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Summary

Joint investigations with Sangkyun Lee (UW-Madison).

1 Sparse and Regularized Optimization: context
2 SVM Formulations and Algorithms

Oldies but goodies
Recently proposed methods
Possibly useful recent contributions in optimization, including
applications in learning.
Extensions and future lines of investigation.

Focus on fundamental formulations. These have been studied hard over
the past 12-15 years, but it’s worth checking for “unturned stones.”

Stephen Wright (UW-Madison) Optimization in SVM Comp Learning Workshop 2 / 56



Themes

Optimization problems from machine learning are difficult!

number of variables, size/density of kernel matrix, ill conditioning,
expense of function evaluation.

Machine learning community has made excellent use of optimization
technology.

Many interesting adaptations of fundamental optimization algorithms
that exploit the structure and fit the requirements of the application.

New formulations present new challenges.

example: semi-supervised learning requires combinatorial / nonconvex
/ global optimization techniques.

Several current topics in optimization may be applicable to machine
learning problems.
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Sparse / Regularized Optimization

Traditionally, research on algorithmic optimization assumes exact data
available and that precise solutions are needed.

However, in many optimization applications we prefer less complex,
approximate solutions.

simple solutions easier to actuate;

uncertain data does not justify precise solutions; regularized solutions
less sensitive to inaccuracies;

a simple solution is more “generalizable” — avoids overfitting of
empirical data;

Occam’s Razor.

These new “ground rules” may change the algorithmic approach
altogther.

For example, an approximate first-order method applied to a nonsmooth
formulation may be preferred to a second-order method applied to a
smooth formulation.

Stephen Wright (UW-Madison) Optimization in SVM Comp Learning Workshop 4 / 56



Regularized Formulations

Vapnik: “...tradeoff between the quality of the approximation of the given
data and the complexity of the approximating function.”

Simplicity sometimes manifested as sparsity in the solution vector (or
some simple transformation of it).

min F(x) + λR(x),

F is the model, data-fitting, or loss term (the function that would
appear in a standard optimization formulation);

R is a regularization function;

λ ≥ 0 is a regularization parameter.

R can be nonsmooth, to promote sparsity in x (e.g. ‖ · ‖1).

Smooth choices of R such as ‖ · ‖22 (Tikhonov regularization, ridge
regression) suppress the norm of x and improve conditioning.
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Example: Compressed Sensing

min
x

1

2
‖Ax − b‖22 + λ‖x‖1,

where A often combines a “sensing matrix” with a basis, chosen so that
there is a sparse x (few nonzeros) satisfying Ax ≈ b.

Typically A has more columns than rows, has special properties (e.g.
restricted isometry) to ensure that different sparse signals give different
“signatures” Ax .

Under these assumptions the “`2-`1” formulation above can recover the
exact solution of Ax = b.

Use λ to control sparsity of the recovered solution.

LASSO for variable selection in least squares is similar.
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Example: TV-regularized image denoising

Given an image f : Ω→ R over a spatial domain Ω, find a nearby u that
preserves edges while removing noise. (Recovered u has large constant
regions.)

min
u

1

2

∫
Ω
(u − f )2 dx + λ

∫
Ω
|∇u| dx .

Here ∇u : Ω→ R2 is the spatial gradient of u.

λ controls fidelity to image data.

First-order methods on dual or primal-dual are much faster at recovering
approximate solutions than methods with fast asymptotic convergence.
(More later.)
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Example: Cancer Radiotherapy

In radiation treatment planning, there are an astronomical variety of
possibilies for delivering radiation from a device to a treatment area. Can
vary beam shape, exposure time (weight), angle.

Aim to deliver a prescribed radiation dose to the tumor while avoiding
surrounding critical organs and normal tissue. Also wish to use just a few
beams. This makes delivery more practical and is believed to be more
robust to data uncertainty.
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Example: Matrix Completion

Seek an m × n matrix X of low rank that (approximately) matches certain
linear observations about its contents.

min
X

1

2
‖A(X )− b‖22 + λ‖X‖∗,

where A is a linear map from Rm×n to Rp, and ‖ · ‖∗ is the nuclear norm
— the sum of singular values.

Nuclear norm serves as a surrogate for rank of X , in a similar way to ‖x‖1
serving as a surrogate for cardinality of x in compressed sensing.

Algorithms can be similar to compressed sensing, but with more
complicated linear algebra. (Like the relationship of interior-point SDP
solvers to interior-point LP solvers.)
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Solving Regularized Formulations

Different applications have very different properties and requirements,
that require different algorithmic approaches.

However, some approaches can be “abstracted” across applications,
and their properties can be analyzed at a higher level.

Duality if often key to getting a practical formulation.

Often want to solve for a range of λ values (i.e. different tradeoffs
between optimality and regularity).

Often, there is a choice between

(i) methods with fast asymptotic convergence (e.g. interior-point, SQP,
quasi-Newton) with expensive steps and

(ii) methods with slow asymptotic convergence and cheap steps, requiring
only (approximate) function / gradient information.

The latter may be more appealling when we need only an approximate
solution. The best algorithms may combine both approaches.
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SVM Classification: Primal

Feature vectors xi ∈ Rn, i = 1, 2, . . . ,N, binary labels yi ∈ {−1, 1}.

Linear classifier: Defined by w ∈ Rn, b ∈ R: f (x) = wT
i x + b.

Perfect separation if yi f (xi ) ≥ 1 for all i . Otherwise try to find (w , b) that
keeps the classification errors ξi small (usually a separable, increasing
function of ξi ).

Usually include in the objective a norm of w or (w , b). The particular
choice ‖w‖22 yields a maximum-margin separating hyperplane.

A popular formulation: SVC-C aka L1-SVM (hinge loss):

min
w ,b,ξ

1

2
‖w‖22 + C

N∑
i=1

max(1− yi (w
T xi + b), 0).

Unconstrained piecewise quadratic. Also can be written as a convex QP.
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Dual

Dual is also a convex QP, in variable α = (α1, α2, . . . , αN)T :

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

where

Kij = (yiyj)x
T
i xj , y = (y1, y2, . . . , yN)T , 1 = (1, 1, . . . , 1)T .

KKT conditions relate primal and dual solutions:

w =
N∑

i=1

αiyixi ,

while b is Lagrange multiplier for yTα = 0. Leads to classifier:

f (x) =
N∑

i=1

αiyi (x
T
i x) + b.
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Kernel Trick, RKHS

For a more powerful classifier, can project feature vector xi into a
higher-dimensional space via a function φ : Rn → Rt and classify in that
space. Dual formulation is the same, except for redefined K :

Kij = (yiyj)φ(xi )
Tφ(xj).

Leads to classifier:

f (x) =
N∑

i=1

αiyiφ(xi )
Tφ(x) + b.

Don’t actually need to use φ at all, just inner products φ(x)Tφ(x̄). Instead
of φ, work with a kernel function k : Rn × Rn → R.

If k is continuous, symmetric in arguments, and positive definite, there
exists a Hilbert space and a function φ in this space such that
k(x , x̄) = φ(x)Tφ(x̄).
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Thus, a typical strategy is to choose a kernel k, form Kij = yiyjk(xi , xj),
solve the dual to obtain α and b, and use the classifier

f (x) =
N∑

i=1

αiyik(xi , x) + b.

Most popular kernels:

Linear: k(x , x̄) = xT x̄

Gaussian: k(x , x̄) = exp(−γ‖x − x̄‖2)
Polynomial: k(x , x̄) = (xT x̄ + 1)d

These (and other) kernels typically lead to K dense and ill conditioned.
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Solving the Primal and (Kernelized) Dual

Many methods have been proposed for solving either the primal
formulation of linear classification, or the dual (usually the kernel form).

Many are based on optimization methods, or can be interpreted using
tools from the analysis of optimization algorithms.

Methods compared via a variety of metrics:

CPU time to find solution of given quality (e.g. error rate).

Theoretical efficiency.

Data storage requirements.

(Simplicity.) (Parallelizability.)
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Solving the Dual

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0.

Convex QP with mostly bound constraints, but

a. Dense, ill conditioned Hessian makes it tricky

b. The linear constraint yTα = 0 is a nuisance!
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Dual SVM: Coordinate Descent

(Hsieh et al 2008) Deal with the constraint yTα = 0 by getting rid of it!
Corresponds to removing the “intercept” term b from the classifier.

Get a convex, bound-constrained QP:

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1.

Basic step: for some i = 1, 2, . . . ,N, solve this problem in closed form for
αi , holding all components αj , j 6= i fixed.
• Can cycle through i = 1, 2, . . . ,N, or pick i at random.
• Update Kα by evaluating one column of the kernel.
• Gets near-optimal solution quickly.
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Dual SVM: Gradient Projection

(Dai, Fletcher 2006) Define Ω = {0 ≤ α ≤ C1, yTα = 0} and solve

min
α∈Ω

q(α) :=
1

2
αTKα− 1Tα

by means of gradient projection steps:

αl+1 = PΩ (αl − γl∇q(αl)) ,

where PΩ denotes projection onto Ω and γl is a steplength.

PΩ not trivial, but not too hard to compute

Can choose γl using a Barzilai-Borwein formula together with a
nonmonotone (but safeguarded) procedure. Basic form of BB chooses γl

so that γ−1
l I mimics behavior of true Hessian ∇q over the latest step;

leads to

γl =
sT
l sl

sT
l yl

, where sl := αl − αl−1, yl := ∇q(αl)−∇q(αl−1).

Stephen Wright (UW-Madison) Optimization in SVM Comp Learning Workshop 18 / 56



Dual SVM: Decomposition

Many algorithms for dual formulation make use of decomposition: Choose
a subset of components of α and (approximately) solve a subproblem in
just these components, fixing the other components at one of their
bounds. Usually maintain feasible α throughout.

Many variants, distinguished by strategy for selecting subsets, size of
subsets, inner-loop strategy for solving the reduced problem.

SMO: (Platt 1998). Subproblem has two components.

SMVlight: (Joachims 1998). Use chooses subproblem size (usually small);
components selected with a first-order heuristic. (Could use an `1 penalty
as surrogate for cardinality constraint?)

PGPDT: (Zanni, Serafini, Zanghirati 2006) Decomposition, with gradient
projection on the subproblems. Parallel implementation.

Stephen Wright (UW-Madison) Optimization in SVM Comp Learning Workshop 19 / 56



LIBSVM: (Fan, Chen, Lin, Chang 2005). SMO framework, with first- and
second-order heuristics for selecting the two subproblem components.
Solves a 2-D QP to get the step.

Heuristics are vital to efficiency, to save expense of calculating components
of kernel K and multiplying with them:

Shrinking: exclude from consideration the components αi that clearly
belong at a bound (except for a final optimality check);

Caching: Save some evaluated elements Kij in available memory.

Performance of Decomposition:

Used widely and well for > 10 years.

Solutions α are often not particularly sparse (many support vectors),
so many outer (subset selection) iterations are required.

Can be problematic for large data sets.
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Dual SVM: Active-Set

(Scheinberg 2006)

Apply a standard QP active-set approach to Dual, usually changing
set of “free” components αi ∈ (0,C ) by one index at each iteration.

Update Cholesky factorization of “free” part of Hessian K after each
change.

Uses shrinking strategy to (temporarily) ignore components of α that
clearly belong at a bound.

(Shilton et al 2005) Apply active set to a min-max formulation (a way to
get rid of yTα = 0:

max
b

min
0≤α≤C1

1

2

[
b
α

]T [
0 yT

y K

] [
b
α

]
−

[
0
1

]T [
b
α

]
Cholesky-like factorization maintained.
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Active set methods good for

warm starting, when we explore the solution path defined by C .

incremental, where we introduce data points (xi , yi ) one by one (or in
batches) by augmenting α appropriately, and carrying on.
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Dual SVM: Interior-Point

(Fine&Scheinberg 2001). Primal-dual interior-point method. Main
operation at each iteration is solution of a system of the form

(K + D)u = w ,

where K is kernel and D is a diagonal. Can do this efficiently if we have a
low-rank approximation to K , say K ≈ VV T , where V ∈ RN×p with
p � N.

F&S use an incomplete Cholesky factorization to find V . There are other
possibilities:

Arnoldi methods: eigs command in Matlab. Finds dominant
eigenvectors / eigenvalues.

Sampling: Nyström method (Drineas&Mahoney 2005). Nonuniform
sample of the columns of K , reweight, find SVD.
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Low-rank Approx + Active Set

If we simply use the low-rank approximation K ← VV T , the dual
formulation becomes:

min
α

1

2
αTVV Tα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

which if we introduce γ = V Tα ∈ Rp, becomes

min
α,γ

1

2
γTγ − 1Tα s.t. 0 ≤ α ≤ C1, γ = V Tα, yTα = 0,

For small p, can solve this efficiently with an active-set QP code (e.g.
CPLEX).

Solution is unique in γ, possibly nonunique in α, but can show that the
classifier is invariant regardless of which particular α is used.
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Solving the Primal

min
w ,b,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi ,

subject to ξi ≥ 0, yi (w
T xi + b) ≥ 1− ξi , i = 1, 2, . . . ,N.

Motivation: Dual solution often not particularly sparse (many support
vectors - particularly with a nonlinear kernel). Dual approaches can be
slow when data set is very large.

Methods for primal formulations have been considered anew recently.

Limitation: Lose the kernel. Need to define the feature space “manually”
and solve a linear SVM.

But see (Chapelle 2006) who essentially replaces feature vector xi by
[k(xj , xi )]j=1,2,...,N , and replaces wTw by wTKw . (The techniques below
could be applied to this formulation.)
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Primal SVM: Cutting Plane

Formulate the primal as

min
w ,b

P(w , b) :=
1

2
‖w‖22 + R(w , b),

where R is a piecewise linear function of (w , b):

R(w , b) = C
N∑

i=1

max(1− yi (w
T xi + b), 0).

Cutting-plane methods build up a piecewise-linear lower-bounding
approximation to R(w , b) based on a subgradient calculated at the latest
iterate (wk , bk). This approach used in many other contexts, e.g.
stochastic linear programming with recourse.

In SVM, the subgradients are particularly easy to calculate.

(Joachims 2006) implemented as SVMperf . (Franc&Sonnenburg 2008) add
line search and monotonicity: OCAS. Convergence / complexity proved.
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Modifications tried (Lee and Wright) by modifying OCAS code:

partition the sum R(w , b) into p bundles, with cuts generated
separately for each bundle. Gives a richer approximation, at the cost
of a harder subproblem.

different heuristics for adding cuts after an unsuccessful step.

Many more ideas could be tried. In the basic methods, each iteration
requires computation of the full set of inner products wT xi ,
i = 1, 2, . . . ,N. Could use strategies like partial pricing in linear
programming to economize.
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Primal SVM: Stochastic Subgradient

(Bottou) Take steps in the subgradient direction of a few-term
approximation to P(w , b), e.g. at iteration k, for some subset
Ik ⊂ {1, 2, . . . ,N}, use subgradient of

Pk(w , b) :=
1

2
‖w‖22 + C

N

|Ik |
∑
i∈Ik

max(1− yi (w
T xi + b), 0),

Step length ηk usually decreasing with k according to a fixed schedule.
Can use rules ηk ∼ k−1 or ηk ∼ k−1/2.

Cheap if |Ik | is small. Extreme case: Ik is a single index, selected
randomly. Typical step: Select j(k) ∈ {1, 2, . . . .N} and set

(wk+1, bk+1)← (wk , bk)− ηkgk ,

where

gk =

{
(w , 0) if 1− yj(k)(w

T xj(k) + b) ≤ 0,

(w , 0)− CNyj(k)(xj(k), 1) otherwise.
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Stochastic Subgradient

(Shalev-Shwartz, Singer, Srebro 2007). Pegasos: After subgradient step,
project w onto a ball {w | ‖w‖2 ≤

√
CN}. Performance is insensitive to

|Ik |. (Omits intercept b.)

Convergence: Roughly, for steplenths ηk = CN/k, have for fixed total
iteration count T and k randomly selected from {1, 2, . . . ,T}, the
expected value of the objective f is within O(T−1 log T ) of optimal.

Similar algorithms proposed in (Zhang 2004), (Kivinen, Smola, Williamson
2002) - the latter with a steplength rule of ηk ∼ k−1/2 that yields an
expected objective error of O(T−1/2) after T iterations.

There’s a whole vein of optimization literature that’s relevant —
Russian in origin, but undergoing a strong revival. One important and
immediately relevant contribution is (Nemirovski et al. 2009).
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Stochastic Approximation Viewpoint

(Nemirovski et al, SIAM J Optimization 2009) consider the setup

min
x∈X

f (x) := Eζ [F (x , ζ)],

where subgradient estimates G (x , ζ) are available such that
g(x) := Eζ [G (x , ζ)] is a subgradient of f at x . Steps:

xk+1 ← PX (xk − ηkG (xk , ζk))

where ζk selected randomly. Some conclusions:

If f is convex with modulus γ, steplengths ηk = (γk)−1 yield
E (f (xk)− f (x∗)] = O(1/k).
Slight differences to the stepsize (e.g. a different constant multiple)
can greatly degrade performance.
If f is convex (maybe weakly), the use of stepsizes ηk ∼ k−1/2 yields
convergence at rate k−1/2 of a weighted average of iterates in
expected function value.
This is a slower rate, but much less sensitive to the “incorrect”
choices of steplength scaling. See this in practice.
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Primal-Dual Approaches

Method that solve primal and dual simultaneously by alternating between
first-order steps in primal and dual space are proving useful in some apps.

Example: TV Denoising. Given a domain Ω ⊂ R2 and an observed
image f : Ω→ R, seek a restored image u : Ω→ R that preserves edges
while removing noise.

Primal: min
u

P(u) :=

∫
Ω
|∇u| dx +

λ

2
‖u − f ‖22.

Dual: max
w∈C1

0 (Ω), |w |≤1
D(w) :=

λ

2

[
‖f ‖22 −

∥∥∥∥ 1

λ
∇ · w + f

∥∥∥∥2

2

]
.
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Discretized TV Denoising

After regular discretization, obtain a primal-dual pair:

min
v

N∑
l=1

‖AT
l v‖2 +

λ

2
‖v − g‖22,

where Al is an N × 2 matrix with at most 4 nonzero entries (+1 or −1).

min
x∈X

1

2
‖Ax − λg‖22

where X := {(x1; x2; . . . ; xN) ∈ R2N : xl ∈ R2,

‖xl‖2 ≤ 1 for all l = 1, 2, . . . ,N},

where A = [A1,A2, . . . ,AN ] ∈ RN×2N .

First-order method on the dual is quite effective for low-moderate accuracy
solutions (Zhu, Wright, Chan 2008). Many other methods proposed:
second-order, PDE-based, second-order cone.

Stephen Wright (UW-Madison) Optimization in SVM Comp Learning Workshop 32 / 56



Min-Max Formulation

The discrete primal-dual solution (v , x) is a saddle point of

min
v

max
x∈X

`(v , x) := xTAT v +
λ

2
‖v − g‖22.

(Zhu, Chan 2008) solve this with a first-order primal-dual approach:

xk+1 ← PX (xk + τk∇x`(x
k , vk)) (1)

vk+1 ← vk − σk∇v `(x
k+1, vk), (2)

for some positive steplengths τk , σk . They found that this (non-intuitive)
choice of steplengths worked well:

τk = (.2 + .08k)λ, σk = .5/τk .

Why??
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PD Method for Semiparametric SVM Regression

(Smola et al, 1999) Add:

regression (rather than classification) with an ε-insensitive margin.

basis functions ψj(x), j = 1, 2, . . . ,K , making the regression function
partly parametric.

min
w ,ζ,ζ∗,β

1

2
wTw + C

N∑
i=1

max{0, |yi − h(xi ;w , β)| − ε},

where

h(x ;w , β) := wTφ(x) +
K∑

j=1

βjψj(x).

Dual can be formulated with 2N variables as follows:

min
α̃

f (α̃) :=
1

2
α̃T K̃ α̃+ pT α̃ s.t. Aα̃ = b, 0 ≤ α̃ ≤ C1.

where K̃ is an extended kernel, still usually positive semidefinite, and A is
K × 2N.
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Example (Smola et al, 1999): Learn the function
f (x) = sin x + sinc(2π(x − 5)) from noisy samples xi ∈ [0, 10]. Use 3 basis
functions 1, sin x , cos x in the parametric part, Gaussian kernel for
nonparametric part.
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(Kienzle and Schölkopf, 2005) minimal primal-dual (MPD); (Lee and
Wright 2009) primal-dual with scaled gradient (PDSG) and decomposition.

Define
L(α̃, η) := f (α̃) + ηT (Ax − b),

then can formulate as a saddle-point problem:

max
η

min
0≤α̃≤C1

L(α̃, η).

PDSG alternates between steps in

a subset of α̃ components (decomposition) - using a gradient
projection search direction

η - a Newton-like step in the dual function
g(η) := min0≤α̃≤C1 L(α̃, η).
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Alternative Formulations: ‖w‖1.

Replacing ‖w‖22 by ‖w‖1 in the primal formulation gives a linear program
(e.g. Mangasarian 2006; Fung&Mangasarian 2004, others):

min
w ,b,ξ

‖w‖1 + C
N∑

i=1

max(1− yi (w
T xi + b), 0).

Sometimes called “1-norm linear SVM.”

Tends to produce sparse vectors w ; thus classifiers that depend on a small
set of features.

(‖ · ‖1 regularizer also used in other applications, e.g. compressed sensing).

Production LP solvers may not be useful for large data sets; the literature
above describes specialized solvers.
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Elastic Net

Idea from (Zou&Hastie 2005). Include both ‖w‖1 and ‖w‖2 terms in the
objective:

min
w ,ξ

λ2

2
‖w‖22 + λ1‖w‖1 +

N∑
i=1

max(1− yi (w
T xi + b), 0).

In variable selection, combines ridge regression with LASSO. Good at
“group selecting” (or not selecting) correlated wi ’s jointly.

Is this useful for SVM?

It would be easy to extend some of the techniques discussed earlier to
handle this formulation.
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SpaRSA

An extremely simple approach introduced in context of compressed sensing
(Wright, Figueiredo, Nowak 2008) can be applied more generally, e.g. to
logistic regression. Given formulation

min F(x) + λR(x),

and current iterate xk , find new iterate by choosing scalar αk and solving

min
z

1

2αk
(z − xk)T (z − xk) +∇F(xk)T (z − xk) + λR(z).

Possibly adjust αk to get descent in the objective, then set xk+1 ← z .

Form a quadratic model of F around xk , correct to first order, with
simple Hessian approximation 1/αk .

Variants: Barzilai-Borwein, nonmonotonic.

Useful when the subproblem is cheap to solve.

Continuation strategy useful in solving for a range of λ values
(largest to smallest). Use solution for one λ as warm start for the
next smaller value.
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When R = ‖ · ‖1 (standard compressed sensing), can solve subproblem in
O(n) (closed form).

Still cheap when

R(x) =
∑

l

‖x[l ]‖2, R(x) =
∑

l

‖x[l ]‖∞

where x[l ] are disjoint subvectors. (Group LASSO.)

Not so clear how to solve the subproblems cheaply when

subvectors x[l ] are not disjoint in the group-lasso formulation

regularized R chosen to promote a hierarchical relationship between
components of x

R(x) is a TV-norm.
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Logistic Regression

Seek functions p−1(x), p1(x) that define the odds of feature vector x
having labels −1 and 1, respectively. Parametrize as

p−1(x ;w) =
1

1 + expwT x
, p1(x ;w) =

expwT x

1 + expwT x
.

Given training data (xi , yi ), i = 1, 2, . . . ,N, define log-likelihood:

L(w) =
1

2

N∑
i=1

[(1 + yi ) log p1(xi ;w) + (1− yi ) log p−1(xi ;w)]

=
1

2

N∑
i=1

[
(1 + yi ) expwT xi − 2 log(1 + expwT xi )

]
.

Add regularization term λ‖w‖1 and solve

min
w

Tλ(w) := −L(w) + λ‖w‖1.
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(Shi et al. 2008) Use a proximal regularized approach: Given iterate wk

get new iterate z by solving a subproblem with simplified smooth term:

min
z
∇L(wk)T (z − wk) +

αk

2
‖z − wk‖22 + λ‖z‖1.

Analogous to gradient projection, with 1/αk as line search parameter.
Choose αk large enough to give reduction in Tλ.

Enhancements:

For problems with very sparse w (typical), take a reduced Newton-like
step for L in the currently-nonzero components only.

Evaluate a random selection of components of ∇L (save expense of a
full evaluation - like shrinking).

Use continuation in λ: solution for one value of λ used to warm-start
a the next smaller value in the sequence.
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