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ABSTRACT x € R", but not necessarily smooth nor convex. We assume also for
Finding sparse approximate solutions to large underdétedriin- ~ much of the discussion thatis separablethat is,
ear systems of equations is a common problem in signal/image n
processing and statistics. Basis pursuit, the least alesshuinkage o(x) = Z ci(zi). (3)
and selection operator (LASSO), wavelet-based decorivaland Py

reconstruction, and compressed sensing (CS) are a fewkn@hn

areas in which problems of this type appear. One standambagip e also considegroup (or blocK separability characterized by
is to minimize an objective function that includes a quadrét;) m

error term added. to a sparsity-inducing (usudlly regularizer. We e(x) = Zci (x12), (4)
present an algorithmic framework for the more general mobbf
minimizing the sum of a smooth convex function and a nonsmoot
possibly nonconvex, sparsity-inducing function. We prsgpdter- ~ wherexiij, X9, - . ., X[,y arem disjoint sub-vectors ok. We are
ative methods in which each step is an optimization subprobl especially interested in cases in whiglf (x) is inexpensive to com-
involving a separable quadratic term (diagonal Hessiany phe  pute, relative to the cost of computing/storing the Hessfafi
original sparsity-inducing term. Our approach is suitdblecases This paper presents an approach to solving problems of the fo
in which this subproblem can be solved much more rapidly thar(2) that has two desirable properties: a) it is computatiprem-
the original problem. In addition to solving the standdsd— ¢; petitive with the state-of-the-art algorithms designetdtiie standard
case, our approach handles other problesns,/, regularizers with  ¢2—¢1 problem (1); b) itis versatile enough to handle a broad déss
p # 1, or group-separable (GS) regularizers. Experiments wh C generalizations of (1), such as problems in which#heegularizer
problems show that our approach provides state-of-thepaetd for  is replaced with ard,-norm or with a group-separable regularizer.
the standards — ¢, problem, and is also efficient on problems with

GS regularizers. 1.2. Proposed Approach

. .Ind.ex Terms— sparse approximation, compressed sensing, OPHur approach generates a sequence of itesdtes — 1,2, ... by
timization, reconstruction. solving separable subproblems of the following form:

i=1

1. INTRODUCTION x" ! e argmin (z — x")TVf(x") + % llz — x*|13 + 7 ¢(z),

i ®)
1.1. Problem Formulation whereay, € RT. We refer to this approach as SpaRSA (Bpase

There is growing interest in finding fast algorithms for sofythe  Reconstruction byseparableApproximation).

convex unconstrained optimization problem Different variants of the approach are distinguished bied#nt
1 choices ofa,. We focus on variants based on the formula proposed
min 3 ly — Ax|)5 + 7|1, (1) by Barzilai and Borwein (BB) [1] in the context of smooth niordar
xe]Rn

minimization; see also [8, 16]. BB methods have also beefieabp
wherey € R:, A € R**" (usuallyk < n) and € R*. Problems to constrained problems [2], especially bound-consthopgeadratic

of the form (1) can be used to identify a sparse approximdtgisn ~ Programs [7, 15, 22]. To our knowledge, BB methods have nebbe
to the underdetermined system= Ax, and have become familiar Previously used for problems involving nonsmooth termsugh
over the past three decades, particularly in signal praugsSeveral  this usage is a natural extension of the basic idea. We alssider
algorithms have been proposed for solving (1) and its vesjesee monotone variants, in whicli, is increased as necessary to force a

[15] for a recent overview of the work in this domain. decrease in the objective function at every step.
In this paper we propose algorithms for solving the follogvin
generalization of the problem (1): 1.3. Related Work
min ¢(x) := f(x) + 7 c(x), (2) SpaRSA is closely related iterative shrinkage/thresholdingST)

(a.k.a. iterative denoising thresholded Landwebgrforward-
wheref :R™ — R is a smooth and convex function, andR™ — R, backward splittingalgorithms [6, 9, 11, 13, 14, 17]. The form of the
usually called theegularizeror regularization termis finite for all ~ subproblem is the same, but IST methods use a more conservati
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choice ofaz. In fact, it can be argued that SpaRSA is a speeded-uwhere hardu, a) = u 1}, is the hard-threshold function.

IST with better performance resulting from variationcof.
SpaRSA is also related to the GPS@tadient projection for
sparse reconstructigmrmethod recently presented by the authors of

Whenc;(z) = ||, i.e, c(z) = ||z||5, the closed form solution

of (7) is known forp = 1 (see (8))p = 4/3, p = 3/2, andp = 2.
See [5, 6], for further details and theory about problemsa(g) (7).

this manuscript [15]. While matching the speed of GPSR on the

l5 — ¢4 case, SpaRSA can be generalized beyond that case.

2. THE PROPOSED APPROACH

2.1. The SpaRSA Framework

The SpaRSA framework for problem (2) is as follows.

Algorithm SpaRSA
choose facton > 1 and constant&min, max (0 < min < Omax);
set iteration countet < 0;
choose initial guess?;
repeat
choosev, € [amin, max;
repeat
x"*t1 — solution of sub-problem (5);
Qf < 1) O,
until x*** satisfies an acceptance criterion
10. k—k+1;
11. until stopping criterion is satisfied.

CoNoTRrWNE

The several variants of SpaRSA are defined by two key steps
the algorithm: the choice afy, (line 5) and the acceptance criterion
(line 9). It is worth noting here that IST algorithms belorgthe

SpaRSA class. If is convey, if the acceptance criterion accepts any,

x**t1, and if we use a constant, satisfying the conditions given,
e.g, in [6], we have a convergent IST algorithm. SpaRSA allows
less conservative choices @f,, often leading to faster convergence.

2.2. Solving the Subproblems

By dropping irrelevant additive terms independent athe subprob-
lem (5) at line 7 of the algorithm can be rewritten as

2
x" + = c(z),
2

ay

! ¢ argmin 1 Hz - ukH (6)

z 2
whereu” = x* — Vf(x")/ay. Since the term|z — u*||3 is a
strictly convex function ofz, (6) has a unique solution whenis
convex. (For nonconvex, there may exist several local minimizers.)
In signal processing terms, (6) is called a denoising proffE3].

2.3. Choosingxy: The Barzilai-Borwein Method.

In the most basic variant of the Barzilai-Borwein (BB) apmeh, we
chooseny, such thaiy,, I mimics the true HessiaWQf(x) over the
most recent step. Defining

k
S

k k
=X —X

~,and rf = Vi(x") - Vi,
we require thaty, s® ~ r” in the least-squares sense, leading to
(10)

ax = argmin o 8" — *[3 = (") 7r*/[(s)7S"].

When f(x) = (1/2)||Ax — y||3, the previous expression becomes
ar = ||As¥||3/[s"||3. These formulas can be safeguarded appro-
priately to ensure that, remains in the rangRvmin, Gtmax|-

2.4. The Acceptance Criterion

% the simplest variant of the SpaRSA scheme, the acceptaice

terion is trivial: accept whatever solves the subproblem (5) as the
new iteratex"*!, even if it yields an increase in the objective func-
tion ¢. We consider also a variant in which; is viewed as a damp-
ing parameter in the subproblem (6), which is increased thaiso-
lution of this subproblem yields a decreasepinin this scheme, the
acceptance criterion may lgx**1) < ¢(x*), or we may enforce
a more stringent variant that requires the margin of deergmbe at
least some (positive constant) multiple of the decreasmisexd by
the subproblem (5). The initial choice of, can be given by (10),
or by modifying the valuev;_1 from the previous iteration. We call
the former variant of the algorithm SpaRSA-monotone.

The existence of a value ofy, sufficiently large to ensure a de-
crease in the objective at each iteration can be inferred fhe con-
nection between (6) and the following trust-region subfaob

min Vf(x")"(z — x") + 7¢(z) subjectto|z — x*|2 < Ay.

If ¢ has the separable form (3), the subproblem (6) is also sepat also follows from the known fact, which underlies the mtoric-

rable and can be written as

)2

k

%

,

+ o ci(2),

Separability is key to the efficiency of SpaRSA and IST altyonis.

For some choices af;, the minimization in (7) has a unique closed
k

form solution. Where(z) = ||z||1 (thusc;(z) = |z[), we have
z —uf)?

(2 —w = soft <u§, L)
au

2
where softu, a) = sign(u) max{|u| — a, 0} is the well-known soft-
threshold function.
Another notable case is the so-callég quasi-norme(z)
llzllo = X, 12,20. Inthis case, we have

k)2
Gow) aik Loy0 = hard(uﬁy/i—l) . 9

m,’f“eargmin (z —u i1=1,2,...,n. (7)

77|

arg min + , (8)

Qg

arg min
g U 2

ity of IST algorithms [14], that there is a constant> 0 such that
descent is assured whenever > a.

2.5. Warm Starting and Continuation

The SpaRSA approach benefits from a good starting pdinwhich
suggests that we can use the solution of (2), for a given \aflue

to initialize SpaRSA in solving (2) for a nearby value of The
second run will typically be significantly faster than thafione. An
important application of warm-starting @ntinuation as recently
suggested in [17]. The speed of SpaRSA algorithms may degrad
considerably for smaller values of the regularization peaaterr.
However, if we use SpaRSA to solve (2) for a larger valuer of
then decrease in steps toward its desired value, running SpaRSA
with warm-start for each successive valuerofwe are often able
to identify the solution much more efficiently than if we jusin
SpaRSA once for the desired valuerofrom a “cold start.”
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3. GROUP-SEPARABLE REGULARIZERS

In this section we consider group-separable (GS) reg@leriaf the
form (4). In this case, the minimization (6), instead of dguing
into a set of one-dimensional minimizations (7), decoupi&sa set
of m independent multi-dimensional minimizations, of the form

. 1
min — ||w—b||§+5¢>(w),
weRl 2

(11)
wherel is the dimension ok[;;, b = uﬁ-], D =¢;,ands = 7/ k.

GS regularizers are desirable when there exists a grougtsteu
in x, which arises naturally in many applications.

e In brain imaging, the voxels associated with different func
tional regions (e.g., motor or visual cortices) may be gealip
together in order to identify a sparse set of regional evénts
[3, 4], an EM algorithm (equivalent to IST) was proposed for
solving problems of this type.

A GS-(; penalty €(w) = c¢;(w) = ||w||2) was proposed for
source localization in sensor arrays [20]; second-ordeeco
programming was used to solve the optimization problem.

In gene expression analysis, some genes are organized

functional groups. This has motivated an approach called

CAP (composite absolute penalty) [25], which has the form
(4), and uses a greedy optimization scheme [26].

GS regularizers have also been proposed for ANOVA regressio
models [19, 21, 24], and Newton-type optimization methodgeh
been proposed in that context. An interior-point methodlierGS-
lo case O(w) = ci(w) = ||w||e) Was proposed in [23]. The
SpaRSA framework is versatile enough to handle the GS regeta
arising all in the applications described above.

As in[5, 6], convex analysis can be used to obtain the saludfo
(112). If ® is a norm, it is proper, convex (maybe not strictly so), and
homogenous. Since the quadratic term in (11) is proper aiudlt
convey, this problem has a unique solution, which can betewrit
explicitly as follows:

w =b — Pgc, (b), (12)
wherePg denotes the orthogonal projector onto BetandCs is a
1-ball in the dual norn®*, that is,Cs = {w € R' : &*(w) < 1}.
For®(w) = ||w||2, the dual normis als®* (w) = ||w||2, thus
BC|.1, = {w € R : ||w|2 < B}. Clearly, if |b|2 < 3, then
P’BCH'Hz b) = b, thusb — P’BCH'Hz(b) = 0. If Hb||2 > B, then
Pscy ,(P) = Bb/||bl|2. These two cases are written compactly as

max {|[|b[|z — 3,0} . (13)

w— b
[bll2
Naturally, if I = 1, (13) reduces to the scalar soft-threshold (8).
For ®(w) = ||[wW||, the dual norm isb*(w) = |w||1, thus
BC. . = {w € R" : |[w]j1 < £}. Inthis case, the solution of
(11) is the residual of the orthogonal projectionkobnto thel; j3-
ball. This projection (thus also the residual) can be corgbutith
O(llog!l) cost, as recently shown in [3, 4, 10].

4. EXPERIMENTS

4.1. Speed Comparisons for thé> — ¢; Problem

3

and thell_Is method [18], in a typical CS scenario (as in [15, 18]):
f(x) = ||Ax — y||3, with A a2'® x 2'? random matrixy is gen-
erated ayy = Axtrue + €, Wheree is a Gaussian white vector with
variancel0~*, andxuye is a vector with 160 randomly placet1
spikes and zeros elsewhere. We useftheegularizerc(x) = ||x]|1,
andr = 0.1 |A”y||, as in [15, 18]. In this (and all other) experi-
Ments,cima= 1/amin= 10%° andn = 2 (for SpaRSA-monotone). To
perform the comparison, independently of the adopted stgpple,

we first runll_ls and then the other algorithms until each reaches the
same value of the objective function reachedbyis. Table 1 re-
ports the CPU times required by SpaRSA, two variants of GPSR,
I1_ls, and IST, as well as the final mean squared error (MSE) of the
reconstructions with respectt@ye. These results show that, for this
ly — ¢1 problem, SpaRSA is slightly faster than GPSR and clearly
faster tharll_lIs and IST, while achieving a similar value of MSE.

Table 1. CPU times (average over 10 runs) of several algorithms on
the CS experiment described in the text.

[ Algorithm | CPUtime (secs.]) MSE |
SpaRSA 0.44 2.42e-3

in SpaRSA-monotong 0.45 2.49e-3
GPSR-BB 0.55 2.81e-3
GPSR-Basic 0.69 2.59e-3

11 Is 6.56 2.51e-3

IST 2.76 2.51e-3

An indirect comparison with other codes can be made via [18,
Table 1], which shows thdl_Is outperforms the method from [12]
(6.9 vs 11.3 secs.), as well &smagicby about two orders of mag-
nitude andpdco from SparseLalby about one order of magnitude.

The second experiment assesses how the computationalfcost o
SpaRSA grows with the size of matriX, using a setup similar to
the one in [15, 18]. Assuming that the computational co61(s”),
we obtain empirical estimates f SpaRSA and SpaRSA-monotone
have empirical exponents a8 and.87, respectively, similar to the
values.86 and .87 of GPSR and GPSR-Basic. IST has a similar
exponentg9, but a worse constant. Ftk_Is, we foundy = 1.21,
in agreement with the value2 reported in [18].

4.2. Group-Separable Regularizers

Here we illustrate the use of SpaRSA with the GS regularizens
sidered in Section 3. In our exampleyue is a 2'2-dimensional
vector, divided intan = 64 groups of lengthi; = 64. As above A
a2'% x 2'? random matrix ang is generated ag = Axrue + e,
wheree is Gaussian white noise with variant8~*. To generate
Xtrue, We randomly choos8 groups and fill them with zero-mean
Gaussian random samples of unit variance; all other growgpfilled
with zeros. Finally we run SpaRSA, with(x) = ||Ax — y||3 and
c(x) as given by (4), where;(x;) = ||xp;]l2. The value ofr
is hand-tuned for optimal performance. Fig. 1 shows theltrefu
tained by SpaRSA, based on the GSregularizer, which success-
fully recoverers the group structure gfrue, as well as the result
obtained with the classicél regularizer, for the best choice of

In the second experiment, we consider a similar scenarit, wi
a single difference. Each active group, instead of beingdilkith
Gaussian random samples, is filled with ones. This case aslgle
more adequate for a G&; regularizer, as illustrated in Fig. 2, which

The purpose of our first experiment is to compare SpaRSA witlachieves an almost perfect reconstruction, with an MSE &rerdf

the state-of-the-art algorithms IST and GPSR (see SubsetiB),

magnitude smaller than what is obtained with a GSegularizer.
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Fig. 1. Comparison of G3> regularizer with conventiondl regu-
larizer. Exploiting known group structure provides a drémgain.

Original (n = 4096, number groups = 64, active groups = 8)
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Fig. 2. Comparison of G- and GS¢., regularizers. Signals with
uniform behavior within groups benefit from the GS-regularizer.
5. CONCLUDING REMARKS

In this paper, we have introduced the SpaRSA algorithmiméra
work for solving large-scale optimization problems invaly the

sum of a smooth error term and a possibly nonsmooth regatariz

(4]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

We give experimental evidence that SpaRSA matches the sgeed [20]

the state-of-the-art method when applied to the— ¢, problem,
and show that SpaRSA can be generalized to other regulaszeh
as those with group-separable structure. Ongoing workided a
more thorough experimental evaluation involving widerssks of
regularizers, and theoretical analysis of the convergpnagerties.
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