
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 1

ASSET: Approximate Stochastic Subgradient
Estimation Training for Support Vector Machines

Sangkyun Lee and Stephen J. Wright

✦

Abstract —Subgradient methods for SVMs have been successful in
solving the primal formulation with linear kernels. The approach is
extended here to nonlinear kernels, and the assumption of strong
convexity of the objective is dropped, allowing an intercept term to be
used in the classifier.

1 INTRODUCTION

SUPPORT vector machines (SVMs) have become a
highly successful methodology in machine learning

and data mining. Derivation, implementation, and anal-
ysis of efficient solution methods for SVMs have been
the subject of a great deal of research during the past 12
years. We broadly categorize the algorithms that have
been proposed as follows.

(i) Decomposition techniques based on the dual SVM
formulation, including SMO [17], LIBSVM [5],
SVM-Light [9], GPDT [21], and an online variant
LASVM [1]. The dual formulation allows nonlinear
kernels to be introduced neatly into the formulation
via kernel trick [20].

(ii) cutting-plane methods based on the primal formu-
lation: SVM-Perf [10] and OCAS [7] handle linear
kernels, and their extensions to nonlinear kernels in
a new version of SVM-Perf [11] (which we refer to
as CPNY) and CPSP [12].

(iii) subgradient methods for linear kernels in the primal
formulation, for which we have Pegasos [22] and
SGD [2].

When datasets are extremely large, the computation
required by some of the existing algorithms becomes
excessive. Subgradient methods are of our particular
interest. They take simple steps, each typically based on
a single training point, so can be implemented in a data-
streaming context. They are simple to implement. While
requiring a great many iterates to find accurate solutions,
they can sometimes calculate solutions that are “accurate
enough” for the purposes at hand using much less
computation than frameworks that more explicitly target

• S. Lee and S. J. Wright are with the Department of Computer Sciences,
University of Wisconsin-Madison, Madison, WI, 53706.
E-mail: {sklee, swright}@cs.wisc.edu

Manuscript received January 00, 2000; revised January 00, 2000.

an exact solution. The subgradient methods mentioned
above are closely aligned to stochastic approximation
(SA) methods [15], [16] and incremental subgradient
methods [14] from the optimization literature, and to
incremental methods for online learning [23].

This paper outlines an improved algorithm based
on subgradient methods for solving primal SVM for-
mulations. It extends current subgradient methods by
allowing nonlinear kernels to be used, and not requiring
strict convexity of the function to be minimized. This
allows the classic SVM formulation with a non-penalized
intercept term to be used, thus reclaiming the formula-
tion on which many theoretic results have been built.

Our approach uses low-dimensional approximations
to nonlinear kernels, obtained either by approximat-
ing the Gram matrix, or by constructing the subspace
with random bases. The approximation yields a linear
formulation with transformed feature vectors, which
can be solved with the use of well known subgradi-
ent approaches. The approach has the added benefits
that the approximate solution to the SVM yields an
approximate classification function that can be evaluated
cheaply, typically in time proportional to the dimension
of approximation.

We mention two more approaches that are related to
the methods of this paper. Fine & Scheinberg [6] use a
low-rank approximation to the Gram matrix to obtain
a reduced dual formulation whose structure can be
exploited by an interior-point solver. Rahimi & Recht [19]
exploit random projections to have simple least-squares
formulation; we re-use their projection technique as part
of our approach. Our method differs from these in
that (i) we find an approximate solution of the primal
SVM formulation in much less time than an interior-
point method would require; and (ii) we use the SVM
formulation rather than the least-squares formulation of
[19], and (iii) out approach works both in batch and
online settings.

2 NONLINEAR SVM IN THE PRIMAL

In this section we develop a general theory for nonlinear
SVM in the primal form focusing on classification, then
show how it reformulates to a linear SVM problem by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 2

means of the low-dimensional approximation of a kernel.
We discuss techniques for approximating the kernel and
finally how to classify data points efficiently.

2.1 Basic Derivation

Here we use the tools of convex analysis to justify the
primal SVM formulation with kernels, which was first
introduced by Chapelle [3] but no rigorous justification
has been done to our knowledge. Consider the training
point and label pairs {(ti, yi)}mi=1, ti ∈ IRn and yi ∈
{−1,+1} and feature mapping φ : IRn → IRd. Given a
convex loss function ℓ : IR→ IR ∪ {∞}, the primal SVM
problem can be formulated as follows:

min
w∈IRd,b∈IR

λ

2
w

T
w +

1

m

m
∑

i=1

ℓ(yi(w
Tφ(ti) + b)) (1)

with λ > 0 and a convex loss function ℓ. The necessary
and sufficient optimality conditions are

λw +
1

m

m
∑

i=1

χiyiφ(ti) = 0, (2a)

1

m

m
∑

i=1

χiyi = 0, (2b)

for some χi ∈ ∂ℓ(yi(w
Tφ(ti) + b)), i = 1, 2, . . . ,m. (2c)

where ∂ℓ is the subdifferential of ℓ.
We now consider the following substitution:

w =
m
∑

i=1

αiyiφ(ti) (3)

(which mimics the form of (2a)) and, motivated by this
expression, we formulate the following problem

min
α∈IRm,b∈IR

λ

2
αTΨα+

1

m

m
∑

i=1

ℓ(Ψi·α+ yib), (4)

where Ψ ∈ IRm×m is defined by

Ψij := yiyjφ(ti)
Tφ(tj), i, j = 1, 2, . . . ,m, (5)

and Ψi· denotes the i-th row of Ψ. Optimality conditions
for (4) are as follows:

λΨα+
1

m

m
∑

i=1

βiΨ
T
i· = 0, (6a)

1

m

m
∑

i=1

βiyi = 0, (6b)

for some βi ∈ ∂ℓ(Ψi·α+ yib), i = 1, 2, . . . ,m. (6c)

The following result shows that the solution of (4) can
be used to derive a solution of (1). This observation is
potentially interesting because (4) is formulated in terms
of the kernel Ψ and does not require explicit knowledge
of the feature mapping φ.

Proposition 1: Let (α, b) ∈ IRm× IR be a solution of (4).
Then if we define w by (3), (w, b) ∈ IRd× IR is a solution
of (1).

Proof: Since (α, b) solves (4), the conditions (6) hold,
for some βi, i = 1, 2, . . . ,m. To prove the claim, it suffices
to show that (w, b) and χ satisfy (2), where w is defined
by (3) and χi = βi for all i = 1, 2, . . . ,m.

By substituting (5) into (6), we have

λ
m
∑

i=1

yiyjφ(tj)
Tφ(ti)αi +

1

m

m
∑

i=1

βiyiyjφ(tj)
Tφ(ti) = 0,

j = 1, 2, . . . ,m,

1

m

m
∑

i=1

βiyi = 0,

βi ∈ ∂ℓ(
m
∑

j=1

yiyjφ(tj)
Tφ(ti)αj + yib), i = 1, 2, . . . ,m.

From the first equality above, we have that

−
m
∑

i=1

(

αi +
1

λm
βi

)

yiφ(ti) + ξ = 0,

for some ξ ∈ Null
(

[

yjφ(tj)
T
]m

j=1

)

. Since the two com-

ponents in this sum are orthogonal, we have

0 =

∥

∥

∥

∥

∥

m
∑

i=1

(

αi +
1

λm
βi

)

yiφ(ti)

∥

∥

∥

∥

∥

2

2

+ ξT ξ,

which implies that ξ = 0. We can therefore rewrite the
optimality conditions for (4) as follows:

m
∑

i=1

(

λαi +
1

m
βi

)

yiφ(ti) = 0, (7a)

1

m

m
∑

i=1

βiyi = 0, (7b)

βi ∈ ∂ℓ(yiφ(ti)
T

m
∑

j=1

αjφ(tj) + yib), i = 1, 2, . . . ,m. (7c)

By defining w as in (3) and setting χi = βi for all i, we
see that (7) is identical to (2), as claimed.

While Ψ is clearly symmetric positive semidefinite,
the proof makes no assumption about nonsingularity
of this matrix, or uniqueness of the solution α of (4).
However, (6a) suggests that without loss of generality,
we can constrain α to have the form αi = −βi/(λm)
where βi is restricted to ∂ℓ. In particular, if we use hinge
loss function, that is,

ℓ(δ) := max{0, 1− δ}, (8)

the subdifferential is

∂ℓ(δ) =











{−1} if δ < 1,

[−1, 0] if δ = 1,

{0} if δ > 1.

Thus βi ∈ [−1, 0] for all i = 1, 2, . . . ,m.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 3

2.2 Reformulation to a Linear SVM Problem

We consider the feature mapping φ◦ : IRn → H to
a Hilbert space H induced by a kernel function k◦ :
IRn × IRn → IR, where k◦ satisfies the conditions of
Mercer’s Theorem [20] to guarantee the existence of φ◦

satisfying k◦(s, t) := 〈φ◦(s), φ◦(t)〉. Suppose that we have
a low-dimensional approximation φ : IRn → IRd of φ◦ for
which

k◦(s, t) ≈ φ(s)Tφ(t), (9)

for all feature s and t of interest. We construct a matrix
V ∈ IRm×d for training examples t1, t2, . . . , tm by defin-
ing the ith row as Vi· = yiφ(ti)

T , i = 1, 2, . . . ,m. Then
V satisfies

Ψ := V V T ≈ Ψ◦ := [yiyjk
◦(ti, tj)]i,j=1,2,...,m. (10)

Note that Ψ is a rank-d, positive semidefinite approxi-
mation to Ψ◦. By substituting this Ψ in (4), we obtain

min
α∈IRm,b∈IR

λ

2
αTV V Tα+

1

m

m
∑

i=1

ℓ(vT
i V

Tα+ yib), (11)

where vi := V T
i· is the transpose of the i-th row of V . By

introducing the change of variables

γ = V Tα, (12)

we obtain the equivalent formulation

min
γ∈IRd,b∈IR

λ

2
γT γ +

1

m

m
∑

i=1

ℓ(vT
i γ + yib). (13)

This problem is a linear SVM with feature vectors yivi ∈
IRd, i = 1, 2, . . . ,m.

We can solve (13) by applying linear SVM techniques
to find (γ, b). Any α that solves the overdetermined
system (12) will yield a solution of (11). (Note that α
satisfying (12) need have at most d nonzeros.) In Section
2.4, we provide an efficient way to classify data points
without recovering α.

2.3 Approximating the Kernel

We discuss two techniques for finding V that satisfies
(10). The first uses randomized linear algebra to calculate
a low-rank approximation to the scaled Gram matrix
Ψ◦, as in (10). The second approach approximates the
feature mapping φ◦(·) explicitly by approximate feature
mapping φ(·) constructed using random projections.

2.3.1 Kernel Matrix Approximation
Our first approach is to use the Nyström method [4],
to find a good approximation of specified rank d to the
m × m matrix Ψ◦ in (10). In this approach, we specify
some integer s with d ≤ s < m, and choose s elements at
random from the index set {1, 2, . . . ,m} to form a subset
S . We then find the best rank-d approximation to (Ψ◦)SS
and denote it by Ws,d, with pseudo-inverse W+

s,d. We
then choose V so that

V V T = (Ψ◦)·SW
+
s,d(Ψ

◦)T·S , (14)

where (Ψ◦)·S denotes the column submatrix of Ψ◦ de-
fined by the indices in S . The results in [4] indicate
that in expectation and with high probability, the rank-
d approximation obtained by this process has an error
that can be made as close as we wish to the best rank-d
approximation by choosing s sufficiently large.

We calculate Ws,d by forming the eigen-decomposition
(Ψ◦)SS = QDQT , where Q is s× s orthogonal and D is
a diagonal matrix with decreasing nonnegative diagonal
entries. Taking d̄ to be the smaller of d and the number
of positive diagonals in D, we then have that

Ws,d = Q·,1..d̄D1..d̄,1..d̄Q
T
·,1..d̄,

(where Q·,1..d̄ denotes the first d̄ columns of Q, and so
on). The pseudo-inverse is thus

W+
s,d = Q·,1..d̄D

−1
1..d̄,1..d̄

QT
·,1..d̄. (15)

The matrix V satisfying (14) is therefore

V = (Ψ◦)·SQ·,1..d̄D
−1/2

1..d̄,1..d̄
. (16)

For practical implementation, rather than defining d
a priori, we can choose a positive threshold ǫd with
0 < ǫd ≪ 1, then choose d to be the largest integer in
1, 2, . . . , s such that Ddd ≥ ǫd. (In this case, we have
d̄ = d.)

The time complexity of the kernel approximation dis-
cussed above is O(s3 + sm(n + d)), comprising (i) a
cost of O(s3) for the QDQT factorization of (Ψ◦)SS , (ii)
O(smn) for computation of (Ψ◦)·,S , and (iii) O(smd) for
the matrix multiplication of (16). Note that the cost of
(ii) and (iii) dominates the cost of (i) since d ≤ s≪ m.

2.3.2 Feature Mapping Approximation
The second approach, following [19], finds a mapping
φ : IRn → IRd that satisfies

〈φ◦(s), φ◦(t)〉 = E [〈φ(s), φ(t)〉] ,
where the expectation on the right hand side is over
the random variables that determine φ. The mapping
φ can be constructed explicitly by random projections.
Following [19], we write

φ(t) =
√

1/d
[

cos(νT1 t+ β1), · · · , cos(νTd t+ βd)
]T

(17)

where ν1, . . . , νd ∈ IRn are i.i.d. samples from a distri-
bution with density p(ν) and β1, . . . , βd ∈ IR are from
the uniform distribution on [0, 2π]. The density function
p(ν) is determined by the types of the kernels we want
to use. For the Gaussian kernel

k◦(s, t) = exp(−‖s− t‖22/(2σ2)), (18)

it can be shown that

p(ν) =
1

(2π)r/2σ2
exp

(

−||ν||
2
2

2σ2

)

,

from the Fourier transformation of k◦. We can define the
matrix V satisfying (10) by setting

vi := V T
i· = yiφ(ti), i = 1, 2, . . . ,m, (19)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 4

thus setting up the formulation (13).

This method is suitable for online settings, since it
takes only O(dn) to prepare ν1, . . . , νd (assuming that
sampling each component of these vectors takes constant
time) and O(d) to process each data point. As we observe
in Section 4, however, this approach tends to give lower
classification accuracy than the first approach.

2.4 Efficient Classification

Given the solution (γ, b) of (4), we now describe how a
new data point t ∈ IRn can be classified efficiently. The
imposed low dimensionality of the approximate kernel
in our approach can lead to significantly lower cost of
classification, as low as a fraction of d/m of the cost of
a full-space approach.

For the feature mapping approximation of Sec-
tion 2.3.2, where φ is defined explicitly by (17), we use
the classifier f suggested immediately by (1), that is,
f(t) = w

Tφ(t) + b. By substituting from (3) and using
the definition (19), we obtain

f(t) = φ(t)T
m
∑

i=1

αiyiφ(ti)+b = φ(t)TV Tα+b = φ(t)T γ+b,

where we used (12) for the final equality. Note in partic-
ular that the classifier can be evaluated directly from γ;
there is no need to recover α explicitly.

For the kernel approximation approach of Sec-
tion 2.3.1, the classifier w

Tφ(t) + b cannot be used
directly, as we have no way to evaluate φ(t) for an
arbitrary point t. We can however use the approximation
(9) to note that

φ(t)Tw + b =
m
∑

i=1

αiyiφ(t)
Tφ(ti) + b

≈
m
∑

i=1

αiyik
◦(ti, t) + b, (20)

so we can define the function (20) to be the classifier.
To evaluate this function, we need only evaluate those
kernels k◦(ti, t) for which αi 6= 0. As noted in Section 2.2,
we can satisfy (12) by using just d nonzero components
of α, so (20) requires only d kernel evaluations.

If we set αi = 0 for all components i /∈ S , where S is
the sample set from Section 2.3, we can compute α that
approximately satisfies (12) without performing further
matrix factorizations. Denoting the nonzero subvector of
α by αS , we have V Tα = V T

S·αS = γ, so from (16) and
the fact that (Ψ◦)SS = QDQT , we have

γ = D
−1/2

1..d̄,1..d̄
QT

·,1..d̄(Ψ
◦)SSαS = D

1/2

1..d̄,1..d̄
QT

·,1..d̄αS .

An approximate solution of this equation (which is exact
when d̄ = d = s) is

αS = Q·,1..d̄D
−1/2

1..d̄,1..d̄
γ.

3 STOCHASTIC APPROXIMATION ALGORITHM

We describe here a stochastic approximation algorithm
for solving the linear SVM reformulation (13). Consider
the general convex optimization problem

min
x∈X

f(x), (21)

where f is a convex function and X is a bounded closed
convex set with the radius DX defined by

DX := max
x∈X
||x||2. (22)

The subdifferential of f at x is denoted by ∂f(x), and we
use g(x) to denote a particular subgradient. By convexity
of f , we have

f(x′)− f(x) ≥ g(x)T (x′ − x), ∀x, x′ ∈ X, ∀g(x) ∈ ∂f(x).

f is strongly convex when there exists µ > 0 such that

(x′ − x)T [g(x′)− g(x)] ≥ µ||x′ − x||2, (23)

for all x, x′ ∈ X , all g(x) ∈ ∂f(x), and all g(x′) ∈ ∂f(x′).
Note that the objective in (13) is strongly convex in γ,
but only weakly convex in b. Pegasos [22] requires f
to be strongly convex in all variables and modifies the
SVM formulation to have this property. The approach
we describe below is suitable for the original SVM
formulation.

3.1 The Algorithm

The algorithm assumes that at any x ∈ X , we have avail-
able G(x; ξ), a stochastic subgradient estimate depending
on random variable ξ that satisfies E[G(x; ξ)] = g(x) for
some g(x) ∈ ∂f(x). The norm deviation of the stochastic
subgradients is measured by DG defined as follows:

E[‖G(x; ξ)‖22] ≤ D2
G ∀x ∈ X. (24)

At iteration j, the general algorithm takes the follow-
ing step:

xj+1 = ΠX(xj − ηjG(xj ; ξj)), j = 1, 2, . . . , (25)

where ξj is a random variable (i.i.d. with the random
variables used at previous iterations), ΠX is the projec-
tion onto X , and ηj > 0 is a step length. For our function
(13), we have xj = (γj , bj), and ξj is selected to be one of
the indices {1, 2, . . . ,m} with equal probability, and the
subgradient estimate is constructed from the subgradient
for the ξjth term in the summation. Specifically, when
the hinge loss ℓ from (8) is used, we have

G

([

γj

bj

]

; ξj
)

=

[

λγj + djv
T
ξj

djyξj

]

, (26)

where dj = −1 if the kernelized training point ξj is
currently misclassified and dj = 0 otherwise. We define
the feasible set X to be the Cartesian product of a ball
in the γ component (due to strong duality, similarly to
[22]) with an interval [−B,B] for the b component:

X =

{[

γ
b

]

∈ IRd × IR : ||γ||2 ≤ 1/
√
λ, |b| ≤ B

}

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 5

Algorithm 1 ASSET Algorithm

1: Input: T = {(t1, y1), . . . , (tm, ym)}, Ψ◦, λ, positive
integers N̄ and N with 0 < N̄ < N , and DX and
DG satisfying (22) and (24);

2: Set (γ0, b0)← (0, 0), j ← 1;
3: Set (γ̃, b̃)← (0, 0), η̃ = 0;
4: for j = 1, 2, . . . , N do
5: ηj ← DX

DG

√
j

6: Choose ξj ∈ {1, . . . ,m} independently at random.

7: vξj =

{

V T
ξj · for V as in (16)

yξjφ(tξj) for φ(·) as in (17)

8: dj ←
{

−1 if vξjγ
j + yξj b < 1

0 otherwise

9:

[

γj

bj

]

← ΠX

([

(1− ηjλ)γ
j−1 − ηjdjvξj

bj−1 − ηjdjyξj

])

10: if j ≥ N̄ then
11: {update averaged iterate}

[

γ̃

b̃

]

← η̃

η̃ + ηj

[

γ̃

b̃

]

+
ηj

η̃ + ηj

[

γj

bj

]

.

η̃ ← η̃ + ηj .

12: end if
13: end for
14: Define γ̃N̄,N := γ̃ and b̃N̄,N := b̃.

for sufficiently large B > 0, resulting DX =
√

1/λ+B2.
The solution of (21) is estimated not by the iterates xj

but rather by a weighted sum of the final few iterates.
Specifically, if we define N to be the total number of
iterates to be used and N̄ < N to be the point at which
we start averaging, the final reported solution estimate
would be

x̃N̄,N :=

∑N
t=N̄ ηtx

t

∑N
t=N̄ ηt

. (27)

These is no need to store all the iterates xt, t = N̄ , N̄ +
1, . . . , N in order to evaluate (27). Instead, a running
average can be maintained over the last N−N̄ iterations,
requiring the storage of only a single x.

The steplengths ηj require knowledge of the subgradi-
ent estimate variance DG (24). We use a small sample of
random variables ξ(l), l = 1, 2, . . . ,M , at the first iterate
(γ0, b0), and estimate D2

G as

E

[

∣

∣

∣

∣

∣

∣

∣

∣

G

([

γ0

b0

]

; ξ

)∣

∣

∣

∣

∣

∣

∣

∣

2

2

]

≈ 1

M2

M
∑

l=1

d2l (||vξ(l) ||22 + y2ξ(l)).

We summarize this framework in Algorithm 1 and re-
fer it as ASSET. The integer N̄ > 0 specifies the iterate at
which the algorithm starts averaging the iterates, which
can be set to 1 to average all iterates, to a predetermined
maximum iteration number to output the last iterate
without averaging, or to a number in between.

3.2 Convergence

The analysis of robust stochastic approximation in [15],
[16] provides theoretical support for the algorithm

above. Considering Algorithm 1 applied to the general
formulation (21), and denoting the algorithm’s output
x̃N̄,N , we have the following result.

Theorem 1: Given the output x̃N̄,N and optimal func-
tion value f(x∗), we have

E[f(x̃N̄,N)− f(x∗)] ≤ C(ρ)
DXDG√

N
(28)

where C(ρ) solely depends on the fraction ρ ∈ (0, 1) for
which N̄ = ⌈ρN⌉.

3.3 Strongly Convex Case

Suppose that we omit the intercept b from the linear for-
mulation (13). Then its objective function f(x) becomes
strongly convex for all of its variables. In this special case
we can apply different steplength ηj = 1/(λj) to achieve
faster convergence in theory. The algorithm remains the
same as Algorithm 1 except that averaging is no longer
needed and a faster convergence rate can be proved:
essentially a rate of 1/j rather than 1/

√
j (see [15] for a

general proof). The feasible set X is simplified as follows

X = {γ ∈ IRd : ||γ||2 ≤ 1/
√
λ},

and the update steps are changed accordingly to omit
the component b. The resulting algorithm, we refer it as
ASSET∗, is the same as Pegasos [22] and SGD [2], except
for our extension to nonlinear kernels.

Note that averaging like (27) may still be useful, as it
can be shown to improve the convergence rate by some
constant [18].

4 COMPUTATIONAL RESULTS

We based our implemented our algorithms on the open-
source Pegasos code1. We refer our algorithms with
kernel matrix approximation as ASSET and ASSET∗ (for
the versions that do and do not allow an intercept
term, resp.) and with feature mapping approximation
as ASSETon and ASSET∗

on. In the interests of making
direct comparisons with other codes, we do not include
intercept terms in our experiments, since some of the
other codes do not allow such terms to be used without
penalization.

We run all experiments on load-free 64-bit Linux
systems with 2.66 GHz processors and 8 GB memory.
Kernel cache size is set to 1 GB when applicable. All
experiments with randomness are repeated 50 times
unless otherwise specified.

Table 1 summarizes the six binary classification tasks
we use for the experiments2. The ADULT dataset is
randomly split into training/validation/test sets. In the
MNIST data set, we obtain a binary problem by classify-
ing the digits 0-4 versus 5-9. In the CCAT dataset from

1. Our code is available at http://pages.cs.wisc.edu/∼sklee/asset/.
Pegasos is from http://mloss.org/software/view/35/.

2. ADULT, MNIST, CCAT and COVTYPE datasets are downloaded from
the UCI Repository, http://archive.ics.uci.edu/ml/.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 6

TABLE 1
Datasets and Training Parameters.

Name m (train) valid/test n (density) 1

λm
, 1

2σ2

ADULT 32561 8140/8141 123 (11.2%) 1000, 0.001
MNIST 58100 5950/5950 784 (19.1%) 100, 0.01
CCAT 78127 11575/11574 47237 (1.6%) 10, 1.0
IJCNN 113352 14170/14169 22 (56.5%) 100, 1.0
COVTYPE 464809 58102/58101 54 (21.7%) 3.0, 1.0
MNIST-E 1000000 20000/20000 784 (25.6%) 100, 0.01

the RCV1 collection [13], we use the original test set
as the training set, and divide the original training set
into validation and test sets. IJCNN is constructed by a
random splitting of the IJCNN 2001 Challenge dataset3.
In COVTYPE, the binary problem is to classify type 1
against the other forest cover types. Finally, MNIST-E
is an extended set of MNIST, generated with elastic
deformation of the original digits4. Table 1 also indi-
cates the values of the regularization parameter λ and
Gaussian kernel parameter σ (18) selected by the SVM-
Light solver [8] to maximize the classification accuracy
on each validation set. (For MNIST-E we use the same
parameters as in MNIST.)

For the first five batch-mode tasks, we compare our
algorithms against four publicly available codes. Two
of these are the cutting-plane methods CPNY [11] and
CPSP [12] that are implemented in the version 3.0 of
of SVM-Perf. Both search for a solution as a linear
combination of approximate basis functions, where the
approximation is based on Nyström sampling (CPNY)
or on constructing optimal bases (CPSP). The other two
comparison codes are SVM-Light [8], which solves the
dual SVM formulation via a succession of small sub-
problems, and LASVM [1], which makes a single pass
over the data, selecting pairs of examples to optimize
with the SMO algorithm. The original SVM-Perf [10] and
OCAS [7] are not included in the comparison because
they cannot handle nonlinear kernels. For the final test
— an online test with the large data set MNIST-E — we
compare our online algorithms ASSETon and ASSET∗

on

to LASVM.
For our codes, the averaging parameter is set to N̄ =

m − 100 for all experiments, and the error values are
computed using the efficient approximate classification
schemes of Section 2.4.

4.1 Accuracy vs. approximation dimension

The first experiment investigates the effect of the dimen-
sion of the approximate kernel on classification accuracy
on the test set. We set the dimension parameter s in
Section 2.3 to values in the range [2, 1024], with the
eigenvalue threshold ǫd = 10−16. Note that s is an upper
bound on the actual dimension d of approximation for

ASSET(∗), but is equal to d in the case of ASSET
(∗)
on .

3. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
4. http://leon.bottou.org/papers/loosli-canu-bottou-2006/

Fig. 1. The effect of the approximation dimension d to the
test error. The x-axis shows the values of s in log scale
(base 2). For ASSETon, d = s and for the others d ≤ s.

1 2 3 4 5 6 7 8 9 10

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

log
2
(s)

T
es

t e
rr

or
 r

at
e

ASSET
ASSET

on

CPSP
CPNY
SVM−Light

(a) ADULT

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
2
(s)

T
es

t e
rr

or
 r

at
e

(b) MNIST

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
2
(s)

T
es

t e
rr

or
 r

at
e

(c) CCAT

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

log
2
(s)

T
es

t e
rr

or
 r

at
e

(d) IJCNN

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
2
(s)

T
es

t e
rr

or
 r

at
e

(e) COVTYPE

For the batch tasks, we ran our algorithms for 1000
epochs (1000m iterations) so that they converged to a
near-optimal value with small variation among different
randomization.

The CPSP and CPNY have a parameter similar to s
(as an upper bound of d); we compared by setting that
parameter to the same values as for s. We obtained the
baselines of batch tasks by running SVM-Light. SVM-
Light do not have dimension parameters but can be
expected to give the best achievable performance by the
kernel-approximate algorithms as s approaches m.

Figure 1 shows the results. Since ASSET and ASSET∗

yield very similar results in all experiments, we do
not plot ASSET∗. (For the same reason we show only
ASSETon for online settings.) We would expect the codes
to perform well when the underlying kernel is well
approximated by a low-dimensional surrogate. When σ
in (18) is very large, as in Figure 2(a) of ADULT dataset,
all codes achieve good classification performance for
small values of s. In other data sets, the chosen values
of σ are smaller and the intrinsic dimension of the
kernel is higher, so classification performance continues
to improve as s increases. In particular, it is known
that linear kernels work as well as nonlinear kernels
on the CCAT. If linear kernels are optimal for CCAT,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 7

TABLE 2
Training CPU time (s:seconds, h:hours) and test error in parentheses. Kernel approximation dimension is varied by

setting s = 512 and s = 1024 for ASSET, ASSET∗, CPSP and CPNY.

Subgradient Methods Cutting-plane Decomposition

s = 512 ASSET ASSET∗ CPSP CPNY LASVM SVM-Light
ADULT 22.5s (15.06±0.06%) 23.9s (15.07±0.06%) 3020.0s (15.17%) 8.2h (15.13%) 1011.4s (18.02%) 856.8s (15.13%)
MNIST 96.8s (4.03±0.05%) 100.9s (4.03±0.04%) 549.6s (2.72%) 348.0s (4.07%) 587.5s (1.40%) 1322.6s (1.24%)
CCAT 95.0s (8.23±0.08%) 99.2s (8.26±0.06%) 799.9s (5.24%) 62.0s (8.31%) 2616.0s (4.71%) 3422.6s (4.72%)
IJCNN 86.7s (1.08±0.02%) 89.1s (1.08±0.02%) 726.8s (0.84%) 319.5s (1.1%) 288.1s (0.76%) 1331.3s (0.73%)
COVTYPE 697.2s (18.19±0.06%) 585.7s (18.18±0.07%) 1.8h (17.73%) 1841.5s (18.24%) 38.3h (13.46%) 52.7h (13.82%)

s = 1024 ASSET ASSET∗ CPSP CPNY LASVM SVM-Light
ADULT 77.6s (15.10±0.05%) 83.2s (15.12±0.04%) 3398.5s (15.16%) 7.5h (15.17%) 1011.4s (18.02%) 856.8s (15.13%)
MNIST 274.9s (2.66±0.03%) 275.4s (2.67±0.02%) 1273.2s (2.03%) 515.4s (2.69%) 587.5s (1.40%) 1322.6s (1.24%)
CCAT 264.6s (7.09±0.05%) 278.4s (7.11±0.04%) 2949.9s (5.19%) 122.9s (7.15%) 2616.0s (4.71%) 3422.6s (4.72%)
IJCNN 307.1s (0.79±0.02%) 297.0s (0.79±0.01%) 1649.4s (0.78%) 598.0s (0.80%) 288.1s (0.76%) 1331.3s (0.73%)
COVTYPE 2259.4s (16.47±0.04%) 2063.9s (16.47±0.06%) 4.1h (16.61%) 3597.7s (16.52%) 38.3h (13.46%) 52.7h (13.82%)

the optimal Gaussian kernel may choose a very small
value of σ producing near-identity thus high-rank Gram
matrix. ASSETon seems to suffer from approximating
the kernel function rather than the kernel matrix; the
former is generally a more difficult problem. For a given
dimension, the overall performance of ASSETon is worse
than other methods, especially in the CCAT experiment.

CPSP generally requires lower dimension than the
other methods to achieve the same classification per-
formance. The power seems to come from the fact that
CPSP spends extra time to construct good basis func-
tions whereas the other methods depend on random
sampling. However, all approximate-kernel methods in-
cluding CPSP suffer considerably from the restriction in
dimension for the COVTYPE task.

4.2 Speed of achieving similar test error

In performing timing comparisons, we ran all codes
other than ours with their default stopping criteria. For
ASSET and ASSET∗, we checked the classification error
on the test sets ten times per epoch, terminating when
the error matched the performance of CPNY. (Since
this code uses a similar Nyström approximation of the
kernel, it is the one most directly comparable with
ours in terms of classification accuracy.) The test error
was measured using the iterate averaged over the 100
iterations immediately preceding each reporting point.

Results for the first five data sets are shown in Table 2
for the values s = 512 and s = 1024. (Note that LASVM
and SVM-Light do not depend on s and so their results
are the same in both tables.) The shortest time values
to achieve similar test accuracy are marked as bold,
showing that our methods are among the fastest in most
cases. The best classification errors among the approxi-
mate codes are obtained by CPSP but the runtimes are
considerably longer than for our methods. In fact, if we
compare the performance of ASSET with s = 1024 and
CPSP with s = 512, ASSET achieves similar test accuracy
to CPSP (except for CCAT) but is faster by a factor
between two and forty. CPNY requires an abnormally
long run time on the ADULT dataset; we surmise that the

code may be affected by numerical difficulties associated
with the highly ill conditioned kernel for this problem.

Interestingly, ASSET shows similar performance to
ASSET∗ despite the less impressive theoretical error
bound of the former. When the value of regularization
parameter λ is near zero, the objective function loses
strong convexity and thereby breaks the condition re-
quired for ASSET∗ to work. We observe similar slow-
down of Pegasos and SGD when λ approaches zero for
linear kernel SVMs.

4.3 Online performance on very large data set

We take the final data set MNIST-E to be an online learn-
ing problem and compare the performance of ASSETon

and ASSET∗
on to the online SVM code LASVM. (Other

algorithms such as CPSP, CPNY, and SVM-Light are
less suitable for comparison because they operate in
batch mode.) For a fair comparison, we fed the training
samples to the algorithms in the same order.

Figure 2 shows the progress on a single run of our
algorithms, with various approximation dimensions d
in the range [1024, 16384]. Vertical bars in the graphs
indicate the completion of training. ASSETon tends to
converge faster and shows smaller test error values than
ASSET∗

on, despite the theoretical slower convergence rate
of the former. With d = 16384, ASSETon and ASSET∗

on

required 7.2 hours to finish with a solution of 2.7% and
3.5% test error, respectively. LASVM produced a better
solution with only 0.2% test error, but it required 4.3
days of computation.

In Table 3, we represent the variability of solutions in
the single runs of ASSETon and ASSET∗

on. We sampled
ten test errors during the last 10000 iterations, evaluating
the error values after each batch of 1000 iterations using
the averaged solution over the 100 iterations immedi-
ately preceding each evaluation point. We also show the
average time for the evaluations, and the total training
time averaged over the single runs of ASSETon and
ASSET∗

on (these have negligible variations). The average
error and the deviation of ASSETon up to d = 8192 tend
to decrease as the dimension increases; one contributing

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2000 8

Fig. 2. Online progress of ASSETon and ASSET∗
on to their

completion (MNIST-E).

0 1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5

Time (h)

T
es

t e
rr

or

d=1024

0 1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5

Time (h)

T
es

t e
rr

or

d=4096

0 1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4
0.5

Time (h)

T
es

t e
rr

or

d=16384

TABLE 3
Test error statistics (mean and standard deviation) for the

last 10k iterations of online training (MNIST-E).

Dim. d ASSETon ASSET∗

on

Avg. Time (s)
Train Test

1024 11.5±0.56% 11.8±0.57% 1705 34
2048 7.2±0.47% 8.1±0.45% 3418 69
4096 4.8±0.33% 5.8±0.54% 6824 139
8192 3.6±0.30% 4.3±1.06% 13375 270

16384 3.0±0.63% 3.5±0.29% 26053 546

factor would be that the approximate feature mapping
approaches to the true function in exponentially increas-
ing probability with the dimension growth [19]. (This
phenomenon was not as evident for ASSET∗

on.) We be-
lieve that the variability of stochastic subgradients even-
tually increases with dimension, leading to an increased
variability in performance, as happens with d = 16384
for ASSETon. Finally ASSETon seems to produce more
accurate classifier than ASSET∗

on with the same level of
approximation.

The testing time depends on the controllable param-
eter d for our codes but it depends on the number of
support vectors in the computed solution for LASVM
(LASVM required 1504 seconds).

5 CONCLUSION

We have proposed a general framework for training
support vector machines based on stochastic subgradi-
ents. Our algorithms can operate in batch and in online
mode, and allows for the use of nonlinear kernels via
kernel approximation and reformulation of the primal
form. They do not require strong convexity. Our methods
find solutions of reasonable quality for large problems,
often in much shorter time than existing algorithms.
Since the approaches require only (weak) convexity of
the objective function, they can be extended easily to
regression, ranking, and other learning problems.

6 ACKNOWLEDGEMENTS

The authors acknowledge the support of NSF Grants
DMS-0914524 and DMS-0906818.

REFERENCES

[1] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel
classifiers with online and active learning. Journal of Machine
Learning Research, 6:1579–1619, September 2005.

[2] L. Bottou. SGD: Stochastic gradient descent, 2005. http://leon.
bottou.org/projects/sgd.

[3] O. Chapelle. Training a support vector machine in the primal.
Neural Computation, 19:1155–1178, 2007.

[4] P. Drineas and M. W. Mahoney. On the nystrom method for
approximating a gram matrix for improved kernel-based learning.
Journal of Machine Learning Research, 6:2153–2175, 2005.

[5] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using
second order information for training svm. Journal of Machine
Learning Research, 6:1889–1918, 2005.

[6] S. Fine and K. Scheinberg. Efficient svm training using low-rank
kernel representations. Journal of Machine Learning Research, 2:243–
164, 2001.

[7] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm
for support vector machines. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, pages 320–327, New
York, NY, USA, 2008. ACM.

[8] T. Joachims. Making large-scale support vector machine learning
practical. In B. Schölkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector Learning, chapter 11,
pages 169–184. MIT Press, Cambridge, MA, 1999.

[9] T. Joachims. Making large-scale SVM learning practical. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 11. MIT Press, 1999.

[10] T. Joachims. Training linear SVMs in linear time. In ACM SIGKDD
International Conference On Knowledge Discovery and Data Mining
(KDD), pages 217–226, 2006.

[11] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59, 2009.

[12] T. Joachims and C.-N. J. Yu. Sparse kernel svms via cutting-plane
training. Machine Learning, 76(2-3):179–193, 2009. Special Issue for
European Conference on Machine Learning (ECML).

[13] D. D. Lewis, Y. Yang, T. G. Rose, G. Dietterich, F. Li, and
F. Li. Rcv1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:361–397, 2004.

[14] A. Nedic and D. P. Bertsekas. Incremental subgradient methods
for nondifferentiable optimization. SIAM Journal on Optimization,
12:109–138, 2001.

[15] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[16] A. Nemirovski and D. B. Yudin. Problem complexity and method
efficiency in optimization. John Wiley, 1983.

[17] J. C. Platt. Fast training of support vector machines using
sequential minimal optimization. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning, chapter 12, pages 185–208. MIT Press, Cambridge, MA,
1999.

[18] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approx-
imation by averaging. SIAM Journal on Control and Optimization,
30(4):838–855, 1992.

[19] A. Rahimi and B. Recht. Random features for large-scale kernel
machines. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 1177–
1184. MIT Press, Cambridge, MA, 2008.

[20] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
2002.

[21] T. Serafini, G. Zanghirati, and L. Zanni. Gradient projection
methods for large quadratic programs and applications in training
support vector machines. Optimization Methods and Software,
20:353–378, 2005.

[22] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal
estimated sub-gradient solver for svm. In ICML ’07, pages 807–
814, New York, NY, USA, 2007. ACM.

[23] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In ICML ’03, pages 928–936, 2003.

