that
show large speedups over CPU implementations.

Key words. Graphical processing units, compressed sensing, image denoising, image deblurring.

AMS subject classifications. 65Y10, 90C47, 90C20, 90C06

1. Introduction. Parallel computation has long been recognized as a means of
speeding up computationally intensive numerical computing tasks. A great variety of
architectures has been developed over the years to support different types of parallel
computation. With the current ubiquity of multicore architectures, parallel processing
has become the dominant paradigm in computing.

Most personal computers also contain another type of parallel processing device:
graphical processing units (GPUs). GPUs were developed for real-time rendering or
3D graphics, but are increasingly being adopted for massively parallel numerical com-
putating. GPUs feature a many-processor architecture and high-bandwidth memory
that maximize multithreading performance, along with faster arithmetic units than
those on CPUs. Many recent studies have reported significant performance boosts by
using GPUs to run critical numerical computing tasks in various applications, includ-
ing pattern analysis [7, 15], biomedical imaging [17], DNA sequence alignment [28],
molecular modeling and simulation [29, 32], multibody dynamics [30], and quantum
chemistry [31].

Our focus in this paper is on GPU implementations of algorithms that have been
proposed recently for reconstruction of sparse signals from random observations (com-
pressed sensing) and for image denoising and deblurring. These problems typically
involve a large number of unknowns but, unlike many problems in numerical com-
puting, the amount of data needed to specify the problem typically is often less than
the number of unknowns. The major computational operations that are used in the
algorithms we described here — which are among the most effective algorithms avail-
able for these problems, even when implemented on CPUs — are readily implemented
with high efficiency on GPUs.

In this paper we introduce NVIDIA’s GPUs and describe the CUDA software
platform that can be used to implement algorithms on these GPUs. We then describe
the applications and algorithms, discuss some details of the GPU implementations,
and give computational results that compare the speed of implementations on the
CPU host with the speed of the GPU implementation. Since the cost of GPUs is
so low (hundreds of dollars) and the speedups so high (two orders of magnitude and
more), GPU implementations provide a remarkable extension of numerical computing
capabilities in certain areas at an extremely low cost.

2. Hardware and Software Platform.

∗Computer Sciences Department, University of Wisconsin, 1210 W. Dayton Street, Madison, WI
53706, USA; {sklee}{swright}@cs.wisc.edu

1

2 S. LEE AND S. J. WRIGHT

Multiprocessor

Global memory

Streaming Multiprocessor

8 Scalar Processors

Shared memory

Texture memory

Constant memory

GPU

SP SP SP SP

SP SP SP SP

Fig. 2.1. A schematic view of a GPU.

Block 1,2 Block 1,3

Block 2,1 Block 2,2 Block 2,3

Block 3,1 Block 3,2 Block 3,3

T1 T2 T3

T4 T5 T6

A task

Fig. 2.2. A thread execution configuration.

2.1. NVIDIA GPUs. NVIDIA provides a wide range of GPU products that
can be used for general computing as well as for their original purpose of real-time
rendering or 3D graphics. Here we briefly describe two recent models, the GeForce
9800 GX2 and Tesla D870. Both devices provide two GPUs whose processor and
memory specifications are summarized in Table 2.1. In both products, each GPU has
128 processors called scalar processors (SPs), which run threads and access the shared
or global memory concurrently. A streaming multiprocessor (SM) is composed of 8
SPs together with an instruction unit, 8192 registers, shared memory, and caches.
Each GPU has a high-bandwidth global memory, which can be accessed from all 128
SPs in the same GPU.

A schematic view of a GPU composed of these elements is shown in Figure 2.1. In
these products, the memory bandwidth of the global memory in GPUs is much higher
than the bandwidth of the host memory: GPU memory transfer rate is more than
60GB/s, whereas the host memory transfer rate is 6.4GB/s for DDR2-800 memory
(the memory on our host PC), or 12.8GB/s for DDR3-1600 memory (the fastest
presently available.) The GPUs are connected to a host computer via the PCI Express
bus, which provides the maximum bandwidth of 8GB/s (PCI Express v2.0 ×16)
between the host and GPU. Although this rate is much slower than the GPU-to-GPU
transfer rate, it is actually faster than the host-to-host memory transfer rate for the
DDR2-800 host memory that we use. Our host computer is a Dell Precision T5400
workstation, equipped with a 2.66GHz Intel quad-core processor and 4GB of main
memory.

Since our focus in this paper is on fine-grained parallelization of the algorithms
in question, we use only a single GPU of the GeForce 9800 GX2 device. Multiple
GPUs can be utilized if we overlay a coarse-grained parallelization on the algorithms
described below. This could be accomplished by writing CPU-based parallel codes
using pthread, MPI, or other parallel tools, but since such techniques are well under-
stood, we do not investigate them in this paper.

2.2. Software Platform. The Compute Unified Device Architecture (CUDA) is
NVIDIA’s software platform for GPUs [24]. It is an extension to the the C++ language
that allows users to write thread execution configurations, manage device memory,
and do thread synchronization. CUDA splits a task into a grid of blocks, where a block
is composed of a set of threads. (An example of a grid composed of nine blocks, each

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 3

Device name GeForce 9800 GX2 Tesla D870
GPUs 2 2

Streaming Multiprocessors 16 per GPU 16 per GPU
Number of Scalar Processors 8× 16 per GPU 8× 16 per GPU

Memory size 512MB per GPU 1.5GB per GPU
GPU memory bandwidth 64GB/s per GPU 76.8GB/s per GPU

Host communication bandwidth 8GB/s 4GB/s
Table 2.1

The specifications of NVIDIA GPUs.

with six threads, is shown in Figure 2.2.) These blocks are scheduled to run on the
multiprocessors of the GPU. CUDA uses a single-instruction multiple-thread (SIMT)
model, which means that the threads running in a multiprocessor share the same
code but run at possibly different states with different streams of data. CUDA also
provides GPU-accelerated libraries for basic linear algebra operations (CUBLAS [22])
and discrete Fourier transforms (CUFFT [23]).

In CUDA, each GPU thread receives its own set of dedicated registers, unlike
threads that run on CPUs, which typically share registers. This design helps minimize
the costs of context switching on GPUs. When registers are shared, their contents
must be stored in memory when one thread leaves a processor, and new values for
the entering thread must be loaded from memory. Because memory transfers are
about one hundred times slower than computations, avoidance of register content
copies adds greatly to the benefits of fine-grained parallelism in CUDA. On the other
hand, although multiprocessors contain a huge number of registers, the dedication of
registers to threads limits the number of threads that can be simultaneously scheduled
on a multiprocessor.

The applications most suited to GPU implementations are those that are inten-
sive in computation, for which the ratio of computation to memory accesses is high.
Because CUDA provides faster memory accesses to coalesced patterns and spatially
local patterns, operations on dense matrices and two-dimensional image data can be
implemented efficiently. Since the shared memory in streaming multiprocessors can
be accessed as fast as the registers (provided there is no bank conflict), operations
that apply the same small data elements to different locations of a large data set
can also be optimized. However, global memory size and host communication speed
are limiting factors in any implementation, and both should be controlled carefully.
Tasks should be large enough to keep all multiprocessors busy so that the latency of
memory operations does not affect the overall efficiency too greatly.

We refer to Appendix A for further details on maximizing the efficiency of CUDA
programs on GPUs.

3. Compressed Sensing.

3.1. Problem Description. In compressed sensing, we seek to identify a signal
that is known to be sparse, that is, when represented as a set of n coefficients in some
basis representation, only S � n of the coefficients are nonzero. We aim to recover
the signal from a set of m observations, with m < n, where each observation is some
linear function of the signal — a linear combination of the coefficients in the basis
representation. The observation vector y ∈ IRm can thus be expressed in terms of the
signal coefficient vector x by y = Ax, where the m× n matrix A is referred to as the

4 S. LEE AND S. J. WRIGHT

sensing matrix. Under certain assumptions on A, we can recover the true x by solving
the problem

min ‖x‖1 subject to Ax = y, (3.1)

which is the solution of the underdetermined linear system Ax = y with smallest
`1-norm. The crucial assumption on A, referred to as the restricted isometry property
(RIP), essentially requires that each column submatrix of A for which the number of
columns is comparable to S is almost orthonormal. This property ensures that any
two signals of sparsity at most S retain their distinctiveness when operated on by A,
so that they give rise to significantly different observation vectors. When A has such
a property, the formulation (3.1) yields the true signal even when m is only a modest
multiple of the number S of nonzero coefficients in the signal.

When the observation vector y contains error, such as measurement noise, it is
inappropriate to enforce the constraint Ax = y exactly. Here, we replace (3.1) by the
following weighted formulation:

min
x

φ(x) :=
1
2
‖Ax− y‖22 + τ‖x‖1, (3.2)

for some regularization parameter τ > 0. Note that for τ ≥ τmax the solution is x = 0,
where

τmax := ‖AT y‖∞. (3.3)

Theory concerning the effectiveness of these formulations for finding sparse solu-
tions of Ax = y can be found in the papers of Donoho [12, 11], Candès and Tao [5],
and Candès, Romberg, and Tao [4]. Donoho [10] and Candès [6] give introductions to
compressed sensing and discuss the various contexts in which these problems arise.

3.2. Algorithms. The optimization formulations above are conceptually simple
— (3.1) can be written as a linear program and (3.2) as a convex quadratic program,
with a suitable splitting of the variable x — but their difficulty arises from their high
dimensionality (m and n large) and the fact that A is dense in many applications
of interest. Many algorithms have been proposed, the vast majority of which do not
require the full matrix A (or significant submatrices of A) to be stored or factored
explicitly. Rather, they require numerous matrix-vector products involving A and AT

to be performed. Fortunately, there are interesting matrices A that satisfy RIP for
which such products can be calculated economically. For example, if A consists of m
rows randomly drawn from an n-dimensional discrete cosine transformation (DCT),
the products Au and AT v can be computed in O(n log n) operations. The same
complexity estimate is true if we work with signals in the complex domain (A, x, and
y containing complex elements), where A consists of m rows randomly drawn from a
discrete Fourier transform (DFT).

As a sample of the vast algorithmic literature, we mention the iterative thresh-
olding / shrinking (IST) approach [9, 13]; extensions of this approach [21, 2] based on
the optimal first-order methodology of Nesterov [19, 20]; a variant of IST that uses a
“continuation” strategy of successively reducing the parameter τ in (3.2) [16]; interior-
point methods [27, 18, 3]; and gradient projection applied to the bound-constrained
quadratic programming formulation of (3.2) [14].

We focus in this paper on the SpaRSA approach of [33], which can be viewed as
an accelerated variant of IST. From the current iterate xk, SpaRSA obtains the new

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 5

iterate xk+1 by solving the following subproblem:

xk+1 = arg min
z

1
2
αk‖z − xk‖22 + (z − xk)TAT (Axk − y) + τ‖z‖1 (3.4a)

= arg min
z

1
2

∥∥z − [xk − (1/αk)AT (Axk − y)
]∥∥2

2
+

τ

αk
‖z‖1, (3.4b)

for some αk > 0. The subproblem (3.4a) is the same as (3.2) except that the true
Hessian ATA replaced by αkI, and a constant term is omitted. It is separable in the
components of z, so it requires O(n) operations to solve (a closed-form solution is
easy to derive), in addition to one matrix-vector multiplication each by A and AT ,
which are required to form the term AT (Axk − y).

Different variants of SpaRSA are distinguished by different strategies for choos-
ing αk. A nonmonotone approach (that does not necessarily yield a decrease in the
objective (3.2) at each iteration) uses a choice of αk inspired by Barzilai and Bor-
wein [1]. Denoting by sk := xk − xk−1 the difference between the last two iterates
and yk := ATAsk the difference between the gradient of the sum-of-squares term
(1/2)‖Ax− b‖22 at the last two iterates, this variant sets

αk =
(sk)T yk

(sk)T sk
=
‖Ask‖22
‖sk‖22

. (3.5)

(Note that αk lies in the spectrum of the Hessian ATA, so in this sense, αkI is a
plausible approximation to ATA.) A monotone variant uses the value (3.5) as an
initial guess, then repeatedly increases αk by a constant factor η > 1 until xk+1

obtained from (3.4) has a lower function value than xk.
The performance of SpaRSA (and other IST methods) generally degrades as the

regularization parameter τ is reduced and the solutions x become more dense. Much
of the practical efficiency can be recovered, however, by the use of a continuation
strategy. We start by using SpaRSA to solve (3.2) for a larger value of τ , then decrease
τ in steps toward its target value, using the solution for the previous value of τ as the
starting point for each successive τ value. In the results report below, we specify the
number of continuation steps C and step from the starting value τ0 = 0.8τmax to the
target value τC = τ in C steps τ1, τ2, . . . , τC , where

log τl = log τ0 + (l/C)a(log τC − log τ0). (3.6)

Here, a ≥ 1 is a parameter governing the “bunching” of τl values near the target τ .
(The value a = 1 leads to constant ratios τl+1/τl, while larger values of a causes these
ratios to become larger as l increases.)

Implementations of SpaRSA and other algorithms often include an optional post-
processing step known as debiasing, in which the regularization term is dropped from
the objective in (3.2) and an unconstrained least squares problem is solved, with the
zero components of x from the main SpaRSA algorithm discarded. The last step is
often performed with a conjugate gradient approach, for which the major operations
at each iteration are multiplications by A and AT and some Level 1 BLAS calcula-
tions, just as in the main SpaRSA algorithm. We would thus expect the debiasing
step to be implemented as efficiently on a GPU as the main SpaRSA algorithm. For
simplicity, however, we did not include the debiasing feature in the implementations
described in this paper.

6 S. LEE AND S. J. WRIGHT

3.3. GPU Implementation. For efficient GPU implementation of SpaRSA, it
is important that the sensing matrix A is one that can be stored compactly (and
implicitly) and that matrix-vector products involving A and AT can be formed effi-
ciently on the GPU architecture. The other major operations in SpaRSA — vector
additions and inner products — are simple and can be implemented efficiently or
using BLAS operations from the CUBLAS library [22]. We use CUBLAS library to
compute `1-norms and inner products, but for all the other operations we use our
own routines for better performance. The total amount of storage used is a small
multiple of n. Specifically, we need to store the current iterate xk, the candidate for
next iterate xk+1, the step sk, the gradient of the sum-of-squares term AT (Axk − y)
(each of which requires n locations), and the vectors Ask and Axk − y (each of which
requires m locations), together with whatever storage is needed to represent A.

Compressed sensing experiments often make use of matrices A whose elements
consist of numbers drawn independently from a random distribution about 0 with
a common variance, or from a Bernoulli distribution (entries ±1 with equal prob-
ability). Such matrices are known to have good restricted isometry properties and
thus allow effective recovery of sparse signals. However, they are not practical for
GPU implementation, as they generally either require much more than O(n) storage,
or are expensive to regenerate whenever needed. Matrices A consisting of randomly
chosen rows from a discrete cosine transformation (DCT) (in the case of real data)
or a discrete Fourier transform (for complex data) are much more suitable. Besides
having satisfactory restricted isometry properties, such matrices can be stored com-
pactly (just m locations are needed, to store the indices of the chosen rows), and
implemented using the CUFFT library [23]. DCTs can be implemented using DFTs
with O(n) pre- and post-processing steps, which can be executed efficiently on GPUs.

In our GPU implementation, significant data transfer between the host machine
and GPUs occurs only at the beginning and the end of the algorithm. The initial
values of the variable x, together with the observation vector y, the m row indices
defining A, the regularization parameter τ , and possibly some algorithmic parameters
are copied to the GPU at the start, and the solution is returned at the end. The
host CPU is still used for small computations, such as computation of the roster of
τ values used in the continuation process, in scalar comparisons, and in checking of
loop control variables. Further savings could be made in data transfers if the value
x = 0 as the starting point in the continuation process (it usually suffices). We can
also return a compressed version of the solution of (3.2), consisting of the nonzero
components of x and their indices. Further, if numerous instances of (3.2) are to be
solved in sequence for different data, data transfers for successive instances could be
overlapped with computation.

3.4. Computational Results. We discuss results obtained with simple imple-
mentations of SpaRSA, applied to problems in which the signal is a sparse one- or
two-dimension array, and the sensing matrix consists of randomly selected rows from a
discrete cosine transformation (DCT). Noise may be added to the observation vector.
Our main point of comparison is between

• the runtime for the Matlab implementation running on the CPU of the host
machine (which we refer to hereafter as the “CPU implementation”), and

• the runtime for the CUDA-based GPU implementation.
Both implementations use the same Matlab code to set up the problem and analyze
the results, but the GPU code replaces the Matlab routine implementing SpaRSA
with a functionally equivalent CUDA routine.

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 7

We note several distinctions between the two implementations. First, the GPU
computations are carried out in single precision, while the CPU computations are
in double precision. This is because the GPU cards we used support only single-
precision arithmetic. (Double-precision cards are only now coming on the market,
and the CUDA environment and its libraries are being extended to run on them.)
The lower accuracy of single precision computations creates significant issues for the
GPU implementation of SpaRSA. The duality-based stopping criterion for each value
of τ described in [33] cannot be implemented satisfactorily in CUDA. Inaccuracy in
computation of the gap often makes it difficult to reduce the relative gap below about
10−4, regardless of how many iterations are performed, for smaller values of τ ; no
such difficulties are observed in the double-precision CPU implementation. In our
implementation, we used a stopping criterion for each value of τ based on the relative
change in objective value from one iteration to the next, namely,

|φ(xk)− φ(xk−1)|
φ(xk)

≤ 10−6. (3.7)

Still, as we see in the tables below, the GPU implementation sometimes requires
slightly more iterations than the CPU implementation to find a solution of equivalent
accuracy.

A second difference between the implementations is the use of Matlab code for
the CPU implementation vs. CUDA code (an extension of C++) for the GPU imple-
mentation. We believe however that a CPU implementation via C++ and mex files
would show little if any improvement over the Matlab implementation. The major
computational operations are DFT, DCT, and Level 1 BLAS operations, all of which
are implemented with high efficiency in Matlab. In fact, we could speed up the GPU
implementation further by using C++ calling code in place of the Matlab and mex
software. Multiple data transfer requests on page-locked host memory could be made
without having to wait for the completion of the previous requests, making room for
other jobs in the host or GPUs. In our current Matlab / mex interface, data are
stored in the Matlab memory, which is not page-locked, so overlapped data transfers
require extra copies to page-locked host memory. Such transfers only degrade the
performance, so we avoid them.

We note several issues regarding initialization of GPU computations. The very
first call to a CUDA utility function made by a process (for example, cudaGetDevice
Count() which counts the number of CUDA-enabled GPUs, or cudaSetDevice()
which selects a particular GPU) executes in about .01 seconds. The very first GPU
memory allocation call issued by a process takes significantly longer than subsequence
memory allocation calls: about .8 seconds. Following these initializations, GPUs still
appear to need some “warming up” before they reach peak performance. For example,
if we compute the `1-norm of a vector of length 106, the first call takes approximately
2.5 times as long as the second call. These overheads will be amortized over all
the invocations of SpaRSA made by that process. In real situations, we can expect
SpaRSA to be invoked multiple times to process different data sets (for example,
different time slices of a signal) in sequence, or possibly to be used as one of a number of
tasks running concurrently on the GPUs. Hence, we do not include these initialization
overheads in our discussion of GPU execution times below.

One-Dimensional Signal with DCT Sensing. Our first experiment is with a one-
dimensional signal with n components, in which the sensing matrix consists of m < n
rows drawn randomly from an n×n DCT matrix. The signal consists of bm/5c spikes,

8 S. LEE AND S. J. WRIGHT

half of which have magnitude near 1 with the remaining half having magnitudes
between 10−5 and 10−4 (logarithms uniformly distributed). There is also noise in the
signal of order 10−6 on each element.

Results are shown in Tables 3.1 and 3.2. In both tables, the SpaRSA algorithm
was run with 10 steps of continuation, with three different target values of τ , shown in
the first column of each table. The total iteration counts and for the GPU and CPU-
based implementations are shown, as is the final mean-square error in the recovered
solution. The quality of the solution is similar for both GPU and CPU implementa-
tions. For the GPU, we show total runtime after the selection of the GPU, the very
first GPU memory allocation, and a few “warm-up” numerical computations unre-
lated to the algorithm. The reported time includes time for second and subsequent
memory allocations and times for data transfers to and from the GPU. Two speedup
figures are shown in the final columns of each table. The first is calculated by com-
paring total runtimes between the GPU and CPU implementations, and the second
by comparing runtimes per iteration.

Table 3.1 shows results for a sensing matrix of dimension 213 × 216. For each
value of τ , the GPU execution time was approximately 0.16 seconds, whereas the
CPU implementations required about 5 seconds, resulting in speedups of 26 to 37 in
total time. The average speedups per iteration are about 34, and are almost identical
for all τ values, indicating that the speedup resulting from use of the GPU is quite
stable and consistent. Note that each iteration of SpaRSA on the GPU (in which
the main computational effort is two matrix-vector operations involving the sensing
matrix) takes about 1.2 microseconds, versus about 40 microseconds for the CPU
implementation.

Table 3.2 shows results for a sensing matrix of dimension 217× 220, a factor of 16
larger in each dimension. Here the speedups are 51 to 61 (counting total runtime),
and about 61 on average per iteration. The memory transfer between host and GPU
takes more time, but this cost is amortized over a much longer execution time, so
its effects on speedup figures is less deleterious. Moreover, the larger data set yields
a larger number of thread blocks in our implementation, resulting in less idle time
on the GPU’s multiprocessors. Each iteration of SpaRSA in the GPU implemen-
tation requires about 16 microseconds, compared to about one second in the CPU
implementation.

Two-Dimensional Signal with DCT Sensing. Our second result is for a sparse
two-dimensional signal of length n, which can be thought of as an n̄ × n̄ array of
pixels where n = n̄2, only a small fraction of which are nonzero spikes. The sensing
matrix consists of m rows randomly selected from an two-dimensional (n̄ × n̄) DCT
matrix. We choose the fraction of spikes to be .001, and set m to be 20 times the
number of spikes. Each spike is chosen randomly to be +1 or −1, and the observations
are corrupted by noise drawn independently from a Normal distribution, N (0, .0012).

The values of regularization parameter τ on which we report are approximately
the ones needed to produce results of good quality. For τ = .05τmax and τ = .1τmax

where τmax is defined in (3.3), the algorithms recover approximately the same number
of nonzero components as in the true solution. For τ = .02τmax we have a slightly
under-regularized solution, with more spikes than the true solution.

We report results in Table 3.3 for a problem with n = 216 and m = 1311, while
Table 3.4 shows a larger problem with n = 220 and m = 20972. The relative perfor-
mances of the two approaches are broadly similar to the one-dimensional case. For
larger data sets, the advantage of the GPU implementation increases. Although the

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 9

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
.000100 103 4.32 8.1e-10 129 0.16 7.2e-10 26 33
.000033 135 5.52 1.3e-10 126 0.15 2.0e-10 37 34
.000010 143 5.81 9.8e-11 139 0.17 1.3e-10 35 34

Table 3.1
Computational results for a 1-D DCT sensing matrix of dimension 8192× 65536, with 1638 spikes

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.000100 107 107.08 9.1e-10 129 2.08 8.5e-10 51 62
0.000033 131 129.10 1.7e-10 131 2.10 1.6e-10 61 61
0.000010 149 145.31 1.0e-10 160 2.57 9.0e-11 57 61

Table 3.2
Computational results for a 1-D DCT sensing matrix of dimension 131072 × 1048576, with

26214 spikes

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.10 62 2.56 1.9e-05 67 0.09 1.9e-05 27 30
0.05 67 2.68 4.8e-06 68 0.08 4.8e-06 32 32
0.02 77 3.06 9.7e-07 83 0.10 9.6e-07 30 32

Table 3.3
Computational results for a 2-D DCT sensing matrix of dimension 1311× 65536, with 60 spikes

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.10 64 98.25 3.2e-05 64 1.00 3.1e-05 98 98
0.05 65 103.10 7.9e-06 70 1.08 7.9e-06 95 102
0.02 80 117.97 1.5e-06 84 1.30 1.5e-06 91 95

Table 3.4
Computational results for a 2-D DCT sensing matrix of dimension 20972×1048576, with 1031

spikes

time to transfer data between host and GPU increases as the data set size increases,
the speedups improve because of faster memory access on the GPU, the increase in
the number of thread blocks (which improves GPU utilization), and the fact that the
GPU can perform thread scheduling and switching efficiently, without intervention of
operating systems.

The limit of n. For the one-dimensional compressed sensing, the problem with
sensing matrices of the dimension up to 219 × 222 can be solved on the GeForce 9800
GX2, whereas we can drive the dimensions up to 220 × 223 on the Tesla D870. Note
that the size limit on GeForce 9800 GX2 is due to the limitation of the GPU memory,
whereas the limit on Tesla D870 is due to the limitation imposed by the CUFFT
library, which allows a maximum input length is 223 for 1-D transforms and 216 for
each dimension for 2-D or 3-D transforms. Similar considerations yield a restriction
on the size of two-dimensional compressed sensing problems that can be solved to
n = n̄2 = 222. For problems with larger dimensions than these, we would need to
implement more complicated decomposition and parallelization strategies that are

10 S. LEE AND S. J. WRIGHT

beyond the scope of this paper.

4. Image Restoration. Image restoration is an important task in image seg-
mentation or computer vision applications. Regularization methodologies based on
total variation (TV), introduced by Rudin, Osher, and Fatemi [26], are highly effective
in removing noise, blur, or other unwanted fine-scale detail, while preserving edges.
We report here on TV-regularized denoising and deblurring formulations, solved with
a particularly effective primal-dual gradient descent approach described recently by
Zhu and Chan [34]. The main computational operations in this algorithm include
a difference operation (needed to calculate the TV-norm), DFTs and inverse DFTs
(needed in the deblurring application), and various Level 1 BLAS operations and sim-
ple projection operations. All these operations require O(N) operations, where N is
the number of unknowns, with the exception of the DFT and inverse DFT procedures,
which require O(N logN) operations. All can be implemented efficiently on a GPU.

After briefly discussing the formulation and the algorithms, we compare the effi-
ciencies of CPU and GPU implementations.

4.1. Denoising. Given a domain Ω ⊂ IR2 (usually a rectangle) and an observed
image f : Ω → IR, we recover a denoised image u : Ω → IR by solving the following
problem in the appropriate function space:

min
u

∫
Ω

|∇u|2 +
λ̄

2
‖u− f‖22, (4.1)

where λ̄ is a regularization parameter. (Larger values of λ̄ yield better fidelity to the
recorded image, while smaller values produce more cartoon-like images, with larger
areas of constant intensity.) The notation | · |2 represents the Euclidean norm on IR2,
and the first term in the expression (4.1) is the TV seminorm of u.

We can obtain saddle-point and dual formulations of (4.1) in function space by
an appropriate redefinition of the TV seminorm. (Some details are given in [35], for
example.) We focus here on a simple finite-difference discretization of this problem
and its corresponding saddle-point (min-max) and dual formulations.

Assume for simplicity that Ω is square, and define an n × n grid of pixels over
the domain, indexed by (i, j), where i, j = 1, 2, . . . , n. The unknown function u is
replaced by an n× n matrix uij , and the discrete spatial gradient ∇u is defined by

(∇u)1
i,j =

{
ui+1,j − ui,j if i < n

0 if i = n
(4.2a)

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < n

0 if j = n.
(4.2b)

The discretized TV seminorm is thus

TV(u) =
∑

1≤i,j,≤n

‖(∇u)i,j‖2. (4.3)

We can obtain a discrete version of the formulation (4.1) by reshaping the unknown
matrix u into a vector v ∈ IRN (where N = n2), defined as follows:

v(j−1)n+i = ui,j , 1 ≤ i, j ≤ n.

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 11

The (i, j) component of the gradient (4.2) can thus be represented as a multiplication
of the vector v ∈ IRN by a matrix AT

l ∈ IR2×N , for l = 1, 2, . . . , N :

AT
l v =

(vl+1 − vl; vl+n − vl) if l mod n 6= 0 and l + n ≤ N
(0; vl+n − vl) if l mod n = 0 and l + n ≤ N
(vl+1 − vl; 0) if l mod n 6= 0 and l + n > N

(0; 0) if l mod n = 0 and l + n > N .

(4.4)

Using this notation, the discretization of (4.1) can be written as follows:

min
v

P (v) :=
N∑

l=1

‖AT
l v‖2 +

λ

2
‖v − g‖22, (4.5)

where g represents a discretization of the image f and λ is an appropriately scaled
version of λ̄. We obtain the min-max form by introducing vectors xl ∈ IR2, l =
1, 2, . . . , N and noting that

‖AT
l v‖2 = max

‖xl‖2≤1
xT

l A
T
l v.

By defining

x := (x1;x2; . . . ;xN) ∈ IR2N ,

A := [A1 |A2 | . . . |AN] ,

X := {x ∈ IR2N | ‖xl‖2 ≤ 1, l = 1, 2, . . . , N},

we can write the min-max formulation of (4.5) as follows:

min
v

max
x∈X

`(v, x) := xTAT v +
λ

2
‖v − g‖22. (4.6)

Interchanging min and max, and solving the minimization explicitly for v, yields the
following dual formulation:

max
x∈X

D(x) :=
[
λ

2
‖g‖22 −

1
2λ
‖Ax− λg‖22

]
, (4.7)

which we can write equivalently as

min
x∈X

1
2
‖Ax− λg‖22. (4.8)

Algorithms for solving the dual formulations (4.7) and (4.8) — mainly algorithms
of gradient projection type, with different choices of steplength — are described in
[35]. These first-order methods are shown to be effective for finding solutions of low
to moderate accuracy, though they tend to be overtaken by second-order methods
such as the one described in [8] when high accuracy is demanded. The first order
methods require at each calculation of the gradient residual r := Ax − λg and the
gradient of (4.8), which is AT r. Multiplication by AT is the difference operation
essentially defined by (4.2); multiplication by A is a discretized divergence operation,
defined correspondingly. In neither case is any explicit storage required for A, and
both operations can be performed with high efficiency on a GPU, as we discuss below.

12 S. LEE AND S. J. WRIGHT

The other major operations required for gradient projection methods are projections
onto X (which are O(N) operations and are also easy to perform on GPUs) and
Level-1 BLAS operations. In our GPU implementations of these algorithms (and
the deblurring algorithms described below), we use our own codes to perform Level
1 BLAS and other O(N) operations, as they are marginally more efficient than the
corresponding CUBLAS routines.

We focus here on a primal-dual hybrid (PDHG) gradient projection approach
proposed by Zhu and Chan [34], which requires the same basic operations as the dual
gradient projection approaches. This method has striking performance on practical
denoising problems, outstripping other first-order methods, and even second-order
methods, regardless of the solution accuracy demanded. The method generates a
primal-dual sequence (vk, xk) ∈ IRN ×X by taking the following steps:

xk+1 := PX(xk + τk∇x`(vk, xk)) (4.9a)

vk+1 := vk − σk∇v`(vk, xk+1), (4.9b)

where PX(·) denotes projection onto the set X and τk and σk are positive steplengths.
These are gradient ascent/descent steps taken alternately in dual and primal variables,
projected onto the appropriate feasible set. The results reported in [34] are obtained
with the following steplengths:

τk := (.2 + .08k)λ, σk :=
1
τk

(
.5− 1

3 + .2k

)
. (4.10)

Note in particular that, somewhat counterintuitively, we have τk →∞. However, the
projection onto X in (4.9a) keeps the steps between successive iterates xk short on
later iterations. The theoretical properties of this approach are not well understood,
though some connections with literature on variational inequalities and saddle-point
problems are pointed out in [34].

We declare numerical convergence of the algorithm when the relative duality gap
falls below a specified level, specifically:

P (v)−D(x)
|P (v)|+ |D(x)|

≤ Tol. (4.11)

4.2. Deblurring. When the problem data f is not the image itself but some
blurred version of it involving a known linear blur operator K, the problem (4.1)
becomes

min
u

P (u) :=
∫

Ω

|∇u|2 +
λ̄

2
‖Ku− f‖22. (4.12)

By using the same discretization of the regularization term as in (4.2) and (4.3), and
replacing K by a discretization K, we obtain the following discrete form of (4.12):

min
v

P (v) :=
N∑

l=1

‖AT
l v‖2 +

λ

2
‖Kv − g‖22, (4.13)

where λ is an appropriately scaled version of λ̄. The min-max form, generalizing (4.6),
is as follows:

min
v

max
x∈X

`(v, x) := xTAT v +
λ

2
‖Kv − g‖22. (4.14)

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 13

Zhu and Chan [34] note that the blurring operator K is ill-posed in many applications,
and that the PDHG steps (4.9) do not give rapid convergence. Good performance can
be recovered, however, by making the step in the variable v semi-implicit, modifying
(4.9) as follows:

xk+1 := PX(xk + τk∇x`(vk, xk)) (4.15a)

vk+1 := vk − σk∇v`(vk+1, xk+1). (4.15b)

Note that vk+1 appears on the right-hand side of (4.15b). This formula can be imple-
mented efficiently in terms of forward and inverse DFTs as follows:

vk+1 = F−1

[
F(vk − σkAx

k+1) + σkλF(K)F(g)
1 + σkλF(K)F(K)

]
, (4.16)

where F(·) and F−1(·) represent the forward and inverse DFT operators respectively,
and B denotes the complex conjugate of a matrix B. All matrix-matrix multipli-
cations and divisions are pointwise and so can be performed in O(N) operations.
The following choice of parameters was used in [34], and we use them also in our
implementations:

τk := 10 + 40k, σk :=
1
τk

(
1− .2

k

)
. (4.17)

4.3. GPU Implementation. In both the denoising and deblurring algorithms,
the spatial difference operation (4.4) and its transpose, the discrete divergence oper-
ation, are among the most time-dominant operations. Our GPU implementation of
these operations is divided into N threads, each of which produces entries for a single
value of the index `. Considering the operations in two dimensions, the thread that
produces the (i, j)-th output entry has to access not only the (i, j) location of the
input vector, but also adjacent locations of the input vector in the i and j directions,
which are also needed by other threads. Rather than having each thread doing its
own memory fetches — which would result in the same location of the input vector
being fetched multiple times — we impose a caching technique called a texture on
global memory to reuse fetched entries, which greatly reduces the average memory
latency. Texture memory is illustrated in Figure 2.1, while more details on the use of
textures to reduce average memory latency are given in Appendix A.

At various places in the algorithms, we need to perform a reduction of a data set of
size proportional to the problem dimension to a single value. For example, to compute
the primal and the dual objective function values in the denoising algorithm, we have
to sum n2 values. Careful implementation is required to perform such operations
efficiently on a GPU. We can divide the computation into thread blocks, where each
block performs a partial reduction and produces a single number as a result. To make
the most efficient use of GPU multiprocessors, we should use enough thread blocks
to keep 16 multiprocessors busy. There is a tradeoff, however. Since each thread
block must store its result in a global memory location, we would pay a high price in
memory latency if too many blocks were used, and space in global memory is limited
in any case.

In our implementation of a global sum operation, each thread block of 256 threads
first reads 256 global memory entires in coalesced fashion and stores them in a shared
memory block of dimension 16 × 16. The block performs the same operation seven

14 S. LEE AND S. J. WRIGHT

more times, adding each 16×16 block fetched from global memory to the 16×16 block
resident in shared memory. The thread block then sums up the entries in this 16× 16
block, producing a single number — the sum of 2048 numbers in all — which it stores
in global memory. In this fashion, we produce a global memory vector containing
n2/2048 partial sums. The whole procedure is then repeated recursively, reducing
the dimension of the stored vector by a factor of 2048 each time, until we obtain
the result. For example, we can sum a vector of dimension up to 222 by performing
two stages of this partial summation procedure. The global memory space needed to
store the vector of partial sums after the first pass of reduction would consist of 211

locations, or about 8 KB in single precision.
Elementary operations that are not dependent on each other can be executed

concurrently in a GPU by means of streams. A stream is the unit of streamlined
synchronization in CUDA; a synchronization point can be defined for multiple streams
by a call to the CUDA function cudaThreadSynchronize(). Using streams, we can
for example update the rows of the dual variable x simultaneously, since the updates
for the different rows are independent.

For the deblurring algorithm, we prepare the blur kernels K in Matlab and pass
them to both CPU and GPU codes. These kernels are created by using the Matlab
function fspecial(), followed by a call to fftshift(), to shift the zero frequency
components to the center of spectrum by calling. The kernels are padded with zero
values by padarray() Matlab function, so that the size of the kernel data structure
matches that of the image data structures. (All three routines are available in the
Matlab image processing toolbox.) In the GPU implementation, we incur some in-
efficiency by transferring the padded kernel to the GPU, as it contains mostly zeros,
but the effect on overall runtime is minor.

In our GPU implementations, significant data transfer between the host machine
and GPUs occur only at the beginning and at the end of the algorithm. We transfer
the initial value of the variables to the GPU at the start of the call and then transfer
final values at the end. (We can avoid the first transfer by using fixed initial values
such as x = 0, but the savings are minimal.) For deblurring, we also precompute the
values of F(K)F(g) and F(K)F(K) at the start of both the CPU and GPU codes,
and use them repeatedly in performing the operation (4.16). Additional storage is
needed for these vectors (the GPU implementation stores them in the GPU global
memory), but the space is available for problems of the dimensions we consider, and
considerable computational savings are made by precomputing these vectors. In the
deblurring problem, we use CUFFT library [23] to compute two-dimensional DFTs.

4.4. Computational Results. For both problems, we used five test images of
different sizes: Shape (128×128), Cameraman (256×256), Barbara (512×512), Man
(1024 × 1024), and Earth (2048 × 2048). These data sets are available from a URL
listed in Section 5.

Denoising. We prepared noisy versions of the test images by adding Gaussian
noise of mean 0 and standard deviation 0.1 to the images. The value of λ was fixed to
0.041 for all case. In some cases, better visual results could be obtained with slightly
different values of λ, but our focus in this paper is on the relative performance of CPU
and GPU implementations, rather than on the efficacy of the formulations, and our
conclusions about relative efficiency are not much affected by the choice of λ.

Here we adopted a stopping criterion based on the duality gap, since no significant
precision issues were found in computation for the problems and the parameter values
we tried. Several different values of the duality gap tolerance Tol in (4.11) were

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 15

Image
size Tol CPU GPU Speedup

iters time (s) iters time (s) total iter

1282
1.e-2 11 0.03 11 0.02 2 2
1.e-4 79 0.21 79 0.02 11 11
1.e-6 338 0.90 329 0.07 14 13

2562
1.e-2 13 0.17 13 0.02 9 9
1.e-4 68 0.81 68 0.03 32 32
1.e-6 304 3.57 347 0.11 33 38

5122
1.e-2 12 0.95 12 0.03 31 31
1.e-4 54 3.96 54 0.05 76 76
1.e-6 222 16.08 238 0.19 84 90

10242
1.e-2 14 5.42 14 0.08 64 64
1.e-4 69 25.80 69 0.24 106 106
1.e-6 296 103.54 324 1.02 102 111

20482
1.e-2 13 31.41 13 0.28 114 114
1.e-4 67 149.24 67 0.90 165 165
1.e-6 319 694.16 338 4.12 169 179

Table 4.1
Computational results of image denoising (λ=0.041.)

tried: 10−2, 10−4 and 10−6. The CPU algorithm uses double-precision, whereas
the GPU version uses single-precision. The difference in precision resulted in some
variation in the number of iterations required to reach the specified accuracy, but the
GPU implementation rarely required more than 10% more iterations than the CPU
implementation. The speedup varies from 14 to 169 at highest precision, with higher
speedups as the image dimension grows. The absolute speed is remarkable; even for
the largest image (dimension 2048 × 2048), the GPU implementation requires less
than one second to denoise the image to a moderate tolerance 10−4.

Deblurring. We prepared blurred noisy images by first convolving the images
with blur kernels, and then by adding Gaussian noise with mean 0 and standard
deviation σ = 0.001. Two types of blur kernels were generated by the Matlab function
fspecial(): motion blur and Gaussian blur. For each kernel, two settings were used.
For motion blur, we used mild (length=21) and severe (length=91) blur, both with
an angle of 135 degrees. For the Gaussian blur, mild (size=21, sigma=5) and severe
(size=41, sigma=10) settings were used. For all cases, the values of λ were chosen to
be min{.2/σ2, 2× 1011}. Convergence was declared when the difference between the
last two primal iterates, measured by ||vk+1 − vk||∞, fell below 10−3.

Runtime comparisons of the host-based and the GPU-based algorithms are shown
in Table 4.2. Note that for CPU-based implementation, we use fft2() function in
Matlab, of which the performance is optimized in a special way when the data set
size is a large power of 2, between 214 and 222. All our images are able to take
advantage of this special optimization in the Matlab CPU implementation. Still, our
GPU implementation runs between 6 and 50 times faster than the CPU Matlab code.
Note also that the runtime of GPU-based code increases almost linearly as the image
size quadruples, indicating good scaling of our GPU-based implementation.

5. Conclusions. We have shown that two signal reconstruction problems of
current interest in computational science — compressed sensing and image processing

16 S. LEE AND S. J. WRIGHT

Image
size

Blur
kernel

CPU GPU Speedup
iters time (s) iters time (s) total iter

1282

mild motion 31 0.15 31 0.02 6 6
severe motion 106 0.49 106 0.05 10 10
mild Gaussian 88 0.41 88 0.04 10 10

severe Gaussian 66 0.32 66 0.04 9 9

2562

mild motion 27 0.55 27 0.04 14 14
severe motion 79 1.57 79 0.08 20 20
mild Gaussian 44 0.88 44 0.05 17 17

severe Gaussian 39 0.79 39 0.05 17 17

5122

mild motion 34 3.94 34 0.14 28 28
severe motion 72 8.23 72 0.26 31 31
mild Gaussian 44 5.07 44 0.17 29 29

severe Gaussian 37 4.27 37 0.15 29 29

10242

mild motion 31 19.39 30 0.42 46 45
severe motion 75 46.00 74 0.95 48 48
mild Gaussian 44 27.07 44 0.59 46 46

severe Gaussian 41 24.76 41 0.55 45 45

20482

mild motion 33 113.38 33 2.31 49 49
severe motion 79 263.07 79 5.26 50 50
mild Gaussian 49 166.36 49 3.34 50 50

severe Gaussian 48 163.72 48 3.28 50 50
Table 4.2

Computational results of image deblurring.

— can be solved with high efficiency on commodity GPUs attached to PC platforms.
In each case we worked with algorithms that are among the most effective available,
even in their CPU implementations. There was no need to revert to less efficient but
more parallelizable alternative strategies.

It can be expected that other problems and algorithms with similar characteristics
— compute-intensive algorithms, locality of data access, total data size comparable
to the number of variables in the problem — can be solved on GPU platforms with
similar efficiency.

The codes and data sets used to perform the experiments described in Sections 3
and 4 can be downloaded from the URL http://pages.cs.wisc.edu/~swright/
GPUreconstruction.

Acknowledgments. This research was supported in part by the National Sci-
ence Foundation under Grants CCF-0430504 and CNS-0540147. We acknowledge a
faculty grant from nVidia Corporation, who supplied the GPU hardware on which
this work was performed.

Appendix A. Performance hints for CUDA implementations.
We summarize here a number of points that are important to understand in taking

full advantage of the potential of GPU implementations. More details can be found
in the CUDA documentation [24, Chapter 5].

Memory coalescing. Global memory access throughput can be maximized by ex-
ploiting memory coalescing. Threads in CUDA are aligned by units called warps,
which consists of 32 threads for the devices in Table 2.1. If 16 concurrent memory

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 17

accesses, each of them from a thread of a half-warp, are aligned and contiguous, then
those 16 memory accesses are combined into a single memory operation automat-
ically by CUDA — an operation that would take 16 times as long if the accesses
are performed serially. Serialization of memory accesses should be avoided whenever
possible, since global memory access latency is very high. For example, to read a
single-precision number from global memory, we have to spend 4 GPU clock cycles
to issue the read command and another 400 to 600 cycles to actually fetch the value.
By comparison, computations and shared memory accesses in GPUs and much faster.
For instance, writing a single-precision number to shared memory takes 4 clock cycles,
while a floating-point multiplication takes 4 cycles. It is essential, therefore, to take
advantage of memory coalescing in order to maximize performance.

Avoid bank conflicts. The shared memory in a streaming multiprocessor can be
accessed as fast as registers provided there are no bank conflicts. The shared memory
on a streaming multiprocessor consists of sixteen equally-size banks, which can be
accessed simultaneously. That is, if sixteen threads running on the multiprocessor
access sixteen different shared memory locations that fall into different banks, those
accesses are performed concurrently. In our experience, bank conflicts do not degrade
performance as much as uncoalesced global memory accesses because shared memory
is on-chip and much faster than the global memory. Still, it can be an important
factor, and we were careful to avoid bank conflicts in our implementations.

Avoid divergent branches. If the threads in a warp take different execution paths,
they can no longer run simultaneously because different execution paths have to be
serialized. Conditional statements should be used with care to avoid these divergent
branches.

Use textures for spatially local memory accesses. Global memory is not cached on
GPUs. Inefficiencies can result from multiple fetches of the same memory location,
when this location is used by several different threads. Such nearly concurrent accesses
happen in our image processing solvers of Section 4, where the spatial difference
operator (4.4) and the divergence operator need to access adjacent locations in the
two-dimensional vector of unknowns. We could use shared memory to cache these
global memory accesses, but CUDA provides much easier-to-use caching facilities by
means of the texture memory illustrated in Figure 2.1. A texture provides a read-
only cache for global memory. A reference to a location in this cache can be attached
to a global memory pointer by calling the CUDA routines cudaBindTexture() or
cudaBindTextureToArray(). Memory accesses can then be performed through the
texture by calling the tex1Dfetch(), tex1D(), or tex2D() CUDA functions, using
the texture reference as an argument. Textures also provide other features useful for
image data, such as linear interpolation or wrap-around addressing, but these are not
used in this paper.

Increase GPU utilization. If only one thread block is scheduled to run on a mul-
tiprocessor, the multiprocessor will be idle while threads in the block are waiting for
synchronization or for completion of memory accesses. To avoid this idle time, which
degrades efficiency, two or more blocks per multiprocessor should be active at any
given time. In fact, it is recommended in [24] to have at least one hundred blocks per
task to ensure overlapped execution of threads.

A convenient way to monitor the factors described above is to use the CUDA Vi-
sual Profiler [25], which shows the numbers of uncoalesced global memory loads/stores,
the number of divergence branches, GPU utilization, and other important informa-
tion.

18 S. LEE AND S. J. WRIGHT

Use page-locked memory. Host memory is usually pageable in many operating
systems, so that the physical memory assigned to a process can be reclaimed at any
time by the operating system. CUDA allows host memory to be page-locked, enabling
data transfers between host and GPU memory to be sped up by a factor of about two.
We do not use this feature, however, since our data are stored in the host memory
that is managed by Matlab, so is unavailable to CUDA unless we perform costly host
memory copies.

Appendix B. Speedup of elementary operations.
It is often the case that a small fraction of the operations in an algorithm are

responsible for the majority of the total runtime. In our CPU implementation of 2-D
compressed sensing, the DCT and the inverse DCT operations together take about
96% of the total runtime. Overall speedup depends largely on the speedup of these
time-dominant operations.

In Table B.1, we show the execution time of some selected operations in a 2-D
compressed sensing run, for the problem with a sensing matrix of dimension 20972×
1048576 with 1031 spikes, on CPU and GPU. The “occupancy” column in these
tables shows the fraction of total execution time for the SpaRSA implementation
that was consumed by each operation. The speedups for DCT and inverse DCT on
a vector of dimension 210 × 210 were 71 and 133, respectively, over the dct2() and
idct2() functions in Matlab. These speedups were the main contributors to the
overall speedups of up to 102 seen in Table 3.4 for problems of this size. Speedups are
less dramatic on some less significant operations, such as inner product computations
and `∞-norm calculations. The `1-norm calculation in Matlab is inefficient, as can be
seen by the speedup of 356 attained by the GPU implementation of this operation.
A comparison of a C++ implementation of this operation on the host CPU with the
CUBLAS GPU implementation shows a speedup of only 18.

The DFTs using CUFFT library [23] are about 30 times faster than the fft2()
and ifft2() functions in Matlab when applied to a data set of size 1024 × 1024, as
shown in Table B.2.

Operations CPU GPU Speedup
per itertime (s) occupancy time (s) occupancy

2-D DCT 31.47 0.31 0.48 0.44 71
2-D inv. DCT 66.39 0.65 0.54 0.49 133
inner product 0.18 0.0017 0.016 0.015 14
`1-norm 2.32 0.023 0.010 0.0093 356
`∞-norm 0.0042 0.000040 0.00014 0.00012 32

Total time 103.36 1.0 1.095 1.0 102
Table B.1

GPU acceleration of some elementary operations in a 2-D compressed sensing run.

Operations CPU time (s) GPU time Speedup
2-D DFT 5.01 0.16 31

2-D inv. DFT 5.43 0.16 34
Occupancy .43 .58 -

Table B.2
GPU acceleration of some elementary operations in a deblurring run.

SIGNAL AND IMAGE RECONSTRUCTION ALGORITHMS ON GPUS 19

REFERENCES

[1] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA Journal of Nu-
merical Analysis, 8 (1988), pp. 141–148.

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-threshold algorithm for linear inverse
problems, technical report, Technion-Israel Institute of Technology, July 2008.

[3] E. Candès and J. Romberg, `1-MAGIC: Recovery of sparse signals via convex programming,
tech. rep., California Institute of Technology, October 2005.

[4] E. Candès, J. Romberg, and T. Tao, Signal recovery from incomplete and inaccurate infor-
mation, Communications in Pure and Applied Mathematics, 59 (2005), pp. 1207–1223.

[5] E. Candès and T. Tao, Near-optimal signal recovery from random projections and universal
encoding strategies, October 2004.

[6] E. J. Candès, Compressive sampling, in Proceedings of the International Congress of Mathe-
maticians, Madrid, 2006.

[7] B. Catanzaro, N. Sundaram, and K. C. Keutzer, Fast support vector machine training and
classification on graphics processors, in International Conference on Machine Learning,
2008.

[8] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation
based image restoration, SIAM Journal of Scientific Computing, 20 (1999), pp. 1964–1977.

[9] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Modeling and Simulation, 4 (2005), pp. 1168–1200.

[10] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[11] , For most large underdetermined systems of linear equations the minimal `1-norm near-

solution is also the sparsest near-solution, Communications in Pure and Applied Mathe-
matics, 59 (2006), pp. 907–934.

[12] , For most large underdetermined systems of linear equations the minimal `1-norm so-
lution is also the sparsest solution, Communications in Pure and Applied Mathematics, 59
(2006), pp. 797–829.

[13] M. A. T. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image restoration,
IEEE Transactions on Image Processing, 12 (2003), pp. 906–916.

[14] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems, IEEE Journal
on Selected Topics in Signal Processing, 1 (2007), pp. 586–597.

[15] V. Garcia, E. Debreuve, and M. Barlaud, Fast k nearest neighbor search using gpu, 2008.
[16] E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for `1-regularized

minimization with applications to compressed sensing, CAAM Technical Report TR07-07,
CAAM, Rice University, May 2007.

[17] T. D. R. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon, Biomedi-
cal image analysis on a cooperative cluster of gpus and multicores, in ICS ’08: Proceedings
of the 22nd annual international conference on Supercomputing, New York, NY, USA,
2008, ACM, pp. 15–25.

[18] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, A method for large-scale
`1-regularized least squares problems with applications in signal processing and statistics,
technical report, Electrical Engineering Department, Stanford University, February 2007.

[19] Y. Nesterov, A method for unconstrained convex problem with the rate of convergence o(1/k2),
Doklady AN SSSR, 269 (1983), pp. 543–547.

[20] , Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic
Publishers, 2004.

[21] , Gradient methods for minimizing composite objective function, CORE Discussion Paper
2007/76, CORE, Catholic University of Louvain, September 2007.

[22] NVIDIA, CUDA CUBLAS Library, Version 2.0, March 2008.
[23] , CUDA CUFFT Library, Version 2.0, April 2008.
[24] , CUDA Programming Guide, Version 2.0, June 2008.
[25] , CUDA Visual Profiler 1.0, June 2008.
[26] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Physica D, 60 (1992), pp. 259–268.
[27] M. A. Saunders, PDCO: primal-dual interior-point method for convex objectives, tech. rep.,

Systems Optimization Laboratory, Stanford University, November 2002.
[28] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, High-throughput sequence

alignment using graphics processing units, BMC Bioinformatics, 8 (2007).
[29] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schul-

ten, Accelerating molecular modeling applications with graphics processors, Journal of

20 S. LEE AND S. J. WRIGHT

Computational Chemistry, 28 (2007), pp. 2618 – 2640.
[30] A. Tasora, D. Negrut, and M. Anitescu, Large-scale parallel multibody dynamics with

frictional contact on the graphical processing unit, To appear in Journal of Multibody
Dynamics, (2008).

[31] I. S. Ufimtsev and T. J. Mart́ınez, Quantum chemistry on graphical processing units. 1.
strategies for two-electron integral evaluation, Journal of Chemical Theory and Computa-
tion, 4 (2008), pp. 222 –231.

[32] J. A. van Meel, A. Arnold, D. Frenkel, S. F. P. Zwart, and R. G. Belleman, Harvesting
graphics power for md simulations, Molecular Simulation, 34 (2008), pp. 259–266.

[33] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by separable
approximation, in Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, October 2008.

[34] M. Zhu and T. F. Chan, An efficient primal-dual hybrid gradient algorithm for total variation
image restoration, CAM Report 08-34, Mathematics Department, UCLA, May 2008.

[35] M. Zhu, S. J. Wright, and T. F. Chan, Duality-based algorithms for total variation image
restoration, CAM Report 08-33, Mathematics Department, UCLA, May 2008.

