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Application of Interior-Point Methods to
Model Predictive Control1
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Abstract. We present a structured interior-point method for the effi-
cient solution of the optimal control problem in model predictive con-
trol. The cost of this approach is linear in the horizon length, compared
with cubic growth for a naive approach. We use a discrete-time Riccati
recursion to solve the linear equations efficiently at each iteration of the
interior-point method, and show that this recursion is numerically stable.
We demonstrate the effectiveness of the approach by applying it to three
process control problems.
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1. Introduction

Model predictive control (MPC) is an optimal control-based strategy
that uses a plant model to predict the effect of an input profile on the
evolving state of the plant. At each step of MPC, an optimal control problem
with Bolza objectives is solved and its optimal input profile is implemented
until another plant measurement becomes available. The updated plant
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information is used to formulate and solve a new optimal control problem,
thereby providing feedback from the plant to the model, and the process is
repeated. This strategy yields a receding horizon control formulation.

The MPC methodology is appealing to the practitioner because input
and state constraints can be explicitly accounted for in the controller. A
practical disadvantage is its computational cost, which has tended to limit
MPC applications to linear processes with relatively slow dynamics. For
such problems, the optimal control problem to be solved at each stage of
MPC is a convex quadratic program. While robust and efficient software
exists for the solution of unstructured convex quadratic programs, significant
improvements often can be made by exploiting the structure of the MPC
subproblem.

When input and state constraints are not present, MPC with an infinite
horizon is simply the well-known linear-quadratic regulator problem. Even
when constraints are present, the infinite-horizon MPC problem reduces
generally to a linear-quadratic regulator after a certain number of stages
(see Refs. 1-3) and therefore can be recast as a finite-dimensional quadratic
program. Since this quadratic program can be large, with many stages, it is
important that algorithms be efficient for problems with long horizons.

Unconstrained discrete-time linear-quadratic optimal control problems
can be solved by using a discrete-time Riccati equation. The computational
cost of this algorithm is linear in the horizon length N. A different formula-
tion, obtained by eliminating the state variables, results in an unconstrained
quadratic function whose Hessian is dense, with dimensions that grow lin-
early in N. The cost of minimizing this quadratic function is cubic in N,
making it uncompetitive with the Riccati approach in general. There is a
third option, an optimization formulation in which the states are retained
explicitly as unknowns in the optimization and the model equation is
retained as a constraint. The optimality conditions for this formulation
reveal that the adjoint variables are simply the Lagrange multipliers for the
model equation and that the problem can be solved by factoring a matrix
whose dimension again grows linearly with N. In this formulation, the matrix
is banded, with a bandwidth independent of N, so the cost of the factoriza-
tion is linear rather than cubic in N. The discrete-time Riccati equation can
be interpreted as a block factorization scheme applied to this matrix.

Traditionally, the discrete-time Ricatti equation is obtained by using
dynamic programming to solve the unconstrained linear optimal control
problem. The essential idea in dynamic programming is to work stage-by-
age through the problem in reverse order, starting with the final stage N.
The optimization problem reduces to a simpler problem at each stage; see
Berksekas (Ref. 4) for further details. Block factorization, like dynamic
programming, exploits the multistaged nature of the optimization problem.
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The key difference is that the block factorization approach tackles the prob-
lem explicitly, whereas dynamic programming tackles the problem semi-
implicitly by using the Bellman principle of optimality. The explicit treatment
allows greater flexibility, since the block factorization approach retains its
inherent structure even when inequality constraints are added to the
formulation.

When constraints are present, the scheme for unconstrained problems
must be embedded in an algorithmic framework that determines which of
the inequalities are active and which are inactive at the optimum. At each
iteration of the outer algorithm, the main computational operation is the
solution of a set of linear equations whose structure is very like that
encountered in the unconstrained problem. Hence, the cost of performing
each iteration of the outer algorithm is linear in the number of stages N.
This observation has been made by numerous authors, in the context of
outer algorithms based on both active-set and interior-point methods. Glad
and Johnson (Ref. 5) and Arnold et al. (Ref. 6) demonstrate that the factori-
zation of a structured Lagrangian in an optimal control problem with a
Bolza objective for an active set framework yields a Riccati recursion. Wright
(Refs. 7-8), Steinback (Ref. 9), and Lim et al. (Ref. 10) investigate the Bolza
control problem in an interior-point framework.

In this paper, we present an MPC algorithm based on an interior-point
method, in which a block factorization is used at each iteration to obtain
the search direction for the interior-point method. Our work differs from
earlier contributions in that the formulation of the optimal control problem
is tailored to the MPC application, the interior-point algorithm is based on
Mehrotra's algorithm (Ref. 11), whose practical efficiency on general linear
and quadratic programming problems is well documented, and the linear
system at each interior-point iteration is solved efficiently by a Riccati recur-
sion. We compare our approach with the alternative of using the model
equation to eliminate the states, yielding a dense quadratic program in the
input variables alone, and present results obtained for three large industrial
problems.

We use order notation in the following (standard) way: If a matrix,
vector, or scalar quantity M is a function of another matrix, vector, or scalar
quantity E, we write

M = O( || E||), if there is a constant /J such that || M || < p || E ||,
for all ||E|| sufficiently small.

We write

M=O(||E||), if there is a constant ft such that
||E||/B<:||M||</?||E||.
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We say that a matrix is positive diagonal if it is diagonal with positive
diagonal elements. The term nonnegative diagonal is defined correspond-
ingly. We use SPD as an abbreviation for symmetric positive definite and
SPSD as an abbreviation for symmetric positive semidefinite.

2. Model Predictive Control

2.1. Infinite-Horizon Problem. The fundamental formulation of the
linear model predictive controller is the following infinite-dimensional con-
vex quadratic program:

The vector Xj represents the current estimate of the state at discrete time j,
whereas xk represents the state at k sampling steps along the future prediction
horizon and uk represents the input at this same time. We assume that Q
and S are SPSD matrices and that R is SPD.

By a suitable adjustment of the origin, the formulation (1)-(2) can also
account for target tracking and disturbance rejection (Ref. 12). If there is a
feasible point for the constraints (2), the infinite-horizon regulator formula-
tion is stabilizing whenever (A, B) is stabilizable and (A, Q1 / 2) is detectable
(Ref. 13).

For unstable state transition matrices, (1)-(2) is ill-conditioned because
the infinite-horizon formulation can potentially yield unbounded solutions.
To improve the conditioning of the optimization, we parameterize the input
as

where L is a linear stabilizing feedback gain for (A, B); see Refs. 14-15. The
system model becomes

where

subject to the following constraints:
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In the remainder of this section, we address two issues. The first is the
replacement of (4)-(5) by an equivalent or similar finite-horizon problem,
a step necessary for the practical computation of the solution. The second
issue is the replacement of the constraints Hxk<h by so-called soft con-
straints. Instead of enforcing these conditions strictly, we add terms to the
objective that penalize violations of these conditions. This technique is a
more appropriate way of dealing with certain constraints from an engin-
eering point of view.

2.2. Receding Horizon Regulator Formulation. The key step in reduc-
ing (4)-(5) to a finite-horizon problem is the use of a linear control law to
determine uk after a certain time horizon, that is,

The original formulation (1)-(2) can be recovered from (4)-(5) by making
the following substitutions into the second formulation:

subject to

where rk is the new manipulated input. By initially specifying a stabilizing
(but potentially infeasible) trajectory, we can improve the numerical condi-
tioning of the optimization by excluding unstable solutions.

By expanding Auk, we transform (1)-(2) into the following more tract-
able form:
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With this added constraint, the states xk, k > N, and the inputs uk, k>N,
are completely determined by XN, the state at the end of the prediction
horizon.

Two techniques can be used to determine the law (6). The first, due to
Rawlings and Muske (Ref. 16), sets K=0 uniformly in (6) and produces an
approximate solution to (4) (5). With this substitution, we have

If A is stable, this sum is equal to (1/2)x T
NQxN, where Q is the solution of

the matrix Lyapunov equation

If A is unstable, the sum (7) may be infinite, so we impose a stabilizing
constraint to derive any useful information from the solution of the model
problem. The Schur decomposition of A can be used to construct a basis
for the stable subspace of A. If this decomposition is

where the eigenvalues of T11 are inside the unit circle whereas those of T22

are contained on or outside the unit circle, then the (orthogonal) columns
of Us span the stable subspace of A and the (orthogonal) columns of Uu

span the orthogonal complement of the stable subspace of A. We add the
endpoint constraint

to ensure that the unstable modes have vanished by stage N (Ref. 17). Since
the input uk is zero for all k > N, the unstable modes also remain at zero at
all subsequent stages. The evolution of the stable modes on the infinite
horizon can be accounted for by solving the following Lyapunov equation
for Q:

and replacing the infinite sum with ( 1 / 2 ) x T Q x N , as above.
In the second formulation, discussed in Refs. 1-3 and 14, the input

after stage N is parameterized with the classical linear quadratic gain K
obtained from the solution of the steady-state Riccati equation. This matrix,
used in conjunction with the control law (6), is the solution to the un-
constrained version of the problem, in which the inequality constraints



In both formulations, the feedback law (6) is valid only if the constraints
(5) are satisfied at all stages, including the stages k > N. Hence, we would
like to implement this law only after we reach a state XN such that the
solution generated by the control law (6) and the model equation in (5a) at
stages k>N satisfies the inequalities (5b) at all such stages. We define a set
X of states for which this property holds as follows:

5The finite-horizon problem is also a valid approximation to (4)-(5) for K=0 when the endpoint
constraint FxN = 0 is added to (13) and Q is defined by (8).

subject to

where Q is defined in (10).

where K is the optimal unconstrained linear control law obtained from the
following equation:

If N is chosen so that xNeX, then the following finite-horizon problem is
equivalent5 to (4)-(5):

This infinite summation can be replaced by the single term ( 1 / 2 ) x T
N Q x N ,

where Q is the solution of the following discrete-time algebraic Riccati
equation:

(5b) do not appear. By using (6), the infinite tail of the sum in (4) can be
written as
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Since Nx is difficult to obtain in practice and since X is characterized by a
finite number of conditions, we can solve the problem (12)-(13) for some
fixed value of N and then check that the states and inputs at stages k > N
continue to satisfy the inequality constraints at subsequent stages. If not,
we increase N and repeat the process.

A variety of methods guarantee that the constraints are satisfied on the
infinite horizon by checking a finite number of stages k>N. Scokaert and
Rawlings (Ref. 2) propose constructing an open ball Bx contained within
the set X, thereby allowing termination of the search when xkeBx for k> N.
The approximation for X tends to be conservative, since the algorithm is
motivated by norm-bounding arguments. A more practical method, given
by Gilbert and Tan (Ref. 18), is to construct explicitly the set X. The con-
structive representation of X provides a priori an upper bound / on the
number of feasible stages ke[N, N+l] necessary to guarantee that all of the
subsequent stages k>l+N are feasible. The drawback of this approach is
that the algorithm for constructing the maximal sets is not guaranteed to
converge for unbounded feasible regions, since X may be unbounded. For
a compact, convex set of states, an alternative approach that circumvents
having to check for constraint violations is given by Chmielewski and Man-
ousiouthakis (Ref. 1). By examining the extremal points on the feasible
region, they calculate a conservative upper bound on the N required to
guarantee that the solution is feasible on the infinite horizon.

We have assumed to this point that there exists a feasible solution
with respect to the input and endpoint constraints for the optimal control
calculation. In the presence of the side constraints (2b), it is no longer true
that the constrained regulator stabilizes all possible states even when the
stabilizability assumption is satisfied. When stabilization is not possible, the
problem (4)-(5) is an infeasible optimization problem. In actual operation,
an infeasible solution would signal a process exception condition.

For the Rawlings-Muske formulation, enforcement of the endpoint
constraint (9) often results in an infeasible optimization problem. Feasibility
can be recovered often by increasing the horizon length N; but when the
initial state is not stabilizable, the feasible region will continue to be empty
for all N. The existence of a feasible N can be checked easily by solving the
following linear program:
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If the components of h and d are strictly positive and if the uncon-
strained model is stabilizable, we can show that X contains 0 in its interior.
Under these circumstances, there is an index Noo such that



A positive solution to the linear program indicates that a feasible solution
does not exist and the horizon length N must be increased. If the feasibility
check fails for some user-supplied upper bound on the horizon length, then
the current state is not constrained stabilizable for the specified regulator.

2.3. Feasibility and Soft Constraints. In the formulation of the MPC
problem, some state constraints are imposed by physical limitations such as
valve saturation. Other constraints are less important; for instance, they
may represent desired ranges of operation for the plant. In some situations,
no set of inputs and states for the MPC problem may satisfy all of these
constraints. Rather than having the algorithm declare infeasibility and return
without a result, we prefer a solution that enforces some constraints strictly
(hard constraints), while relaxing others and replacing them with penalties
on their violation (soft constraints).

Scokaert and Rawlings (Ref. 13) replace the soft constraints with pen-
alty terms in the objective that are a combination of l1 -norms and squared
l2-norms of the constraint violations. Assuming for simplicity that all state
constraints Hxk<h in (13) are softened in this way, we obtain the following
modification to the objective (12):

where the constraint violations ek are defined by the following formulas,
which replace Hxk < h:

and the elements of the vector z are nonnegative, while Z is an SPSD matrix.
It is known that, when the weighting z on the l1 -terms is sufficiently large
[see, for example, Section 12.3 in Fletcher (Ref. 19)], and when the original
problem (12)-(13) has a nonempty feasible region, the local minimizers of
problem (12)-(13) modified by (17)-(18) defined above correspond to local
solutions of the unmodified problem (12)-(13). Under these conditions, the
formulation (17) together with the constraints (18) is referred to as an

where e is the vector whose entries are all 1, subject to the constraints
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exact penalty formulation of the original objective (12) with the original
constraints Hxk<h. This formulation has the advantage that it can still yield
a solution when the original problem (12)-(13) is infeasible.

Prior to actually solving the problem, we cannot know how large the
elements of z must be chosen to make the exact penalty property hold. The
threshold value depends on the optimal multipliers for the original problem
(12)-(13). A conservative state-dependent upper bound for these multipliers
can be obtained by exploiting the Lipschitz continuity of the quadratic pro-
gram (Ref. 20). In practice, the exact penalty is not critical, since by defini-
tion soft constraints need not be satisfied exactly. Reasonable controller
performance can be achieved often by setting z = 0 and choosing Z to be a
positive diagonal matrix. In fact, the inclusion of the l2-term eTZek is not
needed at all for the exact penalty property to hold, but is included here to
provide a little more flexibility in the modeling.

In the remainder of the paper, we work with a general form of
the MPC problem, which contains all the features discussed in this section:
finite horizon, endpoint constraints, and soft constraints. This general
form is
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subject to

Note that (20a) is fixed and that (20f) is required only when we choose the
parameterization K=0. We assume throughout that the matrices in (19)
satisfy the properties
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Note that the last property holds for the matrices considered in Section 2.1,
since in making the substitutions to obtain the form (4) we obtain

which is a sum of SPSD matrices and is therefore itself SPSD.

3. Interior-Point Method

In this section, we describe our interior-point-based approach for solv-
ing the MPC problem (19)-(20). We start with a general description of the
interior-point method of choice for linear and convex quadratic program-
ming: Mehrotra's predictor-corrector algorithm. The remaining sections
describe the specialization of this approach to MPC, including the use of
the Riccati approach to solve the linear subproblem, handling of endpoint
constraints, and hot starting.

3.1. Mehrotra's Predictor-Corrector Algorithm. Active set methods
have proved to be efficient for solving quadratic programs with general
constraints. The interior-point approach has proved to be an attractive alter-
native when the problems are large and convex. In addition, this approach
has the advantage that the system of linear equations to be solved at each
iterate has the same dimension and structure throughout the algorithm,
making it possible to exploit any structure inherent in the problem. The
most widely used interior-point algorithms do not require a feasible starting
point to be specified. In fact, they usually generate infeasible iterates, attain-
ing feasibility only in the limit. From a theoretical viewpoint, interior-point
methods exhibit polynomial complexity, in contrast to the exponential com-
plexity of active-set approaches.

In this section, we sketch an interior-point method for general convex
quadratic programming problems and discuss its application to the specific
problem (19). A more complete description is given by Wright (Ref. 21).

Consider the following convex quadratic program:
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where Q is an SPSD matrix. The Karush-Kuhn-Tucker (KKT) conditions
for optimality are that there exist vectors Jt* and A* such that the following
conditions are satisfied for (w, K, A) = (w*, n*, A*):

where m is the number of rows in the matrix C. Because the objective
function is convex, the KKT conditions are both necessary and sufficient
for optimality. By introducing a vector t of slacks for the constraint Cw<d,
we can rewrite these conditions in a slightly more convenient form,

where T and A are diagonal matrices defined by

and where

Primal-dual interior-point methods generate iterates (wi, ni, Ai, ti), i=
1,2,...,with (Ai, ti) >0 that approach feasibility with respect to the condi-
tions (23a) as i-> oo. The search directions are Newton-like directions for
the equality conditions in (23a). Dropping the superscript and denoting the
current iterate by (w, n, A, t). we can write the general linear system to be
solved for the search direction as
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Note that the coefficient matrix is the Jacobian of the nonlinear equations
(23a). Different primal-dual methods are obtained from different choices of
the right-hand side vector (rQ, rF, rc, rt). The duality gap u, defined by

is typically used as a measure of optimality of the current point (w, n, A, t).
In principle, primal-dual interior-point methods ensure that the norm of the
function F defined by (23a) remains bounded by a constant multiple of p
at each iterate, thus ensuring that u is also a measure of infeasibility of the
current point. However, the latter condition is rarely checked in practical
algorithms.

We use a variant of the Mehrotra predictor-corrector algorithm (Ref.
11) to solve (22). This algorithm has proved to be the most effective approach
for general linear programs and is similarly effective for convex quadratic
programming. The first part of the Mehrotra search direction, the predictor
step or affine-scaling step, is simply a pure Newton step for the system (23a),
obtained by solving (24) with the following right-hand side:

We denote the corresponding solution of (24) by (Awaff, APaff, AAaff, Ataff).
The second part of the search direction, the centering-corrector direction
(Awcc, APcc, AAcc, Atcc), is calculated by choosing the centering parameter
ae[0, 1) as outlined below and solving the system (24) with the following
right-hand side:

where ATaff and AAaff are the diagonal matrices constructed from the ele-
ments of Ataff and AAaff, respectively.

The following heuristic for choosing the value of a has proved to be
highly effective. We first compute the maximum steplength craff that can be



where 7 is a parameter in the range (0,1) chosen to ensure that the pairwise
products Aiti do not become too unbalanced. The value of y is typically
close to 1; it has proved effective in practice to allow it to approach 1 as
the algorithm gets closer and closer to the solution. See Mehrotra (Ref. 11)
for the details of a heuristic for choosing 7.

The algorithm does not require the initial point to be feasible, and
checks can be added to detect problems for which no feasible points exist.
In our case, feasibility of the MPC problem obtained from the Rawlings
and Muske formulation with unstable plants can be determined a priori by
solving the linear program (15)-(16).

The actual steplength a is chosen to be

Note that the coefficient matrix in (24) is the same for both the predictor
and centering-corrector systems, so just one factorization of this matrix is
required at each iteration. Apart from this factorization, the main computa-
tional operations at each iteration include two back-substitutions for two
different right-hand sides and a number of matrix-vector operations.

The distance along the direction (28) is defined in terms of the maximum
step amax that can be taken without violating the condition (23b),

Finally, we set

The duality gap uaff attained from this full step to the boundary is

taken along the affine-scaling direction as follows:
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The search direction is obtained by adding the predictor and centering-
corrector direction as follows:
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Finally, we note that block elimination can be applied to the system
(24) to obtain reduced systems with more convenient structures. By eliminat-
ing At, we obtain the following system:

Since A-1 T is a positive diagonal matrix, we can eliminate easily AA as well
to obtain

As we see in the next section, these eliminations can be applied to our
particular problem to put the system in a form in which we can apply the
Riccati block-elimination technique of Sections 3.3 and 3.4.

We conclude with a note on the sizes of the elements in t and X and
their effect on the elements of the matrices in (30) and (31). In path-following
interior-point methods that adhere rigorously to the theory, iterates are
confined to a region in which the pairwise products tiAi are not too different
from each other in size. A bound of the form

is usually enforced, where n is the average value of tiAi [see (25)] and
y e(0, 1) is constant, typically y= 10-4. When the primal-dual solution set
for (22) is bounded, we have further that

for some constant bound /?>0. It follows immediately from (32) and (33)
that

Hence, the diagonal elements of the matrices T-1A and A-1T lie in the range
[Q(H), 6(u-1)].

Although bounds of the form (32) are not enforced explicitly in most
implementations of the Mehrotra algorithm, computational experience
shows that they are almost always satisfied in practice. Hence, it is reasonable
to assume, as we do in the analysis of numerical stability below, that the
estimates (34) are satisfied by iterates of our algorithm.



3.2. Efficient MPC Formulation. The optimal control problem (19)-
(20) has been viewed traditionally as a problem in which just the inputs are
variables, while the states are eliminated by direct substitution using the
transition equation (20b); see, for example, Muske and Rawlings (Ref. 12).
We refer to this formulation hereafter as the standard method. Unfortun-
ately, the constraint and Hessian matrices in the reduced problem resulting
from this procedure are generally dense, so the computational cost of solving
the problem is proportional to N3. Efficient commercial solvers for dense
quadratic programs [such as QPSOL (Ref. 22)] can then be applied to the
reduced problem.

Unless the number of stages N is small, the O(N3) cost of the standard
method is unacceptable because the unconstrained version of (19) is known
to be solvable in O(N) time by using a Riccati equation or dynamic program-
ming. We are led to ask whether there is an algorithm for the constrained
problem (19)-(20) that preserves the O(N) behavior. In fact, the interior-
point algorithm of the preceding section almost attains this goal, since it
can be applied to the problem (19)-(20) at a cost of O(N) operations per
iteration. The rows and columns of the reduced linear systems (30) and
(31) can be rearranged to make these matrices banded, with dimension
proportional to N and bandwidth independent of N. Since the number of
iterations required by the interior-point algorithm depends only weakly on
N in practice, the total computational cost of this approach is only slightly
higher than O(N). In both the active set and interior-point approaches, the
dependence of solution time on other parameters, such as the number of
inputs, number of states, and number of side constraints, is cubic.

Wright (Refs. 7-8) describes a scheme in which these banded matrices
are explicitly formed and factored with a general banded factorization rou-
tine. In the next section, we show that the linear system to be solved at each
interior-point iteration can be reduced to a form identical to the uncon-
strained version of (19)-(20), that is, a form in which the side constraints
(20c), (20d) are absent. Hence, a Riccati recursion similar to the technique
used for the unconstrained problem can be used to solve this linear system.
Even though such a scheme places restrictions on the use of pivoting for
numerical stability, we show by a simple argument that numerical stability
can be expected.

Suppose that the interior-point algorithm of Section 3.1 is applied to
the problem (19)-(20). We use Ak, £k, nk to denote the Lagrange multipliers
for the constraints (20c), (20d), (20e), respectively. We rearrange the linear
system (30) to be solved at each iteration of the interior-point method by
interleaving the variables and equations according to stage index. That is,
the primal and dual variables for stage 0 are listed before those for stage 1,
and so on. For this ordering, the rows of the system (30) that correspond
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In this system, the diagonal matrices E D, E e, E H, which correspond to A-1 T
in the general system (30), are defined by

where Ak, Hk, Hk are the diagonal matrices whose diagonal elements are
the Lagrange multipliers Kk, E,k, nk, while Tk, Tk, Tk are likewise diagonal
matrices constructed from the slack variables associated with the constraints
(20c), (20d), (20e), respectively. The final rows in this linear system are

where B denotes the Lagrange multiplier for the endpoint constraint (20f).
By eliminating the Lagrange multiplier steps AAk, AEk, Ank, Aek from

the systems (35) and (37), we derive the following analog of the compact
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to stage k are as follows:
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where

and

740

system (31):

This matrix has the same form as the KKT matrix obtained from the follow-
ing problem in which the only constraint (apart from the model equation



Note that (42a) is fixed.
The problem (41)-(42) is convex if the matrices R0, QN, and

for all k= 1, 2, . . . , N- 1. Because of (44), we have that the left-hand side
of this expression is a sum of SPSD terms, and therefore is itself SPSD.
Finally, from (39a) note that each Rk, k = 0, 1, . . . , N- 1, is the sum of a

Since Z, EH, Se are all positive diagonal matrices, the final expression above
is a product of two positive diagonal matrices, and therefore is itself positive
diagonal. Hence, property (44) holds. From (39a), note that QN is an SPSD
modification of an SPSD matrix, and therefore is itself SPSD. From (39a)
again, note that we have

subject to

and initial state) is a final point condition:
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are all SPSD. The following brief discussion shows that this property holds.
First, we show that

By using the definition of Zk above, together with the diagonality of Z and
Ee, we have that
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PSD matrix R and an SPSD term DT(ED)-1D, and is therefore itself SPD.
We conclude that the objective function (41) is convex.

If we use n to denote the number of components of each state vector
xk and m to denote the number of components of each input vector Uk, we
find that the banded coefficient matrix in (38) has dimension approximately
N(2n + m) and half-bandwidth approximately 2n + m, so that the computa-
tional cost of factoring it by Gaussian elimination would be proportional
to N(m + n)3. This estimate is linear in N, unlike the naive dense implementa-
tion for which the cost grows like N3(m + n)3.

3.3. Block Elimination: Free Endpoint. We can improve the efficiency
of the algorithm by applying a block factorization scheme to (38) in place
of the elimination scheme for general banded matrices. In this section, we
consider the case in which endpoint constraints are not present in the prob-
lem, so that the quantities F, AB, rB do not appear in (38). We describe a
block elimination scheme and show that it yields a Riccati recursion.

For simplicity, we rewrite the system (38) for the case of no endpoint
constraints as follows:

The remaining quantities IIk and nk can be generated recursively. If (46)
holds for some k, we can combine this equation with three successive block

We can see immediately from (45) that (46) is satisfied for k = N if we define

Our scheme yields a set of matrices r k eR n * n and vectors PkeRn, k =
N, N-1, . . . , 1, such that the following relationship holds between the
unknown vectors Apk_1 and Axk in (45):
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Elimination of Apk-1 and Axk yields

Equation (51a) is the famous discrete-time Riccati equation for time-varying
weighting matrices.

The solution of (45) can now be obtained as follows. We first set TIN

and Kn using (47), and then apply (51a) to obtain nk and TTk for k = N- 1,
N-2, . . . , 1. Next, we combine (46) for k= 1 with the first two rows of
(45); we obtain

Finally, elimination of &uk-1 yields the equation

where
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rows from (45) to obtain the following subsystem:



are SPSD, we deduce from the comments just made that their eigenvalues
too must lie in the range [0, 0(u-1)].

We now show that blowup does not occur during computation of the
Riccati matrices I~k and that, in all cases, their eigenvalues lie in the range
[0, ®(u-1)]. This is certainly true of the starting matrix HN defined by (47).
For the remaining matrices defined by (51a), we assume that our assertion
is true for Hk for some k, and prove that it continues to hold for nk-1.
Note that the matrix

Finally, the steps Apk for k = N- 1, N- 2, . . . , 1 can be recovered from (46).
The computational cost of the entire process is O(N(m + n)3).

The question of stability of this approach is an important one. Essen-
tially the block elimination/Riccati scheme just described places restrictions
on the pivot sequence, that is, the order in which the elements of the matrix
in (45) are eliminated. Note that pivoting for numerical stability can occur
internally, during the factorization of (Rk -1 + BTHkB) in (51a) and (51b)
for k = N, N- 1,. . . , 2. In other circumstances, pivot restrictions are well
known to lead to numerical instability, which manifests itself by blowup of
the intermediate quantities that arise during the factorization, by which we
mean that the intermediate quantities become much larger than the original
data of the problem. However, in the present case, stability can be established
by the simple argument of the next few paragraphs.

The coefficient matrix in (45) becomes increasingly ill-conditioned near
the solution. This feature results from wide variation among the elements
of the diagonal matrices ED, E*, EH defined by (36) which, as we see from
(34), can vary between &(n) and O(u -1), where the duality measure n
approaches zero as the iterates approach the solution. It follows from (39a)
that Qk, k= 1, 2, . . . , N, has its eigenvalues in the range [0, O(u-1)], while
positive definiteness of R ensures that the eigenvalues of Rk, k =
0, 1, . . . , N- 1, lie in an interval [0(1), ® ( u - 1 ) ] . Since we showed earlier
that the matrices
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and solve this system for Au0, Ax1, Ap0. Next, we obtain from (49) and
(48) that



has both terms SPSD, with eigenvalues in the range [0, Q(u - 1)]. Since Tlk-1

is the Schur complement of Rk-1 + BTTlkB in the matrix (53), it must be
positive semidefinite. Note that FIk-1 is well defined by the formula (51a),
since Rk-1 + BTnkB is an SPSD modification of the SPD matrix R, and so
its inverse is well defined. Moreover, we can see from (51a) that nk is
obtained by subtracting an SPSD matrix from the SPSD matrix
Qk-1 + A TT\kA, and so its eigenvalues are bounded above by the eigenvalues
of the latter matrix. By combining these observations, we conclude that the
eigenvalues of nk_1 lie in the range [0, 0(u-1)], as claimed.

For the vectors Jtk, k = N, N- 1, . . . , 1, we have from the invertibility
of Rk-1 + BTUkB that they are well defined. Moreover, since the smallest
eigenvalue of Rk_ 1 + B TTlk B has size ©( 1), we have from the formula (51 b)
and the estimate ||nk || = O(/*-1) from the previous paragraph that ||itk || =
O ( p - 2 ) , and so this vector does not blow up with k either. In fact, a more
refined analysis can be used to deduce that ||Jtk || = O(n - 1) , but we omit the
details of this argument here.

We conclude that numerical instability is not a problem in applying the
block elimination/Riccati scheme and that, in fact, we can expect this scheme
to be as stable as any general scheme based on Gaussian elimination with
pivoting.

It might be expected that the inherent ill conditioning of the system
(45) may lead to an inaccurate computed solution, even when our numerical
scheme is stable. It has long been observed by interior-point practitioners,
however, that the computed steps are surprisingly effective steps for the
algorithm, even on later iterations on which n is tiny. This observation has
recently found some theoretical support [see Wright (Refs. 23-24)], but the
issues involved are beyond the scope of this paper.

3.4. Block Elimination: Constrained Endpoint. When endpoint con-
straints are present in the problem, they can be accounted for by adding
extra recursions to the scheme of the previous section. We describe this
approach below, but first mention an alternative way to handle the problem.
The presence of endpoint constraints in the model is often symptomatic of
the transition matrix A having eigenvalues outside the unit circle. In these
circumstances, it is known that Riccati-based techniques can encounter
stability difficulties. These difficulties are ameliorated by the technique of
parameterizing the input as
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where L is a linear stabilizing feedback gain for (A, B), as mentioned in
Section 2.1. Alternatively, we can simply discard the Riccati strategy and
instead apply a standard banded Gaussian-elimination scheme with partial
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pivoting to the system (38). Though this approach does not exploit the
structure of the problem quite as well as the Riccati strategy, its stability is
guaranteed. It can be used as a backup approach if stability problems are
encountered with the modified Riccati approach that we now describe.

In the language of linear algebra, our modification of the block-
elimination approach proceeds by partitioning the coefficient matrix in (38)
as

where

We partition the right-hand side and solution of (38) correspondingly and
rewrite the system as

We calculate the vector T-1r1 by using the approach of Section 3.3. The
other major operation is to find T11 T12, which we achieve by solving the

By simple manipulation, assuming that T11 is nonsingular, we obtain

where
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The structure of this system is identical to (45) except that the right-hand
side is now a matrix instead of a vector. As in the preceding section, we
seek n x nf matrices *¥k, k = N, N — 1, . . . , 1, (where nf is the number of rows
in F), such that the following relationship holds between <t>k-1 and <J>k

satisfying (56):

Note that FIk in (57) are identical to the matrices generated by the formulas
(47), (51a) of the previous section. This is hardly surprising, since these
matrices depend only on the coefficient matrix and not on the right-hand
side. An argument like that of the previous section yields the following
recursion for 4*k:

following system:

We solve (56) by using a similar technique to the one used for (45).
We now recover the solution of (38) via (55). By substituting from (54)

and (56), we find that
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so that y2 = A/3 can be found directly by substituting into (55a). We recover
the remainder of the solution vector from (55b) by noting that

In the implementation, the recurrences for computing Tlk, *Pk, ick take
place simultaneously, as do the recurrences needed for solving the systems
(45) and (56). The additional cost associated with the nfendpoint constraints
is O(N(m + n)2nf).When nf<n, which is a necessary condition for (38) to
have a unique solution, the cost of solving the full system (38) is less than
double the cost of solving the subsystem (45) alone by the method of the
preceding section.

3.5. Hot Starting. Model predictive control solves a sequence of simi-
lar optimal control problems in succession. If the model is accurate and the
disturbances are modest, the solution of one optimal control problem can
be shifted one time step forward to yield a good approximation to the
solution of the next problem in the sequence. Unfortunately, an approximate
solution of this type is not a suitable starting guess for the interior-point
method, since it usually lies at the boundary of the feasible region, whereas
interior-point methods prefer starting point that strictly satisfy the inequalit-
ies in the constraint set. Starting points close to the so-called central path
are more suitable. In the notation of Section 3.1, the characteristics of such
points are that their pairwise products Aiti are similar in value for i=
1,2,... ,m and that the ratio of the KKT violations in (23a), measured by
&(z, n, A, t). to the duality gap n is not too large. We can attempt to find
near-central points by bumping components of the shifted starting point off
their bound. In the notation of Section 3.1, we turn the zero value of either
ti or Ai into a small positive value. A second technique is to use a shifted
version of one of the earlier interior-point iterates from the previous prob-
lem. Since the interior-point algorithm tends to follow the central path, and
since the central path is sensitive to data perturbations only near the solution,
this strategy generally produces an iterate that is close to the central path
for the new optimal control subproblem.
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In the presence of new disturbances, the previous solution has little
relevance to the new optimal control problem. A starting point can be con-
structed from the unconstrained solution, or we can perform a cold start
from a well-centered point, as is done to good effect in linear programming
codes; see Wright (Ref. 21).

4. Computational Results

To gauge the effectiveness of the structured interior-point approach, we
tested it against the standard quadratic programming approach, in which
the states xk are eliminated from the problem (19), (20) by using the model
equation (20b). A reduced problem with unknowns uk, k = Q, 1,. . ., N- 1,
and ek, k= 1, 2,. . . , n, is obtained. The reduction in dimension is accom-
panied by filling in the constraint matrices and the Hessian of the objective.
The resulting problem is solved with the widely used code QPSOL (Ref.
22), which implements an active set method using dense linear algebra
calculations.

We compared these two approaches on three common applications of
the model predictive control methodology.

Example 4.1. Copolymerization Reactor. Congalidis et al. (Ref. 25)
presented the following normalized model for the copolymerization of
methyl methacrylate (MMA) and vinyl acetate (VA) in a continuous stirred
tank reactor:

The normalized inputs into the system are the flows of monomer MMA
(u1), monomer VA (u2), initiator (u3), transfer agent (u4), and temperature
of the reactor jacket (u5). The normalized outputs of the systems are the
polymer production rate ( y 1 ) , mole fraction of MMA in the polymer ( y 2 ) ,
average molecular weight of the polymer (y3), and reactor temperature ( y 4 ) .
The model was realized in block observer canonical form (Ref. 27), where
the dimension n of state after the realization is 18 and the number m of
inputs is 5. The model was discretized with a sample period of 1.



where the steady-state gain matrix K was extrapolated from data obtained
from a 3M polymer film pilot plant. For this example, the dimension of the
state n is 26 and the number m of imputs is 26. The state [x]j denotes the
deviated film thickness in the jth lane and the input [u]j denotes the deviated
position of the jth actuator.

Fig. 1. Input profile for Example 4.1.

The interior-point method required 14 iterations to solve the optimization
problem. Figure 1 shows the optimal control profile normalized with the
upper bounds on the input constraints.

Example 4.2. Gage Control of a Polymer Film Process. We consid-
ered the gage (cross-directional control) of a 26-lane polymer film process
with 26 actuators. We used the following model for our simulation:
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The normalized inputs were constrained to be within 10% of their nomi-
nal operating steady-state values. The tuning parameters were chosen to be
Q = CTC (where C is the measurement matrix obtained from the state space
realization), while M=0, R = (0.1)I, and the number of stages N is 100. Due
to the very slow dynamics of the reactor, Q was obtained from the solution
of (8). The parameters z and Z are vacuous, since there are no soft con-
straints on the state. The controller was simulated with the following state
disturbance:



JOTA: VOL. 99, NO. 3, DECEMBER 1998 751

Fig. 2. Input profile for Example 4.2.

The normalized outputs of the process are the feed level ( y 1 ) , product con-
centration ( y 2 ) , and product level (y3). The normalized inputs for the process

The actuators were constrained between the values of 0.1 and -0.1,
while the velocity of the actuators was constrained between the values of
0.025 and -0.025. Since a large difference between actuator positions can
create excess stress on the die, we imposed the following restriction on the
change in input from stage to stage:

We chose the tuning parameters to be

The matrix Q was obtained from the solution of (10). The parameters z and
Z are vacuous, since there are no soft constraints on the state. We chose a
horizon of N=30 to guarantee that the constraints were satisfied on the
infinite horizon. The interior-point method required 11 iterations. Figure 2
shows the calculated optimal input profiles.

Example 4.3. Evaporator. Ricker et al. (Ref. 26) presented the follow-
ing model for an evaporation process in a kraft pulp mill:
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The interior-point method required 18 iterations to solve the optimization
problem. Figure 3 shows the calculated optimal input profile, while Fig. 4
shows the predicted output profile. Note that the constraints for y2 and y3

are initially violated. The constraint for y2 is feasible when k>8 and the
constraint for y3 is feasible when k>34. Increasing the l1-penalty did not
change the resulting solution. Decreasing the l1-penalty leads to less aggres-
sive control action, but the constraints are violated for a longer duration.

The computational times required by the structured interior-point
approach and the naive quadratic programming approach are shown in

Fig. 3. Input profile at t = 0 for Example 4.3.

The matrix Q was obtained from the solution of (10). A constant Vpenalty
of 1000 was sufficient to force the soft constraints to hold when the solution
is feasible. We simulated the controller with the following state disturbance:

are the feed level setpoint (u1) and steam flow (u2). The process was realized
in block observer canonical form (Ref. 27) and sampled every 0.5 minutes.
The dimension n of the state after the realization is 9 and the number m of
input is 3.

Both inputs were constrained to lie in the range [-0.2, 0.2], while the
three outputs were constrained to lie in [-0.05, 0.05]. A bound of 0.05 was
also imposed on the input velocity. The controller was tuned with
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Table 1. Our platform was a DEC Alphastation 250, and the times were
obtained with the Unix time command. We used the value y = 0.995 in
(29) as the proportion of maximum step to the boundary taken by our
algorithm.

For the chosen (large) values of the horizon parameter N, the structured
interior-point method easily outperforms the naive quadratic programming
approach. For the latter approach, we do not include the time required to
eliminate the states. These times were often quite significant, but they are
calculated offline. For small values of the horizon parameter N, the naive
quadratic programming approach outperforms the structured interior-point
method, since the bandwidth is roughly the same relative order of magnitude
as the dimensions of (38).

5. Concluding Remarks

We conclude with four brief comments on the structured interior-point
method for MPC.

Table 1. Computational times (sec).

Example

4.1
4.2
4.3

Structured
interior-point

3.80
20.33
2.01

Naive quadratic
programming

23.78
276.91

25.32

Fig. 4. Predicted output profile for Example 4.3.
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(i) The structured method presented is also directly applicable to the
dual problem of MPC, the constrained moving horizon estimation problem.
In fact, the estimation problem will provide greater justification for struc-
tured approach because long horizons N arise frequently in this context.
However, we did not investigate applying the structured optimization
approach because the theory for linear constrained receding-horizon estima-
tors is still in its infancy.

(ii) We can extend the structured method to nonlinear MPC by apply-
ing the approach of this paper to the linear-quadratic subproblems generated
by sequential quadratic programming. Wright (Ref. 7), Arnold et al. (Ref.
6), and Steinbach (Ref. 9) all apply a similar technique to discrete-time
optimal-control problems. While some theory for nonlinear MPC is avail-
able, the questions of robust implementation and suitable formulation of
nonlinear MPC have not been resolved. See Mayne (Ref. 28) for a discussion
of some of the issues.

(iii) Since the computational cost of the proposed algorithm is
O(N(m + n)3), systems with large numbers of states and inputs can still
present formidable computational challenges. Since large systems tend to be
sparse (that is, A and B tend to be sparse, while Q and R tend to be nearly
diagonal), we expect substantial increases in computational performance by
exploiting the sparsity in (38) through the use of sparse matrix solvers. Since
the sparsity tends to be structured in many applications, different strategies
are preferable for different classes of processes. See, for example, the paper
of Rao et al. (Ref. 29), who investigated strategies for further decomposing
the problem structure in the gage control of sheet and film forming processes.

(iv) The last comment concerns time delays, which occur when more
than one sampling period elapses before an input uk affects the state of the
system. In the simplest case, we can rewrite the state equation (5a) as
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for the case in which the delay is d sampling periods. The natural infinite-
horizon LQR objective function for this case is

where the cross-penalty term relates uk-d and xk. Since the first d+ 1 state
vectors x0, x1, . . . , xd are independent of the inputs, the decision variables
in the optimization problem are xd+1 , xd + 2 , . . . and u0, u1 , . . . . By defining



These formulas have the same form as (4)-(5).
If no additional constraints of the form (5b) are present, a Riccati

equation may be used to solve (60)-(61) directly, as in Section 2.2. If state
constraints of the form Hxk<h or jump constraints of the form Gkuk<g
are present [as in (1)], we can still apply constraint softening (Section 2.3)
and use the approaches described in Section 2.2. To obtain finite-horizon
versions of (60)-(61), the techniques of Section 3.1 can then be used to solve
the problem efficiently.

Difficulties may arise when multiple time delays are present, since these
may reduce the locality of the relationships between the decision variables
and lead to significant broadening of the bandwidths of the matrices in (35)
and (38). A process in which two time delays are present, with d1 and d2

sampling intervals, can be described by a state equation of the following
form:

A problem with this dynamics can be solved by augmenting the state vector
xk with the input variables uk-d1, uk _d1-1, . . . , uk-d2+1 (assuming that
d2>d1) and applying the technique for a single time delay outlined above.
Alternatively, the KKT conditions for the original formulation can be used
directly as the basis of an interior-point method. The linear system to be
solved at each interior-point iteration will contain not only diagonal blocks
of the form in (35), but also a number of blocks at some distance from
the diagonal. Some rearrangement to reduce the overall bandwidth may be
possible, but expansion of the bandwidth by an amount proportional to
(d2 — d1 )m is inevitable.

Of course, we can also revert to the original approach of eliminating
the states x0, x1, . . . from the problem to obtain a problem in which the
inputs u0, u1, . . . alone are decision variables. The cost of this approach,
too, is higher than in the no-delay case, because the horizon length N usually
must be increased to incorporate the effects of the delayed dynamics. One
could postulate that certain processes would be effectively handled by the
standard approach while others would be effectively handled by the
structured approach. Perhaps, the only solution is to exercise engineering

and removing constant terms from (59), the objective function and state
equation become
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judgment to decompose the full control problem into smaller problems
without large delays and treat the neglected delays connecting the decom-
posed systems as disturbances. This issue remains unresolved and is a topic
of current research.
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