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Computational Methods
for Sparse Solution of Linear Inverse Problems

Joel A. Tropp, Member, IEEE and Stephen J. Wright

Abstract—The goal of the sparse approximation problem is
to approximate a target signal using a linear combination of a
few elementary signals drawn from a fixed collection. This paper
surveys the major practical algorithms for sparse approximation.
Specific attention is paid to computational issues, to the circum-
stances in which individual methods tend to perform well, and to
the theoretical guarantees available. Many fundamental questions
in electrical engineering, statistics, and applied mathematics
can be posed as sparse approximation problems, making these
algorithms versatile and relevant to a plethora of applications.

Index Terms—Sparse Approximation, Compressed Sensing,
Matching Pursuit, Convex Optimization

I. INTRODUCTION

INEAR inverse problems arise throughout engineering

and the mathematical sciences. In most applications,
these problems are ill-conditioned or underdetermined, so one
must apply additional regularizing constraints in order to ob-
tain interesting or useful solutions. Over the last two decades,
sparsity constraints have emerged as a fundamental type of
regularizer. This approach seeks an approximate solution to
a linear system while requiring that the unknown has few
nonzero entries relative to its dimension:

Find sparse  such that Pz =~ u,

where w is a target signal and @ is a known matrix.
Generically, this formulation is referred to as sparse approx-
imation [1]. These problems arise in many areas, including
statistics, signal processing, machine learning, coding theory,
and approximation theory. Compressive sampling refers to a
specific type of sparse approximation problem first studied
in [2], [3].

Tykhonov regularization, the classical device for solving
linear inverse problems, controls the energy (i.e., the Euclidean
norm) of the unknown vector. This approach leads to a linear
least-squares problem whose solution is generally nonsparse.
To obtain sparse solutions, we must develop more sophisti-
cated algorithms and—often—commit more computational re-
sources. The effort pays off. Recent research has demonstrated
that, in many cases of interest, there are algorithms that can
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find good solutions to large sparse approximation problems in
reasonable time.

In this paper, we give an overview of algorithms for sparse
approximation, describing their computational requirements
and the relationships between them. We also discuss the
types of problems for which each method is most effective
in practice. Finally, we sketch the theoretical results that
justify the application of these algorithms. Although low-
rank regularization also falls within the sparse approximation
framework, the algorithms we describe do not apply directly
to this class of problems.

Subsection I-A describes “ideal” formulations of sparse
approximation problems and some common features of algo-
rithms that attempt to solve these problems. Section II provides
additional detail about greedy pursuit methods. Section III
presents formulations based on convex programming and
algorithms for solving these optimization problems.

A. Formulations

Suppose that ® € R™* is a real matrix whose columns
have unit Euclidean norm: ||¢;|ls = 1 for j = 1,2,...,N.
(The normalization does not compromise generality.) This
matrix is often referred to as a dictionary. The columns of the
matrix are “entries” in the dictionary, and a column submatrix
is called a subdictionary.

The counting function || - ||o : RY — R returns the number
of nonzero components in its argument. We say that a vector =
is s-sparse when ||x||o < s. When u = ®x, we refer to x as
a representation of the signal u with respect to the dictionary.

In practice, signals tend to be compressible, rather than
sparse. Mathematically, a compressible signal has a repre-
sentation whose entries decay rapidly when sorted in order
of decreasing magnitude. Compressible signals are well ap-
proximated by sparse signals, so the sparse approximation
framework applies to this class. In practice, it is usually
more challenging to identify approximate representations of
compressible signals than of sparse signals.

The most basic problem we consider is to produce a
maximally sparse representation of an observed signal wu:

min |||o subject to Pz = u. (1)

One natural variation is to relax the equality constraint to allow
some error tolerance € > 0, in case the observed signal is
contaminated with noise:

min ||x||o subject to || Px — ulls <e. (2)
T
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It is most common to measure the prediction—observation
discrepancy with the Euclidean norm, but other loss functions
may also be appropriate.

The elements of (2) can be combined in several ways to
obtain related problems. For example, we can seek the minimal
error possible at a given level of sparsity s > 1:

min | ®x — ulls  subject to ||x|jo < s. 3)
T

We can also use a parameter A > 0 to balance the twin
objectives of minimizing both error and sparsity:

o1
min o [®2 — ul3 + Ao )

If there are no restrictions on the dictionary ® and the
signal u, then sparse approximation is at least as hard as
a general constraint satisfaction problem. Indeed, for fixed
constants C, K > 1, it is NP-hard to produce a (C's)-sparse
approximation whose error lies within a factor K of the
minimal s-term approximation error [4, Sec. 0.8.2].

Nevertheless, over the past decade, researchers have identi-
fied many interesting classes of sparse approximation prob-
lems that submit to computationally tractable algorithms.
These striking results help to explain why sparse approxima-
tion has been such an important and popular topic of research
in recent years.

In practice, sparse approximation algorithms tend to be
slow unless the dictionary ® admits a fast matrix—vector
multiply. Let us mention two classes of sparse approximation
problems where this property holds. First, many naturally
occurring signals are compressible with respect to dictionaries
constructed using principles of harmonic analysis [5] (e.g.,
wavelet coefficients of natural images). This type of structured
dictionary often comes with a fast transformation algorithm.
Second, in compressive sampling, we typically view ® as
the product of a random observation matrix and a fixed
orthogonal matrix that determines a basis in which the signal
is sparse. Again, fast multiplication is possible when both the
observation matrix and sparsity basis are structured.

Recently, there have been substantial efforts to incorporate
more sophisticated signal constraints into sparsity models. In
particular, Baraniuk et al. have studied model-based compress-
ive sampling algorithms, which use additional information
such as the tree structure of wavelet coefficients to guide
reconstruction of signals [6].

B. Major Algorithmic Approaches

There are at least five major classes of computational

techniques for solving sparse approximation problems:

1) Greedy pursuit. Iteratively refine a sparse solution by
successively identifying one or more components that
yield the greatest improvement in quality [7].

2) Convex relaxation. Replace the combinatorial problem
with a convex optimization problem. Solve the convex
program with algorithms that exploit the problem struc-
ture [1].

3) Bayesian framework. Assume a prior distribution for
the unknown coefficients that favors sparsity. Develop

a maximum a posteriori estimator that incorporates the
observation. Identify a region of significant posterior
mass [8] or average over most-probable models [9].

4) Nonconvex optimization. Relax the ¢, problem to a
related nonconvex problem and attempt to identify a
stationary point [10].

5) Brute force. Search through all possible support sets,
possibly using cutting-plane methods to reduce the num-
ber of possibilities [11, Sec. 3.7-3.8].

This article focuses on greedy pursuits and convex optimiza-
tion. These two approaches are computationally practical and
lead to provably correct solutions under well-defined condi-
tions. Bayesian methods and nonconvex optimization are based
on sound principles, but they do not currently offer theoretical
guarantees. Brute force is, of course, algorithmically correct,
but it remains plausible only for small-scale problems.

Recently, we have also seen interest in heuristic algorithms
based on belief-propagation and message-passing techniques
developed in the graphical models and coding theory commu-
nities [12], [13].

C. Verifying Correctness

Researchers have identified several tools that can be used
to prove that sparse approximation algorithms produce optimal
solutions to sparse approximation problems. These tools also
provide insight into the efficiency of computational algorithms,
so the theoretical background merits a summary.

The uniqueness of sparse representations is equivalent to an
algebraic condition on submatrices of ®. Suppose a signal u
has two different s-sparse representations 1 and xs. Clearly,

u=%®r =d®xr, — P(x;—x2)=0.

In words, ® maps a nontrivial (2s)-sparse signal to zero. It
follows that each s-sparse representation is unique if and only
if each (2s)-column submatrix of ® is injective.

To ensure that sparse approximation is computationally
tractable, we need stronger assumptions on ®. Not only should
sparse signals be uniquely determined, but they should be sta-
bly determined. Consider a signal perturbation Au and an s-
sparse coefficient perturbation Awx, related by Au = ®(Ax).
Stability requires that ||Ax||> and ||Awu||2 are comparable.

This property is commonly imposed by fiat. We say that
the matrix ® satisfies the restricted isometry property (RIP)
of order K with constant § = §x < 1 if

lzllo < K = (1-d)|zl3 < [[@xll3 < (1+3)[3. )

For sparse approximation, we hope (5) holds for large K.
This concept was introduced in the important paper [14]; some
refinements appear in [15].

The RIP can be verified using the coherence statistic of the
matrix ®, which is defined as

uzg;ggl(%wpk)\-

An elementary argument [16] via Gershgorin’s circle theorem
establishes that the RIP constant g < pu(K — 1). In signal
processing applications, it is common that i ~ m~'/2, so we
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have nontrivial RIP bounds for K ~ \/m. Unfortunately, no
known deterministic matrix yields a substantially better RIP.
Early references for coherence include [7], [17].

Certain random matrices, however, satisfy much stronger
RIP bounds with high probability. For Gaussian and Bernoulli
matrices, RIP holds when K =~ m/log(N/m). For more
structured matrices, such as a random section of a discrete
Fourier transform, RIP often holds when K =~ m/log?(N) for
a small integer p. This fact explains the benefit of randomness
in compressive sampling. Establishing the RIP for a random
matrix requires techniques more sophisticated than the simple
coherence arguments; see [14] for discussion.

Recently, researchers have observed that sparse matrices
may satisfy a related property, called RIP-1, even when they
do not satisfy (5). RIP-1 can also be used to analyze sparse
approximation algorithms. Details are given in [18].

D. Cross-Cutting Issues

Structural properties of the matrix ® have a substantial
impact on the implementation of sparse approximation algo-
rithms. In most applications of interest, the large size or lack of
sparseness in ® makes it impossible to store this matrix (or any
substantial submatrix) explicitly in computer memory. Often,
however, matrix—vector products involving ® and ®* can be
performed efficiently. For example, the cost of these products
is O(N log N) when @ is constructed from Fourier or wavelet
bases. For algorithms that solve least-squares problems, a fast
multiply is particularly important because it allows us to use
iterative methods such as LSQR or conjugate gradient (CG).
In fact, all the algorithms discussed below can be implemented
in a way that requires access to ® only through matrix—vector
products.

Spectral properties of subdictionaries, such as those en-
capsulated in (5), have additional implications for the com-
putational cost of sparse approximation algorithms. Some
methods exhibit fast linear asymptotic convergence because
the RIP ensures that the subdictionaries encountered during
execution have superb conditioning. Other approaches (for
example, interior-point methods) are less sensitive to spectral
properties, so they become more competitive when the RIP is
less pronounced or the target signal is not particularly sparse.

It is worth mentioning here that most algorithmic papers
in sparse reconstruction present computational results only on
synthetic test problems. Test problem collections representa-
tive of sparse approximation problems encountered in practice
are crucial to guiding further development of algorithms. A
significant effort in this direction is Sparco [19], a Matlab
environment for interfacing algorithms and constructing test
problems that also includes a variety of problems gathered
from the literature.

II. PURSUIT METHODS

A pursuit method for sparse approximation is a greedy
approach that iteratively refines the current estimate for the
coefficient vector by modifying one or several coefficients
chosen to yield a substantial improvement in approximating
the signal. We begin by describing the simplest effective

Fig. 1. Orthogonal Matching Pursuit (OMP)

o Input. A signal u € R™, a matrix & € R™*¥
o Output. A sparse coefficient vector © € RY

1) Initialize. Set the index set Qg = @, the residual
9 = U, and put the counter k£ = 1.

2) Identify. Find a column nj of ® that is most strongly
correlated with the residual:

ng € argmax, [(rp_1,®n)| and

Q. =Q_1 U {nk}

3) Estimate. Find the best coefficients for approximat-
ing the signal with the columns chosen so far.

x, = argminy ||lu — Po, y||2.
4) Iterate. Update the residual:
T =U — q’gkwk.

Increment k. Repeat (2)—(4) until stopping criterion
holds.

5) Output. Return the vector x with components
z(n) = zx(n) for n € Q) and x(n) = 0 otherwise.

greedy algorithm, orthogonal matching pursuit (OMP), and
summarizing its theoretical guarantees. Afterward, we outline
a more sophisticated class of modern pursuit techniques that
has shown promise for compressive sampling problems. We
briefly discuss iterative thresholding methods, and conclude
with some general comments about the role of greedy algo-
rithms in sparse approximation.

A. Orthogonal Matching Pursuit

Orthogonal matching pursuit is one of the earliest methods
for sparse approximation. Basic references for this method
in the signal processing literature are [20], [21], but the
idea can be traced to 1950s work on variable selection in
regression [11].

Figure 1 contains a mathematical description of OMP. The
symbol @ denotes the subdictionary indexed by a subset €2
of {1,2,...,N}L

In a typical implementation of OMP, the identification step
is the most expensive part of the computation. The most
direct approach computes the maximum inner product via the
matrix—vector multiplication ®*rj_1, which costs O(mN) for
an unstructured dense matrix. Some authors have proposed
using nearest-neighbor data structures to perform the identi-
fication query more efficiently [22]. In certain applications,
such as projection pursuit regression, the “columns” of ® are
indexed by a continuous parameter, and identification can be
posed as a low-dimensional optimization problem [23].

The estimation step requires the solution of a least-squares
problem. The most common technique is to maintain a QR
factorization of ®g, , which has a marginal cost of O(mk) in
the kth iteration. The new residual rj is a by-product of the
least-squares problem, so it requires no extra computation.
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There are several natural stopping criteria.

o Halt after a fixed number of iterations: k£ = s.

« Halt when the residual has small magnitude: ||rg|2 < e.

o Halt when no column explains a significant amount of
energy in the residual: [|®*r;_1]|. < €.

These criteria can all be implemented at minimal cost.

Many related greedy pursuit algorithms have been proposed
in the literature; we cannot do them all justice here. Some
particularly noteworthy variants include matching pursuit [7],
the relaxed greedy algorithm [24], and the ¢ -penalized greedy
algorithm [25].

B. Guarantees for Simple Pursuits

OMP produces the residual r,,, = 0 after m steps (provided
that the dictionary can represent the signal u exactly), but this
representation hardly qualifies as sparse. Classical analyses of
greedy pursuit focus instead on the rate of convergence.

Greedy pursuits often converge linearly with a rate that
depends on how well the dictionary covers the sphere [7].
For example, OMP offers the estimate

Irell2 < (1= 0%)"2 |lull2,
0 = inf |y ,=1 sup,, [(v, pn)|.

where

(See [21, Sec. 3] for details.) Unfortunately, the covering
parameter o is typically O(m_l/ 2) unless the number N of
atoms is huge, so this estimate has limited interest.

A second type of result demonstrates that the rate of
convergence depends on how well the dictionary expresses the
signal of interest [24, Eqn. (1.9)]. For example, OMP offers
the estimate

[rill2 < k7Y% |ule, where

|ulle = inf{|z[ : w= @z}

The dictionary norm ||-||& is typically small when its argument
has a good sparse approximation. For further improvements on
this estimate, see [26]. This bound is usually superior to the
exponential rate estimate above, but it can be disappointing
for signals with excellent sparse approximations.

Subsequent work established that greedy pursuit produces
near-optimal sparse approximations with respect to incoherent
dictionaries [22], [27]. For example, if 3uk < 1, then

[7xll2 < V1 46k [lu — a2,

where a} denotes the best £ approximation of w as a linear
combination of k£ columns from ®. See [28], [29], [30] for
refinements.

Finally, when ® is sufficiently random, OMP provably
recovers s-sparse signals when s < m/(2log N) [31], [32].

C. Contemporary Pursuit Methods

For many applications, OMP does not offer adequate per-
formance, so researchers have developed more sophisticated
pursuit methods that work better in practice and yield essen-
tially optimal theoretical guarantees. These techniques depend
on several enhancements to the basic greedy framework:

Fig. 2. Compressive Sampling Matching Pursuit (CoSaMP)

o Input. A signal u € R™, a matrix ® € R™* ¥ target
sparsity s, tuning parameter c.
o Output. An s-sparse coefficient vector & € RY

1) Initialize. Set the initial coefficient vector &y = 0
and the residual 7o = u. Let k = 1.

2) Identify. Find as columns of & that are most
strongly correlated with the residual:

) € argmin|pj<as ZneT [(Pe—1, Pn)l-
3) Merge. Put the old and new columns into one set:
T = supp(wg—1) U

4) Estimate. Find the best coefficients for approximat-
ing the residual with these columns:

yr = argminy [|rp—1 — 27y
5) Prune. Retain the s largest coefficients:
Tp = [yl
6) Iterate. Update the residual:
r, =u— Pxy.

Repeat (2)—(5) until stopping criterion holds.
7) Output. Return = = xy,.

1) selecting multiple columns per iteration;

2) pruning the set of active columns at each step;

3) solving the least-squares problems iteratively; and
4) theoretical analysis using the RIP bound (5).

Although modern pursuit methods were developed specifically
for compressive sampling problems, they also offer attractive
guarantees for sparse approximation.

There are many early algorithms that incorporate some
of these features. For example, StOMP [33] selects multiple
columns at each step. The ROMP algorithm [34], [35] was
the first greedy technique whose analysis was supported by a
RIP bound (5). For historical details, we refer the reader to
the discussion in [36, Sec. 7].

CoSaMP [36] was the first algorithm to assemble these ideas
to obtain essentially optimal performance guarantees. Dai
and Milenkovic describe a similar algorithm, called Subspace
Pursuit, with equivalent guarantees [37]. Other natural variants
are described in [38, App. A.2]. Because of space constraints,
we focus on the CoSaMP approach.

Figure 2 describes the basic CoSaMP procedure. The nota-
tion [x], denotes the restriction of a vector x to the r com-
ponents largest in magnitude (ties broken lexicographically),
while supp(x) denotes the support of the vector x, i.e., the
set of nonzero components. The natural value for the tuning
parameter is o = 1, but empirical refinement may be valuable
in applications [39].

Both the practical performance and theoretical analysis of
CoSaMP require the dictionary ® to satisfy the RIP (5) of



PROCEEDINGS OF THE IEEE. SPECIAL ISSUE ON APPLICATIONS OF SPARSE REPRESENTATION AND COMPRESSIVE SENSING, VOL. XX, NO. YY, MONTH 20095

order 2s with constant o5 < 1. Of course, these methods can
be applied without the RIP, but the behavior is unpredictable.
A heuristic for identifying the maximum sparsity level s is to
require that s < m/(2log(1 + N/s)).

Under the RIP hypothesis, each iteration of CoSaMP re-
duces the approximation error by a constant factor until it
approaches its minimal value. To be specific, suppose that the
signal u satisfies

u=®x" t+e (6)

for unknown coefficient vector £* and noise term e. If we run
the algorithm for a sufficient number of iterations, the output
x satisfies

lz* — @l < Cs™2 & — [2"]s/2]1 + Cllell2, (@)

where C' is a constant. The form of this error bound is
optimal [40].

Stopping criteria are tailored to the signals of interest.
For example, when the coefficient vector =* is compressible,
the algorithm requires only O(log N) iterations. Under the
RIP hypothesis, each iteration requires a constant number
of multiplications with ® and ®* to solve the least-squares
problem. Thus, the total running time is O(N log” N) for a
structured dictionary and a compressible signal.

In practice, CoSaMP is faster and more effective than
OMP for compressive sampling problems, except perhaps in
the ultrasparse regime where the number of nonzeros in the
representation is very small. CoSaMP is faster but usually less
effective than algorithms based on convex programming.

D. Iterative Thresholding

Modern pursuit methods are closely related to iterative
thresholding algorithms, which have been studied extensively
over the last decade. (See [39] for a current bibliography.) Sec-
tion III-D describes additional connections with optimization-
based approaches.

Among thresholding approaches, iterative hard thresholding
(IHT) is the simplest. It seeks an s-sparse representation x,
of a signal w via the iteration

:E():O;
T = u — Pxy;

Tpr1 = [ + q’*"'k]s§ k>0.

Blumensath and Davies [41] have established that IHT admits
an error guarantee of the form (7) under a RIP hypothesis
of the form o, < 1. For related results on IHT, see [42].
Garg and Khandekar [43] describe a similar method, gradient
descent with sparsification, and present an elegant analysis,
which is further simplified in [44].

There is empirical evidence that thresholding is reason-
ably effective for solving sparse approximation problems in
practice; see, e.g., [45]. On the other hand, some simulations
indicate that simple thresholding techniques behave poorly in
the presence of noise [41, Sec. 8].

Very recently, Donoho and Maliki have proposed a more
elaborate method, called two-stage thresholding (TST) [39].
They describe this approach as a hybrid of CoSaMP and

thresholding, modified with extra tuning parameters. Their
work includes extensive simulations meant to identify optimal
parameter settings for TST. By construction, these optimally
tuned algorithms dominate related approaches with fewer
parameters. The discussion in [39] focuses on perfectly sparse,
random signals, so the applicability of the approach to signals
that are compressible, noisy, or deterministic is unclear.

E. Commentary

Greedy pursuit methods have often been considered naive,
in part because there are contrived examples where the ap-
proach fails spectacularly; see [1, Sec. 2.3.2]. However, recent
research has clarified that greedy pursuits succeed empirically
and theoretically in many situations where convex relaxation
works. In fact, the boundary between greedy methods and
convex relaxation methods is somewhat blurry. The greedy
selection technique is closely related to dual coordinate-ascent
algorithms, while certain methods for convex relaxation, such
as LARS [46] and homotopy [47], use a type of greedy
selection at each iteration. We can make certain general ob-
servations, however. Greedy pursuits, thresholding, and related
methods (such as homotopy) can be quite fast, especially in
the ultrasparse regime. Convex relaxation algorithms are more
effective at solving sparse approximation problems in a wider
variety of settings, such as those in which the signal is not
very sparse and heavy observational noise is present.

Greedy techniques have several additional advantages that
are important to recognize. First, when the dictionary contains
a continuum of elements (as in projection pursuit regression),
convex relaxation may lead to an infinite-dimensional primal
problem, while the greedy approach reduces sparse approxi-
mation to a sequence of simple one-dimensional optimization
problems. Second, greedy techniques can incorporate con-
straints that do not fit naturally into convex programming
formulations. For example, the data stream community has
proposed efficient greedy algorithms for computing near-
optimal histograms and wavelet-packet approximations from
compressive samples [4]. More recently, it has been shown
that CoSaMP can be modified to enforce tree-like constraints
on wavelet coefficients. Extensions to simultaneous sparse
approximation problems have also been developed [6]. This
is an exciting and important line of work.

At this point, it is not fully clear what role greedy pursuit
algorithms will ultimately play in practice. Nevertheless, this
strand of research has led to new tools and insights for
analyzing other types of algorithms for sparse approxima-
tion, including the iterative thresholding and model-based
approaches above.

III. OPTIMIZATION

Another fundamental approach to sparse approximation
replaces the combinatorial ¢y function in the mathematical
programs from Subsection I-A with the ¢; norm, yielding
convex optimization problems that admit tractable algorithms.
In a concrete sense [48], the ¢; norm is the closest convex
function to the ¢y function, so this “relaxation” is quite natural.
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The convex form of the equality-constrained problem (1) is
min ||z||; subject to Px = u, (8)
x
while the mixed formulation (4) becomes
.1
min o |2 — ul + 7l ©)

Here, 7 > 0 is a regularization parameter whose value governs
the sparsity of the solution: large values typically produce
sparser results. It may be difficult to select an appropriate
value for 7 in advance, since it controls the sparsity indirectly.
As a consequence, we often need to solve (9) repeatedly for
different choices of this parameter, or to trace systematically
the path of solutions as 7 decreases toward zero. When
7 > ||®*ul|0, the solution of (9) is = 0.

Another variant is the LASSO formulation [49], which first
arose in the context of variable selection:

min || ®x — u||3 subject to ||z||; < 3. (10)
xr

The LASSO is equivalent to (9) in the sense the path of

solutions to (10) parameterized by positive [ matches the

solution path for (9) as 7 varies. Finally, we note another

common formulation

(1)

min ||z||; subject to ||Pz —ul2<ce
X

that explicitly parameterizes the error norm.

A. Guarantees

It has been demonstrated that convex relaxation methods
produce optimal or near-optimal solutions to sparse approxi-
mation problems in a variety of settings.

The earliest results [17], [16], [27] establish that the
equality-constrained problem (8) correctly recovers all s-
sparse signals from an incoherent dictionary provided that
2ps < 1. In the best case, this bound applies at the sparsity
level s =~ /m. Subsequent work [50], [51], [29] showed that
the convex programs (9) and (11) can identify noisy sparse
signals in a similar parameter regime.

The results described above are sharp for deterministic
signals, but they can be extended significantly for random
signals that are sparse with respect to an incoherent dictio-
nary. The paper [52] proves that that the equality-constrained
problem (8) can identify random signals, even when the
sparsity level s is approximately m/log m. Most recently, the
paper [53] observed that ideas from [51], [54] imply that the
convex relaxation (9) can identify noisy, random sparse signals
in a similar parameter regime.

Results from [14], [55] demonstrate that convex relaxation
succeeds well in the presence of the RIP. Suppose that signal
u and unknown coefficient vector * are related as in (6) and
that the dictionary ® has RIP constant Jo5 < 1. Then the
solution x to (11) verifies

lz — a*]l2 < Cs™ 12 a" — [&"]s]lL + Ck,

for some constant C, provided that ¢ > |le||2. Compare this
bound with the error estimate (7) for CoSaMP and IHT.

An alternative approach for analyzing convex relaxation
algorithms relies on geometric properties of the kernel of the
dictionary [56], [57], [58], [40]. Another geometric method,
based on random projections of standard polytopes, is studied
in [59], [60].

B. Active Set / Pivoting

Pivoting algorithms explicitly trace the path of solutions as
the scalar parameter in (10) ranges across an interval. These
methods exploit the piecewise-linearity of the solution as a
function of 3, a consequence of the fact that the optimality
(KKT) conditions can be stated as a linear complementarity
problem. By referring to the KKT system, we can quickly
identify the next “breakpoint” on the solution path—the near-
est value of § at which the derivative of the piecewise-linear
function changes.

The homotopy method of [47] follows this approach. It
starts with 3 = 0, where the solution of (10) is @ = O,
and it progressively locates the next largest value of 3 where
a component of x switches from a zero to a nonzero, or
vice versa. At each step, the method updates or downdates
a QR factorization of the submatrix of ® that corresponds
to the nonzero components of x. A similar method [46] is
implemented as SolveLasso in the SparseLab toolbox!.
Related approaches can be developed for the formulation (9).

If we limit our attention to values of § for which x
has few nonzeros, the active-set/pivoting approach is effi-
cient. The homotopy method requires about 2s matrix—vector
multiplications by ® or ®*, to identify s nonzeros in =z,
together with O(ms?) operations for updating the factorization
and performing other linear algebra operations. This cost is
comparable with OMP.

OMP and homotopy are quite similar in that the solution
is altered by systematically adding nonzero components to &
and updating the solution of a reduced linear least-squares
problem. In each case, the criterion for selecting components
involves the inner products between inactive columns of ® and
the residual u — ®x. One notable difference is that homotopy
occasionally allows for nonzero components of x to return to
zero status. See [46], [61] for other comparisons.

C. Interior-Point Methods

Interior-point methods were among the first approaches
developed for solving sparse approximation problems by
convex optimization. The early algorithms [1], [62] apply
a primal-dual interior-point framework where the innermost
subproblems are formulated as linear least-squares problems
that can be solved with iterative methods, thus allowing these
methods to take advantage of fast matrix—vector multiplica-
tions involving ® and ®*. An implementation is available as
pdco and SolveBP in the SparselLab toolbox.

Other interior-point methods have been proposed expressly
for compressive sampling problems. The paper [63] describes
a primal log-barrier approach for a quadratic programming

Uhttp://sparselab.stanford.edu
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reformulation of (9):
1
min §H'1>:c —ul|2+ 7172 subjectto —z <z < z.
T,z

The technique relies on a specialized preconditioner that al-
lows the internal Newton iterations to be completed efficiently
with CG. The method” is implemented as the code 11_1s.
The ¢;-magic package? [64] contains a primal log-barrier code
for the second-order cone formulation (11), which includes the
option of solving the innermost linear system with CG.

In general, interior-point methods are not competitive with
the gradient methods of Subsection III-D on problems with
very sparse solutions. On the other hand, their performance
is insensitive to the sparsity of the solution or the value of
the regularization parameter. Interior-point methods can be
robust in the sense that there are not many cases of very slow
performance or outright failure, which sometimes occurs with
other approaches.

D. Gradient Methods

Gradient descent methods, also known as first-order meth-
ods, are iterative algorithms for solving (9) in which the major
operation at each iteration is to form the gradient of the least-
squares term at the current iterate, viz., ®*(®x) — u). Many
of these methods compute the next iterate . ; using the rules

x) = argmin (z — z;)* ®* (Px), — )

1
+5anllz —aelz+ izl (20)
Tpy1 = T + fyk(ac; —xp). (12b)

for some choice of scalar parameters o, and y,. Alternatively,
we can write the subproblem (12a) as

2

+ .
X, = argmin —
k g 2 92

2 (o0 o (@0 w)

A

2
+ |zl (13)
Ak
Algorithms that compute steps of this type are known by
such labels as operator-splitting [65], iterative splitting and
thresholding (IST) [66], fixed-point iteration [67], and sparse
reconstruction via separable approximation (SpaRSA) [68].
Figure 3 shows the framework for this class of methods.
Standard convergence results for these methods, e.g., [65,
Theorem 3.4], require that infy oy > ||®*®||2/2, a tight
restriction that leads to slow convergence in practice. The more
practical variants described in [68] admit smaller values of
oy, provided that a sufficient decrease in the objective in (9)
occurs over a span of successive iterations. Some variants use
Barzilai-Borwein formulae that select values of o, lying in the
spectrum of ®*®. When :c',: fails the acceptance test in Step
2, the parameter oy, is increased (repeatedly, as necessary) by
a constant factor. Step lengths v, = 1 are used in [67] and
[68]. The iterated hard shrinkage method of [69] sets o =0

2
3

www.stanford.edu/~boyd/11_ls/
www.l1-magic.org

Fig. 3. Gradient Descent Framework

o Input. A signal u € R™, a matrix & € R™*YV,
regularization parameter 7 > 0, initial estimate xg
of the representation vector.

o Output. Coefficient vector x € RV

1) Initialize. Set £ = 1.

2) Iterate. Choose oy, > 0 and obtain wZ‘ from (12a).
If an acceptance test on :cg is not passed, increase
ay by some factor and repeat.

3) Line Search. Choose v, € (0,1] and obtain @y,
from (12b).

4) Test. If stopping criterion holds, terminate with =

Ty41. Otherwise, set k < k + 1 and go to (2).

in (12) and chooses ~; to do a conditional minimization along
the search direction.

Related approaches include TwIST [70], a variant of IST
that is significantly faster in practice, and which deviates
from the framework of Figure 3 in that the previous iterate
x,—1 also enters into the step calculation (in the manner of
successive over-relaxation approaches for linear equations).
GPSR [71] is simply a gradient-projection algorithm for the
convex quadratic program obtained by splitting @ into positive
and negative parts.

The approaches above tend to work well on sparse signals
when the dictionary @ satisfies the RIP. Often, the nonzero
components of x are identified quickly, after which the method
reduces essentially to an iterative method for the reduced linear
least-squares problem in these components. Because of the
RIP, the active submatrix is well conditioned, so these final
iterates converge quickly. In fact, these steps are quite similar
to the estimation step of CoSaMP.

These methods benefit from warm starting, that is, the work
required to identify a solution can be reduced dramatically
when the initial estimate o in Step 1 is close to the solution.
This property can be used to ameliorate the often poor
performance of these methods on problems for which (9) is not
particularly sparse or the regularization parameter 7 is small.
Continuation strategies have been proposed for such cases, in
which we solve (9) for a decreasing sequence of values of 7,
using the approximate solution for each value as the starting
point for the next subproblem. Continuation can be viewed as
a coarse-grained, approximate variant of the pivoting strategies
of Subsection III-B, which track individual changes in the
active components of x explicitly. Some continuation methods
are described in [67], [68]. Though adaptive strategies for
choosing the decreasing sequence of 7 values have been
proposed, the design of a robust, practical, and theoretically
effective continuation algorithm remains an interesting open
question.

E. Extensions of Gradient Methods

Second-order information can be used to enhance gradient
projection approaches by taking approximate reduced Newton
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steps in the subset of components of x that appears to be
nonzero. In some approaches [71], [68], this enhancement
is made only after the first-order algorithm is terminated
as a means of removing the bias in the formulation (9)
introduced by the regularization term. Other methods [72]
apply this technique at intermediate steps of the algorithm.
(A similar approach was proposed for the related problem of
¢1-regularized logistic regression in [73].) Iterative methods
such as conjugate gradient can be used to find approximate
solutions to the reduced linear least-squares problems. These
subproblems are, of course, closely related to the ones that
arise in the greedy pursuit algorithms of Section II.

The SPG method of [74, Section 4] applies a different type
of gradient projection to the formulation (10). This approach
takes steps along the negative gradient of the least-squares ob-
jective in (10), with steplength chosen by a Barzilai-Borwein
formula (with backtracking to enforce sufficient decrease over
a reference function value), and projects the resulting vector
onto the constraint set |||y < (. Since the ultimate goal
in [74] is to solve (11) for a given value of ¢, the approach
above is embedded into a scalar equation solver that identifies
the value of 3 for which the solution of (10) coincides with
the solution of (11).

An important recent line of work has involved applying
optimal gradient methods for convex minimization [75], [76],
[77] to the formulations (9) and (11). These methods have
many variants, but they share the goal of finding an approx-
imate solution that is as close as possible to the optimal
set (as measured by norm-distance or by objective value)
in a given budget of iterations. (By contrast, most iterative
methods for optimization aim to make significant progress
during each individual iteration.) Optimal gradient methods
typically generate several concurrent sequences of iterates, and
they have complex steplength rules that depend on some prior
knowledge, such as the Lipschitz constant of the gradient.
Specific works that apply optimal gradient methods to sparse
approximation include [78], [79], [80]. These methods may
perform better than simple gradient methods when applied to
compressible signals.

We conclude this section by mentioning the dual formula-
tion of (9):

min %HO’H% —uTo subjectto —1<P*0 <1. (14)

Although this formulation has not been studied extensively, an
active-set method was proposed in [81]. This method solves
a sequence of subproblems where a subset of the constraints
(corresponding to a subdictionary) is enforced. The dual of
each subproblem can each be expressed as a least-squares
problem over the subdictionary, where the subdictionaries
differ by a single column from one problem to the next. The
connections between this approach and greedy pursuits are
evident.
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