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Abstract

Operating system kernel code is generally immutable. This trend is unfortunate,

because a kernel that can insert (and later remove) code at run-time has many uses,

including performance measurement, debugging, code coverage, run-time

installation of patches, and run-time optimizations. The research in this dissertation

investigates dynamic (run-time) kernel instrumentation and its applications in the

areas of kernel profiling and code evolution. We have implemented dynamic kernel

instrumentation, a kernel performance monitor, and a run-time kernel optimizer in a

system called KernInst.

The first component of this dissertation investigates fine-grained dynamic kernel

instrumentation, a technology to dynamically modify kernel code. We have designed

two primitives for run-time kernel code modification, splicing, which inserts

instrumentation code, and code replacement, which replaces a function’s code. A part

of the KernInst system called kerninstd implements fine-grained dynamic

instrumentation for Solaris UltraSPARC kernels.

The second component of this dissertation is the collection of techniques and

algorithms for using dynamic instrumentation to obtain kernel performance

information. The first techniques are the design and implementation of efficient

instrumentation code to obtain counts, elapsed times, and virtual times of kernel

code. This dissertation also presents a means to effectively calculate an estimate of
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kernel control flow graph counts from basic block counts. These techniques and

algorithms are embodied in a kernel performance tool called kperfmon. A case study

describes how kperfmon helped to understand and improve the performance of a

Web proxy server.

The final component of this dissertation introduces the concept of evolving code in

a commodity operating system. An evolving kernel changes it code at run-time, in

response to the measured environment. KernInst provides a technological

infrastructure that enables commodity kernels to evolve. As a proof of concept, we

describe an automated kernel run-time version of the code positioning I-cache

optimization. We have applied run-time code positioning to the TCP read-side

stream processing routine tcp_rput_data. Code positioning reduces the time that

tcp_rput_data waits for I-cache misses by 35%, reduces its execution time by 17%, and

improves its instructions per cycle by 36%.
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Chapter 1

Introduction

Operating system kernel code is generally immutable. This trend is unfortunate,

because a kernel that can insert (and later remove) code at run-time has many uses,

including performance measurement, tracing, debugging, code coverage testing,

security logging, run-time installation of patches, run-time optimizations, and

process-specific resource management. This thesis research covers dynamic (run-

time) kernel instrumentation, and its application in the areas of kernel profiling and

code evolution. We have implemented dynamic kernel instrumentation, along with a

kernel profiler and a run-time optimizer, in a system collectively called KernInst.

The first component of this dissertation, presented in Chapters 3 and 4, is a low-

level technology called fine-grained dynamic kernel instrumentation. This technology

provides two primitives for run-time kernel code modification: splicing, which inserts

arbitrary instrumentation code at desired kernel locations; and code replacement,

which atomically replaces a function’s code. A part of the KernInst system called
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kerninstd implements fine-grained dynamic instrumentation for

Solaris 7/UltraSPARC kernels.

A second component of this dissertation is the design and implementation of a

run-time kernel performance profiler built using the dynamic instrumentation

infrastructure, as discussed in Chapter 5. The tool, called kperfmon, demonstrates an

application of fine-grained dynamic kernel instrumentation. More significantly,

kperfmon is a powerful performance profiler, giving a user detailed performance

information that can aid in the optimization of both kernel and user code. As a proof

of this concept, Chapter 6 shows how kperfmon helped to understand and improve

the performance of a Web proxy server.

The final component of this dissertation, presented in Chapter 8, introduces the

concept of evolving code in a commodity operating system. An evolving system is one

that can change its code during run-time, in response to the measured environment.

An evolving system will identify a problem (such as poor performance or a security

attack), formulate a solution (changing some existing code to address the problem),

and install the solution at run-time. KernInst provides a technological infrastructure

that enables commodity kernels to evolve. As a proof of concept, Chapter 8 also

describes a prototype implementation of an application of this infrastructure, an

automated kernel run-time instruction cache optimizer. This implementation is the

first time that the code of a running kernel has been re-ordered, on-the-fly, for I-cache

performance. The optimization benefitted from the results of Chapter 7, which show

that control flow graph edge execution counts can usually be derived from basic
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block execution counts, deferring the need to implement a technically more complex

edge splicing primitive.

We performed a case study of using run-time code positioning to improve the

end-to-end performance of a Web fetch benchmark, by optimizing the key TCP read-

side stream processing routine tcp_rput_data. The optimization reduces the time that

tcp_rput_data waits for I-cache misses by about 35%, reduced its execution time by

about 17%, and improved its IPC (instructions per cycle) by about 36%. The

optimization of tcp_rput_data led to a 7% reduction in the benchmark’s total run-time.

This dissertation’s thesis statement is:

It is possible to dynamically instrument an already-running commodity

operating system kernel in a fine-grained manner; furthermore, this

technology can be usefully applied to kernel performance

measurement and run-time optimization.

The remainder of this chapter motivates fine-grained dynamic kernel

instrumentation, and presents additional information on the core contributions of

this dissertation.

1.1  Applications of Dynamic Kernel Instrumentation

Fine-grained dynamic kernel instrumentation is a powerful foundation on which

a variety of tools can be built. As motivation, we describe some of these applications.

Kernel profilers can use dynamic instrumentation to insert code annotations that

gather performance information. The contents of the inserted code snippet(s) depend

on the desired performance metric being gathered. A simple count of the number of

entries to particular a function or basic block can be obtained by inserting code that
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increments a counter at the appropriate location. Performance measurement code can

also be inserted to accumulate events that occur in a particular function or basic

block. For example, on entry to a function, instrumentation can read a counter

representing the elapsed cycle count. On exit from that function, further

instrumentation can re-read the counter and subtract it from the previous value to

obtain the elapsed time (in cycles) for one execution of the code body; this value can

be added to an accumulating total representing the total number of elapsed cycles

that the kernel spends in this routine. More detail on using dynamic kernel

instrumentation for performance measurement will be discussed in Section 1.3.

Kernel debuggers can be implemented using fine-grained dynamic

instrumentation. For example, breakpoints can be inserted at any machine code

instruction by splicing in code snippets that display some kernel state to the console

and (optionally) pause the executing thread and informs the debugger. Breakpoints

can be conditionalized by adding a desired test.

Dynamic instrumentation can also be used for kernel tracing. At run-time,

logging code can be spliced at desired tracing locations. Kernel code can be restored

to its original state once the trace has been collected, so the overhead of tracing is

incurred only when actually collecting a trace. Dynamic instrumentation contrasts

with a static instrumentation system, such as a binary rewriter, which inserts code

lasting for the entire run of the kernel.

Code coverage can be achieved using fine-grained dynamic kernel

instrumentation. Coverage can be monitored by splicing in code that sets a flag (one

per function, basic block, control flow graph edge, and/or call graph edge, as
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desired) to indicate that code has been reached. This instrumentation can be removed

as soon as the flag is set so that the expense of code coverage actually decreases over

time. Basic block and edge coverage are good examples of the utility of making

instrumentation both fine-grained and dynamic.

Security checks, such as Department of Defense C2-level auditing [100] are

another form of annotation that can be installed into a running kernel using dynamic

instrumentation. Solaris can audit many events, including thread creation and

deletion, file system path name lookups, file system vnode creation, successful and

unsuccessful credential checks for super-user access, process forks, core dumps,

stream device operations, file opens, closes and chdirs. However, auditing code is

bracketed in the source code with #ifdef C2_AUDIT, which may not be enabled for a

given kernel. Normally, turning it on requires changing the flag, recompiling the

kernel, and rebooting. With dynamic instrumentation, an auditing package can be

distributed as an independent kernel add-on and installed into a running system.

Run-time insertion of auditing code requires a fine-grained splicing mechanism

because auditing checks often occur in the middle of kernel functions.

Dynamic instrumentation enables automated run-time code optimization based

on performance feedback gathered by dynamic profiling annotations. One example is

automated run-time function specialization [74] based an input parameter. A

function can be dynamically instrumented at its entry point to collect a histogram of

values for the desired parameter, which is later examined for a frequent value. The

instrumentation code is then removed, and a specialized version of the function’s

machine code is generated, with constant propagation applied to the specialized
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parameter. The original function then has the following code spliced at its entry: “if

input parameter equals expected value then jump to specialized version; else, fall

through.” A further optimization can sometimes remove the condition; call sites to

the function can be analyzed for an actual parameter that always equals the

specialized value. Where true, the call site is altered to directly call the optimized

version of the function.

A second example of run-time code optimization that can be performed with

dynamic instrumentation is code positioning, or moving seldom-executed basic

blocks out of line to improve instruction cache performance [61, 69]. First, a function

can be tested for poor instruction cache performance by inserting instrumentation

that measures the number of icache misses incurred. After a time, the

instrumentation is removed, and if instruction cache performance is poor, the

function’s basic blocks are instrumented for execution frequency. A new version of

the function with infrequently executed basic blocks moved out of line is then spliced

into the kernel. As with the specialization example, the jump overhead can often be

eliminated by redirecting call sites to the new function. This technique is explored in

Chapter 8.

Dynamic kernel instrumentation may also be used to change kernel functionality,

such as installing a process-specific version of a kernel resource management routine.

Extensible operating systems [10, 11, 21, 35, 36, 47] have focused on this subject. It is

worthwhile to note that dynamic instrumentation can provide a similar operation in

a commodity kernel by splicing the following code at the appropriate kernel policy
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function: “If current-pid equals some-pid then jump to customized version, else fall

through”.

Transparent data modification, such as encrypting or compressing a file

system [39], can be implemented using dynamic instrumentation. At the entry point

of the file system’s read and write routines, code can be inserted that changes that

data stream appropriately.

Dynamic instrumentation can also be used to detect and adapt to security attacks.

One example is a TCP denial-of-service attack, where a server is inundated with

TCP SYN packets having randomly forged IP addresses. The number of packets can

overflow the server’s listen queue, preventing legitimate clients from starting

connections [18]. Annotations can be dynamically inserted into the appropriate

kernel routines to detect a possible attack, such as an unusually high connection

attempt frequency, all with different (possibly spoofed) IP addresses.

Instrumentation can then adapt to the attack by temporarily ignoring all TCP

connection requests except from a small, trusted core of IP addresses.

1.2  Fine-Grained Dynamic Kernel Instrumentation

The first question that this dissertation seeks to answer is whether fine-grained

dynamic instrumentation of an already running, unmodified commodity operating

system kernel is possible. Several technical challenges had to be overcome, but the

answer is yes. These challenges include attaching to an already-running kernel,

changing kernel code, decoupling code generation from splicing, and ensuring that
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splicing is not vulnerable to a race condition when kernel thread(s) are executing in

the vicinity.

Fine-grained dynamic kernel instrumentation has been implemented in a

component of KernInst called kerninstd, a privileged user-level process that runs on

the machine whose kernel is being instrumented. With occasional assistance from a

pseudo device driver /dev/kerninst, kerninstd is an instrumentation server for

applications wishing to instrument the kernel. Kerninstd is decoupled from such

instrumentation clients. The two do not need to execute on the same machine; they

can communicate over a remote procedure call interface.

The primary kernel instrumentation feature of KernInst is splicing, the insertion of

instrumentation code that performs a desired monitoring or adaptation task. This

dissertation’s research contributions in the area of instrumentation are:

• Dynamic. KernInst is loaded and instruments the kernel entirely at run-time,

without any need to recompile, reboot, or even pause the kernel.

• Fine-grained. Instrumentation points, the locations where kernel code can be

inserted, can be almost any machine code instruction within the kernel.

• Runs on a commodity kernel. This enables instrumentation under real-world

workloads. It is worthwhile to note that much recent operating system research

has taken place on custom kernels [10, 11, 21, 34, 35, 36, 37, 47, 59, 61, 62, 68, 73, 74,

75, 81, 82, 83, 84]; this dissertation shows that run-time instrumentation is feasible

on a commodity kernel.

• Runs on an unmodified kernel. This contribution is important, because requiring

a modified or somehow customized kernel, even an otherwise commodity one,

would likely preclude an instrumentation tool’s widespread use.
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1.3  Kernel Performance Measurement

The second component of this dissertation is the design and development of a

kernel performance measurement tool that uses dynamic instrumentation. The

implementation, in a tool called kperfmon, is both a concrete demonstration of the

utility of fine-grained dynamic kernel instrumentation, and a powerful performance

tool, with several novel features. This section gives an overview of kperfmon and its

research contributions; Chapter 5 contains the complete description.

1.3.1  Overview of Kperfmon

Kperfmon is a run-time kernel performance measurement system for the Solaris

kernel running on an UltraSPARC processor. Its user interface is modeled in part

from the Paradyn Performance Tools for user-level performance measurement [44].

The key concepts in kperfmon are metrics and resources. A metric is a time-varying

measurement, such as elapsed time, processor time, or number of instruction cache

misses. A resource is a component of the kernel’s code, either a function or a basic

block. Measurements in kperfmon are taken by combining a metric and a resource,

which generates corresponding instrumentation code snippets, and the locations

where they are to be inserted. Kperfmon then has kerninstd perform the actual

instrumentation.

The major features of kperfmon, which will be explained in greater detail shortly,

are:

• Kperfmon can measure an unmodified, already running, commodity kernel,

without the need for kernel source code, because it uses kerninstd as its

instrumentation engine.
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• It directly measures performance; as such, it can be more accurate than tools

based on statistical sampling [3, 40, 70, 93, 107].

• It provides a broad range of performance metrics based on any event counter.

• It can measure wall time events or virtual time events.

There are two major research contributions of kperfmon. First, kperfmon shows

that a wide range of kernel performance measurements can be gathered via dynamic

instrumentation of an unmodified commodity operating system kernel. Second,

kperfmon is the first kernel profiling tool that can virtualize (exclude from the

measurement the time that is spent context switched out) any wall time metric.

1.3.2  Explanation of Major Kperfmon Features

Instead of only being able to measure time spent in a desired piece of code (such

as a function or basic block), kperfmon can, more generally, accumulate events

occurring in that code. An event logically corresponds to the execution of some code,

though many events are counted in hardware. Examples of hardware-counted events

include the number of elapsed cycles, data cache misses, and cycles stalled on branch

mispredictions. Examples of software-countable events include completed database

transactions, retransmitted TCP packets, and failed file opens.

The general pattern of event accumulation instrumentation is illustrated in

Figure 1.1. Given a metric and a code resource, instrumentation is generated for

insertion at the code’s entry and exit point(s). The entry instrumentation reads and

remembers the underlying event counter value corresponding to the metric. The exit

instrumentation re-reads the event counter and subtracts it from the value read on

entry to obtain the number of events occurring during a particular invocation of the
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code. This value is then added to an accumulated total of the value for this given

metric/resource combination. Because the entry and exit point(s) delimit an interval

over which events are accumulated, metrics measured by this framework are interval

counter metrics.

Kperfmon is extensible; it can create new performance metrics, given any

software-readable, monotonically increasing event counter. New interval counter

metrics are based on the instrumentation code template Figure 1.1. The only metric-

specific part of the instrumentation is an appropriate implementation of code to read

the current value of the underlying event counter.

The instrumentation of Figure 1.1 measures wall time events. Wall time metrics for

a particular function (or basic block), as opposed to virtual time metrics, measure the

elapsed number of events that occur between a thread’s entry and exit to that code,

including any events that may occur while a thread was context switched out. A

virtual time metric, by contrast, measures only events that occur while a thread is

actively running within that code, excluding any events occurring while context

Figure 1.1: Interval Counter Accumulation Instrumentation
Currval is the current value of the metric’s underlying event counter, such as elapsed cycles or number of cache
misses. This diagram omits several details, such as making the instrumentation code thread-safe, that will be

discussed in Chapter 5.

some_func_or_basicblock:

...

...

...

...

...

accumulator.start = currval

delta = currval - timer.start

accumulator.total += delta

Inserted instrumentation

Instrumentation point

Instrumentation point

at code entry

at code exit

code
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switched out. Wall time metrics are useful for measuring elapsed latency, such as

response time or I/O events, and the time spent blocked on a synchronization object.

Kperfmon can also measure virtual time metrics, by dynamically instrumenting

the kernel’s context switch code. There are two parts to virtualization

instrumentation. On context switch out, instrumentation stops those virtual

accumulators that were started by the thread being switched out; on context switch

in, all virtual accumulators that were stopped due to an earlier switch-out of this

thread are restarted. In this manner, kperfmon can virtualize any wall time metric, a

novel feature for a kernel performance profiler. This contribution is important

because while it is relatively easy to create a wall time metric via instrumentation, it

is hard to create a virtual time one. Virtualized metrics are useful when measuring

events that only occur when the CPU is actively running the code being measured,

such as cache events, branch mispredictions, and processor time.

The above instrumentation examples all yield inclusive metrics, which include

events occurring while the code being measured is calling another function. An

exclusive metric is one that only measures events occurring while the thread’s

program counter is within the function being measured. Kperfmon presently

provides only inclusive metrics for two reasons. First, the instrumentation is simpler

and has less perturbation; measuring an exclusive metric would require additional

instrumentation before and after each procedure call, to stop and restart the event

accumulation, respectively. Second, inclusive metrics help find performance

bottlenecks more quickly; traversing the call graph with an inclusive time metric has

been shown effective in automatically searching for bottlenecks in user code [14].
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1.4  Evolving Kernels

The final contribution of this dissertation is a framework for evolving kernels. An

evolving kernel is one that, automatically and at run-time, adapts and modifies its

code in response to the run-time environment. Evolving kernels are motivated the

the need for kernel up-time. Ideally, a kernel is ideally never taken off-line, or even

momentarily paused, so modifications to its code should take place at run-time.

Evolving kernels enable this 24x7x52 approach to operating systems

Perhaps the most obvious class of evolving kernel algorithms are those that

perform some sort of run-time kernel optimization in response to measured

performance. However, optimization is but one of many potential uses for an

evolving system. Another use is to adapt to security attacks, such as a kernel that

refuses new TCP connections except from a selected known and trusted group in

response to a measured TCP SYN flooding denial-of-service attack.

There are three general phases to an evolving kernel framework. The first phase is

measurement or detection, where data is gathered to identify a problem. The second

phase creates a solution—improved code to be inserted into the kernel. The third

phase installs this code into a running kernel. These steps are repeated, since the run-

time environment is continuously changing. The first step is well suited to dynamic

instrumentation, as demonstrated by kperfmon, as is the third step, requiring only a

few additional low-level instrumentation features to augment code splicing.

This dissertation presents two contributions in the area of evolving kernels. The

first contribution is an infrastructure for changing a commodity’s kernel code at run-
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time. This infrastructure is general enough to allow arbitrary code modifications,

including optimizations as well as security patches. In addition, it allows any code to

be modified, not just system calls. The infrastructure is also generic enough to allow

modifications to be created by outside sources. This independence is in keeping with

KernInst’s philosophy of decoupling code generation from the mechanism for

inserting such code into a running kernel.

The second contribution is the design of a prototype run-time kernel optimizer

aimed at improving instruction cache performance of kernel code. It uses Pettis and

Hansen’s code positioning optimization [69] that reorders basic blocks to improve

instruction cache performance. Although the speedups achieved thus far are small

compared to a user-level evolving system that implements a full range of compiler

optimizations at run-time [5], the implementation demonstrates an infrastructure for

run-time optimization of a commodity operating system kernel.

The primary research contribution made by this dissertation is to demonstrate

that an a running, unmodified, commodity kernel can be converted to an evolving

kernel.
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Chapter 2

Related Work

This chapter discusses work that is related to some portion of KernInst. The first

research contribution of this dissertation is fine-grained dynamic instrumentation

(Chapter 4). Related work in this respect is presented in Section 2.1. The second

contribution is in run-time kernel performance measurement (Chapter 5); Section 2.2

discusses related work in this area. Work related to the third contribution, evolving

kernels and run-time kernel optimizations (Chapter 8), is discussed in Section 2.3.

2.1  Kernel Instrumentation

To put related instrumentation work in context, we review the desirable features

of a kernel instrumentation system. It should:

• Modify code dynamically (i.e., at run-time), since static modifications to a kernel

require a reboot to take effect.

• Be able to insert arbitrary user-specified code.

• Be fine-grained, able to insert code at any desired kernel location.

• Be able to insert or remove code at any time, even if one or more threads are

executing at or near the instrumentation location.



16

• Provide safety guarantees for the contents of instrumentation code.

• Run on a commodity operating system, enabling real-world workloads to be

instrumented.

• Run on an unmodified kernel; it may be impractical to require a customized

operating system.

• Insert (and remove) instrumentation quickly.

• Introduce little perturbation beyond the inherent expense of the instrumentation

code being inserted.

Note that all the above goals are obtainable; in particular, the goal of inserting safe

code precludes the ability to insert arbitrary user-generated code. KernInst’s low-

level instrumentation technology achieves all these goals except for code safety. The

responsibility for code safety is delegated to tools that are built on top of kerninstd,

since such tools generate the code being inserted [105, 106].

The following sections describe other systems that perform some form of

instrumentation that can be compared to KernInst’s. The focus is on kernel

instrumentation, though user-level instrumentation tools are also discussed, since

existing kernel instrumentation systems are few.

2.1.1  Extensibility in Research Kernels

Extensible operating systems such as SPIN [10, 11, 37, 68, 84], Exokernel [34, 35,

36, 47], VINO [81, 82, 83, 87], Cache Kernel [21], Scout [41, 59, 61, 62], and

Synthetix [23, 24, 73, 74, 75] allow user-level processes to download code into the

kernel, offering a coarse-grained means of changing kernel code dynamically.

SPIN allows applications to change the operating system’s interface and

implementation through extensions. SPIN extensions assign a handler routine to a
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specific event through a central dispatcher. An event is a message announcing a

change in system state or a request for service [11]. Event handler routines are written

in a type-safe language (Modula-3) and are downloaded into the kernel’s address

space. Any procedure exported from a Modula-3 interface is a potential SPIN event

handler. Calling such a procedure raises that event. Although SPIN allows code to be

downloaded into the kernel, code can only be installed along a chain of handlers for a

given event, and thus only procedure-grained (not instruction-grained)

“instrumentation” is possible. In addition, SPIN is a customized kernel, which

precludes running some real-world programs. Furthermore, SPIN is coarse-grained;

it can only replace routines that are exported in a Modula-3 module interface.

The VINO kernel has many similarities to SPIN; it provides extensibility by

allowing processes to download code into the kernel. VINO’s downloaded code is

fault-isolated [102] to restrict memory access to addresses belonging to the process. In

addition, downloaded code executes in a transaction environment. If a process

misbehaves, such as grabbing a lock and going into an infinite loop, the kernel

detects it and aborts the transaction. VINO allows C++ classes to specify methods

that can be customized on a per-object basis [87], so not all code in the kernel can be

customized. In addition, since it overrides object methods, VINO offers a limited

number of instrumentation points, which are at whole-function granularity.

Furthermore, the instrumentation sites are pre-coded to facilitate instrumentation. A

C++ virtual function makes a call through a pointer, which VINO simply changes to

point to the downloaded code.
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The Synthetix system provides extensibility in a fundamentally different manner

from SPIN and VINO. Instead of allowing process-based customization of kernel

routines, Synthetix provides a single optimization (partial evaluation, or

specialization) for commonly executed paths of certain kernel routines. Thus kernel

routines are customized, but not directly under process control. Like SPIN and

VINO, when Synthetix customizes the kernel, it customizes only entire routines.

Synthetix customization is installed by simply changing the value of a function

pointer (a level of indirection like VINO). Thus, routines that might be specialized

must be pre-written to contain a level of indirection (call through a function pointer),

incurring a slight performance penalty even when no customization at a given

routine has taken place. Furthermore, requiring a special code sequence precludes

general fine-grained (instruction-level) instrumentation, since it would be prohibitive

to sprinkle calls through a function pointer throughout each kernel function.

The Scout operating system is communication-oriented, geared toward network

devices such as video displays, cameras, and PDAs. Scout is meant to be configurable

to the device on which it is running. The key concept in Scout is the path [62], which

abstracts a route through its software layers through which information flows within

a machine. When a path is created, Scout uses global knowledge to transform and

optimize communication along it. In providing such run-time optimizations, Scout is

most closely related to Synthetix. By focusing its optimization toward specific kernel

components, Scout does not instrumentation of arbitrary kernel code.

The Cache Kernel and Exokernel operating system architectures specify a

minimal kernel that protects the underlying hardware resources (such as physical
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memory pages and disk blocks), while allowing processes to manage them. Because

most conventional operating system functionality is transferred to user-level

processes, there is little need to instrument the kernel. However, an exokernel

architecture can still require that custom application policies be downloaded into the

kernel, so the untrusted policy code can be inspected for safety [47] and access

permissions [34, 36]. The trusted inspection must happen on code that has been

downloaded into the kernel, because in user space, there are no assurances that code

will not be changed after it has been certified as safe.

KernInst’s instrumentation is preferable to the function pointer level of direction

used by extensible kernels because it is more fine-grained, and because there is no

overhead until instrumentation code is actually inserted into the kernel.

Furthermore, fine-grained dynamic instrumentation can easily duplicate their

extensibility techniques by inserting code that checks the current process ID into a

kernel policy function. However, unlike extensible kernels, KernInst does not ensure

that instrumentation code is safe; it assumes that a trusted entity is supplying the

code to be inserted into the kernel. Instrumentation code may not have to be trusted

in the future. Because kerninstd allows instrumentation code to be generated by

outside sources, it can also leverage recent research into safety-checking of untrusted

machine code [64, 65, 66, 102, 105]. Dynamic instrumentation is complementary to,

and could be used with, research kernels to provide additional fine-grained splicing

capabilities.
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2.1.2  Extensibility in Commodity Kernels

Modern UNIX operating systems already provide limited forms of process-based

extensibility, realized by re-engineering specific parts of the kernel. The classic

example is the vnode interface [48, 79], which allows file systems to be added without

recompiling the kernel or rebooting. SVR4-based kernels also provide a form of

dynamic linking; kernel modules, such as device drivers, can be loaded at run-

time [101]. Unfortunately, these forms of extensibility are limited. In the vnode

example, extensibility is provided only for file system calls. Kernel dynamic linking

operates at an even coarser grain; only entire modules may be loaded at run-time,

and no module can be modified while in use.

The SLIC project [39] has investigated extensibility in commodity operating

systems. SLIC re-routes events crossing certain kernel interfaces (system calls,

signals, and virtual memory) to extensions that have either been downloaded into

the kernel, or run in a user-level process. It interposes extensions on kernel interfaces

by rewriting jump tables (the classic technique of a level of indirection achieved via a

call through a function pointer) or through binary patching of kernel routines.

Extensions perform some processing on the intercepted event and then either return

to pass the event to its original destination. Although SLIC, like KernInst, runs on a

commodity kernel (Solaris 2.5.1), it has several limitations. First, its call through a

function pointer requires a well-defined kernel interface on which to intercept events.

For example, intercepting system calls is done by changing the appropriate entry in

the kernel variable sysent[], which contains a table of pointers to routines. These

events are coarse-grained, so the number of instrumentation points is on the order of
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dozens, not hundreds of thousands as with KernInst. SLIC’s method of binary

patching is similar in spirit to that used in KernInst and in Paradyn [43].

Unfortunately, it appears to be flawed; when binary patching, SLIC replaces several

instructions with a jump to the extension, making it susceptible to a race condition

when some kernel thread is executing within the code being modified (see

Section 4.3).

2.1.3  Static Instrumentation

Static binary rewriters such as EEL [53, 54], Rational’s Object Code Insertion [76],

Pixie [88], ATOM [95], and Etch [78] provide fine-grained instrumentation of user

programs (and potentially of kernels).

Static rewriting is performed on the executable file before the program is run. In

the context of a kernel, a reboot is necessary before such instrumentation can take

effect. This problem is magnified when instrumentation code is successively refined.

It is often most efficient (when searching for a performance bottleneck, for example)

to instrument only a few top-level routines at a time. If the results show a bottleneck

in a function, then the instrumentation for it can be removed and applied to the

function’s callees. This strategy can be used to automate the search for

bottlenecks [14, 42], with little run-time overhead, because at any given time only a

few functions are instrumented. This algorithm is prohibitive with any static

instrumentation system, because the program would have to be re-run every time the

instrumentation changes. Static instrumentation systems typically instrument en
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masse; any instrumentation code that might be of interest must be instrumented, prior

to execution.

2.1.4  Dynamic Instrumentation in User Programs

This section reviews related work in dynamic instrumentation in user-level

programs, tracing the development of the earliest such work in debuggers and

performance measurement tools.

The earliest published works on dynamic instrumentation can be found in several

debuggers from the early to mid 1960s, including as DEC’s DDT [27, 30] and

Berkeley’s IMP [52]. These systems envisioned limited uses for code splicing,

primarily for conditional breakpoints and tracing.

A variation on code splicing overwrites an instruction with a trap, which transfers

control to a tool (such as a debugger) that performs some action before continuing the

process. Several steps are required when using traps. First, the tool will temporarily

replace the trap with the original instruction. The instruction is then single-stepped, a

feature assumed to exist on the processor. The single-step traps back to the

controlling tool when done, at which time the tool puts the trap instruction back in

place, and continues the application. Any debugger with this capability can serve as

the foundation for a performance tool, since the inserted code can contain (for

example) performance measurement primitives [12]. The primary limitation of this

mechanism for instrumentation is its run-time expense. Traps are often expensive to

process, and single-stepping after the trap is even more so. If the program is being

instrumented and controlled by an outside tool, several context switches between the
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program and this tool will take place each time the instrumentation point is reached,

increasing the run-time expense further.

KernInst has similarities to the dyninstAPI [13], a library that enables an

application (the “mutator”) to dynamically instrument another process (the

“mutatee”). The dyninstAPI originated by decoupling the instrumentation

mechanism of Paradyn [43, 44] from its GUI. KernInst’s instrumentation differs from

the dyninstAPI in several ways. First, KernInst instruments the kernel, while

dyninstAPI only instruments user programs. Second, whereas dyninstAPI in certain

cases enables fine-grained instrumentation (partly influenced by KernInst), its

support is presently incomplete. In particular, on the SPARC platform, the

dyninstAPI instruments by overwriting up to three instructions. As discussed in

Section 4.3, overwriting more than one instruction is dangerous because

instrumentation code can cross basic block boundaries. A second limitation of using

more than one instruction is that it is unsafe when code is executing within the

sequence being replaced. The dyninstAPI tolerates this condition by detecting it. It

pauses the application and performs a stack trace of all threads; instrumentation is

deferred if a hazard is detected. However, this technique is inherently limited to user-

level instrumentation, since the kernel cannot be paused. A third difference between

KernInst and dyninstAPI is in the area of structural analysis. Because KernInst knows

the live registers at an instrumentation site, it is often possible to emit

instrumentation code without saving and restoring any registers.

KernInst’s dynamic kernel instrumentation has its foundations in

instrumentation for user code. As such, we have briefly reviewed the development of
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dynamic instrumentation in user code, from its origins in early debuggers, to more

advanced uses in performance tools, and finally, recognition of the general-purpose

nature of instrumentation in the creation of a library for run-time instrumentation of

user code. As shown in Chapter 4, dynamic instrumentation cannot be trivially

extended to the kernel; several technical obstacles must be overcome.

2.1.5  Dynamic Instrumentation in Kernels

This section reviews existing dynamic kernel instrumentation work. The most

popular mechanism for kernel instrumentation today is trap-based, similar to the

examples discussed above for user code. KernInst fulfills the need for a faster run-

time splicing-based mechanism for an unmodified modern commodity operating

system kernel.

The earliest known work on dynamic kernel instrumentation was in the kernel

version of the DEC DDT debugger for TOPS-20 platforms, KDDT [85]. However, this

work was never published and no studies of its use were ever published. KDDT, like

DDT, was used primarily for conditional breakpoints and tracing.

An early tool called the Informer [28] provided a form of fine-grained kernel

instrumentation, by allowing performance measurement code to be inserted into an

operating system kernel. However, there are several key differences between

KernInst and the Informer. First, Informer ran on a research platform, the Berkeley

SDS-940, a 3-register machine with a 14-bit address space. Second, splicing in the

Informer was simple because on the SDS-940, a single branch instruction could reach

any range of its address space. In other words, the need for springboards did not
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arise (see Section 4.3). Third, instrumentation code in the Informer is always

bracketed by code to save and restore all registers. While the cost was acceptable on

the SDS-940, it would not be so on a modern platform. Thus, the Informer did not

find a need to perform any structural analysis to determine register usage (see

Section 3.3). Fourth, attaching the Informer to the SDS-940’s kernel was facilitated by

certain actions that privileged user code could perform; in particular, it could allocate

directly from kernel memory by assuming a knowledge of the kernel’s memory map.

In other words, the Informer did not have to deal with bootstrapping onto a running

kernel (see Section 3.2). According to one of its authors, the Informer was never

ported to any other platform, and no case studies of its use were ever published [29].

The Solaris operating system contains a tool called lockstat [92] that instruments

certain lock routines in the kernel, using a form of dynamic instrumentation. A user

program, lockstat, communicates with a kernel driver, /dev/lockstat, which

instruments the kernel by replacing a single instruction with two variations. In the

first variation, the return instruction in a particular lock routine is replaced with a

nop, which causes execution of that routine to continue past the return instruction to

instrumentation code previously inserted after it. The instrumentation code will end

by returning on behalf of the lock routine. The second variation of instrumentation

replaces a return instruction with a branch to instrumentation code. This method is

used when the instrumentation does not happen to fall immediately after the

function, which in practice occurs when instrumentation code is shared between

several routines.
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The instrumentation technology used by lockstat is attractive because of its

simplicity, but it is not as general as KernInst. The primary difference between

lockstat and KernInst is that lockstat requires kernel modifications. Instrumentation

code and labels identifying instrumentation sites are pre-compiled into the kernel. A

second difference is that lockstat only instruments a small subset of kernel routines

(13 instrumentation sites in Solaris 7 running on an UltraSparc). Third, there is a tight

coupling between lockstat and the kernel’s lock routines; they were developed in

tandem. This coupling allows lockstat to avoid problems that arise in a general-

purpose instrumentation system. These problems include bootstrapping the tool

onto a running kernel (see Section 3.2), identifying the location of kernel code (see

Section 3.3), and handling instrumentation code that is not located close enough to

the instrumentation point to be reached with a single branch instruction (Section 4.3).

In general, the splicing used by KernInst subsumes that done by the lockstat driver.

However, lockstat can sometimes reach its instrumentation code a bit quicker than

KernInst. When lockstat replaces a return instruction with a nop, only a single

instruction of perturbation (the nop) is introduced, beyond the inherent expense of

the instrumentation code.

Kitrace [51] is a tool for gathering kernel code traces. It replaces the instructions

being traced with a trap instruction, which causes control to transfer to a custom

handler. This handler appends an entry to the trace log and resumes execution.

Because trap instructions can be inserted at most kernel instructions, Kitrace is fine-

grained. However, KernInst differs from Kitrace in several respects. First, Kitrace

does not instrument the kernel, in the sense that it does not attempt to insert code
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into the kernel. Second, resuming execution after a Kitrace trap is expensive. The trap

instruction is temporarily replaced with the original instruction, a single-step is

performed, and the trap instruction is then put back in place. KernInst’s fine-grained

dynamic instrumentation of any desired code subsumes Kitrace, which effectively

provides insertion of trace-collecting code.

IBM’s Dynamic Probes (DProbes) [60] allows coarse-grained breakpoints and

tracing of both user and kernel code on an x86/Linux platform. Using essentially the

same mechanism as Kitrace, DProbes overwrites a single instruction with a trap.

When executed, this will transfer execution into a kernel handler, which identifies the

specific instrumentation site (probe point) and executes the appropriate

instrumentation code. The original instruction is then executed by temporarily

restoring it, then single-stepping one instruction. Then, the trap instruction is put

back. DProbes is an advance over Kitrace because the code executed by the trap

handler can, to a limited extent, be user-specified. Unfortunately, general

instrumentation cannot be achieved. Presently, a probe’s instrumentation code (probe

program) is written in a custom language that can specify only tracing and

breakpoints. In addition, although not a limitation of the underlying technology,

DProbes presently is not fine-grained since probe points can only be specified as

symbolic names, so only the beginning of functions can be probed.

The single-step approach used by Kitrace and DProbes is unsafe on

multiprocessors. When the original instruction is temporarily restored (for single-

stepping purposes), a thread running on a different CPU that executes this code will

execute the original sequence, thus missing the opportunity to trap and causing the



28

corresponding instrumentation code to be skipped. This problem does not occur in

the user-level variants of trap-based instrumentation discussed in the previous

section, because the controlling tool is able to otherwise pause the application before

replacing the trap instruction and single-stepping.

2.1.6  Instrumentation Summary

No system before KernInst can quickly instrument a running, modern commodity

operating system, entirely at run-time, and at a fine grain. In fact, the closest related

instrumentation work has been done for user programs, where fine-grained static

(and, though somewhat less common, dynamic) instrumentation has been

implemented in several research and industry tools.

2.2  Performance Measurement in Commodity Kernels

Chapter 5 presents the design and implementation of a kernel performance

measurement tool, kperfmon, that is built on top of kerninstd. This section describes

related work in the area of kernel performance measurement, divided into

performance measurement done through sampling-only (Section 2.2.1) and

performance measurement done via instrumentation (Section 2.2.2). As with the

previous section, related work that operates with user programs is also discussed,

because kernel performance measurement tools are few.

To put related performance measurement work into context, we review (from

Chapter 1) the desirable features of a kernel measurement system. It should run on

an unmodified operating system and entirely at run-time, providing precise, not

approximate performance measurements, while introducing little perturbation into
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the system. It should have an extensible set of performance metrics based on event

counting, with wall time and virtual time, and inclusive and exclusive variants. It

should also be able to associate metrics with machine resources other than code, such

as synchronization objects.

2.2.1  Sampling-Only Approaches to Kernel Performance Measurement

Some tools measure performance by periodically interrupting a program (or

operating system kernel) to sample the present value of the program counter (PC)

register. Each sample assigns the time since the last sample to the instruction

corresponding to the sampled PC. Over a long period of time, the results are likely to

yield an accurate profile of where the time is being spent in a program. This approach

to performance measurement is attractive because it does not require

instrumentation (a more complex engineering task, whether done for user programs

or the kernel, and whether done statically or dynamically), and can have low

perturbation that remains nearly constant. This general technique is applied to user-

level code in prof [93] and gprof [40] (gprof uses some instrumentation to obtain

exact edge counts in the program’s call graph, but timing information is collected

exclusively through sampling). Additionally, Compaq’s Continuous Profiling system

(dcpi) [3], Morph [107] for Alpha processors running on Compaq Alpha and NT

platforms, and Intel’s VTune Performance Analyzer for Windows [46] each use

sampling to obtain both operating system and user-level code profiles. Both dcpi and

VTune provide access to on-chip event counters (such as cache misses) to extend the

set of performance metrics beyond simple timings. These tools can measure
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unmodified binaries and run on commodity operating systems with the following

exceptions: gprof requires program recompilation and Morph runs on a modified

version of Compaq UNIX operating system.

Although attractive for design simplicity, the sampling-only approach to

performance measurement has fundamental limitations. The first difficulty with

sampling is in accurately assigning events to instructions causing them. In dcpi, an

event counter register is set to cause an overflow trap, whose handler has to identify

the instruction that caused the trap and update its statistics accordingly. This

identification is difficult on modern processors with imprecise interrupts (delivered

several cycles after the instruction causing the interrupt has completed), and is

impossible on processors whose imprecise interrupt delay is not fixed, such as the

Alpha 21264 [31] and Pentium Pro [45]. A solution to this problem is presented in the

ProfileMe project [25]. Periodically, ProfileMe chooses an instruction to profile. The

CPU, with hardware support specially added to the Alpha 21264a chip [22], will

gather detailed statistics on the instruction’s execution through each stage of the

pipeline, such as whether it hit in the I-cache or which data address it loaded or

stored. When this instruction completes, a trap is generated so that software can read

and process the statistics gathered for this instruction. Instrumentation code that

reads hardware counters does not share this difficulty, because it does not rely on the

(imprecise) interrupt mechanism.

A second fundamental limitation to sampling-only tools is that their timer metrics

can only measure virtual events, not wall time events. This limitation precludes any

metric that inherently includes events while blocked, such as I/O latency and mutex
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blocking time. Wall time cannot be measured purely by sampling the PC register

because a thread will never have its program counter sampled while it is context

switched out. If all threads are presently switched out, then a sample will be of a PC

in the system’s idle loop. However, if any one thread is actively running, its PC, and

not that of any switched-out thread, will be sampled and have profile time assigned

to it.

It is conceivable to measure wall events with a sampling-only approach, but only

by doing significantly more processing during each sample. Specifically, during each

sample, a stack back-trace of all switched out threads can be taken, with events

assigned to the routine(s) that have blocked. The overhead of such an approach

would be prohibitive, because accurate results dictates frequent sampling (5200 per

second for dcpi [3], 1024 per second for Morph [107]), which mandates that very little

work can be done on each sample to maintain acceptable perturbation. Even if the

expense of a stack back-trace per blocked thread on each sample were not

prohibitive, additional complications would arise. Back-traces are often incomplete

in optimized code; a function B (called from A) that calls another function C as its last

action can tear down its stack frame before calling C, causing C to return directly to

A. (This tail-call-optimization and its implications in dynamic kernel instrumentation

are discussed in Chapter 4). Interestingly, the instrumentation approach used by

KernInst can easily measure wall time, but requires additional work to measure

virtual time. However, while additional instrumentation makes virtual time

measurement possible in KernInst (see Chapter 5), sampling tools cannot easily

measure wall time.
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A third limitation of sampling-only profilers is that while they can gather

exclusive metrics with reasonable accuracy, they have difficulty measuring inclusive

metrics. In particular, gprof only achieves inclusive virtual time by instrumenting the

program to collect counts along the edges of the program’s call graph, and assuming

that every call to a function takes the same amount of time [40]. This dubious

assumption can introduce unbounded errors into its reported results that cannot be

mitigated through more frequent sampling [70]. Dcpi does not attempt to report

inclusive time. If it did, results would be even more susceptible to error because

unlike gprof, dcpi uses statistical sampling for both timings and counts. Thus, dcpi

presently gives only a “flat profile”, not attempting to include the time spent in a

routine’s callees.

A fourth limitation of sampling-only measurement is that metrics can only be

associated with code resources, not data resources. For example, frequently it is

useful to measure blocking time for a particular mutex lock object. A sampling tool

cannot provide this metric for two reasons. First, this is inherently a wall time metric,

which as discussed above cannot easily be measured by sampling. More

fundamentally however, associating the time spent in a mutex routine with a

particular mutex object requires being able to identify the mutex object at any time

during the mutex entry routine. Unfortunately, due to compiler optimizations that re-

use registers for different purposes throughout a routine, it may be impossible to

sample the mutex object.

A fifth limitation of sampling-only approaches is that the set of available

performance metrics is fixed, limited to metrics whose underlying value can readily
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be sampled, such as the on-chip counters for cache and branch mispredict misses, or

pre-calculated counters in memory. In contrast, dynamic instrumentation allows

KernInst to create new counters in software, which can then be sampled. Thus, the

instrumentation and sampling-only approaches to performance measurement are

essentially complementary.

A sixth limitation of sampling-only profilers is that, in order to take a periodic

sample, the tools often require exclusive access to the system’s performance timers.

For example, dcpi writes to hardware performance counters to cause an overflow

after a certain amount of time, as the trigger for sampling. Unfortunately, this means

that any tool also wishing to use these counters cannot be run simultaneously with

dcpi.

In the final analysis, sampling profilers are well-suited to a limited class of

performance measurements. For example, dcpi is well-suited for identifying

processor stall cycles due to certain events (cache misses and branch mispredictions)

down to individual instructions; such measurements are most useful on already-

optimized programs that wish to examine their detailed pipeline behavior. Such fine-

grained pipeline measurements have traditionally been the exclusive domain of

simulators. Unfortunately, its limitations in measuring inclusive metrics, in

measuring wall time, in associating metrics with non-code resources, and in creating

new metrics prevent dcpi from being a general purpose profiler.
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2.2.2  Instrumentation Approaches to Kernel Performance Measurement

The most straightforward means of measuring kernel performance is to add

measurements directly into the kernel’s source code. This approach has several

obvious disadvantages. First, the overhead of the instrumentation code is borne

whether or not the data it collects is of interest. Second, changes require access to the

kernel source code, which may not be available. Third, the set of measurements is

fixed; adding or removing data collection requires kernel source code alteration,

recompiling, and rebooting.

Despite the limitations, manual instrumentation is sufficiently popular (in its

simplicity, primarily) that a package called kstats [18, 91] exists in the Solaris kernel

for standardizing certain performance measurements, and access to them from user

code. Similarly, another package called TNF [94] exists to standardize kernel trace

collection through manual instrumentation. However, since this section is concerned

with performance measurement, the discussion is limited to kstats.

The Solaris kstats facility collects counts and timings for hundreds of kernel

events. The kernel’s source code contains calls to macros that increment a counter or

keep track of times when certain events occur, such as writing a virtual memory page

to disk, or TCP packet retransmission. These counters and timers can be read by user

code using the kstat library. Although this library provides access to much

performance information, the approach has several drawbacks. First, the overhead of

instrumentation is incurred each time the event takes place, even if no performance

tool is interested in the data. Second, kstats presently collects system-wide totals; the

source code does not attempt to conditionalize kstat collection to a specific process or
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kernel thread, for example. Third, adding a new kstat counter or timer, or a new

instrumentation point, requires recompilation of kernel code. Dynamic

instrumentation can augment kstats because it can insert kstat counting code at

desired kernel locations during run-time, with the advantage that instrumentation

overhead is present only when a tool desired to collect that information. As shown in

Chapter 5, dynamic instrumentation can also virtualize counters and timers by

instrumenting the context switch routines to temporarily stop and restart the

accumulation of events when a thread or process in question is switched out.

Dynamic instrumentation can be used in concert with the existing kstats framework,

by providing the necessary virtualizing framework.

2.2.3 Summary

Existing work in kernel performance measurement tends to fall under two

categories. In the first, sampling is used to obtain performance information without

kernel modification. However, such tools are not well suited for entire classes of

performance measurements (wall and inclusive metrics), and can only build metrics

using pre-existing event counters. On the flip side are tools for instrumenting the

kernel, such as Solaris’ kstats. This approach can create new event counters and

measure wall time, but requires kernel source code modification. KernInst attempts

to achieve the best of both worlds, allowing accurate performance instrumentation to

be inserted into a stock commodity kernel, while providing the infrastructure for

creating software event counters on which new metrics may be built.
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2.3  Run-time Kernel Code Optimization and Evolving Kernel Code

This section discusses related work in run-time code optimization and evolving

kernels. As with earlier sections, work performed at the user level is occasionally

discussed, since comparatively little research into run-time kernel adaptation has

been done to date.

2.3.1  Run-time Compiler-Like Optimizations in User Programs

Run-time code optimizations are a type of evolving algorithm. This section

discusses existing work in this area, for user-level code.

Dynamo [5] is a user-level run-time optimization system for HP-UX programs

running on PA-8000 workstations. To run under Dynamo, an otherwise unmodified

binary is linked with the Dynamo shared library, and transfers control to Dynamo

with a call to this library. Dynamo then interprets the program (without

instrumenting it), collecting sequences of hot instructions (traces). At that time,

Dynamo will inject an optimized version of the trace (a fragment) into a software

cache. Then, when the code executes this trace, it will execute at full speed. Dynamo

fragments can be interprocedural, spanning basic blocks and procedure boundaries.

Should control exit the set of traces in the fragment cache, Dynamo resumes

interpretation until it reaches an address known to exist in the fragment cache.

Assuming that the program exhibits temporal code locality, Dynamo expects to reach

a steady state where execution takes place almost entirely from the fragment cache.

Although similar in spirit to KernInst’s evolving kernel framework, there are

several differences between the underlying mechanisms used by KernInst and
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Dynamo. First, Dynamo only runs on user-level code, whereas KernInst runs in the

kernel, and could be extended to user code. It would be difficult to port Dynamo to

an operating system kernel because Dynamo uses interpretation to find hot traces,

rather than instrumenting or sampling. Taking control of the kernel at run-time and

interpreting it would be more difficult than doing the same in user space. Even if it

were possible, the overhead of kernel interpretation may be unacceptable because the

entire system is affected by a slow kernel. By contrast, a slowed process usually has

an isolated effect.

A second issue with Dynamo is code expansion. Because Dynamo inserts entire

fragments into its software cache, the same basic block can appear multiple times.

This has the advantage of enabling optimization on interprocedural path traces, but

can result in a code explosion when the number of executed paths is high. It it

possible that the amount of code is acceptable on HP-PA 8000, which has an

unusually large (1 MB) L1 I-cache, but not on the UltraSparc-I or II, which have 16 KB

L1 I-caches [96, 97]. The Dynamo authors note that interpretation increases the

chances for code explosion, because higher interpretation overhead leads Dynamo to

more aggressively speculate the contents of hot traces, so they may be optimized and

put into the fragment cache quickly. Dynamo tolerates possible flooding of the

fragment cache by periodically flushing the cache when it detects frequent additions

to it, on the theory that under such circumstances, a new working set of code is being

formed.

A third difference between the KernInst and Dynamo approaches to evolving

code centers on generality. Dynamo uses interpretation until a hot trace is found, at
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which time native code is executed. This works well as long as code does not need to

be interpreted for long before executing it natively, which is the case when using

Dynamo for code optimizations. It would be less practical, however, to use Dynamo

for other kinds of evolving code scenarios, such as detecting and adapting to a

security attack. Under this example, Dynamo would interpret the system, with

corresponding slowdown, until a security attack is detected, if ever. Thus, Dynamo

cannot be used as the backbone of a general-purpose evolving code framework.

Dynamo’s evolving framework has several fundamental steps; one of which,

measurement, is its weak link. More general-purpose evolving systems are discussed

in Section 2.3.2.

Compaq’s Wiggins/Redstone (W/R) dynamic optimization system is similar in

spirit to Dynamo. It measures an application and emits optimized code, which is

injected into a running program. W/R appears to remove Dynamo’s weak link by

obtaining hot paths through sampling (using a variant of dcpi [3]), without the need

for interpretation. W/R is at this time unpublished, though a presentation with its

key points exists [26]. Both Dynamo and W/R envision only a limited form of

evolving code, the optimization of code through compiler transformations.

A project being developed at Microsoft Research called Mojo [16] is also similar in

spirit to Dynamo, though it runs x86 programs, not PA-RISC programs. The other

significant difference between Mojo and Dynamo is the means of executing “cold”

blocks: Dynamo interprets cold code, while Mojo performs direct-execution. To

simulate the effects of a basic block, Mojo uses a lightweight disassembler to identify

the block’s boundaries, alters its ending control flow instruction so that it returns
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control to the Mojo dispatcher, and is emitted into a buffer for direct execution. A

software cache helps amortize the cost of the disassembly. As a whole, however, Mojo

has not yet achieved the speedups of Dynamo, showing speedups on only two of the

SPEC benchmarks [16].

2.3.2  Run-time Wholesale Changes in User Programs

The above section has given an overview of run-time changes by the application

of compiler optimizations. While useful, such changes are less general than a system

that allows more wholesale changes to running code, such as the installation of an

entirely new version of an algorithm.

Run-time compilers [4, 55] and run-time code generators [33] are an excellent

match for one step of the evolving framework: creation of new code. However,

monitoring, deciding on new code, and installing that code, are left unaddressed in

these projects. This is not necessarily a limitation; it may be desirable to be able to use

independent products when building an evolving system—a fact made possible

because the generation of code is orthogonal to the issue of injecting the code in a

running system and monitoring it.

Berkeley’s Dynamic Feedback project [32] presents a static compiler-based

approach to evolving user code, allowing the best of several different algorithms to

be measured and chosen at run-time. The most important feature of the Dynamic

Feedback system is that it can choose between several radically different

implementations, as opposed to an approach that only can tune one or more control

variables of a single algorithm [20, 80], or one that only performs run-time compiler-
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type optimizations to an otherwise unmodified algorithm (like Dynamo and

Wiggins/Redstone).

In Dynamic Feedback, the compiler generates several different versions of an

algorithm from the same source code, each using a different optimization policy. This

requires a compiler that knows different implementations of the algorithm. Dynamic

Feedback’s compiler automatically parallelizes C++ code, choosing from among

three distinct synchronization algorithms. In Dynamic Feedback, each algorithm is

generated. During run-time, the program alternately performs sampling and

production phases. In the sampling phase, each version is executed for a fixed interval,

and its performance measured through static instrumentation. The longer production

phase then follows, using the version deemed fastest from the sampling phase.

Changing algorithms at run-time is relatively simple: each iteration of the program’s

main loop switches on a variable that indicates the present algorithm. After the

production phase has run for a fixed internal, the program goes back to the sampling

phase, allowing the program to adapt to an environment change since the last

sampling phase.

The infrastructure of Dynamic feedback forms a generic evolving user-code

system because the algorithms that it can switch between can be arbitrarily distinct.

However, there are several limitations compared to the infrastructure used in

KernInst. In the measurement phase of an evolving system, Dynamic Feedback uses

static instrumentation generated by the compiler, while KernInst does not require

any compiler support. A second difference is in the installation phase of an evolving

system. Dynamic Feedback chooses among the three algorithms by simply switching
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on a control variable. This level of indirection, with slight variations (such as a call

through a function pointer), exists in the extensible kernels discussed in Section 2.1.1.

The problems with these levels of indirection are the same: code must be built a priori

with the level of indirection, a slight performance cost is incurred each time that code

is reached, and the number of sites where installation of new code can take place is

limited to places where the level of indirection exists.

2.3.3 Run-time Optimizations and Evolving Code in Research Kernels

The Synthesis kernel [56, 72] provided an early research example of kernel

specialization. In Synthesis, a creation kernel call (such as a file open) generates and

returns specialized code for executive kernel calls (such as file read and write), with

future access through executive calls. Synthesis was purely a research kernel; for

example, it did not support virtual memory. Also, Synthesis required that all

specialization policies be built into the kernel (as pre-compiled code templates that

await only the values of certain parameters to become executable code).

The extensible operating systems discussed in Section 2.1.1 and Section 2.1.2

allow process-specific policies to be installed into a running kernel, providing a

limited form of code adaptation. Extensible kernels allow processes to generate new

code, which is one step of an evolving system. They are also able to install this code,

though with a number of limitations: only a few functions can be replaced, and only

where a pre-existing level of indirection (typically a call through a function pointer)

allows for easy redirection.
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A more complete evolving framework is proposed for the VINO extensible

kernel [82]. To make the kernel self-measuring, it envisions a combination of static

compiler-generated performance instrumentation, hard-wired statistics gathering

throughout the kernel, and run-time installed code to gather traces and logs of the

performance data. Code built into the kernel would detect high resource utilization.

If so, an off-line heuristic system would suggest an algorithmic change, to be

examined by simulating its execution using inputs from the previously gathered

traces and logs. If the algorithm is deemed superior to the current one for a given

process, the extensible kernel would install it.

Although presently unimplemented, the framework as proposed is powerful.

However, a key assumption, that a custom kernel is required for certain steps, is

incorrect, because KernInst can perform them on a commodity kernel. These steps

are installing measurement and trace-gathering code at run-time, simulating in situ a

proposed new policy algorithm, and installing that algorithm in place of the existing

one.

2.3.4  Run-time Optimizations and Evolving Code in Commodity Kernels

The Synthetix project [23, 24, 73, 74, 75] is a follow-up to the Synthesis project,

performing specialization on a modified version of a commodity operating system,

HP-UX. Synthetix allows the implementation of an algorithm (the read system call

in particular) to be specialized on a per-file and per-process basis. The specialization

can be incremental, meaning the level of specialization can change at run-time. The

specialization can also be optimistic, allowing possibly invalid assumptions to boost
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the amount of specialization, provided extra code in the kernel called guards handle

un-specializing the specialized code as soon as any of the optimistic assumptions

become invalid. In a limited context of the read system call, Synthetix has shown that

a customized, though otherwise commodity kernel, can adapt its code at run-time.

There are several differences from the framework used by Synthetix and that used

by KernInst. First, Synthetix runs on a modified version of an operating system.

Second, Synthetix requires that specialized code templates and guards be

precompiled into the kernel. Third, Synthetix invokes the common technique of a

pre-existing level of indirection, a call through a pointer, to be able to easily change

implementations of a function. This means that a slight performance penalty is

incurred whether or not specialized code has been activated. This also limits the

number of points in the kernel that can be specialized (presently a single point in

Synthetix, the read system call). Fourth, the synchronization algorithm that Synthetix

uses to avoid a race condition when specializing code on a multiprocessor assumes

that there is only a single thread per process.

Existing commercial kernels have limited, hard-wired examples of adaptive

execution or evolving code. An example is in the Solaris kernel, which contains a

hard-wired implementation of adaptive execution in its mutex locks called adaptive

locks [57, 58]. An adaptive lock in Solaris will either spin or block when the lock is

being held by another thread, depending on the holding thread’s state. If the holding

thread is presently running (on another processor), then the primitive will spin;

otherwise, the primitive will block. This policy works well in the spin case assuming

that locks are generally held for less time than the overhead of two kernel thread
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context switches, which are inherently incurred whenever waiting for and then

acquiring a mutex lock through blocking.

2.3.5  Summary

This section has reviewed related work in the area of evolving systems. No

system before KernInst provides the underlying mechanism that allows an

unmodified, already-running, commodity operating system kernel to become an

evolving one. Also unlike any existing work, KernInst uses one technology, fine-

grained dynamic kernel instrumentation, for both measuring to identify a problem,

and installing new code into the kernel. A unified technology is important, because

kernel modification is challenging; performing difficult engineering mechanisms

with a single technology can therefore be considered a qualitative advancement.

2.4  Related Work Summary

This chapter has presented an overview of related work in the areas of dynamic

kernel instrumentation and two of its applications, performance profiling and run-

time optimization. No system before KernInst provides the technological

infrastructure for fine-grained dynamic instrumentation of an already-running

commodity operating system kernel. The remaining chapters of this dissertation

describe describes the design and implementation of this infrastructure (Chapter 4),

followed by a manageable and coherent study of some of its many applications:

performance profiling (Chapter 5 and Chapter 6), and evolving kernels and run-time

kernel optimizations (Chapter 8).
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Chapter 3

Introduction to KernInst

This chapter gives an overview of the KernInst system components (Section 3.1),

and then describes the steps that kerninstd performs on startup. These steps are

attaching to a running, unmodified Solaris kernel (Section 3.2) and performing a

structural analysis of the kernel’s machine code (Sections 3.3, 3.4, and 3.5).

The structural analysis information that kerninstd calculates contains the kernel’s

run-time symbol table (function names and their starting addresses in memory), a

per-function control flow graph of basic blocks at the machine code level, a call

graph, and information about live and dead registers at each instruction. A benefit of

working with machine code is that the effect of compiler optimizations, which can

reorder and remove code, are visible.

Kerninstd makes this structural analysis information available for

instrumentation clients. Most applications will find kerninstd’s structural analysis

sufficient for their purposes, without requiring further access to kernel source code.

For example, an application wanting to profile file system pathname-to-vnode
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translations in Solaris need only know that the relevant function is named lookuppn.

(End users of such an application do not even need to know this much.) Also, a code

positioning optimizer works entirely at the machine code level, without source code.

However, some applications may benefit from kernel source code, which KernInst

does not have access to, and cannot make available. Fortunately, such applications

tend to be used by kernel developers, who already have access to kernel source code.

For example, a kernel developer using KernInst to trace a specific source code line

needs the compiler’s debugging line number information to map the line number

into an address.

3.1  KernInst Architecture

The structure of the KernInst system is shown in Figure 3.1. Applications that

wish to instrument the kernel interact with kerninstd, a user-level daemon with super-

user privileges. Kerninstd communicates with a small pseudo-device driver

/dev/kerninst. This driver allocates the code patch and data heaps, which are used to

hold instrumentation code and the data that it uses. Kerninstd maps both heaps into

its address space via /dev/kmem, the standard means in UNIX systems for accessing

kernel virtual memory from privileged user programs.

KernInst’s instrumentation functionality is mostly within kerninstd; only when

kerninstd needs to perform actions in the kernel’s address space does it enlist the

assistance of /dev/kerninst. Placing most functionality in kerninstd has two positive

effects. First, it minimizes KernInst’s presence in the kernel. Second, because the
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driver executes from within the kernel’s address space, it gives kerninstd the ability

to perform certain operations that cannot be performed by a user-level process.

3.2  Bootstrapping

Before kernel instrumentation can take place, kerninstd must attach itself on to

the running kernel, by allocating the code patch area heap, parsing the kernel’s run-

time symbol table, and obtaining permission to write to any portion of the kernel’s

address space. These actions present several technical challenges.

Kerninstd cannot directly allocate kernel memory, so it can not allocate the code

patch heap. Instead, it has /dev/kerninst perform the necessary kmem_alloc call. Once

allocated, kerninstd can write to this memory through /dev/kmem.

To instrument, kerninstd needs to know where functions reside in memory. Thus,

it needs access to the kernel’s run-time symbol table. The static symbol table used at

boot time, from /kernel/unix, is insufficient for two reasons. First, it is incomplete; most

of the kernel is contained in modules that are loaded at boot-time or run-time.

Figure 3.1: KernInst System Architecture
Kerninstd acts as an instrumentation server, performing kernel instrumentation requests that arrive from

applications.
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Second, all kernel modules are relocatable files; their location in memory is unknown

until loaded into the kernel. /dev/kerninst reads the kernel’s run-time symbol table

directly from kernel memory on behalf of kerninstd. (Solaris contains a linked list of

kernel modules, containing symbol locations.) Solaris already provides a similar

interface through the driver /dev/ksyms. Kerninstd does not use /dev/ksyms, which

returns the symbol table in ELF format, without associating global functions with

their respective modules. Kerninstd obtains a copy of the kernel’s symbol table from

/dev/kerninst in about 275 ms.

Both emitting into a code patch and splicing require writing to the kernel’s

address space. Kerninstd uses /dev/kmem when possible. Unfortunately, when

running on an UltraSPARC processor, Solaris 7 (and earlier versions) cannot write to

a kernel area known as the nucleus. The nucleus is a single 4 MB super-page I-TLB

entry, of which 2 MB is reserved for kernel code. The kernel’s run-time linker in

Solaris 7 puts kernel modules in this 2 MB area whenever possible to minimize

kernel I-TLB misses. In Solaris 2.6, only the kernel’s core modules (unix, the

architecture-specific part of the kernel; krtld, the kernel’s run-time linker; and genunix,

the architecture-independent part of the kernel) are placed in the nucleus. Because

writing using /dev/kmem only succeeds when the virtual address is directly writable, it

cannot change code within the nucleus, which is not mapped into the D-TLB. To

circumvent this problem, kerninstd instructs /dev/kerninst to map the appropriate

page (with a call to segkmem_mapin), perform the write, and then unmap it (using

segkmem_mapout).
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Although later releases of Solaris have a /dev/kmem driver that can write to the

nucleus (using the same solution that /dev/kerninst employs), the limitations that

KernInst had to work around have taught us some valuable lessons. First, modifying

kernel code is hard. Second, despite the ubiquity of /dev/kmem in UNIX systems, the

kernel designers may not have anticipated its use in hot-patching the kernel’s code.

Third, even bypassing limited interfaces may not always work; /dev/kerninst could not

trivially write to kernel code within the nucleus. Fortunately, the fourth lesson was

that our back-door access to the kernel while bootstrapping, /dev/kerninst, can work

around such problems.

3.3  Structural Analysis: Control Flow Graph

On startup, kerninstd performs a structural analysis of the kernel’s machine code,

creating a per-function control flow graph (CFG) of basic blocks, calculating a call

graph, and performing an interprocedural live register analysis. Higher-level tools

built on top of kerninstd (such as kperfmon) may perform run-time compiler-like

transformations. As such, these tools would benefit greatly from information that

compilers and linkers discard in whole or in part. Kerninstd’s structural analysis

phase attempts to reconstruct a useful subset of this information, without the benefit

of kernel source code. This section discusses the first of these structural analysis

steps, constructing the kernel’s control flow graphs.

Kerninstd uses the control flow graphs for several purposes. First, it is needed to

calculate live register information (Section 3.5). Second, a CFG provides, more

accurately than the runtime symbol table, the exact locations of a function’s code, and
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hence the set of allowable instrumentation points. Accurate determination of

instrumentation points is important, to ensure that splicing only takes place at code,

as opposed to data embedded within a function or gaps between functions.

Higher-level tools built on top of kerninstd, such as kperfmon, may also have use

of the control flow graphs. For example, a basic block code coverage tool needs to

know the addresses of each basic block. Similarly, kperfmon needs to find a

function’s entry and exit point(s) when inserting instrumentation to start and stop an

event accumulator. A function’s exit point(s) are easily determined given its CFG: the

ends of basic blocks having no successors.

3.3.1  Building a CFG: Basic Rules

Kerninstd creates one control flow graph per kernel function, directly reading and

parsing kernel machine code from memory at run-time. The only a priori information

that kerninstd relies upon for parsing are the entry addresses of each kernel function,

from the kernel run-time symbol table. No source code is required, and no other

information from the kernel’s run-time symbol table is used.

A basic block is a single-entry and single-exit sequence of contiguous instructions.

(Kerninstd makes a few exceptions to this definition, which are discussed in the next

section.) Each block has predecessor and successor edges that represent the possible

flow of control into and out of that block, respectively.

Construction of a function’s control flow graph begins with its entry address,

from the run-time symbol table. The basic block with that address is then parsed.

With some exceptions that will be discussed, a basic block includes all instructions up
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to and including a control flow transfer instruction. If the control flow instruction

keeps control within the function (e.g., is not a return or a procedure call), then its

destination address(es) are recursively parsed in a depth-first manner as new basic

block(s). If a basic block with a particular start address was already parsed, then only

graph edges are added. If an address falls in the middle of an already-parsed basic

block, that block is split in two, with control flow edges showing the first block falling

through to the second one.

There are some cases where parsing of a basic block ends before reaching a

control transfer instruction.

• If an instruction that would otherwise be included in the block is part of an

another, already-parsed block, then basic block parsing ends prematurely. This

situation occurs because the CFG is created using a depth-first traversal; a

function’s code is not scanned sequentially.

• Some assembly language functions have multiple entry points: kerninstd

recognizes each entry point as a different function. To prevent overlapping

functions, kerninstd marks an edge in the CFG for the first function as falling

through to another function, ending the basic block from the first function

prematurely. This pattern, which occurs 114 times in the Solaris kernel, can create

some difficulties for instrumentation clients. For example, kperfmon places some

timing instrumentation code at a function’s exit, under the assumption that the

function has completed. For a function that falls through to another, the

instrumentation would be placed at the point of fall-through, missing the time

spent in the next function. (Instrumentation cannot simply be placed at the exit of

the next function, because it would be executed not only when the first function

falls through to it, as desired, but also whenever the next function was called

directly.)
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3.3.2  Building a CFG: Handling Control-Flow Instructions

This section describes the parsing of control flow instructions. There are simple

cases such as conditional branches, returns, and calls, as well as more complex

register-indirect jumps, which can implement jump tables (e.g., from C switch

statements) and calls through a function pointer.

Most SPARC control transfer instructions are delayed, with the succeeding

instruction (its delay slot instruction) executing before the control transfer takes effect.

The motivation behind delay slots is to hide some branch latency by executing a

useful instruction in the interim. One class of SPARC control transfer instructions,

branches, have a bit that can annul (not execute) the delay slot instruction. A

conditional branch with the annul bit set will execute the delay slot instruction if and

only if the branch is taken. An unconditional branch with the annul bit set will ignore

the delay slot instruction.

Normally, kerninstd includes a non-annulled delay slot instruction in the same

basic block as its control transfer instruction. However, if the delay slot instruction

also happens to be the first instruction of another basic block, then it remains in that

other block. As we will see in Section 4.2, splicing cannot occur in such cases.

Fortunately, the situation only arises four times in the Solaris 7 kernel. (An earlier

study [98] found that it also occurs four times in the Solaris 2.5.1 kernel.) Kerninstd

does not permit splicing at these four instructions.

As with the non-annulled case, conditionally annulled delay slot instructions are

normally kept in the same basic block as their branch control transfer instruction,

although the delay slot instruction is only executed when the branch is taken.
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Logically, this delay slot instruction should be in its own basic block, reachable only

along the if-taken branch, as in Figure 3.2. However, kerninstd does not use this

organization, because it would greatly increase the number of basic blocks (21,105 of

the 72,454 conditional branch instructions in the kernel have the annul bit set), and

therefore memory usage. This space optimization requires that algorithms working

with the control flow graph interpret conditionally annulled delay slot instructions

carefully. For example, the live register analysis algorithm (Section 3.5) must interpret

registers that are definitely written by such a delay slot instruction as maybe written.

To aid the live register analysis algorithm, an exception to this parsing organization

rule is made when the conditionally annulled instruction is a SPARC register

window save or restore instruction (see Section 3.5.1). This exception was necessary

because with such instructions, there is no means to conditionally interpret the effect

of the instruction on register state. In these instances, which occur about 300 times in

the kernel, a single-instruction basic block holding the conditionally annulled delay

instruction is created, as in Figure 3.2.

As will be discussed in Section 3.3.4, there are some cases where a control flow

instruction cannot be analyzed. Although there is a safe backup to understanding a

complex control transfer instruction, marking a block’s successor edge as

unanalyzable, it is important to parse control flow instructions accurately, for four

reasons. First, control flow graphs, and in particular the boundaries of each basic

block, specify the locations of all kernel code, and thus the set of allowable

instrumentation points. Basic block parsing cannot continue when the destination

address(es) are unknown. If the jump will keep control within the function, then the
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opportunity to parse some basic block(s) may be lost. Second, making an over-

cautious analysis may lead algorithms using the CFG, such as live register analysis,

to return conservative results. Third, some operations may lead to inaccurate results.

For example, kperfmon would have to (arbitrarily) guess whether an unanalyzable

edge exits the function, thus deciding whether instrumentation placed at a function’s

exit site(s) belongs there. Fourth, there are some algorithms, such as the run-time

basic block reordering optimization discussed in Chapter 8, that cannot work with

any unanalyzable edges in the graph. In this example, the problem is that the jump

instruction may implement an unknown kind of jump table. Correctly relocating a

jump table sequence when its destination blocks have changed order requires

making corresponding changes to the jump table data. Kerninstd is presently very

cautious when it encounters an unanalyzable jump, giving up on parsing the

function’s CFG entirely. To be safe, kerninstd presently precludes instrumentation

Figure 3.2: Conventional Placement of Conditionally Annulled Delay Instruction
The delay slot instruction (add %o2, 4, %o3) is placed in its own basic block, reachable only when the branch is
taken. Unfortunately, this single-instruction basic block is not an efficient use of memory for KernInst’s control

flow graph or live register analysis.

bne,a ifTaken

...

add %o2, 4, %o3(delay slot insn)

If-Taken:

...

If-Not-Taken:

...



55

anywhere in an unanalyzable function. (Section 3.3.4 summarizes the set of

unanalyzable kernel functions.)

The control transfer instructions that kerninstd recognizes are:

• Branches. A branch instruction will always be at the end of a basic block. The

branch destination is recursively parsed as a new basic block in the CFG if the

branch is local. Interprocedural branches occur about 600 times in the kernel.

If the branch was conditional, the fall-through address is then recursively

parsed, except where the fall-through address is the start of another function.

• Jumps to a Constant Address. Code that jumps to a register having previously

been set to a constant address is detected and treated like an unconditional

branch. Detection is done by taking a backwards slice on that register and

checking whether the instructions of that slice set that register to a constant value.

Even though this pattern occurs only two times in the kernel, recognizing it leads

to a more precise analysis.

• Returns. A return sequence is always found at the end of a basic block. There are

three standard return instructions on the SPARC: ret, return, and retl. Not all

returns use the standard instructions. Kerninstd also recognizes another kind of

return sequence, a jump to a register whose value is a saved copy of the link

register on function entry. This unusual sequence is found by examining a

backwards slice on the register; it occurs five times in the kernel.

• Procedure Calls. According to strict definition, a normal procedure call (i.e., one

that is expected to return) should end a basic block, because it transfers control.

However, kerninstd uses a modified definition of a basic block: once entered, all

code within the block will execute. This allows instructions after the call to be

included in the same basic block, assuming the procedure call will eventually

return. The call edge is represented elsewhere, in kerninstd’s call graph
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(Section 3.4). Algorithms such as live register analysis must manually check for

procedure calls within basic blocks, and handle them accordingly.

Including procedure calls into the middle of a basic block reduces the amount

of storage required for the CFG and live register analysis; of the 65,506 procedure

calls in the kernel, 57,247 of them are located in the middle of a basic block. A

variant of a procedure call, where the destination is specified in a register (this

usually implements a call through a function pointer) occurs 2,389 times in the

kernel. Code traversing the CFG must note such unanalyzable calls and make

conservative assumptions about the possible destination(s). It can assume,

however, that the call will return; this sequence should not be confused with the

unanalyzable jump discussed above.

• Tail Calls. A tail call is one that will cause the called function to return not to its

caller, as is the norm, but to where the caller itself would normally return. A tail

call has the same semantics as a call followed by a return, but may execute faster.

It is important for kerninstd to properly recognize and parse tail calls, because

they serve as both call sites and return points.

Two forms of tail calls are common in optimized SPARC code. In the first form,

the calling routine has its own stack frame (using the save instruction). A restore in

the delay slot of the call tears down this frame, which includes the link register.

Figure 3.3 illustrates this sequence, which occurs about 3,000 times in the kernel.

In the other tail call variant, found about 800 times, the calling routine does not

have a stack frame, and simply jumps to the callee (without writing to the link

register). This kind of tail call is an interesting technical example, showing that

under compiler optimizations, certain C functions can make procedure calls even

without having a stack frame (so long as all of its calls are tail calls). A variant of

the above patterns, where the callee address is in a register (as in a tail call

through a function pointer), is not presently analyzed by kerninstd; the

ramifications are discussed in Section 3.3.4.

• Intraprocedural calls. A call whose destination is within the same function occurs

38 places in the kernel, and is usually recursion. Another three calls are
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intraprocedural yet are not recursive. In these cases, kerninstd assumes that the

callee is a function that was missing in the symbol table, and re-parses

accordingly. (Unfortunately, it cannot give the new function a meaningful name.)

Another odd form of procedure call has a destination address of the current

address plus two instructions. This sequence can be found in assembly code that

wishes to read the program counter, by using a side effect of the call instruction,

writing the current program counter to the link register. Although it was found in

earlier versions of the kernel, this sequence does not occur in Solaris 7, which uses

a SPARC v9 instruction [103] for reading the program counter directly. It is

important to recognize such sequences to avoid the spurious recognition of a new

function.

• Jump Tables. A jump table usually implements a C switch statement. There are

several variants; all end by jumping to an address in a single register or to an

address that is the sum of two registers. The individual cases are identified by

performing a backwards slice on those register(s), and examining the slice for a

particular pattern. It is important to accurately recognize jump tables, because an

Figure 3.3: Tail Call
In this example, function B (called from A) makes a tail call to C. B has a restore instruction in the delay slot of
the call to C, which changes to A’s stack frame. The link register now contains the address in A where it calls B,

so C will return directly to A.
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unrecognized jump instruction will be considered unanalyzable, causing

kerninstd to give up parsing (and the ability to instrument) many functions.

The slice approach, modeled after a similar design in EEL [54], facilitates the

search for particular jump table patterns by filtering out instructions that could

not have affected the jump. Once a match is made for a particular kind of jump

table, enough information has been obtained to know the possible destination

addresses, which are recursively parsed as successor basic blocks. In the CFG, a

basic block ending in a jump table looks much like a block ending in a conditional

branch, except that the number of successor blocks is variable: the number of

unique jump table entries.

The kinds of jump tables that kerninstd recognizes are:

❍ Offset Jump Table. This sequence sets one register to the start of the jump

table data. Another register, typically the C variable controlling the switch, is

used to calculate a byte offset within the jump table. The jump table entry is

loaded, obtaining an offset that is added to the start of the jump table to

produce the destination basic block address. Offset jump tables occurs 143

times in the kernel, having on average 9.0 successor basic blocks.

❍ Simple Jump Table. The contents of the jump table are 32-bit absolute

addresses, not offsets from the start of the jump table. One register is set to the

constant address of the start of the jump table data. Another register is used to

determine the byte offset within the jump table. A jump table entry is loaded

from the sum of these registers; the loaded value is an address that is then

jumped to. This kind of jump table occurs 12 times in the kernel, having on

average 5.2 successor basic blocks.

❍ Tagged Jump Table. Each tagged jump table entry consists of a four byte tag,

against which the control variable is compared, and a destination address

associated with the tag. Potentially, the entire jump table needs to be searched

to find a match. Although previous versions of the Solaris kernel contained

this type of jump table, it is not present in Solaris 7, due to compiler changes.
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❍ Non-Loading Jump. This not a jump table per se, since no indirect load is

performed to calculate the destination address. Instead, one register is set to a

base location in code, the second register produces an offset, and control is

transferred to that location. This kind of jump is used when the destination

basic blocks are of equal size and are laid out sequentially. In Solaris 7, this

occurs in some assembly routines: blkclr (two occurrences) and hwblkclr, having

on average 12.3 successor basic blocks.

3.3.3  Control Flow Graph Results: What Was Parsed

The CFG is useful to many instrumentation applications, yielding estimates on

perturbation and the number of instrumentation points that may be required, for

example. This section summarizes the contents of the kernel’s control flow graphs,

presenting code size, the number of functions and basic blocks, and the number of

control edges into and out of basic blocks. Because kernel module sizes vary greatly,

and because certain applications may be interested only in functions from specific

modules, the information is presented per module. The result is contained in

Figure 3.4, with modules sorted by their overall code size. The first column contains

the module’s name and description, followed by the module’s code size, calculated

by summing the size of each parsed basic block. As a result, this figure correctly

excludes any dead code and embedded data, and so can be more accurate than the

symbol table’s function size field. The next column shows the number of functions in

the module that were successfully parsed, giving (for example) the number of

simultaneous instrumentation points needed to measure the number of function calls

made to code in this module. The column’s additional number in parenthesis, if any,

is the number of functions that were not successfully parsed. The next column gives



60

the number of parsed basic blocks, which is useful in estimating the number of

instrumentation points needed to measure code coverage, for example. Next are

columns for the average number of basic blocks per function and average number of

instructions per basic block, which are useful in estimating the perturbation of

instrumentation code. The final two columns give information about the edges in the

CFG: the average number of successors and the average number of predecessors of a

basic block in this module, useful for estimating the amount of instrumentation

needed to measure edge coverage, for example.

Module #bytes
# fns

(+unparsed)
# bbs bbs/fn

insns/
bb

succs/
bb

preds/
bb

genunix 646116 2589 (+113) 32360 12.5 5 1.5 1.3
afs (afs syscall interface) 516176 922 17654 19.1 7.3 1.5 1.4
unix 279264 1758 (+37) 12705 7.23 5.5 1.5 1.2
ufs (filesystem for ufs) 146776 337 6861 20.4 5.3 1.5 1.4
nfs (NFS syscall, client, and common) 139336 479 6526 13.6 5.3 1.5 1.3
ip (IP Streams module) 131092 373 7230 19.4 4.5 1.5 1.4
md (Meta disk base module) 113872 390 5556 14.2 5.1 1.5 1.3
tcp (TCP Streams module) 75764 159 3748 23.6 5.1 1.5 1.4
procfs (filesystem for proc) 69804 174 3431 19.7 5.1 1.5 1.4
sd (SCSI Disk Driver 1.308) 65948 115 3005 26.1 5.5 1.5 1.4
rpcmod (RPC syscall) 51408 209 (+12) 2516 12 5.1 1.5 1.3
sockfs (filesystem for sockfs) 48664 149 (+2) 2482 16.7 4.9 1.5 1.3
pci (PCI Bus nexus driver) 39656 127 1614 12.7 6.1 1.5 1.3
hme (FEPS Ethernet Driver  v1.121 ) 39636 97 1773 18.3 5.6 1.5 1.3
se (Siemens SAB 82532 ESCC2 1.93) 38184 69 1750 25.4 5.5 1.5 1.4
fd (Floppy Driver v1.102) 35200 54 (+1) 1609 29.8 5.5 1.6 1.5
zs (Z8530 serial driver V4.120) 31996 48 1401 29.2 5.7 1.5 1.4
uata (ATA AT-bus attachment disk controller Driver) 29296 127 (+2) 1228 9.67 6 1.5 1.2
krtld 28780 127 (+1) 1475 11.6 4.9 1.5 1.3
rpcsec (kernel RPC security module.) 27204 122 (+3) 1297 10.6 5.2 1.5 1.2
ufs_log (Logging UFS Module) 27196 131 1191 9.09 5.7 1.5 1.3
xfb (xfb driver 1.2 Sep  7 1999 11:46:39) 23820 99 1154 11.7 5.2 1.5 1.3
audiocs (CS4231 audio driver) 22964 83 942 11.3 6.1 1.5 1.3
dad (DAD Disk Driver 1.16) 22340 56 992 17.7 5.6 1.5 1.3
tmpfs (filesystem for tmpfs) 20184 66 901 13.7 5.6 1.5 1.3
ldterm (terminal line discipline) 19740 45 1122 24.9 4.4 1.5 1.4
afb (afb driver v1.36 Sep  7 1999 11:47:45) 18356 60 630 10.5 7.3 1.5 1.4
scsi (SCSI Bus Utility Routines) 17388 78 (+9) 827 10.6 5.3 1.5 1.3
tl (TPI Local Transport Driver - tl) 16756 57 893 15.7 4.7 1.5 1.3
specfs (filesystem for specfs) 15704 48 (+2) 653 13.6 6 1.5 1.3

Figure 3.4: Summary Structural Analysis Kernel Information
Modules vary greatly in their number of functions, basic blocks, and bytes of code. Surprisingly, they also vary

on the average number of blocks per function, and to a lesser extent, the average block size. However, control flow
edge information (numbers of successors and predecessors) is nearly uniform.
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arp (ARP Streams module) 15600 67 (+1) 885 13.2 4.4 1.5 1.3
SUNW,UltraSPARC-IIi 15488 60 (+3) 584 9.73 6.6 1.5 1.3
vol (Volume Management Driver, 1.85) 15360 23 752 32.7 5.1 1.5 1.5
doorfs (doors) 14480 52 713 13.7 5.1 1.5 1.3
su (su driver 1.24) 13700 31 592 19.1 5.8 1.5 1.4
udp (UDP Streams module) 13616 43 720 16.7 4.7 1.5 1.3
timod (transport interface str mod) 13584 36 669 18.6 5.1 1.5 1.4
kerninst (kerninst driver v0.4.1) 13360 116 618 5.33 5.4 1.4 1.1
fifofs (filesystem for fifo) 11608 40 (+2) 575 14.4 5 1.5 1.4
kb (streams module for keyboard) 10804 36 624 17.3 4.3 1.5 1.3
tnf (kernel probes driver 1.47) 10768 55 491 8.93 5.5 1.5 1.2
pm (power manager driver v1.65) 10052 29 501 17.3 5 1.6 1.4
TS (time sharing sched class) 9936 36 501 13.9 5 1.5 1.3
devinfo (DEVINFO Driver 1.24) 9632 35 425 12.1 5.7 1.5 1.3
ipdcm (IP/Dialup v1.9) 9516 52 516 9.92 4.6 1.5 1.3
ttcompat (alt ioctl calls) 8480 14 457 32.6 4.6 1.5 1.4
diaudio (Generic Audio) 8220 28 (+1) 486 17.4 4.2 1.5 1.4
elfexec (exec module for elf) 8008 12 283 23.6 7.1 1.6 1.5
shmsys (System V shared memory) 7728 19 316 16.6 6.1 1.6 1.4
ptc (tty pseudo driver control ‘ptc’) 7412 16 401 25.1 4.6 1.6 1.4
tlimod (KTLI misc module) 6468 21 360 17.1 4.5 1.5 1.3
winlock (Winlock Driver v1.39) 5484 39 284 7.28 4.8 1.4 1.2
hwc (streams module for hardware cursor support) 5428 11 250 22.7 5.4 1.5 1.2
ms (streams module for mouse) 5340 17 304 17.9 4.4 1.5 1.3
ptem (pty hardware emulator) 4996 13 294 22.6 4.2 1.5 1.3
simba (SIMBA PCI to PCI bridge nexus driver) 4728 18 172 9.56 6.9 1.5 1.2
seg_drv (Segment Device Driver v1.1) 4544 25 (+2) 215 8.6 5.3 1.5 1.2
sad (Streams Administrative driver’sad’) 4528 23 234 10.2 4.8 1.5 1.2
namefs (filesystem for namefs) 4464 32 165 5.16 6.8 1.4 1.1
lockstat (Lock Statistics) 4436 27 206 7.63 5.4 1.5 1.2
ptsl (tty pseudo driver slave ‘ptsl’) 4396 14 215 15.4 5.1 1.5 1.3
rootnex (sun4u root nexus) 4320 19 230 12.1 4.7 1.5 1.2
dada ( ATA Bus Utility Routines) 3988 30 (+3) 209 6.97 4.8 1.5 1.3
dada_ata ( ATA Bus Utility Routines) 3880 30 (+3) 203 6.77 4.8 1.5 1.3
md5 (MD5 Message-Digest Algorithm) 3672 8 28 3.5 33 1.4 1
sysmsg (System message redirection (fanout) driver) 3556 15 187 12.5 4.8 1.5 1.3
mm (memory driver) 3440 13 175 13.5 4.9 1.5 1.3
wc (Workstation multiplexer Driver ‘wc’) 3384 18 186 10.3 4.5 1.5 1.2
ebus (ebus nexus driver) 3336 13 136 10.5 6.1 1.5 1.2
ptm (Master streams driver ‘ptm’) 3052 12 149 12.4 5.1 1.5 1.3
pts (Slave Stream Pseudo Terminal driver ‘pts’) 2944 12 148 12.3 5 1.5 1.3
RT (realtime scheduling class) 2780 24 139 5.79 5 1.4 1.1
iwscn (Workstation Redirection driver ‘iwscn’) 2740 19 124 6.53 5.5 1.5 1.2
fdfs (filesystem for fd) 2668 17 124 7.29 5.4 1.4 1.2
eide (PC87415 Nexus driver v2.0) 2584 19 111 5.84 5.8 1.5 1.1
conskbd (Console kbd Multiplexer driver ‘conskbd’) 1972 14 121 8.64 4.1 1.4 1.1
todmostek (tod module for Mostek M48T59) 1872 10 33 3.3 14 1.4 1
log (streams log driver) 1768 9 83 9.22 5.3 1.5 1.2
sy (Indirect driver for tty ‘sy’) 1704 12 80 6.67 5.3 1.4 1
consms (Mouse Driver for Sun ‘consms’) 1700 14 105 7.5 4 1.4 1.1

Module #bytes
# fns

(+unparsed)
# bbs bbs/fn

insns/
bb

succs/
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Figure 3.4: Summary Structural Analysis Kernel Information
Modules vary greatly in their number of functions, basic blocks, and bytes of code. Surprisingly, they also vary

on the average number of blocks per function, and to a lesser extent, the average block size. However, control flow
edge information (numbers of successors and predecessors) is nearly uniform.
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The results contain a few surprises. First, even excluding the kernel’s core (unix,

krtld, and genunix), the modules vary greatly in total size. Also surprising was the

wide discrepancy in the average number of basic blocks per function. The modules

with the greater number of total instructions (near the top of the table) also tended to

have more basic blocks per function. The average number of instructions in a basic

block also varied, though not as widely. The moderate variance is in line with another

study of operating system basic block lengths [15]. The average number of

instructions per basic block can aid in estimating the perturbation introduced by per-

block instrumentation (such as a basic block code coverage tool). For example, if

instrumentation contains twelve instructions, one would expect code being profiled

in such a manner to approximately triple in size, when including the size of

kstat (kernel statistics driver) 1580 12 84 7 4.7 1.4 1
pckt (pckt module) 1480 11 92 8.36 4 1.5 1.3
ksyms (kernel symbols driver) 1480 11 61 5.55 6.1 1.4 1
inst_sync (instance binding syscall) 1368 11 57 5.18 6 1.5 1.2
power (power driver v1.4) 1336 11 66 6 5.1 1.4 0.98
cn (Console redirection driver) 1196 13 60 4.62 5 1.4 1
sysacct (acct(2) syscall) 1168 6 46 7.67 6.3 1.5 1.2
clone (Clone Pseudodriver ‘clone’) 992 7 54 7.71 4.6 1.4 1.1
intpexec (exec mod for interp) 896 5 51 10.2 4.4 1.6 1.3
pseudo (nexus driver for ‘pseudo’) 872 10 44 4.4 5 1.5 0.98
ipc (common ipc code) 564 5 38 7.6 3.7 1.5 1.1
pipe (pipe(2) syscall) 472 4 13 3.25 9.1 1.3 1
connld (Streams-based pipes) 312 6 16 2.67 4.9 1.4 0.94
options (options driver) 280 7 24 3.43 2.9 1.3 0.75
redirmod (redirection module) 244 6 12 2 5.1 1.2 0.58
TS_DPTBL (Time sharing dispatch table) 80 5 5 1 4 1 0
IA (interactive scheduling class) 76 3 5 1.67 3.8 1.2 0.4
RT_DPTBL (realtime dispatch table) 56 3 3 1 4.7 1 0
platmod 40 5 5 1 2 1 0

Totals: 3110636 10637
(+197) 142641 13.4 5.5 1.5 1.3
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Figure 3.4: Summary Structural Analysis Kernel Information
Modules vary greatly in their number of functions, basic blocks, and bytes of code. Surprisingly, they also vary

on the average number of blocks per function, and to a lesser extent, the average block size. However, control flow
edge information (numbers of successors and predecessors) is nearly uniform.
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instrumentation. There was near uniformity in control flow edges; a basic block

averages about 1.5 successors and 1.3 predecessors.

A summary of the time it takes to create the control flow graph is shown in

Figure 3.5. Since this action is performed only when kerninstd starts, the cost (under

five seconds) is quite reasonable.

A greater concern with the control flow graph is its memory consumption.

Structures to hold the basic blocks consume 3.6 MB of memory, which includes the

block’s address boundaries, its predecessor and successor edges, and information to

facilitate searching for basic blocks by address; it does include not the code within the

block. The actual kernel code, as originally parsed, is kept in a per-function structure,

and consumes 3.3 MB of memory. Storing kernel code is unnecessary; kerninstd

could always read the code on demand via /dev/kmem. However, certain operations

such as live register analysis need fast access to kernel code.

Parsing Step
Time

(seconds)
Read function’s code from kernel memory 0.45
Add this code to the function object (makes a copy of the code) 0.15
Parse basic blocks, creating CFG 2.6
Update the call graph (Section 3.4) 0.65
Other actions 0.45
Total 4.3

Figure 3.5: Time to Parse Function Control Flow Graphs
The above times are for kerninstd compiled with g++ 2.95.2, optimization level -O2, and assertions disabled

running on a 440 MHz UltraSPARC processor. After some preliminary actions, most notably reading code from
kernel memory, CFG parsing requires less than three seconds. Together, this phase of kerninstd startup takes

about 4.3 seconds.
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3.3.4  Control Flow Graph Results: What Was Not Parsed

Of the 10,834 functions, 197 are not presently parsed by kerninstd. This section

analyzes the reasons behind these parsing failures, and the ramifications.

Three kernel functions could not be parsed because they make calls to routines

that will not return, such as to panic. Kerninstd’s parsing can fail in this case because

it assumes that the call will return. It continues to parse, running off the end of the

function. If a list of functions that will not return were known to kerninstd, then these

routines could be parsed.

Another four kernel functions perform a jump that behaves like a return, but are

not recognized as such because a backwards slice on the destination register does not

show it being initialized with a copy of the link register on function entry.

Twelve assembly functions perform unique patterns of unanalyzable jumps. They

will likely be the most difficult routines to parse correctly.

The remaining 177 un-parsed functions all have a common form of tail call that

kerninstd does not parse. These routines have no stack frame of their own, and make

an indirect tail call by simply jumping to the contents of a register, without setting a

link register. Kerninstd does not currently recognize this sequence because there is no

set pattern to the backwards slice on the register containing the destination address.

To parse these routines, kerninstd would have to assume that all unanalyzable jumps

to a register are in fact this kind of tail call—an incorrect assumption for some of the

sequences discussed earlier in this section. In addition, if a new jump table format

were introduced into the kernel code, which often happens when a kernel upgrade
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contains code generated with a new compiler version, hundreds of misidentifications

could occur.

Nevertheless, it should be possible to properly recognize and parse most, if not

all, of these functions with some additional work. Although there may not be one

fixed pattern to which they conform, there may be a manageable set that can match

these sequences without adding undue complexity to kerninstd.

The repercussions of unanalyzable jumps are presently minor. The 177 indirect

tail calls are normally stub functions that simply perform one or more loads to obtain

a function pointer, which is used for a jump. Stub routines are presumably of little

interest for performance measurement and optimization. On the other hand, a few

such indirect tail calls are within non-trivial functions that may be of interest. The

other 20 unanalyzable functions are mostly, though not entirely, routines of no

interest because they are only invoked during booting or a kernel panic. In all,

despite 197 un-parsed functions, kerninstd is able to function well.

3.4  Structural Analysis: Call Graph

The call graph represents interprocedural calls and branches, providing a

complement to the control flow graphs, which maintain intraprocedural control

transfers.

The call graph is constructed by traversing the basic blocks of all control flow

graphs, identifying calls and interprocedural branch instructions with fixed

destination addresses. Register-indirect calls or jumps (such as through a function

pointer in C) having a statically unknown destination are not put in the call graph.
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Construction of the call graph, updated incrementally after each function’s

control flow graph is parsed, takes 0.65 seconds. The call graph consumes about 0.6

megabytes of memory in kerninstd.

3.5  Structural Analysis: Live Register Analysis

During startup, kerninstd performs a dataflow analysis on the kernel, yielding the

registers that are live (contain a value that may be used in the future) and dead (will

definitely be written before read) at each instruction. The register liveness

information lets applications generate code snippets that use dead registers at an

instrumentation point, when possible, instead of spilling to the stack to free up some

scratch registers. Live register information is also used internally by kerninstd to

obtain a scratch register, when needed, for jumping to and from a code patch, and for

relocating the overwritten instruction at the instrumentation point.

3.5.1  Dataflow Representation and Basic Algorithms

A dataflow function [1] represents the effects of executing code (such as an

individual instruction, a basic block, or an entire function) on the liveness of each

register. For example, a dataflow function may indicate that %o0 and %o1 are killed,

%o3 and %o7 are made live, and all other registers are unaffected.

Dataflow functions can be composed to represent sequential execution.

Successive composition of dataflow functions for each instruction of a basic block, in

reverse order, yields a dataflow function for the basic block as a whole. Two dataflow

functions may be merged (union of registers made live; intersection of registers
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killed; intersection of registers unaffected) to combine the effects of both the if-taken

and if-not-taken successors of a conditional branch, for example.

Dataflow functions usually require two bits per register [1]. KernInst represents

32 integer registers, 64 floating point registers, and several other registers (such as

condition codes, program counter, and processor interrupt level) in its dataflow

functions, totaling 16 bytes. However, the SPARC architecture complicates matters.

Most of the SPARC integer registers are organized in partially overlapping register

windows [103]. At any time, a program can access eight non-windowed integer

registers called global (%g0-%g7), and 24 windowed integer registers called input

(%i0-%i7), local (%l0-%l7), and output (%o0-%o7). A save instruction creates a new

window by shifting the register window as shown in Figure 3.6. The register window

stack is conceptually infinite, though only the topmost eight windows are kept on

both UltraSPARC-I [96] and UltraSPARC-II [97] implementations. A save that

overflows the on-chip window stack causes a trap; the handler writes the oldest

window to memory. A restore is the opposite of save. It can trap by underflowing the

on-chip window; the handler reads one window from memory.

A’s register window frame

%i0 - %i7

%l0 - %l7 B’s register window frame

%o0 - %o7 %i0 - %i7

%l0 - %l7

%o0 - %o7

Figure 3.6: SPARC register window overlapping
In this example, A has its own register window frame. It then calls B, which sets up its own frame by executing
a save instruction. B gets a new set of %l and %o registers, and its %i registers overlap with (i.e., are aliases

for) the previous frame’s %o registers.
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Register windows make live register analysis challenging because different places

in the code may (implicitly) use different windows. A KernInst dataflow function is

therefore a stack of dataflow function windows, with one level (using 16 bytes of

storage) for each register window accessed by the code being analyzed.

3.5.2  Startup Algorithm: First Phase

Per-block dataflow functions are calculated after kerninstd parses the kernel’s

control flow graphs. Each dataflow function represents the effect on register liveness

of executing a routine up to the beginning of that basic block. When the startup

algorithm completes, a dataflow function for the effect of executing an entire routine

is available in that routine’s entry block dataflow function.

The startup algorithm is as follows. Kerninstd first calculates dataflow functions

for each basic block in isolation (as if blocks had no successors or predecessors). As

mentioned in Section 3.5.1, the calculation iterates backwards through a block,

composing the dataflow effect of each instruction. Calls can be present in basic blocks

(see Section 3.3.2). The effect of a callee is considered before the effect of the call’s

delay slot instruction, which is considered before the call’s side-effect of setting the

link register. (This ordering is consistent with the temporal nature of backwards

dataflow problems.) A callee’s effect is determined by recursively performing live

register analysis on it if needed, in a depth-first traversal. Thus, kerninstd’s live

register analysis is interprocedural.

A conservative dataflow result is used for an unanalyzable callee. This situation

occurs for functions whose CFG could not be parsed, for calls through a pointer, and
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for callees that could not be recursively analyzed due to a cycle in the call graph.

SPARC register windows make calculating a conservative result for a routine

difficult. Each window in the dataflow function (see Section 3.5.1) will report all

registers made live, but the number of such windows must be chosen. Most routines

have balanced saves and restores, requiring a one-window dataflow function. But

some routines are imbalanced, and incorrectly guessing the number of stack

windows confuses live register analysis. In particular, it is unclear how to merge two

dataflow functions with a disagreeing number of windows. Kerninstd is able to work

around this problem by hard-wiring the number of stack windows needed for the

dataflow functions of certain routines. Only a single routine, stubs_common_code,

presently needs to be so kludged. This routine, which performs a restore but no save,

is a commonly invoked wrapper for calling a function in another module, which may

need to be loaded and locked down. Because stubs_common_code is indirectly

recursive, a conservative result is needed during the depth-first traversal of the call

graph. Using a conservative dataflow function with the proper number of stack

windows for stubs_common_code enables analyzing over 500 routines that otherwise

would fail. There are many such unbalanced routines in the kernel, and all but

stubs_common_code had this attribute determined automatically.

Other control flow effects (both intra- and interprocedural branches, jump tables,

etc.) are considered along control flow graph edges, not within basic blocks, and thus

are not considered during the first phase.
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3.5.3  Startup Algorithm: Second Phase

The second phase of the startup algorithm calculates per-block dataflow functions

representing execution of a routine up to the beginning of each block (not in isolation,

as in phase one). Intermediate results from the first phase are used in this calculation,

then discarded. The dataflow function for a basic block is re-calculated, whenever the

dataflow function for one of its successor blocks changes, using the following steps.

First, the results calculated thus far for each successor block are gathered. Results for

interprocedural edges (such as an interprocedural branch or an interprocedural fall-

through) are gathered like the results for calls were gathered in the first phase: by

recursively analyzing the destination routine, if needed. Next, the dataflow function

for this basic block in isolation (from phase one) is applied to the result for each edge.

These results are then merged to obtain a new dataflow function for execution up to

the beginning of the basic block. The block’s predecessor(s) then have their dataflow

functions re-calculated. Phase two repeats until convergence.

Conceptually, it would be ideal to store the dataflow functions for every

instruction, making it trivial to query the set of scratch registers available at an

instrumentation point. However, the required storage would be prohibitive, so

kerninstd only keeps this information at the top of each basic block. Dataflow

functions at individual instructions are calculated on demand at run-time (see

Section 3.5.4).

Even throwing out all but the dataflow functions at the top of each basic block

requires 11.5 MB of storage in kerninstd. A further time/space trade-off could be
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made, such as storing only dataflow functions at the entry of each function. Dataflow

functions at instruction granularity can still be calculated at run-time on demand.

The startup phases of interprocedural live register analysis complete in about 3.2

seconds.

3.5.4 Runtime Algorithm

Given dataflow functions representing the effects of execution up to the top of

every basic block, it is straightforward to calculate dataflow functions up to the

beginning of a desired instruction at run-time. This is the same information that was

calculated at intermediate points during the second phase of the startup algorithm.

First, a dataflow function for execution up to the bottom of the basic block is

calculated by merging the dataflow functions of the block’s successors. Next, a

dataflow function representing execution of part of the basic block in isolation—from

just before the instruction in question to the end of the basic block—is calculated,

using the same logic as phase one of the startup algorithm. Finally, this function is

composed with the dataflow function for the bottom of the basic block to obtain the

desired result: a dataflow function representing execution of that routine up to, but

not including, the instruction in question.

The time to execute the runtime algorithm depends on the number of instructions

that need to be analyzed, which is the distance from the instruction in question to the

end of the basic block, and the number of successors, which determines how many

dataflow functions need to be composed and then merged. A typical case, with two

successor blocks and five instructions in the basic block to be analyzed, completes in



72

about 30 µs. About 16 µs of this time is to calculate the effect of the (partial) basic

block, 4 µs for the two compositions, and the remainder to merge the compositions.

3.5.5 Live Register Analysis: Results

Knowing how many integer registers are dead at various instrumentation points

is useful to instrumentation clients that hope to generate code snippets using only

dead registers. Two categories of instrumentation points, function entry and exits, are

of special interest because they are the ones most commonly instrumented by

kperfmon. This section summarizes the results of kerninstd’s interprocedural live

register analysis, presenting the average number of dead registers at various points

in the kernel. The number of dead registers tends to vary between modules,

Module
#save
entry
points

Avg.
dead
regs

#non-
save
entry
points

Avg.
dead
regs

#exit
points

Avg.
dead
regs

Avg. dead
regs for

every insn

genunix 1957 1.2 632 2.0 5487 13.1 6.2
afs (afs syscall interface) 922 0.3 0 -- 1874 15.0 9.1
unix 1023 1.3 735 2.6 2993 9.4 7.0
ufs (filesystem for ufs) 300 1.2 37 1.9 936 14.5 5.7
nfs (NFS syscall, client, and common) 379 0.8 100 1.5 1480 14.0 6.2
ip (IP Streams module) 303 1.3 70 1.9 1099 13.6 7.6
md (Meta disk base module) 349 1.2 41 2.0 1028 14.7 7.3
tcp (TCP Streams module) 144 1.4 15 2.1 533 14.2 7.1
procfs (filesystem for proc) 150 1.5 24 1.8 444 14.3 6.1
sd (SCSI Disk Driver 1.308) 108 2.1 7 2.6 423 15.0 6.1
rpcmod (RPC syscall) 150 1.0 59 1.6 568 12.8 5.4
sockfs (filesystem for sockfs) 120 0.8 29 1.5 465 14.1 6.2
pci (PCI Bus nexus driver) 89 2.1 38 2.4 302 13.0 6.9
hme (FEPS Ethernet Driver  v1.121 ) 85 1.2 12 3.0 322 13.7 7.7
se (Siemens SAB 82532 ESCC2 1.93) 62 1.1 7 3.0 200 14.7 7.6
fd (Floppy Driver v1.102) 50 1.5 4 3.5 159 15.1 6.9
zs (Z8530 serial driver V4.120) 36 1.4 12 2.2 136 14.0 6.0
uata (ATA AT-bus attachment disk controller Driver) 94 1.3 33 1.5 274 13.2 8.9
krtld 87 1.4 40 1.4 253 11.3 6.2
rpcsec (kernel RPC security module.) 94 0.9 28 2.0 385 14.2 7.3

Figure 3.7: Dead Registers in the Solaris 7 Kernel
Dead registers are available for scratch use in instrumentation code. Kerninstd’s interprocedural live register
analysis shows that function entry points have few dead registers and exit points have many dead registers.

Interestingly, the average number of dead registers throughout the kernel (over every instruction) approximately
splits the difference between the entry point and exit point averages. Functions that were not successfully parsed

into control flow graphs are not included in these numbers.
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ufs_log (Logging UFS Module) 106 1.2 25 2.6 229 13.5 5.8
xfb (xfb driver 1.2 Sep  7 1999 11:46:39) 86 1.0 13 2.2 287 14.7 6.6
audiocs (CS4231 audio driver) 68 2.2 15 2.6 157 13.3 9.0
dad (DAD Disk Driver 1.16) 48 2.1 8 1.2 190 14.1 6.4
tmpfs (filesystem for tmpfs) 55 1.0 11 2.5 168 14.4 6.0
ldterm (terminal line discipline) 34 1.1 11 2.5 151 12.8 7.1
afb (afb driver v1.36 Sep  7 1999 11:47:45) 53 2.3 7 2.9 103 14.3 7.3
scsi (SCSI Bus Utility Routines) 59 1.2 19 2.7 147 12.3 5.8
tl (TPI Local Transport Driver - tl) 46 1.4 11 2.9 207 14.0 7.0
specfs (filesystem for specfs) 40 1.3 8 2.9 115 13.9 5.6
arp (ARP Streams module) 54 1.6 13 2.1 181 13.6 7.7
SUNW,UltraSPARC-IIi 25 2.1 35 3.4 76 8.1 8.3
vol (Volume Management Driver, 1.85) 23 1.8 0 -- 70 15.4 5.3
doorfs (doors) 39 0.9 13 2.3 128 13.9 5.5
su (su driver 1.24) 25 1.6 6 3.2 89 14.7 5.7
udp (UDP Streams module) 37 1.7 6 2.3 187 14.4 7.9
timod (transport interface str mod) 32 1.2 4 3.5 113 14.7 6.8
kerninst (kerninst driver v0.4.1) 72 1.7 44 2.0 191 11.8 8.9
fifofs (filesystem for fifo) 31 1.1 9 1.7 81 13.7 5.1
kb (streams module for keyboard) 25 0.6 11 2.6 147 13.0 9.0
tnf (kernel probes driver 1.47) 47 1.4 8 2.4 129 14.2 9.6
pm (power manager driver v1.65) 25 1.2 4 1.8 95 15.2 5.6
TS (time sharing sched class) 22 1.4 14 2.6 88 12.0 7.5
devinfo (DEVINFO Driver 1.24) 30 1.8 5 2.6 73 14.1 6.4
ipdcm (IP/Dialup v1.9) 44 0.9 8 1.9 117 13.9 6.8
ttcompat (alt ioctl calls) 8 1.5 6 4.0 40 12.4 12.8
diaudio (Generic Audio) 21 0.7 7 2.7 70 13.6 5.2
elfexec (exec module for elf) 9 1.0 3 4.3 19 13.4 6.5
shmsys (System V shared memory) 16 1.1 3 2.7 39 14.5 4.5
ptc (tty pseudo driver control ‘ptc’) 15 1.9 1 5.0 64 15.7 4.7
tlimod (KTLI misc module) 16 1.1 5 1.8 79 14.1 9.6
winlock (Winlock Driver v1.39) 32 1.4 7 2.1 80 13.8 7.5
hwc (streams module for hardware cursor support) 8 1.1 3 4.3 71 14.8 9.0
ms (streams module for mouse) 9 1.2 8 1.9 45 12.0 7.3
ptem (pty hardware emulator) 9 0.9 4 4.2 74 14.5 9.3
simba (SIMBA PCI to PCI bridge nexus driver) 14 1.1 4 2.0 46 14.5 9.4
seg_drv (Segment Device Driver v1.1) 16 1.4 9 2.1 55 13.2 5.2
sad (Streams Administrative driver’sad’) 16 1.2 7 3.7 74 13.3 7.4
namefs (filesystem for namefs) 26 1.2 6 2.7 50 13.5 5.6
lockstat (Lock Statistics) 18 1.2 9 2.7 59 11.9 8.7
ptsl (tty pseudo driver slave ‘ptsl’) 10 1.6 4 3.8 39 12.9 5.3
rootnex (sun4u root nexus) 14 1.3 5 2.4 63 14.1 9.3
dada ( ATA Bus Utility Routines) 25 1.1 5 2.4 39 13.3 7.0
dada_ata ( ATA Bus Utility Routines) 25 1.1 5 2.4 38 13.3 7.1
md5 (MD5 Message-Digest Algorithm) 3 1.3 5 3.0 9 7.8 5.3
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into control flow graphs are not included in these numbers.
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depending on how much code is written in C versus assembly. For compiled code,

the number of dead registers also depends on the compiler used to generate the code,

and at what optimization level it used. The results are summarized in Figure 3.7. The

first column contains the module’s name and description, with the same ordering of

sysmsg (System message redirection (fanout) driver) 10 1.3 5 3.6 35 14.7 6.4
mm (memory driver) 7 1.6 6 3.3 28 11.8 5.6
wc (Workstation multiplexer Driver ‘wc’) 10 1.3 8 2.8 54 12.3 6.8
ebus (ebus nexus driver) 12 1.2 1 5.0 41 15.5 7.7
ptm (Master streams driver ‘ptm’) 8 1.1 4 3.8 27 12.1 3.8
pts (Slave Stream Pseudo Terminal driver ‘pts’) 8 1.4 4 3.8 29 12.3 4.0
RT (realtime scheduling class) 10 1.0 14 2.5 42 10.7 7.5
iwscn (Workstation Redirection driver ‘iwscn’) 13 1.1 6 2.5 32 11.1 5.8
fdfs (filesystem for fd) 11 1.3 6 2.7 29 12.8 9.4
eide (PC87415 Nexus driver v2.0) 15 1.5 4 3.2 40 14.4 9.3
conskbd (Console kbd Multiplexer driver ‘conskbd’) 10 1.0 4 2.2 43 12.3 9.6
todmostek (tod module for Mostek M48T59) 7 4.6 3 4.7 13 11.2 7.7
log (streams log driver) 5 0.8 4 3.5 25 12.6 5.9
sy (Indirect driver for tty ‘sy’) 8 1.6 4 3.5 28 13.9 5.4
consms (Mouse Driver for Sun ‘consms’) 10 1.0 4 2.2 38 11.9 9.1
kstat (kernel statistics driver) 7 0.9 5 3.2 33 11.5 5.0
pckt (pckt module) 6 0.5 5 3.2 23 12.7 6.9
ksyms (kernel symbols driver) 9 1.9 2 3.0 23 13.2 7.4
inst_sync (instance binding syscall) 8 1.0 3 4.3 14 12.5 7.2
power (power driver v1.4) 9 1.0 2 3.0 28 14.4 6.9
cn (Console redirection driver) 7 1.3 6 2.5 26 10.8 7.3
sysacct (acct(2) syscall) 2 1.0 4 3.0 12 10.8 5.3
clone (Clone Pseudodriver ‘clone’) 2 1.5 5 2.4 16 8.5 5.2
intpexec (exec mod for interp) 2 0.5 3 4.3 12 12.7 9.8
pseudo (nexus driver for ‘pseudo’) 2 1.0 8 2.1 21 7.7 7.0
ipc (common ipc code) 2 0.0 3 4.3 13 13.0 9.2
pipe (pipe(2) syscall) 1 1.0 3 3.0 4 5.5 4.7
connld (Streams-based pipes) 3 0.7 3 4.3 7 10.6 3.6
options (options driver) 1 2.0 6 2.0 14 3.3 3.9
redirmod (redirection module) 3 0.7 3 3.0 8 10.9 6.5
TS_DPTBL (Time sharing dispatch table) 0 -- 5 2.8 5 1.8 2.5
IA (interactive scheduling class) 1 1.0 2 3.0 4 9.0 9.2
RT_DPTBL (realtime dispatch table) 0 -- 3 3.3 3 2.3 2.9
platmod 0 -- 5 0.6 5 0.6 0.6
Totals: 8147 1.2 2490 2.3 24708 13.2 7.1
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into control flow graphs are not included in these numbers.
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Figure 3.4 (by code size). Next is the number of functions having their own stack

frame, and the average number of dead registers at the entry of such functions. The

next columns give similar entry point information for functions that do not begin

with a save. Next is information about the number of dead registers at exit points. For

functions bracketed with save and restore instructions, an exit point usually has 15

dead registers: all %l and %o registers (the non-overlapping part of a register

window), except for %o6, the stack pointer. For exit points that are optimized tail

calls, the number of dead registers assumes the ability to de-optimize this sequence

into a regular call and return sequence, which will be discussed in Chapter 4. The

final column shows the average number of dead registers over every machine code

instruction in the kernel.

The results contain a few surprises. First, there are few dead registers at the entry

to functions that set up their own stack frame using save and restore (an average

of 1.2). In such functions, the entry point is just before the save, which accesses a

different register window than the rest of the function. Nevertheless, due to register

window overlapping, some registers are usually dead before a save. In particular, any

dead %o registers just after a save will appear as dead %i registers just before the save.

Entry points for functions that do not set up their own register windows have

more dead registers than entry points functions with a save, but still few (an average

of 2.3 dead registers instead of 1.2). The ratio of functions having their own register

window to those that do not varies greatly; for afs, every function begins with a save

(indicating compilation without optimization, a surprise for a commercial driver).
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As expected, exit points usually have many registers free, though such a high

kernel-wide average (13.2 dead registers) was surprising. The most pleasant surprise

was in the final column, showing a kernel-wide average of 7.1 dead registers, which

is more than enough to execute any of the code snippets generated by kperfmon.

And finally, it is interesting to note that average number of dead registers through all

kernel instructions roughly splits the difference between the average number of dead

registers at function entries and exits. It is possible that the decrease in dead registers

at an instruction is linear in the distance from an exit point. This would suggest that

applications having some freedom where to place instrumentation code should

choose to instrument as close to an exit point as possible. For example, an application

instrumenting every basic block for code coverage may find more scratch registers

when placing instrumentation at the ends of basic blocks, rather than at block entries.

The numbers presented for dead registers is conservative because kerninstd

ignores assumptions that are normally allowed by an application binary interface

(ABI), such as registers that are volatile across a function call. This conservative

assumption can affect the result when a function does not make any reference to such

a register. Because not all kernel code follows the SPARC ABI, such assumptions

would be dangerous. It would be useful to strengthen kerninstd’s analysis by

identifying the majority of code that does follow the SPARC ABI. The existence of

user-level ABI verification tools such as appcert [90] suggests that automated

identification of the set of functions that follow an ABI is possible.
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3.5.6  Live Register Analysis: What Could Not Be Analyzed

Live register analysis cannot be performed for any function that was not

successfully parsed into a control flow graph (see Section 3.3.4). Several other

routines could not be analyzed. Two functions, debug_flush_windows and

flush_user_windows, flush the SPARC register window contents to the stack. These

functions cannot be analyzed because they perform save and restore instructions in a

loop, making a fixed number of window levels in its dataflow functions impossible to

set. A few other routines (less than 10) do not analyze correctly because the if-taken

and if-not-taken successors to a conditional branch have dataflow functions with a

disagreeing number of window levels. This presently occurs in some assembly

language functions that call panic; the call is preceded with a save instruction, but with

knowledge that panic never returns, a corresponding restore was intentionally

omitted. This omission causes kerninstd to identify this part of the function with a

dataflow function having a save without a corresponding restore, causing confusion

when this dataflow function is later merged with code having a balanced save and

restore count.

A function that is successfully parsed into a CFG but failed in live register

analysis is still instrumentable, under the conservative assumption that all registers

are live throughout the function. (These functions are included in Figure 3.7, but

since they are few, they do not significantly alter the averages.)
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3.6  Summary and Research Contributions

This chapter has introduced the KernInst system structure, and described the

actions that are performed by kerninstd at start-up. The unique characteristic of

KernInst described in this chapter is the ability to load a performance tool onto an

unmodified commodity kernel at run-time. KernInst startup has three components:

allocating the code patch heap, obtaining a structural analysis of the kernel’s code,

and obtaining the ability to write anywhere in the kernel’s address space. After start-

up, kerninstd is able to perform run-time kernel splicing, the subject of the next

chapter.
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Chapter 4

Fine-Grained Code Splicing and Code Replacement

This chapter presents the design and implementation of the two dynamic kernel

instrumentation primitives in KernInst: fine-grained code splicing, which inserts

arbitrary instrumentation code at machine code instruction granularity, and code

replacement, which installs a new version of a function.

Splicing overwrites one machine code instruction at the desired instrumentation

point with a jump to a code patch. In the simplest case, the code patch contains the

instrumentation code generated at run-time, the overwritten instruction, and a jump

back to the instruction following the instrumentation point, as shown in Figure 4.1.

The net effect inserts the generated code before a desired machine code instruction.

Figure 4.1: Code Splicing
One machine code instruction is overwritten with a branch to patch code, which contains the desired

instrumentation code, the overwritten instruction, and a branch back to the instruction stream.

Kernel Code Code Patch
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Code replacement instruments the entry point of a specified function to jump to

the new version of the function. To reduce run-time overhead, code replacement also

alters statically identifiable call sites to the function so they directly call the new

version, avoiding the overhead of the inserted jump.

An important feature of KernInst is that its splicing and code replacement

mechanisms are independent of code generation. KernInst is general enough to splice

in, or use as a replacement, machine code that has been created from code generation

packages such as VCODE [33], dynamic compilers [4, 55], an interpreter performing

just-in-time compilation, or precompiled position-independent code.

A second important feature of KernInst’s instrumentation mechanisms is that

they do not require kernel source code. A splicing request is some machine code and

the kernel code address where it should be inserted. A code replacement request is

some machine code and the name of the function it should replace. A particular

application that generates the machine code may benefit from access to the source

code, but placing that code into the kernel via splicing or replacement does not

require source code.

The remainder of this chapter discusses how KernInst performs fine-grained run-

time instrumentation and code replacement of a Solaris 7 kernel running on an

UltraSPARC processor. Sections 4.1 through 4.4 describe code splicing, and

Section 4.5 describes code replacement. Section 4.6 discusses future work, including

porting these primitives to other platforms. Section 4.7 summarizes the chapter,

including its research contributions.
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4.1  Splicing: Basic Code Patch Issues

This section presents some basic issues regarding the allocation of the code patch

and filling it with desired instrumentation code. Section 4.2 discusses relocating the

overwritten instruction at the instrumentation point into the code patch.

Kerninstd de-couples splicing from generation of instrumentation code.

Kerninstd is an instrumentation server, accepting requests from instrumentation

clients to splice machine code into the kernel at a particular instrumentation point.

Before such a request is made, however, the instrumentation client is likely to query

the set of dead registers at the instrumentation point; such registers can be used in the

instrumentation code. The instrumentation client then generates two machine code

version of the instrumentation code. The first version uses only the available scratch

registers, if there are enough (otherwise, it will contain save and restore instructions to

free some registers). A second version, to be used in case kerninstd decides to bracket

the instrumentation code with save and restore instructions at its own behest, must

also be generated. Kerninstd may use the second version because there can be

multiple snippets of instrumentation code at a particular instruction, which as a

whole may require more scratch registers than are available.

Because kerninstd may insert save and restore instructions into the code patch, it is

unsafe to instrument some of the kernel’s trap handling code. In the register-

window-overflow trap handler, inserting a save would cause an infinite loop. In other

trap handlers, a save can cause a trap that can cause a panic by raising the number of

nested traps above the processor’s maximum.
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To splice, kerninstd must first allocate a code patch. The code patch size is the

total size of the instrumentation snippet(s) presently installed at this point, plus room

for the save and restore instructions if needed, space for the original instruction at the

instrumentation point, and space to jump back to the instruction after the

instrumentation point. For the returning jump, there are several possible code

sequences, with varying numbers of instructions, depending on the required

displacement and whether there is a scratch register available. Thus, the number of

instruction bytes required for the code patch cannot be precisely determined until it

has been allocated. The circular dependency is broken by assuming the maximum

number of instructions needed to perform a jump (4 for a 32-bit kernel, 6 for a 64-bit

kernel). Calculating the patch size usually takes about 20 µs, and allocating it

typically takes 4 µs.

Once patch space has been allocated, kerninstd prepares to write to it by calling

mmap on /dev/kmem, which typically takes 40 µs. The first write to mapped memory

typically takes another 15 µs, due to the kernel’s policy of deferring allocation of a

physical backing page until needed. Although Solaris 7 cannot directly write to a

code patch allocated within the nucleus via /dev/kmem (see Section 3.2), writing to it

indirectly via mmap works. When emitting completes, the corresponding munmap

takes about 20 µs.

The code patch begins with instrumentation code that was downloaded from a

client. Although the client sends relocatable code (roughly similar to an ELF object

file), emitting could not take place before code patch allocation, because the final
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representation of some instructions (such as SPARC calls) depends in part on their

location in memory.

4.2 Splicing: Relocating the Overwritten Instruction to the Code Patch

The code patch ends with a relocated version of the instruction that was

overwritten by the splicing branch, or a semantically equivalent sequence of several

instructions. This section discusses the key concepts of relocation, and then

demonstrates relocation of some of the more interesting cases. A key conclusion is

that relocation is always possible; every SPARC instruction can be relocated to the

code patch either verbatim, or with a semantic equivalent sequence of instructions.

An overview of relocation is presented in Section 4.2.1. Section 4.2.2 discusses the

relocation of optimized tail calls (see Section 3.3.2), showing how kerninstd is able to

instrument a point that previously did not even exist: after the callee returns, but

before its caller returns. Section 4.2.3 discusses relocation of conditional branches, as

an example of allowing instrumentation to be placed along control flow graph edges.

Section 4.2.4 discusses the challenging case of instrumenting at delay slot

instructions.

4.2.1  Basic Concept: Maintain Semantics

The relocated code must maintain the semantics of the overwritten instruction. In

the simple case of most non-control-flow instructions, the instruction can be relocated

verbatim to the code patch, and only needs to be followed with a code sequence to

jump back to the instruction following the instrumentation point. Instructions that

transfer control unconditionally, such as return, need not be followed by such a jump.
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Maintaining semantics when overwriting a control transfer instruction having a

delay slot generally requires relocating the delay slot instruction to the code patch as

well. As before, only one instruction is overwritten during splicing. The original

delay slot instruction, left in place, will no longer be executed. If the control transfer’s

delay slot instruction was itself a delayed control-transfer instruction, relocation

would be much more complex. Fortunately, such a code pattern does not exist in the

kernel.

Relocation often requires subtle changes when the semantics of the overwritten

instruction depend on its location in memory. Consider an instruction that copies the

address contained in the program counter to another register. To maintain the

original semantics, the relocated version of this instruction must put the address of

the instrumentation point into the destination register. Similarly, the SPARC jump-

and-link instruction copies the program counter to a specified destination register

before jumping. The relocated version maintains semantics with several instructions.

First, the address of the instrumentation point is copied to the specified register (the

“link” part of the jump-and-link). Then, the original jump is performed, though

modified to ignore the link. Similarly, the SPARC call instruction always writes the

program counter to %o7. The equivalent relocated sequence writes the address of the

instrumentation point to %o7, then unconditionally jumps to the callee.

4.2.2  Creating An Instrumentation Point Where None Existed: Relocating
Tail Calls

The exit point of tail call is the most technically challenging to splice, and the most

useful. As discussed in Section 3.3.2, a tail call sequence causes the callee to return—
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not to its caller, but to where its caller would itself normally return. Semantically, it

performs a call then a return, but there is no place in the code to splice

instrumentation after the callee returns but before the caller returns.

This section discusses relocating the tail call sequence in a way that allows

instrumentation to be placed after the callee has returned. Examples in this section

assume the most common SPARC tail call sequence: call; restore. Unwinding other tail

call sequences are handled similarly.

A tail call can be instrumented before it returns by first de-optimizing it into a

semantically equivalent call then return. Figure 4.2 shows the original code and the

de-optimized version that will be placed in a code patch.

Original Tail Call Equivalent Unwound Code

// arguments are in %i regs

call C
restore reg1, reg2, reg3 // delay slot

// Restore also adds reg1 and reg2
// (from the current register window)
// to reg3 (in the post-restore register
// window).

// In the kernel, reg3 is always either
// %g0 (no add is done), or an %o
// register.

// arguments are in %i regs

add reg1, reg2, reg3’
// reg3’=reg3, but changed from an %o to an %i register
// Duplicates the part of the restore that did an add

// Set up args for C:
copy %i0-i5 to %o0-o5

call C
nop

// Copy back result from C, if any
copy %o0-o5 to %i0-i5

Exit point instrumentation, if any, goes here.
The ability to place instrumentation here did
not exist in the original code.

ret
restore // plain restore, with no add

Figure 4.2: Tail Call Unwinding to Allow Exit Point Instrumentation
The original call; restore sequence is relocated to the code patch in an unwound, de-optimized, and semantically
equivalent sequence that allows instrumentation code (in bold) to be placed just before this sequence returns. The

ability to instrument at the exit point did not exist in the original code.
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Tail call unwinding is also performed by Paradyn [44], which does it in the

following order: (1) execute a restore instruction to unwind the caller’s stack frame,

(2) save the link register %o7 onto the stack, (3) do a normal call, (4) execute desired

exit point instrumentation, (5) restore the link register from the stack, and (6) return.

Paradyn’s algorithm is attractive because, like the original code, the restore is

performed before the call, using one less register window frame than KernInst’s

method. Unfortunately, the stack location used to save the link register cannot safely

be used as scratch storage; it is space reserved for the operating system to spill a

register window frame, if needed. The latest version of Paradyn uses the same

unwinding sequence as KernInst.

4.2.3  Relocating Conditional Branches

SPARC conditional branch instructions are an interesting case to instrument. The

user can request that instrumentation code be executed in three cases: if the branch

was taken, if the branch was not taken, or both. The first two cases are an example of

inserting instrumentation code along control flow graph edges. Branch instructions

are also challenging to relocate because they have a PC-relative displacement. To

maintain the same if-taken address after relocation, the instruction’s displacement

must be changed. But because the modified displacement may not fit in the

displacement field, branches may need to be relocated as a semantically-equivalent

sequence of several instructions, as shown in Figure 4.3.
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4.2.4  Relocating a Delay Slot Instruction

Although in the Solaris kernel, no delay slot instruction is itself a control-transfer

instruction (see Section 4.2.1), splicing at a delay slot is problematic. Figure 4.4

illustrates the difficulty, where a splice instruction (ba,a) is placed in the delay slot of a

call. Because the ba,a is itself a delayed control transfer instruction (even though it has

no delay slot), one instruction of the callee will execute before the ba,a is able to

transfer control to the code patch.

Code Patch Contents
Instrumentation to be executed whether or not branch is taken, if any, goes here
branch <condCheck><condCode> to “if-taken”
nop // delay slot

if-not-taken:
Instrumentation to be executed only if the branch is not taken, if any, goes here
relocated delay slot instruction, if the branch had a delay slot that is executed on fall-through.
jump to instrumentation point address+8

if-taken:
Instrumentation to be executed only if the branch is taken, if any, goes here
relocated delay slot instruction, if the branch had a delay slot that is executed on if-taken.
jump to destination of the overwritten branch

Figure 4.3: Relocated Conditional Branch Instruction (Most General Case)
Note that the relocated version of the branch enables three possible places to drop in instrumentation: when the

branch is taken, when the branch is not taken, or both. The first two places did not exist in the original code.
Depending on an “annul” bit in the branch instruction, a delay slot instruction may exist; if so, it can be

executed always, only when the branch is taken, or never. The relocated sequence allows each of these
possibilities. Finally, note that above sequence can often be optimized, most obviously for an unconditional

branch.

Original Code Code After Splicing Executed Instructions
...
0x1000: call bar (at 0x2000)
0x1004: add %g0, 1, %o0
...

...
0x1000: call bar (at 0x2000)
0x1004: ba,a to 0x3000
...

code patch:
0x3000:...

0x1000
0x1004
0x2000 first instruction of bar
0x3000 finally, the ba,a to the
code patch takes effect

Figure 4.4: Why Splicing at a Delay Slot Cannot Work
The effect of replacing the add instruction at 0x1004, which is the delay slot of the call to bar, with a splice

instruction to a code patch, is undesirable. Because the splice instruction (ba,a) is itself a delayed instruction, it
will not have a chance to transfer control until exactly one instruction of bar has executed.



88

Splicing at a delay slot cannot be safety performed, but the desired effect can be

achieved by splicing at the delay slot’s control transfer instruction. In each of the

control transfer instructions discussed above, there is an opportunity to place

instrumentation code before the relocated delay slot instruction. Although this

feature is not yet implemented in KernInst, it is not difficult to do. The most

challenging case is splicing instrumentation code before a delay slot instruction that

is conditionally executed, which occurs when the control transfer instruction is a

conditional branch with the annul bit set. Here, the delay slot instruction will only

execute if the branch is taken, and as such, maintaining semantics requires

instrumentation code that is only executed only when the branch is taken. Because

relocation of conditional branches (Section 4.2.3) has if-taken and if-not-taken code

portions, the solution is straightforward.

The above technique will not work when the delay slot is also the destination of a

branch. The difficulty is in knowing from which control transfer instruction this

instruction was reached. There are at least two possibilities: the parent control

transfer instruction, and one (or more) branches that reach the delay slot instruction.

The path taken to this instruction dictates where control should be resumed at the

end of the code patch. If the instruction were reached as a delay slot of its parent

control transfer instruction, then it should be handled as described earlier in this

section. Otherwise, it should be handled be falling through to the next instruction.

Because of this ambiguity, splicing cannot take place at a delay slot instruction that is

also the start of a basic block. As mentioned in Section 3.3.2, this pattern is found only

four times in the Solaris kernel.
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4.3  Splicing: Jumping to the Code Patch

Once a code patch has been emitted, the final step is to overwrite the existing code

at the instrumentation point with a jump or branch instruction that reaches the code

patch. Similarly, un-splicing takes place by putting the original instruction at the

instrumentation point back in place. This step is challenging for several reasons.

First, the kernel is running while the splicing is taking place, and cannot be paused.

Code may be executing at or near the instrumentation point while splicing occurs,

raising the possibility of a dangerous race condition. Second, the Solaris kernel is

multi-threaded, increasing the chances of a dangerous race condition. Third, we do

not assume that the original code at the instrumentation point has in any way been

modified a priori to facilitate splicing.

Splicing (and un-splicing) a multi-threaded kernel without pausing is

accomplished by ensuring that only one instruction is replaced at the instrumentation

point. When splicing, the instruction will be a branch to the code patch. When un-

splicing, the instruction will be the original, overwritten instruction at the

instrumentation point. This section motivates the single-instruction-write rule, notes

a technical problem that arises, and discusses two solutions.

4.3.1  Avoiding Hazards During Splicing

For safety, kerninstd always splices by overwriting a single instruction at the

instrumentation point with a branch to the code patch. It will take time for the new

instruction to take effect; at a minimum, it must make its way from the data cache, to

the unified L2 cache, and to the instruction cache, before it can be brought into the
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pipeline. The delay does not cause any hazardous race conditions; it only means that

the precise time when the splice takes effect is unknown. Until it takes effect, any

kernel thread executing at the instrumentation point will fetch and safely execute the

original pre-splice code. Once the splice takes effect, a kernel thread will fetch and

execute the post-splice code sequence. Since it is not possible to execute a mix of the

pre-splice and post-splice code sequences, single-instruction splicing is hazard-free.

Atomic splicing is necessary but insufficient to ensure safe execution. For

example, even though the SPARC can atomically overwrite two instructions at the

instrumentation point, a thread can sometimes execute a mix of pre-splice and post-

splice sequences in this case, as shown in Figure 4.5.

The dyninstAPI [13] and Paradyn [43, 44] user-level tools avoid this problem by

pausing the program and examining a back-trace of all threads to check whether any

are currently within, or will return to, any but the first of the instructions being

overwritten. If a hazard is detected, then splicing is deferred and retried later.

However, this technique cannot work in a kernel, for several reasons. First, pausing

the kernel is not allowed; even if it were, it could disrupt potentially critical

background activities. Second, performing the necessary back-trace on all threads

Before Splicing After Splicing
Executed

Instructions

Original 1, New 2

Figure 4.5: Atomic Splicing is Not Enough
Splicing is hazardous whenever the program counter has executed some, but not all, of the instructions that are
overwritten. As soon as execution continues, a mix of some of the pre-splice and some of the post-splice sequences

is executed.

Original 1
Original 2

PC is here
New 1
New 2

PC is (still) here
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would be very expensive. Third, even if pausing were possible and inexpensive, a

jump with an unanalyzable destination (such as a longjmp) can find a way to reach the

middle of the overwritten instruction sequence, resulting in the same hazard. A

fourth problem with multiple-instruction splicing is that it is hard to make it fine-

grained. In particular, if the instrumentation point is the last instruction of some basic

block B1, then some of the splice sequence will spill over into the next basic block B2.

If B2 is reachable from another basic block B3, then code executing along the path

(B3, B2), will execute an inconsistent instruction sequence which can crash the kernel.

When splicing, kerninstd overwrites a single instruction by having /dev/kerninst

perform an undoable write. An undoable write overwrites one instruction in kernel

memory. Additionally, it logs information about the change (address and original

content), so it can undo the effects of the write in an emergency. In KernInst, such an

emergency situation occurs if kerninstd crashes. Without undoable writes, branch

instructions used for splicing will be left in place after a kerninstd crash, likely

causing a panic when module unloading is re-enabled and the code patch heap is de-

allocated. An undoable write is not used when writing to uninitialized allocated

memory, or when writing to a location for which undoable write state is already

being kept. The latter case occurs when instrumentation at a particular site is

changed; the branch to the old code patch is replaced with a branch to the new code

patch, and undoable write state is not updated. An undoable write takes about 30 µs

when writing to the nucleus, and about 8 µs otherwise. Undoing an undoable write

takes about 25 µs when in the nucleus, and about 7 µs otherwise.
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4.3.2  The Challenge: Insufficient Displacement to Reach Code Patch

We have seen that safety requires single-instruction splicing, but architectures do

not provide an ideal instruction to branch from any instrumentation point to a code

patch. An ideal splicing instruction is one which:

• Has enough displacement to reach the code patch from the instrumentation point.

• Does not have a delay slot, which causes the next instruction to be implicitly

executed before the code patch is reached.

• Has no side effects other than changing the program counter.

• Jumps to a destination address that is fixed or PC-relative, but not register-

relative. A register relative jump instruction can have arbitrary range, but requires

the value of a register to be set beforehand, thus leading to unsafe multiple-

instruction splicing.

• Is small enough to ensure that only one instruction is overwritten. (Trivially true

for any RISC architecture, but a concern for x86.)

Figure 4.6 reviews, for several architectures, the branch and jump instructions that

are best suited for single-instruction splicing. Unfortunately, none of the architectures

has an instruction that is always suitable. The key limitation is displacement. The

patch area heap may be allocated arbitrarily far from the code of most kernel

modules. Thus, splicing needs a means for reaching a code patch, no matter the

required displacement, while still splicing with a single instruction, for safety. The

remainder of this section discusses two solutions to address this reach problem.

4.3.3  Solving the Reach Problem: Springboards

KernInst’s first and most general solution to the displacement problem is called

springboards. A springboard is a scratch area that is reachable from the

instrumentation point by a suitable (single) splicing instruction. The idea is for the
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splicing instruction to branch to any unused, reachable springboard, which then

performs a long jump to the code patch, using as many instructions as needed.

Figure 4.7 diagrams code splicing in the presence of springboards.

Like the code patch, the springboard is written and flushed to the instruction

cache before performing the final step of writing the splice instruction at the

instrumentation point. The ordering ensures that no kernel thread will begin

executing springboard code until the splice has taken effect. Furthermore, since the

Arch Instruction Range
Delay
Slot?

Side
Effects

Always
Overwrites 1
Instruction?

SPARC v9

call PC ± 2 GB yes writes to %o7 yes

ba,a PC ± 8 MB no none yes

jump register ± 16 K yes none yes

PowerPC b PC ± 32 MB no none yes

MIPS IV
j current 256 MB

aligned region yes none yes

b<cond> PC ± 128K yes none yes

Alpha
branch PC ± 4 MB no none yes

jmp register ± 16K no none yes

x86 jmp PC ± 2 GB no none no

Figure 4.6: Suitability of Various Instructions for Single-Instruction Splicing.
None of the architectures has an ideal splicing instruction; either displacement is insufficient (RISC

architectures), or there is no guarantee that only a single instruction is overwritten when splicing (x86)..

Figure 4.7: Using Springboards to Reach the Code Patch
A level of indirection is used to reach the code patch from the instrumentation point. When finished, the code

patch returns directly to the instrumentation point.

Instrumented Code Springboard
Code Patch

Long jump
to code patch
(several instructions)

...

Instrumentation point
...

Jump back to
instruction after
instrumentation point

Instrumentation code

Relocated instruction
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springboard was originally scratch space, it is safe to assume that no thread was

already within the springboard when the splice takes place. Thus, although the

springboard contains multiple instructions, there is no hazard similar to that of

replacing more than one instruction at the instrumentation point.

The springboard approach requires chunks of scratch space (collectively, the

springboard heap) to be conveniently sprinkled throughout the kernel, so that every

kernel instruction can reach some chunk when using one of the suitable instructions

listed in Figure 4.6. Fortunately, UNIX System V-based kernels (such as Solaris),

Linux, and Windows NT all have ideally suited space: the initialization and

termination routines for dynamically loaded kernel modules.

In a kernel that allows modules to be loaded at run-time (and unloaded, if

memory becomes tight), each module has initialization and termination routines that

are called just after the module is loaded, and just before the module is unloaded,

respectively. In Solaris, these routines are called _init and _fini. In the UNIX SVR4.2

standard, the routines are called <module>_load and <module>_unload [101]. In Linux,

they are called init_<module> and cleanup_<module>. In Windows NT, device drivers

have a DriverEntry routine which also installs a pointer to a cleanup routine.

Kerninstd can effectively take over the module initialization and termination

routines, making them available for adding to the springboard heap, after locking the

modules in memory to ensure that these routines are not called. On Solaris, this

locking is done by /dev/kerninst with a call to mod_unload_disable. Preventing module

unloading and re-loading also obviates the need to redo splicing that would

implicitly be undone when and if a module was unloaded and later re-loaded. In
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practice, no kernel module approaches one megabyte in size (see Figure 3.4), so even

a jump instruction with modest displacement, such as the SPARC ba,a, can easily

reach the nearest springboard.

In Solaris, a module does not need to supply a _fini routine; such a module will

never be unloaded. Furthermore, the core kernel modules unix, krtld, and genunix do

not have an _init or a _fini routine. Fortunately, these modules are always loaded

contiguously in the kernel and thus can be considered one large module for purposes

of having enough displacement to reach a springboard; any solution that works for

one of these modules will work for all of them. In this case, KernInst takes over

several routines from the unix module that are only used during kernel booting: _start

and main. (There are certainly other such routines, but there has not yet been a need

for more springboard space than these routines provide.)

Figure 4.8 summarizes the springboard space that is set aside in the current

version of KernInst, broken down into nucleus and outside-of-nucleus components.

The nucleus component contains extra springboard space that is manually compiled

General Location
Springboard
space (bytes)

Within kernel nucleus 73,920
Outside of kernel nucleus 15,756
Total 89,676

Figure 4.8: Springboard Space in Solaris 7
Since most kernel modules are located in the nucleus, chances are that nucleus springboard space is more useful

than non-nucleus springboard space. Nucleus space is gathered in three ways: (1) routines only used during
boot-time (_start and main), (2) 65K of space manually compiled into /dev/kerninst on the assumption the driver
will be loaded into the nucleus, and (3) the _init and _fini routines of kernel modules in the nucleus. Non-nucleus
space is gathered in two ways: (1) 15K of memory allocated with kmem_alloc, and (2) the _init and _fini routines

of kernel modules outside the nucleus.



96

into the code space of /dev/kerninst, on the assumption that this driver, like most

modules, will be loaded into the nucleus.

If a springboard is needed, kerninstd searches for one that is within range, and (if

possible) resides in a different I-cache line than both the instrumentation point and

the start of the code patch. The allocation takes about 8 µs. Kerninstd then fills the

springboards contents with three undoable writes (see Section 4.3.1), which takes

about 100 µs if the springboard resided in the nucleus, and 24 µs otherwise.

While the springboard technique may seem ad-hoc, it is general enough to apply

to most kernels. Furthermore, with 64-bit operating systems, the code patch heap

(allocated in kernel data space) tends to be allocated even farther away from code

than with 32-bit systems, exacerbating the reach problem and further motivating the

need for a general solution like springboards.

4.3.4  Solving the Reach Problem: In-Nucleus Allocation

A second solution to the reach problem avoids it—by allocating code patches

sufficiently close to their respective instrumentation points. Although this technique

is not as general as springboards, by using /dev/kerninst to access the kernel’s internal

memory allocation routines, it is often feasible.

As discussed in Section 3.2, when running on an UltraSPARC processor, the

Solaris kernel tries to place all kernel code within a 2 MB area known as the code

nucleus. Any kernel module whose code does not completely fit in the nucleus is

allocated elsewhere in the data space. Even when the nucleus space has been

depleted, in the sense that at least one module’s code could not entirely fit within it,
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there may be leftover space. If large enough, this free space could be used for code

patches; if not, it could still be used for springboards. Presently, kerninstd attempts to

use leftover nucleus space for the code patch heap. Allocation of one page (8 K) out of

the nucleus text, which is performed by /dev/kerninst, takes about 1400 µs. However,

there is a much lower amortized cost per instrumentation request, because this

allocation is only performed when the code patch heap has run out of space and

needs to grow.

4.4 Un-splicing

An instrumentation client that downloads code into the kernel can ask kerninstd

to remove it at any time. For kerninstd, there are two cases of un-splicing. The first

occurs when no instrumentation remains at this site. Kerninstd un-splices at the

instrumentation point by replacing the splicing branch instruction with the original,

overwritten instruction. In addition, kerninstd clears the undoable write state for this

location (see Section 4.3.1). The operation takes about 65 µs if the instruction was in

the nucleus and about 40 µs otherwise. If a springboard was in place, then an

additional 80 µs is needed if the springboard resided in the nucleus, and 42 µs if the

springboard resided outside of the nucleus. For safety reasons that are detailed

shortly, removing the springboard is deferred to give any thread(s) that may be

executing within the springboard a chance to leave it before the springboard is freed.

The second case of un-splicing is when some instrumentation remains at the site,

for which kerninstd splices an entirely new code patch that contains the remaining

instrumentation snippets. No time is spent patching the kernel to un-splice the old
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code, as in the above paragraph. Because undoable write information is already

being kept for this point, this splice is effected by simply writing a new branch

instruction at the instrumentation point. If necessary, a new springboard is used as

well. The cost is, in fact, slightly less than if splicing at a site that was previously

uninstrumented, because no undoable write state needs to be updated. The operation

completes in about 43 µs for an instrumentation point in the nucleus, and about 23 µs

for an instrumentation point outside of the nucleus. If a springboard is required for

the new code patch, it is allocated and initialized with the same costs as splicing a

previously uninstrumented site.

In both cases, de-instrumentation leaves behind a code patch, and perhaps a

springboard, that must eventually be garbage collected. Safety is a concern, because

some kernel thread(s) may presently be executing within, or context switched out

while within a springboard or code patch. It may not be safe to return these objects to

their respective heaps right away, where they could be re-allocated and (most

importantly) re-written before all kernel threads have exited these code structures.

If a springboard or code patch contains no code that blocks, it is unlikely that any

thread executing in its midst will remain there long, and simply delaying for a few

milliseconds before returning the structure to its free heap may be safe. This is

certainly the case for a springboard, which does not contain any instructions that

block. The code patch is a greater concern for two reasons. First, instrumentation

code may block (if it performs I/O, for example). Or, the relocated instruction in the

code patch could block; for example, it may be a call to mutex_enter. The solution

presently employed by kerninstd is to wait three seconds before returning the



99

springboard and code patch to their respective heaps, hoping the delay is sufficient to

drain any remaining threads from these structures. While it has proven sufficient in

practice thus far, the solution is unsatisfying.

A safer approach (that is not yet implemented) is to bracket the entry and exit of

the code patch with a thread-safe counter increment and decrement. The counter

then reflects the number of kernel threads presently within the code patch; when

zero, de-allocation is safe. There are three concerns with this approach, however.

First, it adds run-time overhead. Second, the shared counter could cause contention

in a multiprocessor. Third, it is not entirely safe. Code that increments the counter

cannot take effect until a couple of instructions have executed. Similarly, code that

decrements the counter cannot be the last item in the code patch, which is usually a

jump back to the instruction following the instrumentation point. Fortunately, it is

possible to augment this technique with a delay, to achieve safety. The instructions

that may be in execution when exiting a code patch do not block, so a large delay

(e.g., one second) should be sufficient to ensure that such code completes. Similarly,

the instructions that may be in execution at the start of the code patch, before the

counter has been incremented from 0 to 1, also do not block. If the counter is checked

twice, with a sufficient delay in between, we can be confident that execution is not

within the dangerous instructions.

4.5  Code Replacement

Run-time kernel code replacement is logically distinct from, and complementary

to, code splicing. Whereas code splicing inserts code into an otherwise unmodified
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function, code replacement installs an entirely different version of a function. Note

that the replacement function is recognized as any other kernel function by KernInst;

the function can be subsequently spliced or replaced. The low-level implementation

of code replacement uses many of the same mechanisms used by code splicing,

requiring only minor additions to kerninstd to implement.

4.5.1  Installing A Replacement Function

Kerninstd replaces a function by instrumenting the entry point of the original

code to unconditionally jump to the new code, as shown in Figure 4.9. No code patch

is needed; the jump code resides entirely within the splicing branch instruction if the

new version of the function is reachable from the old version with a single branch, or

within a springboard otherwise. Code replacements takes about 68 µs if the original

function resides in the kernel nucleus, and about 38 µs otherwise. If a springboard is

required, then a further 170 µs is required if the springboard resides in the nucleus,

and 120 µs for a non-nucleus springboard.

The above framework introduces run-time overhead for each call to the function

being replaced, which often can be optimized by patching the function’s call sites to

Figure 4.9: Basic Code Replacement
The entry point instruction of the original function is replaced with an unconditional non-delayed branch to the

new version of the function. A springboard is used if needed.

Original Function Springboard (if needed) New Version of Function

Long jump to new
version of function
(several instructions)

...

...

...

...

...

...
(unconditional branch)
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directly call the new version of the function. This optimization can be applied for all

statically identifiable call sites where the displacement needed to reach the new

version of the function is within range of a call instruction (± 231 bytes on the SPARC).

Because the optimization cannot be applied to calls with an unanalyzable

destination, such as calls through a function pointer, call site optimizations must be

applied in addition to, not instead of, the basic framework of Figure 4.9.

The additional cost of optimized code replacement can be quite high, because

/dev/kerninst performs an expensive undoable write (see Section 4.3.1) for each call

site. Replacing one call site takes about 36 µs if the call site is in the nucleus, and

about 18 µs if the call site lies outside of the nucleus. To give a large-scale example,

replacing the function kmem_alloc, including patching of its 466 call sites, takes about

14 ms. To help gauge the expected number of call sites, Figure 4.10 summarizes the

number of statically identifiable calls to kernel functions that were successfully

parsed. Each function in the kernel is called an average of 5.9 times, with a standard

deviation of 0.8. The function mutex_exit is called the most: 6200 times.

Module
#Functions

Parsed

Average # of calls made
to a function in this

module

Max # of calls made
to a function in this

module

genunix 2589 9.2 1438
afs (afs syscall interface) 922 4.1 364
unix 1758 13.2 6200
ufs (filesystem for ufs) 337 2.8 42
nfs (NFS syscall, client, and common) 479 2.4 79
ip (IP Streams module) 373 3.9 86
md (Meta disk base module) 390 3.3 80
tcp (TCP Streams module) 159 2.5 34
procfs (filesystem for proc) 174 2.8 140
sd (SCSI Disk Driver 1.308) 115 2.1 33

Figure 4.10: Number of Statically Identifiable Calls to Kernel Functions
Only functions that are successfully parsed are included. There is wide variance between modules in how often
its functions are called. The functions in module unix are called on average 13.2 times, compared to the overall

average of 5.9 calls. The standard deviation is 0.8 calls. The function mutex_exit is called most often (6200
times). A few small modules have none of their functions (directly) called.
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rpcmod (RPC syscall) 209 2.4 67
sockfs (filesystem for sockfs) 149 2.7 48
pci (PCI Bus nexus driver) 127 0.6 6
hme (FEPS Ethernet Driver  v1.121 ) 97 3.7 42
se (Siemens SAB 82532 ESCC2 1.93) 69 1.7 18
fd (Floppy Driver v1.102) 54 2.5 22
zs (Z8530 serial driver V4.120) 48 1.6 17
uata (ATA AT-bus attachment disk controller Driver) 127 1.6 18
krtld 127 3.8 48
rpcsec (kernel RPC security module.) 122 1.1 11
ufs_log (Logging UFS Module) 131 1.6 10
xfb (xfb driver 1.2 Sep  7 1999 11:46:39) 99 1.6 11
audiocs (CS4231 audio driver) 83 1.3 14
dad (DAD Disk Driver 1.16) 56 1.1 6
tmpfs (filesystem for tmpfs) 66 1.3 15
ldterm (terminal line discipline) 45 3.1 14
afb (afb driver v1.36 Sep  7 1999 11:47:45) 60 1.2 28
scsi (SCSI Bus Utility Routines) 78 2.9 61
tl (TPI Local Transport Driver - tl) 57 2.7 30
specfs (filesystem for specfs) 48 1.2 9
arp (ARP Streams module) 67 1.5 12
SUNW,UltraSPARC-IIi 60 2.3 40
vol (Volume Management Driver, 1.85) 23 1.9 20
doorfs (doors) 52 1.4 9
su (su driver 1.24) 31 1.2 9
udp (UDP Streams module) 43 1.2 21
timod (transport interface str mod) 36 3.9 41
kerninst (kerninst driver v0.4.1) 116 1.4 9
fifofs (filesystem for fifo) 40 1.0 6
kb (streams module for keyboard) 36 2.2 9
tnf (kernel probes driver 1.47) 55 1.6 20
pm (power manager driver v1.65) 29 1.9 14
TS (time sharing sched class) 36 0.3 6
devinfo (DEVINFO Driver 1.24) 35 2.7 33
ipdcm (IP/Dialup v1.9) 52 0.7 7
ttcompat (alt ioctl calls) 14 1.6 10
diaudio (Generic Audio) 28 2.2 10
elfexec (exec module for elf) 12 2.4 21
shmsys (System V shared memory) 19 1.1 3
ptc (tty pseudo driver control ‘ptc’) 16 0.4 3
tlimod (KTLI misc module) 21 3.0 16
winlock (Winlock Driver v1.39) 39 1.3 8
hwc (streams module for hardware cursor support) 11 0.6 3
ms (streams module for mouse) 17 0.7 6
ptem (pty hardware emulator) 13 3.9 19
simba (SIMBA PCI to PCI bridge nexus driver) 18 0.3 1
seg_drv (Segment Device Driver v1.1) 25 0.3 3

Module
#Functions

Parsed

Average # of calls made
to a function in this

module

Max # of calls made
to a function in this

module

Figure 4.10: Number of Statically Identifiable Calls to Kernel Functions
Only functions that are successfully parsed are included. There is wide variance between modules in how often
its functions are called. The functions in module unix are called on average 13.2 times, compared to the overall

average of 5.9 calls. The standard deviation is 0.8 calls. The function mutex_exit is called most often (6200
times). A few small modules have none of their functions (directly) called.
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sad (Streams Administrative driver’sad’) 23 1.7 19
namefs (filesystem for namefs) 32 0.3 3
lockstat (Lock Statistics) 27 0.6 5
ptsl (tty pseudo driver slave ‘ptsl’) 14 1.5 17
rootnex (sun4u root nexus) 19 0.4 1
dada ( ATA Bus Utility Routines) 30 2.3 30
dada_ata ( ATA Bus Utility Routines) 30 0.4 4
md5 (MD5 Message-Digest Algorithm) 8 1.5 5
sysmsg (System message redirection (fanout) driver) 15 0.3 1
mm (memory driver) 13 0.2 2
wc (Workstation multiplexer Driver ‘wc’) 18 0.6 7
ebus (ebus nexus driver) 13 0.3 2
ptm (Master streams driver ‘ptm’) 12 0.1 1
pts (Slave Stream Pseudo Terminal driver ‘pts’) 12 0.1 1
RT (realtime scheduling class) 24 0.0 0
iwscn (Workstation Redirection driver ‘iwscn’) 19 1.0 9
fdfs (filesystem for fd) 17 0.1 2
eide (PC87415 Nexus driver v2.0) 19 0.6 7
conskbd (Console kbd Multiplexer driver ‘conskbd’) 14 0.1 1
todmostek (tod module for Mostek M48T59) 10 0.0 0
log (streams log driver) 9 0.0 0
sy (Indirect driver for tty ‘sy’) 12 0.0 0
consms (Mouse Driver for Sun ‘consms’) 14 0.1 1
kstat (kernel statistics driver) 12 0.2 1
pckt (pckt module) 11 0.2 2
ksyms (kernel symbols driver) 11 0.2 2
inst_sync (instance binding syscall) 11 0.9 2
power (power driver v1.4) 11 0.0 0
cn (Console redirection driver) 13 0.0 0
sysacct (acct(2) syscall) 6 1.0 6
clone (Clone Pseudodriver ‘clone’) 7 0.0 0
intpexec (exec mod for interp) 5 0.2 1
pseudo (nexus driver for ‘pseudo’) 10 0.0 0
ipc (common ipc code) 5 1.2 5
pipe (pipe(2) syscall) 4 0.0 0
connld (Streams-based pipes) 6 0.0 0
options (options driver) 7 0.0 0
redirmod (redirection module) 6 0.0 0
TS_DPTBL (Time sharing dispatch table) 5 0.0 0
IA (interactive scheduling class) 3 0.0 0
RT_DPTBL (realtime dispatch table) 3 0.0 0
platmod 5 1.0 1
Kernel-wide: 10637 5.9 (std dev:0.8) 6200

Module
#Functions

Parsed

Average # of calls made
to a function in this

module
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Figure 4.10: Number of Statically Identifiable Calls to Kernel Functions
Only functions that are successfully parsed are included. There is wide variance between modules in how often
its functions are called. The functions in module unix are called on average 13.2 times, compared to the overall

average of 5.9 calls. The standard deviation is 0.8 calls. The function mutex_exit is called most often (6200
times). A few small modules have none of their functions (directly) called.
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4.5.2  Parsing the New Version of a Function At Run-time

Kerninstd analyzes the replacement (new) version of a function at run-time,

creating a control flow graph and calculating a live register analysis in the same

manner as kernel code that was recognized at kerninstd startup. This uniformity is

important because it allows tools built on top of kerninstd to treat the replacement

function as first-class. For example, when kperfmon is informed of a replacement

function, it updates its code resource display, and allows the user to measure the

replacement function like any other.

4.5.3  Undoing Code Replacement

Dynamic code replacement can be undone by restoring the patched call sites (if

any), and then un-instrumenting the jump from the entry of the original function to

the new version. This ordering ensures atomicity: once code replacement undoing

takes effect, no kernel thread may make a call to the replacement function. Consider

calls made both before and after the original function has been uninstrumented:

• Before the Original Function’s Jump is Uninstrumented. There are two sub-

cases. In the first, a call is made through a call site that has not yet been restored,

so the replacement function is executed. In the second case, a call site has been

restored to its original state; the call will reach the original function, which

(because it is still instrumented) proceeds to jump to the replacement function.

Thus, before the original function’s jump is uninstrumented, code replacement is

still in full effect.

• After the Original Function’s Jump is Uninstrumented. After the original

function’s jump is uninstrumented, all call sites have already been

uninstrumented, so there is no longer any way for a thread to call the replacement

function, either directly or indirectly.
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Although undoing code replacement takes effect atomically, it is still possible for

some thread(s) to still be executing within the replacement function. Therefore, as

with code splicing, there is a concern of when it is consequently safe to free the

memory used for the replacement version of the function and (if used) the

springboard. Code replacement presently uses the same ad-hoc solution as code

splicing: wait several seconds, on the assumption that such a delay is long enough for

the thread(s) to finish executing the code in question; see Section 4.4.

Basic code replacement, when no call sites were patched, is removed in about

65 µs if the original function lies in the nucleus, and about 40 µs otherwise. If a

springboard was used to reach the replacement function, then (after the usual delay

to ensure that no code is executing within the springboard) it is removed in a further

85 µs if the springboard resided in the nucleus, and about 40 µs otherwise. Each

patched call site is restored in a further 30 µs if it resided in the nucleus, and about

16 µs otherwise.

4.6  Future Work

Future work for code splicing includes porting to other architectures, including

those with variable-length instructions and those lacking non-delayed splicing

branch instructions. Future work concerning the code replacement primitive is also

discussed, including how it can be used to achieve the semantics of splicing with less

run-time overhead.
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4.6.1  Splicing on Architectures Having Variable Length Instructions

Single-instruction splicing on architectures having variable length instructions,

such as x86, is challenging because it is not always possible to overwrite just one

instruction. Depending on the existing code at the instrumentation point, an

unconditional jump instruction (5 bytes on the x86) may overwrite more than one

instruction. If the extra (perhaps partially) overwritten instruction is the destination

of a branch, a corrupted instruction stream will be executed. Thus, the safety rules for

splicing must be augmented: not only must the splice be performed with a single

branch or jump instruction to the code patch and be written atomically, but at most

one instruction can be replaced. This requirement can always be satisfied by writing a

one-byte trap or illegal instruction, which will transfer control to a trap handler. The

handler can be instrumented to look up the address of the offending instruction in a

hash table, undo the side effects of the trap, and jump to the appropriate code patch.

Although an x86 port of KernInst is still in progress, the existence of trap-based

x86 kernel tracing tools [51, 60] indicate that a similar approach is feasible for

splicing.

4.6.2  Splicing on Architectures Having Always-Delayed Branches

Single-instruction splicing is difficult on architectures such as MIPS [86] whose

branch instructions always have a delay slot. In such an architecture, a delayed

branch instruction must be used for splicing, resulting in an unusual execution

sequence when jumping to the code patch. The instruction following the

instrumentation point falls into the newly written branch instruction’s delay slot, and
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thus is implicitly executed before the code patch is reached. In particular, the

instruction after the instrumentation point is executed before the instruction

originally at the instrumentation point, which has been relocated to the code patch.

Thus, the executing ordering of these two instructions is effectively reversed.

If the instrumentation point instruction and its successor are mutually

independent, then reversing their execution order is harmless. If they are not

independent, but the instrumentation point instruction is independent of its

successor and if the successor instruction is idempotent, then both the

instrumentation point instruction and its successor can be placed in the code patch.

The resulting execution sequence is (1) successor, (2) original instrumentation point

instruction, (3) successor; step (1) is equivalent to a no-op. Of course, the

independence and idempotency constraints will not always be met, making single-

instruction splicing on always-delayed-branch architectures difficult. Another

possibility is to splice by replacing the instrumentation point instruction with a trap

or illegal instruction, as discussed above for x86 splicing. The present

implementation of kerninstd does not require such a solution because the SPARC v9

architecture has a non-delayed unconditional branch instruction that is used for

splicing.

4.6.3  Using Code Replacement to Facilitate Splicing

The above sections show that it difficult and/or expensive to splice at certain

locations on x86 and MIPS architectures. Code replacement can often help; as

presently implemented in the dyninstAPI and Paradyn user-level tools, a new copy
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of the function with extra nop instructions inserted can facilitate splicing. Taking this

idea further, instrumentation code can be inlined within the replacement function,

without the use of nop instructions that are later spliced. In other words, code

replacement can achieve the effect of splicing without having to splice at the

instrumentation point.

Using code replacement to inline instrumentation code can also be seen as an

optimization that eliminates the overhead of the various branches and jumps

inherent in splicing (in the worst case, from the instrumentation point, to a

springboard, to the code patch, and back to just after the instrumentation point).

Therefore, it is possible to achieve fine-grained instrumentation with no branch or

jump overheads—heretofore an advantage exclusive to static instrumentation

systems [53, 54, 76, 78, 88, 95]. The code replacement itself uses a branch (from the

entry of the old function to the replacement function), however that overhead can

often be eliminated when code replacement also patches statically identifiable call

sites to directly call the new function.

4.6.4  Improvements to Code Replacement

Code replacement approximately doubles the code size of those function(s)

presently being replaced. It is conceivable to “recycle” the original function as

springboard or code patch space while it is being replaced. However, safety requires

first determining that no thread is presently executing within the code being

recycled.
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A replacement function is first-class within kerninstd and its applications. For

example, the function has its control flow graph parsed, can be spliced, and can itself

be replaced like any other function. However, kernel tools not based on kerninstd

will not recognize replacement functions. Using /dev/kerninst to dynamically add an

entry to the kernel’s runtime symbol table structure would allow the replacement

function to be recognized by the standard /dev/ksyms driver, perhaps enabling the

function to be recognized by the system’s kernel debugger, for example. Further

research is needed in this area, as there will certainly be additional issues before

replacement code can be recognized as first-class on a system-wide basis.

Code replacement for long-running functions is an unresolved issue. In particular,

if a thread was already in the middle of the original function, then code replacement

of that function for that specific thread does not take effect until it next calls that

function. In long-running functions, this can be a concern. In functions that never

return, executed by kernel background threads such as the paging daemon, code

replacement as presently implemented will never appear to take effect.

4.7  Conclusion and Research Contributions

This chapter presented the design and implementation fast fine-grained code

splicing for a completely unmodified, modern commodity operating system

(Solaris 7 running on an UltraSPARC), entirely at run-time. In splicing code patches

into the kernel, it is possible to safely instrument a kernel without pausing or

synchronization. Springboards provide a general technique for obtaining arbitrary

reach regardless of the maximum displacement available in a single branch
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instruction. In relocating the overwritten instruction to the code patch, this chapter

makes two contributions. First, it is always possible to maintain semantics when

relocating the overwritten instruction, possibly through a semantically-equivalent

sequence of several instructions. Second, in relocating tail calls and conditional

branches, code splicing has an additional (and unforeseen) benefit: essentially

creating important new instrumentation points where none existed before. The

ability to instrument at these new points (before a tail call sequence exits, and in the

if-taken and if-not-taken case of a conditional branch) shows that even having an

instrumentation point before every machine code instruction is not enough to satisfy

all instrumentation requests. And finally, with a few additions, the splicing

implementation can easily achieve code replacement, a complementary dynamic

instrumentation primitive.
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Chapter 5

Kernel Performance Measurement Through Dynamic Instrumentation

This chapter presents the design and implementation of a kernel profiling tool

built using dynamic instrumentation. The tool, kperfmon, serves as a proof of concept

of the utility of dynamic instrumentation. More important, however, kperfmon is a

powerful kernel profiler in its own right, providing a flexible and extensible set of

performance metrics that can be applied to almost any kernel function or basic block.

Kperfmon can create a new wall time metric out of any monotonically increasing

software-readable counter. Furthermore, kperfmon can virtualize (i.e., exclude the

time spent switched out) any wall time metric by instrumenting the kernel’s context

switch handlers. This chapter discusses the design and implementation of

performance metrics in kperfmon. Chapter 6 presents a case study of using kperfmon

to understand and to help optimize the performance of a Web proxy server.

A performance measurement in kperfmon is specified by combining a metric with

a code resource. A metric is any time-varying measurement, such as elapsed cycles,

number of data cache misses, or number of database transactions. A code resource is
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the object being measured by a metric, currently either a function or a basic block. A

metric and resource pairing causes kperfmon to generate instrumentation code

snippet(s) and the kernel location(s) at which to insert them. Kperfmon then instructs

kerninstd to splice the snippets into the kernel. The instrumentation code will update

a counter or event accumulator structure. Kerninstd periodically samples this value,

which is forwarded to a front-end GUI for consumption.

Because finding bottlenecks is an interactive activity involving successive

refinement of the functions or basic blocks to be measured, it is essential for a tool to

allow the user to decide what measurements are made at run-time. In kperfmon,

instrumentation occurs on request, and can be removed at any time, making kernel

performance profiling completely dynamic.

The major features of kperfmon are:

• Commodity. Kperfmon measures an unmodified Solaris7/UltraSPARC kernel,

requiring instrumentation code that is both thread and multiprocessor safe.

Presently, kperfmon has only been implemented on a uniprocessor, though

multiprocessor design issues are discussed throughout this chapter.

• Dynamic. The overhead of instrumentation is incurred only for what is

measured, when it is measured.

• Fine-grained. Code resources can be almost any kernel function or basic block.

• Accurate. Kperfmon instruments the kernel to directly measure performance,

rather than assigning time through periodic sampling of the program counter.

• Inclusive metrics. Measurements for a code resource accumulate events

whenever code resource is on the call stack, including the time spent in its callees.

Inclusive metrics have been shown to aid in the automated search for

bottlenecks [14], and are difficult to measure with a sampling-based profiler.
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• Extensible set of metrics. Any monotonically increasing software-readable

counter can serve as a new event counter metric (Section 5.1). Any event counter

metric can, in turn, be used to construct a new interval counter metric (Section 5.2),

which measures the number of such events that occur during the execution of a

user-specified code resource.

• Wall and Virtual Time Metrics. Kperfmon’s basic instrumentation code gathers

wall time measurements; each thread’s interval event count includes any events

that occur while context switched out between the entry and exit instrumentation

points. Wall time metrics are used when measuring the latency of certain code

that may block, such as I/O routines and obtaining locks. Virtual time

measurements can optionally be achieved by instrumenting the kernel’s context

switch handlers to exclude from the accumulated total those events that occur

while switched out (Section 5.4). Virtual time metrics are useful for measuring

processor events, such as CPU time, branch mispredicts, and cache stall time.

The remainder of this chapter discusses the design and implementation of

kperfmon’s various classes of performance metrics.

5.1  Event Counter Metrics

An event counter metric has a counter that is incremented on each occurrence of a

particular event. An event conceptually corresponds to the execution of some point

in the kernel’s code, perhaps predicated by a logical expression. Some event counters

are already kept in hardware, such as UltraSPARC registers for elapsed cycles,

number of cycles idled due to I-cache misses, and number of branch

mispredictions [96, 97]. Others are calculated in software, such as Solaris’ kstats [18,

91]. Software event counters can also be dynamically created by kperfmon via

instrumentation, such as counting the number of entries to a desired function. An
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event counter serves as a useful performance result in its own right, but is also used

by kperfmon as the foundation for interval counter metrics, discussed in Section 5.2.

Event counters created by kperfmon are updated by instrumentation code that

increments the counter. The only non-trivial aspects are making the instrumentation

thread-safe and multiprocessor-safe. Thread safety requires correctly incrementing

the counter when multiple threads may be executing the same instrumentation

simultaneously. (Although only one thread at a time can run on a uniprocessor,

preemption can occur at any time, which leads to the same requirements.) Kperfmon

achieves thread safety, without locks, by updating the counter using the SPARC V9

compare-and-swap instruction [103]. Statistics for kperfmon’s event counting

instrumentation are shown in Figure 5.1.

Two modifications are required for multiprocessors. First, for correctness on

processors with relaxed memory consistency, the code sequence must be annotated

with an appropriate memory barrier instruction. Second, for good performance, per-

processor event counters should be maintained, to avoid significant cache coherency

delays among processors competing for write access.

Operation Code size (bytes) Scratch registers needed Cost

Event counter increment  40 3 0.32 µs

Figure 5.1: Cost of Incrementing an Event Counter
Cost was measured by using kperfmon to instrument its own instrumentation code. All costs in this chapter are
on a 440 Mhz UltraSparc-IIi running Solaris 7, and exclude the overhead for jumping to the code patch and for
executing the relocated instruction. Because event counter instrumentation usually occurs at function entry,

where few registers are free (Section 3.5), the code size and cost columns describe the worst case, where
instrumentation code is bracketed with SPARC save and restore instructions.
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5.2  Interval Counter Metrics: Overview

An interval counter metric accumulates the number of events (as specified by an

underlying event counter metric) that occur when some thread is running within a

specified code resource. The general framework for an event accumulating metric

was shown in Figure 1.1 (page 11); currval in the figure is implemented with an event

counter. At the entry point to the code resource (a function or basic block),

instrumentation code to start accumulation is inserted. At the exit point(s) of the

resource, instrumentation is inserted to stop accumulation, and add the number of

events that occurred since the start point to the accumulator’s total.

The framework of Figure 1.1 omits several implementation details:

• Overlapping Intervals. Conceptually, each thread accumulates its own interval

count between the start and stop interval count instrumentation. When

measuring wall time events, these intervals can overlap. For example, thread A

can start and stop an interval at (wall) times 100 and 500, respectively. In between

those times, thread A could context switch out, and thread B can start and stop

the same accumulator at times 200 and 400, respectively. So for 200 time units,

there are two threads accumulating their own intervals, which needs to be

reflected in the total. Figure 5.2 on page 117 further illustrates wall time

accumulation in the presence of overlapping intervals.

• Virtualization. The framework of Figure 1.1 places instrumentation that does not

detect context switching. It must be augmented to measure virtual time events.

• Entry and Exit (Start and Stop) Instrumentation Should be Inserted Atomically.

This is necessary to avoid a race condition that can fail to properly stop

accumulation of an interval. In particular, if entry point instrumentation is

inserted, and some thread executes it and continues execution past the exit point

(where instrumentation has not yet been inserted), then an interval’s end time
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will be incorrect. Kperfmon solves this problem by inserting all stop-

accumulation instrumentation first, and by having stop instrumentation perform

a no-op for an unstarted accumulator.

• The “poll-problem” for Wall Time Accumulators. As mentioned above, when

measuring a wall time interval counter metric, each thread conceptually

accumulates distinct intervals, which sum to the metric’s grand total. Incorrect

measurements can occur when a thread executes exit instrumentation without the

corresponding entry instrumentation, which can occur in blocking routines such

as poll, which waits on a file descriptor. For example, assume instrumentation is

added to poll’s entry and exit points while a thread T1 is presently blocked in poll.

Eventually, T1 un-blocks and executes the exit instrumentation of poll. A correct

implementation will perform a no-op, detecting that T1 did not execute the

corresponding entry instrumentation. A naive implementation may mistakenly

stop another thread’s accumulation. Typically, an implementation that uses a

shared accumulator structure, instead of a per-thread one, suffers from this

problem. However, a solution using per-thread accumulators leads to extra

complexity, storage, and run-time cost [104]. As we will see in Section 5.5, an

implementation of wall time accumulators that avoids the “poll problem” with

reasonable complexity, storage, and cost is challenging but feasible.

• Dealing With Recursion. Recursion should be handled by only starting an

interval the first time a thread reaches the code’s entry, and only stopping an

interval the last time that thread reaches the code’s exit.

• Multiprocessors. Fast execution on multiprocessors requires per-processor copies

of the event accumulator structure, to avoid cache coherency overhead during

writing of a shared structure. Correctness requires handling migration.

5.3 Wall Time Interval Counter Metrics

This section presents the design and implementation of inclusive wall time

interval counter metrics. The design, called cumulative thread events, is simple and
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efficient. Kperfmon currently uses this design in its wall time metrics. The design has

three limitations: it does not work on multiprocessors, it can give inaccurate results in

the presence of recursion, and it suffers from the “poll problem” discussed above.

These limitations are addressed by a re-design that adds complexity, as discussed in

Section 5.5. When the above limitations are tolerable, the framework described in this

section is preferable.

Cumulative thread events instrumentation calculates the area under a curve

whose x-axis is the underlying event counter (which is typically elapsed cycles) and

whose y-axis is the number of threads presently accumulating these events. An

example is shown in Figure 5.2. The units of the total value are thread-events (e.g.,

thread-cycles when the underlying currval is elapsed cycles).

Figure 5.2: Event Interval Accumulation With Multiple Threads
Instrumentation code calculates the area under the curve by adding rectangles when a thread starts or stops
accumulation (dashed lines). In this example, start-accumulation occurs at 1000, 2000, and 3000, and stop-

accumulation occurs at 3500, 4000, and 6000. The total value for this event accumulator is 7500 thread-events.
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The code for entry and exit instrumentation is almost identical, either adding (for

entry instrumentation) or subtracting (for exit instrumentation) one from the number

of accumulating threads. Before this field is updated, a rectangle is added to the total.

The rectangle’s width is the elapsed number of events that occurred since the last

update of the total field, and its height is the number of threads that were

accumulating events during that time.

The accumulator structure for cumulative thread events is shown in Figure 5.3,

and its instrumentation pseudo-code is shown in Figure 5.4. The first 64-bit word

holds the accumulated total of all intervals (the area under the curve in Figure 5.2).

The second word holds two fields: the number of kernel threads that are presently

accumulating events (16 bits), and the value of the underlying event counter at the

time of last modification (48 bits). The code first updates the second word. The new

value contains the adjusted number of threads and (the least significant 48 bits of) the

current value of the underlying event counter. After this completes, the old number

of threads is multiplied by the delta in the underlying event counter to obtain a delta

Figure 5.3: Cumulative Thread Events: Accumulator Structure
The accumulator occupies two 64 bit words. The first word contains the total of all accumulated intervals. The
second word contains two sub-fields: the number of threads that are presently accumulating an event interval

(16 bits), and the value of the underlying event counter at the most recent start or stop operation (48 bits).
Putting both the numThreads and lastChangeValue sub-fields into a single 64 bit word allows them to be updated

with a single thread-safe compare-and-swap. lastChangeValue stores the least significant 48 bits of the
underlying event counter, so the counter’s granularity is maintained. 48 bits is usually enough; on a 1 GHz

machine, a 48 bit cycle counter can accumulate 195 days worth of cycles before rolling over.

Total (64 bits)

numThreads
(16 bits)

lastChangeValue (48 bits)
(units are events)

(units are thread-events)
word #1:

word #2:
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to be added to the total field. The lastChangeValue field only stores the least significant

48 bits of the event counter, so 48-bit unsigned arithmetic is used to calculate the

change in the event counter. If the new value of the event counter is less than that

stored in lastChangeValue, subtraction assumes that rollover has occurred exactly once.

To obtain incorrect results, a complete loop of 248 events must occur between starting

and stopping accumulation. Such a loop is unlikely; 48 bits is enough to accumulate

over 195 days worth of machine cycles on a 1 GHz machine, for example. Both the

first and second 64-bit words are updated using separate compare-and-swap

operations, for thread safety without the need for locks.

Figure 5.4: Cumulative thread events: pseudo-code
Both start and stop accumulation code are nearly identical, differing only on how they calculate newNumThreads.
Because compare-and-swap is limited to 64 bits on the UltraSPARC, updates are done in two phases. In phase A,

the second word is updated and the delta used in phase B is calculated. In phase B, first word (the total field) is
updated using that delta. The compare-and-swap loops are only repeated when there is contention among

multiple threads for the same structure. The primitive is non-blocking: an infinite loop, where the compare-and-
swap is retried forever with no thread making forward progress does not occur.

PhaseA: // calculate ∆total; update accum.word2 sub-fields with new values
oldWord2=timer.word2 // both numThreads and lastChangeValue sub-fields
currval=current // current is the underlying event counter’s present value
∆value=currval-oldval.lastChangeValue
∆total=oldval.numThreads × ∆value

max(oldWord2.numThreads-1, 0)

if failure goto phaseA // fails if another thread updated timer.word2

PhaseB: // using ∆total, update accum.total
oldTotal=accum.total
newTotal=oldtotal+∆total
cas64 &accum.total,oldTotal,newTotal
if failure then goto phaseB // do not repeat the completed phase A

cas64 (&timer.word2,oldWord2,{newNumThreads,currval})

newNumThreads =
oldWord2.numThreads+1 (for a start operation)

(for a stop operation){
// Change timer.word2 to {newnumThreads, currval} if it still equals oldWord2:
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Performance numbers for the start and stop primitives are shown in Figure 5.5.

As expected given their similarities, the costs are nearly identical.

The cumulative thread events framework has several desirable traits. It is a

simple, quick, and thread-safe framework for wall time interval counter metrics. It is

thread-safe, correctly handling overlapping accumulation intervals. And finally, it

measures inclusive events, known to be useful in automating the search for

bottlenecks [14].

However, the design has several limitations. First, the “poll problem” is not

solved. The stop primitive checks for underflow, performing a no-op when the old

number of threads field was zero. Unfortunately, if this field was greater than zero,

due to overlapping interval accumulation by a different thread, the no-op will not be

performed, and the “poll problem” occurs. Per-thread copies of the accumulator

structure would solve this problem, though at the cost of significantly higher storage,

complexity, and execution costs [104].

A second limitation occurs in the presence of recursion; a recursive call to

instrumented code will incorrectly increment numThreads, because the

Operation Code Size (bytes) Scratch registers needed Cost

Start accumulation 128 4 0.29 µs

Stop accumulation 124 4 0.31 µs

Figure 5.5: Cost of Cumulative Thread Events Instrumentation Primitives
These numbers were measured by using kperfmon to instrument its own instrumentation code. In keeping with
the measured averages in Section 3.5.5 (page 72), it is assumed that sufficient scratch registers are available at

the code resource’s exit point but not at the code resource’s entry point. Thus, the size and cost for starting
accumulation assumes that kerninstd brackets the code with save and restore instructions to free up enough

scratch registers.
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instrumentation will act as if a different thread is beginning accumulation of an

overlapping interval.

A third limitation is that it does not work on multiprocessors. Assuming each

processor has its own accumulator structure, the code can be fooled by migration. If a

thread starts an interval on one processor and stops on another processor, the stop

operation of Figure 5.4 will be applied to the wrong accumulator.

A re-design of cumulative thread events that solves these problems is presented

in Section 5.5. However, the re-design is significantly more complex, and has not yet

been implemented.

5.4  Virtual Time Interval Counter Metrics

Instrumentation that accumulates virtual time events is more complex than

instrumentation code that accumulates wall time events. Simply starting and

stopping accumulation at the code resource’s entry and exit points will accumulate

wall time events, not virtual time events. With additional kernel instrumentation,

interval counters can be adapted to virtual time. This section describes the design

and implementation of a virtualized interval counting metric framework called

counted virtual time events. Like cumulative thread events, the counted virtual time

events framework can create a metric out of any underlying event counter. Counted

virtual event instrumentation has two parts: start and stop primitives inserted at the

code resource’s entry and exit points, and instrumentation placed in the kernel’s

context switch routines to stop accumulation when a thread is switched out, and re-

start when that thread is resumed.
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5.4.1 Start and Stop Primitives

Counted virtual time’s accumulator structure is shown in Figure 5.6, and its basic

start and stop primitives are shown in Figure 5.7 and Figure 5.8, respectively.

Because at most one thread can actively accumulate virtual events (assuming a

uniprocessor), the numThreads field of the cumulative thread events accumulator is

not needed. In its place is a recursionCount field, which is zero if the currently running

thread is not accumulating events, and greater than zero otherwise. If non-zero, the

Figure 5.6: Counted Virtual Time Events: Accumulator Structure
The accumulator occupies two 64 bit words. The first word contains the total of all accumulated intervals. The
second word contains two sub-fields: the recursion depth of the code resource being measured (16 bits), and the
least significant 48 bits of the underlying event counter when accumulation was last started. If the recursion

count is 0, then accumulation is presently not occurring, and the startValue field is undefined. Placing both the
recursionCount and startValue sub-fields into a single 64 bit word allows them to be updated with a single thread-

safe compare-and-swap.

Figure 5.7: Counted Virtual Time Events: Start Accumulation
The design closely follows the framework of Figure 1.1 (page 11), with the addition of the recursion count field.

The total field is not read or written by the start operation.

Total (64 bits)

recursionCount
(16 bits)

startValue (48 bits)
(units are events)

(units are thread-events)
word #1:

word #2:

Retry:

oldWord2=accum.word2 // both the recursionCount and startValue sub-fields

{oldRecursionCount+1,oldStartValue}

if failure goto Retry // fails if another thread updated accum.word2
cas64 &accum.word2,oldWord2,newWord2

newWord2 =
{1,currval} (if oldRecursionCount==0)

(otherwise){
// Change accum.word2 to newWord2 if it still equals oldWord2:

currval=current // current is the underlying event counter’s present value
oldStartValue=oldWord2.startValue
oldRecursionCount=oldWord2.recursionCount
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recursion count field gives the number of times the currently running thread has

attempted to begin accumulation. The start primitive always increments this field,

but only begins accumulation when it changes from 0 to 1. The stop primitive always

decrements this field (with the usual proviso of keeping it non-negative), but only

stops accumulation when it is changed from 1 to 0. The recursion count field allows

the primitives to work correctly under recursion, a feature lacking in cumulative

thread events. Figure 5.9 summarizes the cost of the interval counting primitives to

start and stop a virtual time interval counter.

Figure 5.8: Counted Virtual Time Events: Stop Accumulation
Stopping virtual event accumulation decrements the recursionCount field and (if now 0) adds this interval to the
accumulated total field. Because only a single 64-bit word can be updated at a time using compare-and-swap, a

two-phase protocol is used. In the first phase, the second word is updated, and a delta for the total field is
calculated. The second phase uses the delta to update the total field.

Retry1: // calculate ∆total; update accum.word2 sub-fields with new values
oldWord2=accum.word2 // both the recursionCount and startValue sub-fields

if failure goto Retry1 // fails if another thread updated accum.word2
cas64 &accum.word2,oldWord2,newWord2

newWord2={oldRecursionCount-1,oldStartValue}

// Change accum.word2 to newWord2 if it still equals oldWord2

currval=current // current is the underlying event counter’s present value

oldRecursionCount=oldWord2.recursionCount

if oldRecursionCount==0 goto done

oldStartValue=oldWord2.startValue

if oldRecursionCount>1 goto done

∆total=currval-oldStartValue

Retry2: // update total if oldRecursionCount is now 0

oldTotal=accum.total
newTotal=oldTotal+∆total

if failure goto Retry2 // fails if another thread updated accum.total
cas64 &accum.total,oldTotal,newTotal
// Change accum.total to newTotal if it still equals oldTotal:

done:
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5.4.2  Virtualization: General Algorithm and Additional Structures

KernInst virtualizes event accumulators by dynamically instrumenting the

kernel’s thread context switch handlers. The implementation currently assumes a

uniprocessor. Changes to allow virtualization on multiprocessors are discussed in

Section 5.4.4.

Virtualization splices the following code into the kernel’s context switch routines:

• On switch-out: stop every currently active virtual accumulator that was started

by the kernel thread that is presently being switched out.

• On switch-in: restart all virtual accumulator(s) that were stopped by the most

recent switch-out of the thread that is presently being switched in.

The following invariant aids the implementation of switch-out code:

Any presently active virtualized accumulator was started exclusively

by the currently running thread T1.

For a proof, assume that any other thread T2≠T1 started this accumulator. T2

cannot presently be running, because (assuming a uniprocessor) only one thread

runs at a time. Therefore, T2 is presently context switched out. When it was switched

out, virtualization instrumentation stopped T2’s accumulation, so we have a

contradiction with the assumption that T2 was presently accumulating events.

Because no thread T2≠T1 started accumulation, T1 must have started accumulation

Primitive Code Size (bytes) Scratch Registers Needed Cost

Virtual time event interval metric: start 68 4 0.28 µs

Virtual time event interval metric: stop 116 4 0.34 µs

Figure 5.9: Summary of Virtualized Interval Counting Instrumentation Primitives
The numbers include only instrumentation placed in the code resource; instrumentation added to the kernel’s
context switch code is discussed below. Start instrumentation is assumed to be bracketed with save and restore

instructions due to insufficient scratch registers; this cost has been included.
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(since some thread started accumulation). Thus, knowing which accumulators to

virtualize on context switch-out is trivial—virtualization should stop every presently

active accumulator.

The context switch-in instrumentation requires information about which

accumulators, if any, were stopped by the most recent switch-out of this thread. This

information has been implemented in a hash table, indexed by thread ID, whose

entries contain information about what was stopped at the most recent switch-out of

this thread. Specifically, this per-thread information contains pointers to all of the

virtual accumulator(s) that were stopped, along with a copy of the recursion count

field(s) at that time.

Any number of threads may presently be switched out after having started, and

before having stopped, the same accumulator. Therefore, multiple hash table per-

thread information can contain pointers to the same accumulator structure. Thus, the

implementation is a combination of the single accumulator approach (used by

cumulative thread events) and per-thread accumulator copies. In particular, there is

one accumulator for the actively running thread, plus per-switched-out-thread

information about the accumulators that are presently turned off due to

virtualization. This hybrid organization compares favorably to one that always

allocates a per-thread copy of every accumulator, which has extra complexity as well

as additional space and time overhead [104].

Pseudo-code for the context switch-out and switch-in code is shown in

Figure 5.10 and Figure 5.11, respectively. Context switch-out instrumentation first

allocates a vector from a free list. This vector will gather the set of accumulators that
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were stopped by virtualization. It then loops through all accumulators (the address

of each is kept in a global vector), invoking a metric-specific routine that stops the

accumulator if it was started. (Code to stop an active accumulator is specific to the

metric’s underlying event counter.) When done, the vector holding the set of

accumulators that were turned off is added to a hash table indexed by thread ID.

Context switch-in instrumentation code is comparatively simple. It uses the ID of

the newly running thread as an index into the global hash table, obtaining a vector of

pointers to accumulators that need to be restarted, as well as their saved

recursionCount fields at the time of switch-out. Each such accumulator is restarted by

invoking a metric-specific routine that depends on the underlying event counter.

Finally, the vector of accumulator addresses is returned to the free pool, and the hash

Figure 5.10: Context Switch-Out Instrumentation Pseudo-Code (uniprocessor)
Note that there is no need for synchronization in this instrumentation because it runs at the same interrupt level
as the context switch handlers and cannot be preempted except by high-level interrupts (such as an ECC error) or

traps (such as register window overflow). The high interrupt level limits the functions that can be called. For
example, the vector of stopped accumulators must come from a pre-allocated heap, because calling kmem_alloc is

dangerous from within an interrupt routine (it may block).

vecOfStoppedAccumulators=freelist.get(); // freelist must be pre-allocated

VA.total+=currval-VA.startValue; // currval: underlying event ctr value

if any accumulators were stopped then

nextStoppedAccumPtr=vecOfStoppedAccumulators; // a pointer

if (VA.recursionCount > 0) then {

for each virtual accumulators VA do {

assert(%pil >= 10); // This code executes at a high processor interrupt level

nextStoppedAccumPtr.theAccumulatorPtr=&VA;
nextStoppedAccumPtr.savedRecursionCount=VA.recursionCount;
nextStoppedAccumPtr++;

}
}

hash.set(%g7,vecOfStoppedAccumulators); // %g7: current thread ID
else
freelist.free(vecOfStoppedAccumulators); // ended up not using it

nextStoppedAccumulator.theAccumulatorPtr=NULL; // place a sentinel
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table entry for this thread is removed. The size and execution cost of context switch-

out and switch-in code are shown in Figure 5.12.

5.4.3  The Context Switch Instrumentation Points

Virtualization requires identifying all of the kernel’s context switch-out and

switch-in sites. The Solaris kernel only schedules kernel threads; all user-level

processes, kernel background tasks, and even interrupts are bound to a kernel thread.

Solaris has several thread context switch sites, depending on the machine state

(particularly the interrupt level) at the time of the context switch. The myriad of

Figure 5.11: Context Switch-In Instrumentation Pseudo-Code (uniprocessor)
As with context switch-out instrumentation, no synchronization is needed because this code is always invoked at

a high interrupt priority level, which prevents scheduling.

Operation Code Size (bytes) Cost

Context-switch out virtualization code 816 0.65 µs

Context-switch in virtualization code 412 0.58 µs

Figure 5.12: Cost of Context Switch Instrumentation
These numbers were measured by using KernInst to instrument its own instrumentation code. Times shown are

on a 440 Mhz UltraSparc-IIi system running Solaris 7.

vecOfStoppedAccumulators=hash.getAndRemove(%g7); // %g7: curr thread ID

VAptr→recursionCount=nextStoppedAccumPtr→savedRecursionCount;

nextStoppedAccumPtr=vecOfStoppedAccumulators; // a pointer

VAptr=nextStoppedAccumPtr→theAccumulatorPtr; // accumulator to restart

while (nextStoppedAccumPtr→theAccumulatorPtr ≠ NULL) {

assert(%pil >= 10); // This code executes at a high processor interrupt level

VAptr→startValue=current; // current value of underlying event counter
nextStoppedAccumPtr++;

}

freelist.free(vecOfStoppedAccumulators);

if not found then goto done // nothing needed for this thread

done:

// VAptr: pointer to virtual accumulator structure to restart
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context switch points demonstrates that kerninstd is able to instrument low-level

kernel routines that run at a high priority level. The variants are:

• Non-interrupt threads, e.g. threads bound to a user process. This is the common

case. An optimized variant is used to switch from a zombie thread.

• Interrupt threads whose priority is below that at which the context switch

routines themselves execute. Such “low-level” interrupts are bound to a thread,

and are allowed to call code that may block.

• Interrupt threads whose priority equals that at which the context switch code

executes. An example is the clock interrupt.

• Interrupt threads whose priority is greater than or equal to that at which the

context switch routines execute. Such code is not permitted to block. An example

is ECC error detection.

As an optimization, the kernel predicts that interrupt handlers complete without

blocking. The interrupt is initially bound to a skeletal thread, and the execution

context is piggybacked onto the interrupted thread (a process known as pinning).

Should the interrupt block or be preempted, the skeletal thread is fully initialized,

and the interrupted thread is un-pinned. Interrupts running at a priority level greater

than the scheduler must not block, which could cause the context switch code to be

preempted and then rescheduled. Similarly, such interrupts can preempt kperfmon’s

virtualization code, so it is unsafe to perform virtualized measurements of any such

high-level interrupt routine, or any routine that it may invoke. Fortunately, because

high-priority interrupts may not block, the set of such routines is small.

Figure 5.13 describes most of the context switch points that kperfmon

instruments. Virtualization occurs for every context switch except for high-priority

interrupts, such as like ECC errors. Any instrumented kernel code that is interrupted
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by a high-priority interrupt will not be able to exclude any events that occur in the

interrupt. This omission is not a major problem, because high-priority interrupts

seldom run for long (they cannot perform any synchronization except for spin locks).

Trap handlers, which run at a higher priority than any interrupt, are also not

virtualized. However, because such exceptions are usually code that is directly

Kernel Location
Switch-Out or

Switch-In
Point?

Description

swtch and swtch_to, at their respec-
tive calls to resume

switch-out Switches out a non-interrupt thread (the
common case)

swtch_from_zombie, at the call to
resume_from_zombie

switch-out Switching from a just-killed thread;
doesn’t need to save context.

swtch, at the call to resume_from_intr switch-out Switches out an interrupt thread.

exit of resume_from_idle (just before
the routine lowers the interrupt pri-
ority level, however)

switch-in
Called from resume and

resume_from_zombie; the common case of
switching in a non-interrupt thread.

entry to intr_thread switch-out Entry point for low-priority interrupt. Pins
the interrupted thread.

Within intr_thread, before it dis-
patches the interrupt

switch-in Skeletal interrupt has been created and is
ready to run.

Within intr_thread, before it changes
%g7 back to the interrupted thread

switch-out
switch-out of a low-priority interrupt

thread, when it ran to completion without
blocking.

Within intr_thread, just after it
changes %g7 back to the inter-
rupted thread

switch-in
switch-in of the thread that had been inter-
rupted, when the interrupt ran to comple-

tion without blocking.

exit of resume_from_intr switch-in
Un-pins the thread that had been inter-
rupted, and resumes it. Used when the

interrupt code blocks.

Figure 5.13: Virtualization Instrumentation Points (Abbreviated)
Context switch-out code is spliced at a point where register %g7 contains the ID of the thread that is about to be
switched out. Context switch-in splicing occurs at a point where %g7 contains the ID of the thread that is about

to be switched in. In addition, splicing occurs at a points where the interrupt priority level is high enough to
prevent the scheduler from being preempted (except by high-level interrupts or traps). intr_thread handles low-

priority interrupts; clk_thread (excluded from this table for brevity) handles interrupts at the same priority level
as the scheduler itself. Higher-level interrupts (handled by current_thread) are not instrumented by kperfmon.
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executed by a thread (such as a save instruction leading to a register window

overflow trap), it is desirable to include this time in virtualized totals.

Although there are quite a few context switch points, kperfmon is programmed to

identify each function that contains a context switch, and where within that function

the context switch code is located.

The virtualization code, while simple and inexpensive, can be sub-optimal in a

few cases. In particular, a thread being switched out may stop an accumulator, only

to have it restarted by the subsequent thread that is switched in. The check for such

an optimization requires about as much work as doing it naively, so it was not

implemented.

5.4.4  Multiprocessor Issues for Virtualization

A multiprocessor-safe alternative for counted virtual time events has been

designed. This design replaces the cumulative thread events design (Section 5.3),

which is unsuitable for multiprocessors.

A central assumption of the previous design is that only a single thread can

accumulate events at one time. This assumption is not valid on a multiprocessor. The

assumption can be restored by using per-CPU accumulators, where a single logical

accumulator is represented as numCPUs physical accumulators. Start and stop

primitives use the current CPU ID as a level of indirection when accessing an

accumulator. This change restores the invariant that a presently active accumulator

must have been started by the currently running thread. Per-CPU accumulators also
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ensure that different processors will not actively compete for write access to the same

accumulator, causing undue cache coherence overhead.

Per-CPU accumulator totals can be summed after their values have been read,

and reported to kperfmon as a single value. Because the total field is the sum of

events occurring during possibly overlapping time intervals, a multiprocessor

version of virtual time has units of thread-events, not events. Alternatively, per-CPU

accumulator totals can be reported individually, allowing users to gauge processor-

specific bottlenecks.

With per-CPU versions of a single logical accumulator, the virtualization

framework is still a hybrid approach: one accumulator per CPU to represent the

actively running thread(s), plus hash table information for the accumulators that

were stopped by virtualization code, for each presently switched out thread.

The hash table requires reconfiguration to avoid multiprocessor cache coherence

overhead in the presence of competing write access among the various processors. A

straightforward solution is to pad all hash table structures to data cache block

alignment. On the UltraSPARC-I and II, the L1 data cache has 16 byte sub-blocked 32-

byte blocks, and the L2 data cache has 64-byte blocks [96, 97].

A virtualized accumulator that was started on a particular CPU is always stopped

on the same CPU. To see why, consider a thread that starts an accumulator, migrates,

and then stops that accumulator. On Solaris, migration can only occur for a thread

that was already context switched out. At the time of migration, previously-executed

context switch-out virtualization code has ensured that the accumulator was stopped

while it was still running on the original CPU. Similarly, the context switch-in
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virtualization code re-starts the accumulator while the thread is running on the post-

migration CPU. Stopping a virtualized accumulator on the same CPU on which it

was started is important because on-chip registers serving as an event counter (such

as elapsed cycles or cache misses) may be out of sync across CPUs. A naive

implementation could calculate an interval count by reading event counters from

different CPUs, possibly leading to a spurious rollover.

Another invariant of the virtualization framework is that migration of a started

virtual accumulator cannot occur. Again, context switch-out instrumentation

guarantees this invariant; before any thread migrates, it is first context-switched out,

where instrumentation will stop all active accumulators. This invariant ensures that a

migrating thread cannot leave one CPU’s version of an accumulator started

indefinitely. This problem is not easily solved within the cumulative thread events

framework of Section 5.3.

Despite the above invariants, it is necessary to prevent migration in the middle of

a start or stop primitive. If migration could happen in the middle of a primitive, it

would be possible to modify the wrong per-CPU accumulator. At the beginning of a

primitive, instrumentation code reads the current CPU, using it to calculate the

address of the CPU-specific accumulator structure used in the remainder of the

primitive. If migration happens immediately after this calculation, but before the

compare-and-swap has finalized changes to the accumulator, then the thread—

ignorant that it was just migrated—will update the wrong CPU’s accumulator.

Migration can be prevented by locking down a thread for the duration of the

primitive, by calling affinity_set and affinity_clear, or by calling splhigh to temporarily
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set the CPU’s interrupt level high enough to prevent scheduling. A more elegant

solution makes the primitives sensitive to migration by causing their compare-and-

swap to fail. The failure will lead to the entire primitive being retried, this time

running on the new CPU for the full duration of the primitive.

5.5  Wall Time Event Accumulating Revisited for Multiprocessors

A multiprocessor version of wall time accumulators that does not share the

limitations of cumulative thread events (Section 5.3) has been designed. The

cumulative thread events design is fooled by recursion into accumulating too high a

result, it suffers from the “poll problem” where one thread can mistakenly stop

accumulation begun by another thread, and it cannot handle migration. The solution

to these problems for wall time that is discussed in this section builds on the

virtualized timer framework of the previous section. Such a design may appear odd,

because from a high level, the basic virtualization primitives already calculate wall

time, then go to much effort to exclude events occurring while context switched out.

However, we have seen that a multiprocessor version of virtualized time interval

counters is feasible, so it is a good place to begin. Its hybrid of per-CPU accumulators

to represent actively running threads and per-thread accumulators to represent

switched-out threads makes wall time event accumulation for multiprocessors

feasible.

The key equality that guides the design presented in this section is:

wall time = virtual time + blocking time
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In other words, wall time is the time spent actively running plus the time spent

context switched out. Similarly,

wall time events = virtual time events + blocking time events

Virtual time events can be measured using the design of Section 5.4.4, leaving

blocking time events to solve. Blocking time events for each accumulator can be

obtained by measuring the events occurring while that accumulator is stopped due

to virtualization. Specifically, on context switch-out of an active accumulator,

virtualization stops the accumulator. At that time, a different interval measurement is

begun, to count the events that occur while that accumulator is stopped due to

virtualization. On context switch-in, virtualization re-starts an accumulator if it had

been turned off due to context switch-out of this thread; blocking time uses this cue

to stop its associated interval measurement. In this way, blocking time events can be

measured with one counter per virtualized accumulator. This information can be

piggybacked as a third field of a hash table entry, as shown in Figure 5.14.

The solution, though it has some drawbacks (complexity, extra storage in the hash

table, and slightly more expensive context switch-out and switch-in code), is

desirable for several reasons. First, the runtime instrumentation cost of the basic start

and stop primitives (i.e., excluding context switch instrumentation) is only slightly

higher than the uniprocessor versions (see Figure 5.9), which in turn was less

expensive than the primitives for cumulative thread events (Figure 5.5). The only

additional perturbation compared to virtualized accumulators is a bit of extra code in

the context switch-out and switch-in instrumentation. An additional benefit of this
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design is that the user can measure an entirely new class of metrics, blocking time, to

complement virtual time and wall time metrics.

A final benefit of this design is that even if several threads have overlapping wall

time accumulation intervals (illustrated in Figure 5.2), they are not afflicted with the

so-called “poll problem” (mentioned in Section 5.2) in which one thread can

mistakenly stop accumulation on behalf of another thread. The problem is prevented

because every wall time accumulator(s) that was started by thread T1 but was not yet

stopped has a recursionCount field that can only be accessed by that thread. In other

words, there are thread-specific copies of each accumulator that is presently active.

To see why this is true, consider two cases. In the first case, thread T1 is blocked after

having started a particular accumulator. Then a copy of the accumulator’s

recursionCount field at the time of switch-out is presently saved in the hash table,

where no other thread has access to it. (Each hash table entry is indexed by thread ID,

Figure 5.14: Hash Table Entry for Multiprocessor-Safe Wall Time Measurements
As before, an entry is specific to a particular thread. The startValueWhenSwitchedOut field is new. On context

switch-in, the underlying event counter is re-read and subtracted from this field to obtain the number of events
that occurred on this accumulator while blocked. This field can be added to the accumulator’s total field.

Alternatively, a separate total field can be maintained if the user chooses to view virtual time events and blocking
time events separately.

Pointer to accumulator

Saved recursionCount

startValueWhenSwitchedOut

can be restarted upon context switch-in)

(Not specific to any per-CPU version, so if

(value of underlying event counter)

migration occurs, a different per-CPU version
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making it thread-specific.) In the other case, when T1 is actively running, it has

exclusive use of a recursionCount field for accumulator(s) that it started because there

are per-CPU accumulator copies for running threads. Any other thread T2 that is

actively running and that has started the same (logical) accumulator must be on

another processor, and is operating on a different per-CPU version of that

accumulator, with a different recursionCount field.

5.6  Future Work

The primary limitation of kperfmon as presently implemented is that its

instrumentation primitives do not work on multiprocessors. The designs of

multiprocessor versions of virtual time metrics (Section 5.4.4) and wall time metrics

(Section 5.5) are the most important areas of future work in kperfmon.

The design of metrics in kperfmon is powerful: the set of metrics is easily

extended, and any metric can be virtualized. Resources could be made more

powerful, however. Presently, the only code resources are kernel functions and basic

blocks. It would be useful to add control flow graph edges to the set of possible

resources, enabling inclusive time spent in a basic block to be divided into the if-

taken and if-not-taken branches, for example. Similarly, call graph edges would allow

measurement of the time spent in a function, but only when invoked from a specific

call site. These fall under a more general umbrella: it would useful to have paths (at

basic block or function granularity, intraprocedural and interprocedural) as

resources.
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Another useful extension to resources would be an entirely new hierarchy to

complement code resources: data resources. This change would allow measurements

such as “kernel lock (mutex) blocking time” for a specific mutex object, or “disk seek

time” for a specific file.

5.7  Conclusion and Research Contributions

Kperfmon is the first tool that uses dynamic instrumentation to measure an

unmodified commodity operating system kernel. It is also the first instrumentation-

based tool that can instrument an unmodified kernel at a fine-grain: almost any

kernel function or basic block can serve as a code resource, which in turn can be

coupled with any kperfmon metric. (Sampling-based profilers can also measure at a

fine-grain, but as discussed in Section 2.2.1, they cannot easily measure wall time

metrics or inclusive metrics.)

Metrics in kperfmon are extensible; any monotonically increasing event counter

can be leveraged in the creation of a new metric. Furthermore, metrics can

accumulate either wall time events or virtual time events. Kperfmon is the first kernel

profiler that can virtualize any wall time metric. The metrics in kperfmon are

inclusive of time spent in callees (unlike sampling-based profilers), making an

iterative (and possibly automated [14]) search for bottlenecks straightforward:

simply traverse the call graph.
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Chapter 6

Using Dynamic Kernel Instrumentation for Kernel and Application

Tuning

This chapter presents a case study of using kperfmon to understand and optimize

the performance of a Web proxy server. Understanding kernel performance has a

two-way benefit, providing information useful for tuning both the kernel and user

processes. The ease with which the performance results were obtained also shows the

flexibility of a dynamic profiling tool that has full access to detailed performance

data.

We first describe the Squid Web Proxy server and the benchmark used to drive it.

We then describe the process of identifying the two major bottlenecks, followed by a

description of the fixes and the resulting performance gain.

6.1  Introduction

This study used the Squid Web proxy server and the Wisconsin Proxy Benchmark

as a workload to drive the kernel.
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Web proxies are an effective means for reducing the load on Web servers. Web

clients can query a local proxy (instead of the actual server), which adds a security

firewall and caches some of the Web server’s contents. The proxy retrieves files as

needed from the server when it cannot satisfy a client’s HTTP request from its cache.

We studied the performance of the Solaris 2.5.11 kernel, while running version

1.1.22 of the Squid Web proxy server [63]. Squid uses two levels of HTTP cache: in

memory and on disk. Incoming HTTP GET requests are first searched in Squid’s

memory cache. If the object is not found there, Squid next tries its disk cache. If

neither cache contains the desired object, Squid retrieves the object from the Web

server. In this study, Squid’s disk cache was installed on a local disk running the

default Unix File System (UFS).

A heavily loaded proxy server can expect hundreds or thousands of simultaneous

TCP connections, which it must multiplex alongside any local disk activity of its

own. Squid does not create an independent thread of control to handle each request.

Instead, a single thread multiplexes among all active TCP connections and pending

file operations, using non-blocking I/O primitives.

Version 1.0 of the Wisconsin Proxy Benchmark [2] was used to drive Squid. Thirty

synthetic client processes connect to a Squid proxy. Squid in turn connects to a

synthetic Web server process. Three machines are used: client, Squid, and server. All

measurements discussed in this chapter were performed on the Squid machine.

Each client process connects to Squid and makes HTTP GET requests with no

intervening thinking time. The benchmark runs in two stages. In the first stage, 100

1. When this study was performed, KernInst had only been ported to Solaris 2.5.1.
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requests are made for HTTP objects (files). The same file is never requested twice, so

there is no locality in this stage. Its purpose is to populate the cache and stress its

replacement algorithm. In the second stage, the client again sends 100 requests, but

this time with a temporal locality pattern designed to lead to a proxy hit ratio of

approximately 50%.

The server process listens on a particular TCP port number for HTTP requests.

When one arrives, it parses the URL to determine the appropriate file. If the file has

not yet been (synthetically) created, the server creates it. The file’s size is uniformly

distributed from 3 K to 40 K, 99% of the time. The other 1% of the time, the file size is

1 MB.

6.2  Understanding the Bottlenecks

The search for an application bottleneck (in Squid) led into the kernel, requiring a

kernel profiling tool. We use kperfmon to measure the performance of the

Solaris 2.5.1 kernel running the above benchmark. This section discusses two

bottlenecks that kperfmon helped to identify. Measuring kernel performance yielded

two benefits. First, it helped understand kernel bottlenecks, leading to a kernel

optimization. Second, it helped understand a bottleneck caused by an application

that spends most of its time in the kernel, performing I/O.

6.2.1  The First-Order Bottleneck: File Opens

Because the Wisconsin Proxy Benchmark has a working set size larger than

Squid’s in-memory cache, a reasonable hypothesis is that Squid might be disk

bound1 due to disk reads (misses in Squid’s in-memory cache, but hits in its on-disk
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cache) or disk writes (misses in the on-disk cache, requiring the file to be brought in

from the server). To obtain specific numbers on the time that Squid spends in disk

activity, the Quantify profiling tool [77] was run on Squid to determine the source of

this first-order bottleneck. Surprisingly, it turned out to be neither disk reads or

writes.

Quantify showed that most of Squid’s time is spent in the routine

storeSwapOutStart, which is called to demote a file from Squid’s in-memory cache to its

on-disk cache. Interestingly, the time within this routine was spent not in writing to

disk, but in its call to open. Squid was spending 76% of its elapsed time (time spent

waiting in a select statement) simply opening on-disk cache files for writing.

Explaining this result requires investigating Squid’s cache organization.

Squid maintains one file per HTTP object that it is caching on disk. Thus, its on-

disk cache is not one large fixed-size file, but a collection of all objects being cached,

with varying sizes. Although it simplifies Squid’s code, this design decision causes

severe performance degradation.

Squid organizes its cache files into a three-deep hierarchy, to keep the number of

files in any one directory manageable. A hash function maps a file table entry

number to a full path name; the same file name can be reused for different cached

objects over time. In general, a file used for an object that has been ejected remains on

disk, though marked as invalid. When the file name is reused for a new cache object,

Squid will overwrite the old invalid file.

1. The constant noise of disk thrashing on the machine running Squid led to the
formulation of this hypothesis.
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Any bottleneck in the open system call is a serious concern in a single-threaded

program that multiplexes between many file descriptors, because UNIX has no

interface for a non-blocking open system call. This limitation contrasts with read and

write system calls, which can return EWOULDBLOCK if they would block the processing,

allowing work to proceed on other, ready file descriptors. With blocking opens, the

entire Squid process is blocked whenever an open on any file blocks.

Further performance study requires understanding why open was slow. This in

turn requires examining the operations that take place in an open system call. User-

level performance profilers see system calls as a black box, and can offer little

guidance in understanding kernel performance.

6.2.2  Tracing the open Bottleneck to File Creation

With the dynamic nature of KernInst, one can interactively find kernel bottlenecks

in the same manner as finding user-level bottlenecks. First, a function that is

performing slowly is measured, to determine if it is a bottleneck. If so, its callees are

similarly profiled. By using KernInst, this iterative refinement was performed while

Squid was running.

The kernel routine copen was measured first. The results of two rate metrics, “calls

made to” and “concurrency”, applied to copen, are shown in Figure 6.1. The figure

shows that although file opens are occurring only 20-25 times per second, 40% of

Squid’s elapsed time is spent in this routine.
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Next, the actions performed by copen was examined. copen calls falloc to allocate

an available entry in the process file descriptor table, and then calls vn_open to

perform the open. Times for these routines are shown in Figure 6.2. falloc takes

negligible time, a surprising finding because Squid file table allocation has been

reported to be a bottleneck under heavy load in a previous study (performed on

Digital UNIX) [8].

Since copen spent most of its time in vn_open, the performance of vn_open was

examined next. Here, file creation diverges from opening an existing file; vn_create is

called if the O_CREAT flag was passed to the open system call. vn_open is called about

20-25 times per second; of these, about eight go to vn_create. The remaining calls to

vn_open are non-creating, indicating hits in Squid’s on-disk cache. However, an

examination of the latencies of these routines, shown in Figure 6.3, reveals that the

Figure 6.1: copen
Although called only 20-25 times/sec, copen is a clear bottleneck. On average, 0.4 kernel threads are executing in
this routine at any given time. This number translates to 40% of Squid’s elapsed time, since Squid is a single-

threaded program.
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time spent in vn_open was almost entirely consumed by vn_create. Thus, eight file

creations per second account for Squid’s file-opening bottleneck.

6.2.3  Understanding the File Creation Bottlenecks

Since file creation is the primary bottleneck, vn_create and its callees were

examined. vn_create calls lookuppn (known in older UNIX incarnations as namei) to

Figure 6.2: The Major Callees of copen: falloc and vn_open
vn_open accounts for almost all of the time spent in copen; negligible time is spent in falloc.

Figure 6.3: vn_open Spends Most of its Time in vn_create
The concurrency curves for vn_open and vn_create overlap (about 0.4 threads in them at any given time).
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translate the file path name to a vnode. This vnode is passed to the file system-specific

creation routine. The results, shown in Figure 6.4, reveal that file creation has two

distinct bottlenecks: path name lookup (lookuppn) and UFS file creation (ufs_create).

6.2.3.1  The ufs_create Bottleneck

The ufs_create bottleneck was surprising, because UFS file creation performs only

local meta-data operations. Yet, as just seen, Squid is spending about 20% of its time

there. The time spent in ufs_create was traced to ufs_itrunc, which is invoked when the

O_TRUNC flag is passed to the open system call. The two routines have nearly identical

performance numbers, as shown in Figure 6.5. Thus, about 20% of Squid’s elapsed

time is spent truncating existing files to zero size when opening them.

To determine why ufs_itrunc is so slow, its callees were examined; the results are

shown in Figure 6.6. Most of ufs_itrunc’s time is spent in ufs_iupdat, which

synchronously writes to disk any pending update to the file’s inode. Thus, truncation

Figure 6.4: vn_create and Its Two Main Callees: lookuppn and ufs_create
Both lookuppn and ufs_create are (distinct) bottlenecks (each consuming about 20% of Squid’s elapsed time).
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is slow because inode changes are made synchronously, as dictated by Unix file

semantics to ensure file system integrity in case of a crash. Squid’s strategy of

overwriting existing cache files to avoid meta-data updates required by file deletion

is ineffective, since similar meta-data updates are performed by truncation.

Figure 6.5: ufs_create Time is Spent Primarily in ufs_itrunc
UFS file creation time is dominated by inode truncation; the concurrency curves for ufs_create and ufs_itrunc

almost completely overlap.

Figure 6.6: Most of ufs_itrunc’s Time is Spent in ufs_iupdat
File truncation is slow because UFS meta-data updates are made synchronous by ufs_itrunc.
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6.2.3.2  The lookuppn bottleneck

Recall from Figure 6.4 that lookuppn is a second bottleneck. To some extent, this is

not surprising, since obtaining a vnode from a path name can require reading a

directory file to obtain an inode disk location and reading the inode itself for each

component in the path name. Solaris tries to optimize path name lookup through the

directory name lookup cache, or DNLC [18, 58]. The DNLC is a hash table indexed by

path name component containing a pointer to a cached inode. A hit in the DNLC allows

the kernel to bypass disk reads for both the directory file (ufs_dirlook) and the inode

(ufs_iget). As shown in Figure 6.7, the DNLC hit rate is about 90%. Unfortunately, the

miss penalty (execution of ufs_dirlook) is sufficiently high to account for the ufs_lookup

bottleneck, as shown in Figure 6.8.

6.3  Optimizations Performed

This section discusses optimizations, one to the kernel and one to Squid, that

respectively address the path-name lookup and file truncation bottlenecks.

Figure 6.7: The DNLC Hit Rate
The miss routine, ufs_dirlook, is only invoked once per 10 calls to ufs_lookup, for a DNLC hit rate of about 90%.
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6.3.1  Addressing the Pathname Lookup Bottleneck

The DNLC contained a default of 2,181 entries on the test machine. With over 6,000

Squid cache files in the benchmark, plus hundreds of subdirectories in the three-level

cache hierarchy, the DNLC was ineffective because Squid’s preponderance of small

files overwhelmed its capacity. Because Solaris sets the DNLC size based on the kernel

variable maxusers, the bottleneck was addressed increasing maxusers to 2,048 in

/etc/system (the maximum allowable value [18]) and rebooting. The DNLC size grew to

17,498 after this change.

The effect of increasing the DNLC size is shown in Figure 6.9. Once the benchmark

has run long enough to warm up Squid’s disk cache (about one minute), the DNLC

miss rate, once 10%, drops to 1%. Correspondingly, the total time spent in the miss

routine (ufs_dirlook) drops to a negligible fraction of Squid’s running time. Best of all,

ufs_lookup, and by implication, lookuppn, is no longer a bottleneck.

Figure 6.8: ufs_lookup Spends Most of its Time in ufs_dirlook
Despite a low miss rate, the DNLC miss penalty (ufs_dirlook) is high enough to account for the entire ufs_lookup

bottleneck (the ufs_dirlook and ufs_lookup curves almost completely overlap). The dnlc_lookup curve is
essentially zero because checking for a DNLC hit or miss is always quick.
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6.3.2  Addressing the File Truncation Bottleneck

The second bottleneck, file truncation, was reduced by modifying Squid’s source

code. Squid has a bottleneck in ufs_create because it prepares to overwrite a file by

first truncating its size to zero bytes. This involves updating the file’s inode, which is

done synchronously, in keeping with UFS semantics. Note that the truncation can be

unnecessary, because data blocks will be added as the new version of the file is

written. More specifically, if the file’s new size is at least the original size, then the

truncation was an expensive no-op, because every data block that is freed will be re-

allocated. Even if the file is smaller than the one it is replacing, only the now-unused

blocks at the end of the file need to be deleted.

Only a few small changes to Squid, totaling 15 lines of source code, were needed

to effectively address this bottleneck. First, the O_TRUNC flag is no longer passed to

the open system call. The new contents of the file are then written (Squid code that

Figure 6.9: The Effect of Increasing DNLC Size on ufs_lookup Latency
For the first twenty seconds of the benchmark, there are enough DNLC misses to account for 10% of Squid’s run

time. As file names are reused more often, however, the DNLC hits become more frequent, and the ufs_dirlook
bottleneck evaporates (compare to Figure 6.8).
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seeks to the end-of-file prior to every write was also removed). When the new file is

written, an fcntl call with the parameter F_FREESP is used to truncate the file size at the

present location of the file pointer. Thus, if the new file size is smaller than the

previous file size, the blocks representing the now-unused end of the file are freed. If

the new file size at least as large as the original file size, the fcntl has no effect.

After optimization, kperfmon was re-run to examine file creation performance. As

shown in Figure 6.10, performance greatly improved. Less than 20% of Squid’s time

is now spent creating its disk cache files, compared with 40% before this

optimization.

File truncation latency in the optimized version of Squid is shown in Figure 6.11.

Calls to ufs_itrunc are no longer made by the open system call, because Squid no

longer passes the O_TRUNC flag when opening cache files for writing. With the

smarter truncation policy, time that Squid spends updating meta-data has reduced

from about 20% to about 6%.

Figure 6.10: File Creation Performance When the Truncation Bottleneck is Addressed
File creation once took 40% of Squid’s run time; the inode truncation optimization reduces it to 20%.
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6.3.3  The Combined Effects of Both Optimizations

As shown in Section 6.3.1, increasing the DNLC size reduced path name lookup

time from about 20% of Squid’s run-time to about 1%. In Section 6.3.2, avoiding

unnecessary file truncating in Squid reduced UFS file creation time from about 20%

of Squid’s run-time to a negligible value. The combined effects of the two

optimizations are shown in Figure 6.12. Total file creation time, which once took

about 40% of Squid’s run-time, now takes less than 1%. However, to this must be

added the time spent explicitly truncating the file through the fcntl (ufs_freesp), which

from Figure 6.11 is about 6%. File opens, which once took 40% of Squid’s elapsed run-

time now take about 7%, a speedup of 57%.

We re-ran Quantify on Squid, and found that only 15% of Squid’s elapsed time,

excluding idle time in select, was now being spent in storeSwapOutStart. This value is

Figure 6.11: ufs_itrunc in Optimized Squid
Because Squid no longer uses the O_TRUNC flag opening cache files, truncation is now mostly performed when

explicitly requested via fcntl (ufs_freesp).
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down from 76% before optimizations. The first-order bottleneck in Squid is now

write, taking 44% of Squid’s non-idle elapsed time.

6.4  Ideas for Future Optimizations

Both of the kernel bottlenecks identified by kperfmon involve meta-data updates

when opening a local disk file for writing. Although optimizations that have

significantly reduced these bottlenecks have been presented, 7% of Squid’s elapsed

time is still spent waiting for the open system call to complete. A fundamental

redesign of Squid’s disk cache would further improve performance. Instead of one

disk file per cached HTTP object, Squid should use one huge fixed-size file for its disk

cache, managing the contents of this file manually. This design will bypass the UFS

file system, with its corresponding synchronous meta-data update overheads.

While any sacrifice of synchronous meta-data updates can cause data loss, and

thus is normally unacceptable, there is no need for this feature in a Web proxy server.

Figure 6.12: vn_create Time With Both the File Truncation and DNLC Optimizations Applied
vn_create once consumed 40% of Squid’s run time (Figure 6.4); that number is now less than 1%.
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File corruption, assuming it can be detected, can easily be tolerated in a proxy server

by re-fetching the affected file from the server. Similarly, Squid has no need for the

UFS feature of synchronously updating time of last modification when writing files.

Measurements described in this chapter suggest that bypassing UFS by managing

Squid’s disk cache manually would yield major performance improvements, though

at the cost of significantly increasing Squid’s code complexity.

6.5  Conclusion

This chapter has shown a demonstration of kperfmon to understand two

bottlenecks in a heavily loaded Web proxy server. This case study has shown a two-

way benefit from kernel measurement, providing information useful for both kernel

and application tuning. One of the bottlenecks, poor DNLC performance, was

addressed by changing a kernel variable. Another bottleneck, superfluous file

truncating, was addressed by changing application code, which shows that kernel

profiling is also useful to application developers. In both cases, optimizations were

made possible through a detailed understanding of the kernel’s inner workings

provided by kperfmon. Without information on why the open system call had such

high latency, it is unlikely that either optimization would have been found.
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Chapter 7

Calculating Control Flow Graph Edge Counts From Block Counts

A simple and effective algorithm is presented for approximating control flow

graph edge execution counts from basic block execution counts. Edge counts provide

more precise profile information than block counts, and are useful in applications

such as the on-line kernel I-cache optimization that is presented in Chapter 8. They

may be of interest to other tools, especially sampling-based profilers such as dcpi [3],

gprof [40], Morph [107], and VTune [46], which are not able to measure edge counts

directly. The approximation of edge counts is effective in practice; measurements for

the Solaris kernel in this chapter show that control flow graph edge counts can be

calculated from block counts for more than 98% of the edges. Furthermore, counts

can be calculated for every edge of 94% of kernel functions. These results show that

simple instrumentation to measure block counts can be used in place of technically

more difficult instrumentation that measures edge counts.

The algorithm requires a function’s control flow graph and the execution count of

each basic block in the graph. It assigns counts to the graph’s edges, precisely
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calculated when possible, and approximated otherwise. The algorithm is based on a

simple graph invariant: that the sum of a basic block’s predecessor edge counts

equals the block’s edge count, which also equals the sum of the block’s successor

edge counts. The success of the algorithm (how many edge counts can be precisely

calculated as opposed to approximated) depends solely on the structure of the

control flow graph.

Successfully deriving edge counts tends to contradict the widely held belief that

while block counts can be derived from edge counts, the converse does not hold.

Although this is certainly true in the general case—it has been proven that edge

counts cannot be derived from block counts for arbitrarily structured graphs [71]—

the algorithm seems to work well in practice.

7.1  Motivation

There are many uses for edge counts. The run-time kernel I-cache optimization

described in Chapter 8 uses edge counts to guide the layout of basic blocks that

results in straight-lined execution in the common case. Another use of edge counts is

in calculating how often a certain function was executed, which requires edge

counting if the function’s entry basic block can be reached not only via a procedure

call, but also via a branch from elsewhere in the function. The second use is discussed

further in Section 7.4.

Avoiding the need to measure edge counts directly defers the need for an edge

splicing primitive within KernInst. Edge splicing is presently un-implemented in

kerninstd due to jump tables. If a jump table destination block can also be reached
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from a branch, then edge instrumentation cannot simply be placed at the entry to that

block. A general solution might rewrite the jump table data so that execution of a

particular jump table edge jumps to a code patch, which performs desired

instrumentation and then jumps to the destination block.

7.2 The Algorithm

To obtain edge counts, two simple formulas are used: the sum of a basic block’s

predecessor edge counts equals the block’s count, which also equals the sum of a

basic block’s successor edge counts. Therefore, for a block whose count is known, if

all but one of its predecessor (successor) edge counts are known, then the unknown

edge count can be precisely calculated: the block count minus the sum of the known

predecessor (successor) edge counts.

The edge count assignment algorithm (Figure 7.1) is applied to one function at a

time. The algorithm is given the function’s control flow graph, and counts for each of

its basic blocks. A set of basic blocks, containing blocks that might have only one

unknown predecessor or successor edge count, is initialized to include all basic

blocks in the function. The algorithm repeats the following actions until that set is

empty. Some basic block X is removed from the set. If only one of its predecessor

edges (W, X) has an unknown count, then its count is calculated and W is added to the

set, because with this change, perhaps only one of its successor edge counts remains

unknown. Next, a similar action is performed for the successors of block X. When the

first phase of the algorithm completes, all the edge counts that could be precisely

derived from the block counts were so calculated.
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Figure 7.1: Pseudo-Code For Deriving Edge Counts From Block Counts
Based on two graph invariants, that both the sum of a node’s predecessor edge counts and the sum of its successor
edge counts equals the node’s block count, the first phase of this algorithm precisely calculates edge counts, where

possible. The second phase approximates the remaining edge counts.

initialize set S to all basic blocks in the CFG

while (S ≠ ∅ ) {
remove any entry X from set S

if edge (W,X) is only pred of X with unknown exec count {

S = S ∪ { W}

}

if edge (X,Y) is only succ of X with unknown exec count {

EdgeCount(X,Z)=BlockCount(X)- EdgeCount X Z,( )
Z Succs X( ) Y{ }–∈

∑
S = S ∪ { Y}

}

}

EdgeCount(W,X)=BlockCount(X)- EdgeCount V X,( )
V Preds X( ) W{ }–∈

∑

EdgeCount(X,Y): the # of executions of the control flow edge from block X to block Y
BlockCount(X): the # of executions of basic block X
// Calculate precise edge counts, where possible:

Preds(X): the set of predecessor blocks to basic block X
Succs(X): the set of successor blocks to basic block X

for all edges (X,Y) in the CFG with unknown count {

// Approximate the remaining edge counts:

max1 = BlockCount(X) - EdgeCount X Z,( )
Z KnownSuccs X( )∈

∑

max2 = BlockCount(Y) - EdgeCount W Y,( )
W KnownPreds Y( )∈

∑
EdgeCount(X,Y) = min(max1, max2)

}

KnownSuccs(X): the set of successors to block X connected via an edge whose
count was precisely calculated in the above phase of the algorithm.

KnownPreds(X): the set of predecessors to block X connected via an edge whose
count was precisely calculated in the above phase of the algorithm.

for all W ∈ Preds(X) {

}

for all Y ∈ Succs(X) {

}
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In the second phase of the algorithm, imprecise execution counts are assigned to

the remaining edges. Two formulas provide a bound on the count of such an edge

(X, Y). Let KnownSuccs(X) be the successors blocks of X that are connected to X by an

edge count that was precisely calculated in the first phase. Let UnknownSuccs(X) be

Succs(X) - KnownSuccs(X). We start with the invariant that the sum of X’s successor edge

counts equals X’s block count, then subtract the sum of X’s known successor edges

from both sides to yield

Similarly, let KnownPreds(Y) be the predecessor edges of Y whose counts are known,

and let UnknownPreds(Y) be Preds(Y)-KnownPreds(Y). The sum of Y’s predecessor edge

counts equals Y’s count. Subtracting the sum of Y’s known predecessor edges from

both sides yields

Each of the two equations give a maximum bound on the execution count of edge

(X, Y). The minimum of the maximum values allowed by the two equations provides

an upper bound on the count of edge (X, Y). We use this value as an estimate for the

count of edge (X, Y). Although this assignment is usually more accurate than

assigning the block count of the edge’s destination, the value can still be too high.

There are alternatives to this policy, such as evenly dividing the maximum allowable

value among the unknown edges. However, since it is usually possible in practice to

EdgeCount X Y,( )
Y UnknownSuccs X( )∈

∑ BlockCount X( ) EdgeCount X Y,( )
Y KnownSuccs X( )∈

∑–=

EdgeCount X Y,( )
X UnknownPreds Y( )∈

∑ BlockCount Y( ) EdgeCount X Y,( )
X KnownPreds Y( )∈

∑–=
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usually derive precise edge counts, approximation is seldom needed, making the

issue relatively unimportant.

To give an example of the algorithm at work, Figure 7.2 (from Pettis and Hansen’s

paper [69]) contains a control flow graph that was used to demonstrate why edge

measurements are more useful than node measurements. (Pettis and Hansen did not

attempt to calculate edge counts from block counts, noting only that it is not always

possible. From this, they assume that tools will resort to using the block count of an

edge’s destination as a poor approximation for the edge itself.) In this example, edge

counts can be derived as follows. First, B has only one predecessor edge and only one

successor edge, each of which must equal B’s count, so edges (A, B) and (B, D) are

assigned a count of 1000. Now, A has only one unknown successor edge (A, C), which

is given the count of 1 (block A’s count, 1001, minus the count of its known successor

edge, 1000). Next, C has only one remaining unknown predecessor edge (C, C), which

can be assigned the value 2000 (C’s block count, 2001, minus the count of the other

predecessor edge, 1). Finally, C now has one unknown successor (C, D), which can be

assigned 1 (C’s block count, 2001, minus C’s other successor edge, 2000).

7.3  Results

Figure 7.3 contains the results of an experiment to determine how often edge

counts can be calculated from block counts. The results are encouraging:

• Across the entire kernel, over 98% of edge counts can be determined from block

counts; approximation was needed for less than 2% of edges.

• Over 94% of kernel functions have all of their edge counts accurately determined

from block counts without the need for approximation.
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Figure 7.2: An Example Where Edge Counts Can Be Derived From Block Counts
An unknown count for an edge (X, Y) can be calculated if it is the only unknown successor of block X, or the only
unknown predecessor of block Y. Repeated application of this rule until convergence can often calculate all edge

counts, as in this example. (An augmented version of Figure 3 from [69].)

Module
#Fns

parsed
#Edges

Frac. of individual
edges whose counts

can be calculated

Frac. of fns whose
entire edge counts
can be calculated

genunix 2589 51225 0.991 0.959
afs (afs syscall interface) 922 27663 0.919 0.678
unix 1758 20288 0.988 0.968
ufs (filesystem for ufs) 337 10840 0.996 0.967
nfs (NFS syscall, client, and common) 479 10279 0.998 0.987
ip (IP Streams module) 373 11437 0.991 0.957
md (Meta disk base module) 390 8812 0.991 0.967
tcp (TCP Streams module) 159 5889 0.997 0.969
procfs (filesystem for proc) 174 5475 0.993 0.948
sd (SCSI Disk Driver 1.308) 115 4737 0.998 0.983
rpcmod (RPC syscall) 209 3972 0.997 0.986
sockfs (filesystem for sockfs) 149 3891 0.998 0.987
pci (PCI Bus nexus driver) 127 2523 0.987 0.937
hme (FEPS Ethernet Driver  v1.121 ) 97 2741 1.000 1.000
se (Siemens SAB 82532 ESCC2 1.93) 69 2731 0.997 0.971
fd (Floppy Driver v1.102) 54 2582 1.000 1.000
zs (Z8530 serial driver V4.120) 48 2147 1.000 1.000
uata (ATA AT-bus attachment disk controller Driver) 127 1936 1.000 1.000
krtld 127 2363 0.984 0.921
rpcsec (kernel RPC security module.) 122 2037 0.996 0.984

Figure 7.3: How Often Edge Counts Can Be Calculated From Block Counts
This table, ordered by module total code size, shows that edge counts can usually be calculated from block counts.
The fourth column gives the fraction of individual edges whose count can be determined. The final column gives

the fraction of functions for which every edge can be determined. The last row gives kernel-wide totals.

A
block count=1001

B
block count=1000

C
block count=2001

D
block count=1001

1000 1

2000

11000
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ufs_log (Logging UFS Module) 131 1879 0.991 0.969
xfb (xfb driver 1.2 Sep  7 1999 11:46:39) 99 1855 0.998 0.990
audiocs (CS4231 audio driver) 83 1486 1.000 1.000
dad (DAD Disk Driver 1.16) 56 1558 0.992 0.982
tmpfs (filesystem for tmpfs) 66 1422 0.997 0.985
ldterm (terminal line discipline) 45 1768 0.989 0.911
afb (afb driver v1.36 Sep  7 1999 11:47:45) 60 1023 0.992 0.983
scsi (SCSI Bus Utility Routines) 78 1330 0.994 0.974
tl (TPI Local Transport Driver - tl) 57 1399 1.000 1.000
specfs (filesystem for specfs) 48 1030 0.988 0.938
arp (ARP Streams module) 67 1397 1.000 1.000
SUNW,UltraSPARC-IIi 60 910 1.000 1.000
vol (Volume Management Driver, 1.85) 23 1184 0.997 0.957
doorfs (doors) 52 1113 1.000 1.000
su (su driver 1.24) 31 922 0.991 0.935
udp (UDP Streams module) 43 1131 1.000 1.000
timod (transport interface str mod) 36 1054 0.989 0.917
kerninst (kerninst driver v0.4.1) 116 1005 0.996 0.991
fifofs (filesystem for fifo) 40 920 0.996 0.975
kb (streams module for keyboard) 36 984 0.996 0.972
tnf (kernel probes driver 1.47) 55 780 0.959 0.873
pm (power manager driver v1.65) 29 806 1.000 1.000
TS (time sharing sched class) 36 787 1.000 1.000
devinfo (DEVINFO Driver 1.24) 35 668 0.982 0.914
ipdcm (IP/Dialup v1.9) 52 816 0.995 0.981
ttcompat (alt ioctl calls) 14 692 1.000 1.000
diaudio (Generic Audio) 28 772 0.995 0.964
elfexec (exec module for elf) 12 453 1.000 1.000
shmsys (System V shared memory) 19 515 1.000 1.000
ptc (tty pseudo driver control ‘ptc’) 16 638 1.000 1.000
tlimod (KTLI misc module) 21 557 1.000 1.000
winlock (Winlock Driver v1.39) 39 448 0.991 0.974
hwc (streams module for hardware cursor support) 11 382 1.000 1.000
ms (streams module for mouse) 17 468 1.000 1.000
ptem (pty hardware emulator) 13 459 1.000 1.000
simba (SIMBA PCI to PCI bridge nexus driver) 18 274 1.000 1.000
seg_drv (Segment Device Driver v1.1) 25 339 1.000 1.000
sad (Streams Administrative driver’sad’) 23 371 1.000 1.000
namefs (filesystem for namefs) 32 271 0.985 0.969
lockstat (Lock Statistics) 27 327 1.000 1.000
ptsl (tty pseudo driver slave ‘ptsl’) 14 335 1.000 1.000
rootnex (sun4u root nexus) 19 361 1.000 1.000
dada ( ATA Bus Utility Routines) 30 339 1.000 1.000
dada_ata ( ATA Bus Utility Routines) 30 330 1.000 1.000
md5 (MD5 Message-Digest Algorithm) 8 46 1.000 1.000
sysmsg (System message redirection (fanout) driver) 15 297 1.000 1.000
mm (memory driver) 13 272 1.000 1.000
wc (Workstation multiplexer Driver ‘wc’) 18 292 1.000 1.000
ebus (ebus nexus driver) 13 213 1.000 1.000

Module
#Fns

parsed
#Edges

Frac. of individual
edges whose counts

can be calculated

Frac. of fns whose
entire edge counts
can be calculated

Figure 7.3: How Often Edge Counts Can Be Calculated From Block Counts
This table, ordered by module total code size, shows that edge counts can usually be calculated from block counts.
The fourth column gives the fraction of individual edges whose count can be determined. The final column gives

the fraction of functions for which every edge can be determined. The last row gives kernel-wide totals.
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Kerninstd currently calculates edge counts for every (parsed) kernel function, using

approximation where necessary, in about 2.4 seconds.

7.4  Obtaining Number of Calls to a Function From Its Block Counts

In this section it is shown how to use edge counts to accurately obtain the number

of times a function is called. Perhaps surprisingly, the number of calls to a function is

not always simply the number of times that its entry basic block is executed, because

ptm (Master streams driver ‘ptm’) 12 234 1.000 1.000
pts (Slave Stream Pseudo Terminal driver ‘pts’) 12 229 1.000 1.000
RT (realtime scheduling class) 24 225 1.000 1.000
iwscn (Workstation Redirection driver ‘iwscn’) 19 199 0.980 0.947
fdfs (filesystem for fd) 17 195 1.000 1.000
eide (PC87415 Nexus driver v2.0) 19 180 1.000 1.000
conskbd (Console kbd Multiplexer driver ‘conskbd’) 14 189 0.979 0.929
todmostek (tod module for Mostek M48T59) 10 56 1.000 1.000
log (streams log driver) 9 134 0.970 0.889
sy (Indirect driver for tty ‘sy’) 12 123 1.000 1.000
consms (Mouse Driver for Sun ‘consms’) 14 166 0.976 0.929
kstat (kernel statistics driver) 12 131 1.000 1.000
pckt (pckt module) 11 153 1.000 1.000
ksyms (kernel symbols driver) 11 97 1.000 1.000
inst_sync (instance binding syscall) 11 95 1.000 1.000
power (power driver v1.4) 11 104 1.000 1.000
cn (Console redirection driver) 13 99 1.000 1.000
sysacct (acct(2) syscall) 6 74 0.946 0.833
clone (Clone Pseudodriver ‘clone’) 7 82 1.000 1.000
intpexec (exec mod for interp) 5 85 0.953 0.800
pseudo (nexus driver for ‘pseudo’) 10 74 0.946 0.900
ipc (common ipc code) 5 61 1.000 1.000
pipe (pipe(2) syscall) 4 21 1.000 1.000
connld (Streams-based pipes) 6 28 1.000 1.000
options (options driver) 7 39 1.000 1.000
redirmod (redirection module) 6 21 1.000 1.000
TS_DPTBL (Time sharing dispatch table) 5 10 1.000 1.000
IA (interactive scheduling class) 3 9 1.000 1.000
RT_DPTBL (realtime dispatch table) 3 6 1.000 1.000
platmod 5 10 1.000 1.000
Kernel-wide: 10637 225375 0.984 (std dev:0.001) 0.944 (std dev:0.004)

Module
#Fns

parsed
#Edges

Frac. of individual
edges whose counts

can be calculated

Frac. of fns whose
entire edge counts
can be calculated

Figure 7.3: How Often Edge Counts Can Be Calculated From Block Counts
This table, ordered by module total code size, shows that edge counts can usually be calculated from block counts.
The fourth column gives the fraction of individual edges whose count can be determined. The final column gives

the fraction of functions for which every edge can be determined. The last row gives kernel-wide totals.
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the entry block may also be the destination of a branch from within the function. A

function beginning with a while loop may have such a structure. Kperfmon calculates

an accurate function call count by subtracting the execution count of the function’s

entry block predecessors from the execution count of the entry basic block itself.

Of the kernel functions whose control flow graphs were successfully parsed, 70

functions have an entry block with at least one predecessor edge, complicating the

calculation of number of times these functions are called. Of these 70 functions, only

three (blkleft, copyout_blkleft, and copyin_blkleft) have an entry block whose predecessor

edge counts could not all be derived from the block counts.

7.5  Future Work

The vast majority of kernel functions can accurately derive their edge execution

counts from their block execution counts. It would be useful to know if, in turn, the

derived edge counts can be used to approximate (intra-procedural) path execution

counts. A paper by Ball, Mataga, and Sagiv contains theory and results for

determining when edge profiles are accurate predictors of path profiles [7].

It would be useful to employ previous research into block counting with lower

perturbation. Knuth and Stevenson present an algorithm for finding the minimum

number of block counters that are necessary and sufficient for block execution

counting [49].

Ball and Larus show that it is less expensive to determine block counts via edge

profiling, in terms of minimizing the total number of instrumentation points [6]. This

would tend to argue that once edge splicing is implemented in kerninstd, it should
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discard the mechanisms of this chapter in favor of measuring edge counts directly.

However, basic block execution count measurements can benefit from an

optimization: instrumentation code can be placed anywhere in the basic block.

Among the choices, there may be one with enough available scratch registers to

execute the instrumentation code without spilling register(s), something which is not

considered in Ball and Larus’ work. Furthermore, as demonstrated in Section 4.2.3,

dynamic instrumentation at conditional branches—which would be frequently used

in edge profiling—is one of the more expensive places to splice, due to the expense of

relocating the overwritten instruction.

A paper by Probert [71] contains proofs that basic block counts are insufficient to

determine edge counts not only for arbitrary control-flow graphs, but also for

reducible graphs [50] (ones whose loops have only a single entry point). However,

Probert shows that for “well-delimited” programs, whose control flow constructs (if,

while, etc.) all have corresponding delimiters (end if, end while, etc.), a source code

transformation can insert basic block counts which are sufficient to derive edge

counts. Furthermore, it is shown how the set of basic block counters that are

necessary for deriving edge counts can be minimized. When viewed at the machine

code level, Probert’s algorithm only works on functions whose control-flow graphs

match that of such “well-delimited” functions. A non-matching function would

require the addition and instrumentation of dummy basic blocks that are placed at

edges in the original graph. The set of functions for which edge counts can precisely

derived from block counts may be isomorphic to the set of functions to which
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Probert’s algorithm applies. If this holds, then Probert’s work could be leveraged,

reducing the number of basic blocks that need instrumenting to a minimum.

The techniques of this chapter may be usefully applied to inter-procedural edge

counting; in other words, to obtain call graph edge counts. Call instructions are rarely

conditional, so most call graph edge counts are simply the count of the basic block

containing the calling instruction. An exception occurs for calls made via inter-

procedural branches. If such a branch is conditional, then an edge count, the number

of executions of the if-taken case, determines the call graph edge count. Calls whose

destination cannot be statically determined, such as a call through a function pointer,

will be the most difficult to measure, because the call instruction can have any

number of callees, each of which are a control flow graph edge.

7.6  Conclusion and Research Contributions

An algorithm has been presented for determining edge counts from block counts,

and applied to the Solaris 7 kernel. The results show that 98.4% of edges kernel can

be precisely determined, and that 94.4% of kernel functions can have every one its

edges so determined. However, the positive results are not meant to imply that edge

splicing is not useful, for if it were available, then all edge counts could be calculated.

As a means of calculating edge counts that is independent of the mechanism used

to measure block counts, the work shown in this chapter is especially beneficial to

tools that cannot directly measure edge counts, particularly sampling-based profilers.
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Chapter 8

Dynamic Kernel Optimization and Evolving Kernels

This chapter presents mechanisms for turning an unmodified commodity kernel

into an evolving one. An evolving system is one that changes its code dynamically to

adapt to the run-time environment. Such changes can include, but are not limited to,

dynamic optimizations, security patches, and bug fixes. The ideal evolving system

allows every step of the development cycle to be performed on-line. As a proof of

concept, an evolving kernel algorithm has been implemented within kperfmon. This

algorithm is a dynamic kernel version of Pettis and Hansen’s code positioning

I-cache optimizations [69]. There are two contributions from this implementation.

First, it is the first general-purpose infrastructure for dynamic kernel optimization,

which provides evidence that an unmodified commodity kernel can be made into an

evolving one. And second, it is the first on-line kernel version of this optimization. As

an initial case study, dynamic code positioning reduced by 17.6% the execution time

of the kernel’s TCP read-side routine (tcp_rput_data) while running a Web mirroring

benchmark.
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8.1  Evolving Kernels and Run-time Kernel Code Positioning

Performance tuning and debugging are performed in a cycle of several steps.

Some of the steps, such as performance measurement or bug finding, can take place

at run-time, but program modifications are typically installed off-line. For an

operating system kernel, installing off-line changes requires a reboot, which can be

prohibitive. To address this problem, a framework for evolving kernels has been

designed and implemented. The framework allows a kernel to dynamically change

its code to adapt to the run-time environment. Although the framework applies

equally well to evolving user-level code, the current implementation is done within

KernInst.

An evolving kernel algorithm is driven by a policy that will make use of the

following three mechanisms:

• Measurement. Data is gathered that identifies a problem, such as a bug or a

performance bottleneck. Kperfmon is used for this step.

• Change the code. Kernel code is modified to try to solve the problem; the

mechanism depends on the evolving algorithm. For bug fixing, a programmer

typically manually changes the source code. Certain performance bottlenecks

may be solved with automated transformations, such as that provided by a

feedback-directed compiler [9, 17, 19, 69, 89]. Kerninstd does not implement

specific policies. Instead, it accepts and installs externally generated code

changes. This is in keeping with kerninstd’s policy of providing the mechanisms

for inserting code into a running kernel, while allowing the code to be generated

by any outside source. This chapter describes a specific mechanism for dynamic

code positioning to the Solaris 7 kernel.

• Install the new code. The third step of an evolving algorithm installs the

modified code into a running system. Kerninstd’s code replacement
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primitive (Section 4.5) is used for this purpose, which allows an outside source to

change the code of an entire function dynamically.

An evolving algorithm (whether in the kernel or in a user-level program) is more

general than dynamic feedback [32], which chooses between several distinct policies at

run-time. A dynamic feedback system hard-codes all of its components; the logic for

driving the adaptive algorithm, the measurement code, all policies, and the logic for

switching between the policies at run-time are compiled into the system a priori. An

evolving system does not hard-wire these components.

As a demonstration of the mechanisms necessary to support an evolving kernel,

we have implemented a run-time prototype of three I-cache optimizations due to

Pettis and Hansen [69]:

• Procedure splitting. Also called outlining in Scout [62], this optimization moves

seldom-executed “cold” basic blocks away from “hot” ones, to reduce the I-cache

pollution of rarely executed code. Such code is prevalent in the kernel, due to

extensive error checking.

• Basic block positioning. A function’s blocks are reordered to facilitate straight-

lined execution in the common case. Advantages include increasing the code

executed between taken conditional branches, decreasing I-cache internal

fragmentation due to un-executed code that shares a line with common code, and

a reduction of unconditional branches. In Pettis and Hansen’s work, block

positioning yielded the greatest benefit.

• Procedure positioning. This optimization places the code of functions that exhibit

temporal locality adjacent in memory, to reduce the chances of I-cache conflict

misses.

The three optimizations are collectively called code positioning. Pettis and Hansen

implemented them in a feedback-directed customized compiler for user code, which
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applies the optimizations off-line and across an entire program. In contrast, our

implementation is performed on kernel code and entirely at run-time. Also, only a

selected set of functions is optimized, not the entire kernel.

Code positioning is performed using the following steps:

• A function to optimize is chosen (this is the only step currently requiring user

involvement).

• Kperfmon determines if there is an I-cache bottleneck at that function. If so, block

counts are gathered for this function and those of its descendants that it calls

frequently. From these counts, a determination is made on which functions to

optimize (the chosen function and a subset of its descendants). (Section 8.2)

• Kerninstd parses a relocatable representation of these functions. (Section 8.3)

• An optimized re-ordering is chosen and installed into a running kernel.

(Section 8.4)

Interestingly, once the optimized code has been installed, the entire code positioning

optimization must be repeated (once)—optimizing the optimized code— for reasons

that are discussed in Section 8.2.3.

8.2  Kernel Code Positioning: Measurement

Our kernel code positioning optimization starts with the measurement phase. The

user specifies a function that is to be evaluated for optimization. The first

measurement step, described in Section 8.2.1, determines whether an I-cache

bottleneck is present. If so, then code positioning is performed.

Because a function’s callees affects its I-cache performance, code positioning is

performed not only on the user-specified function, but also on some of its call graph

descendants. This collective set of functions is called a function group; the user-
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specified function is the group’s root function. The second measurement step,

described in Section 8.2.2, collects block execution counts for the root function and a

subset of its call graph descendants.

The intuitive basis for the function group is to gain control over I-cache behavior

while the root function is executing: once the group is entered via a call to the root

function, control will probably stay within the group until the root function returns.

This gives us knowledge about the likely flow of control that can be leveraged to

improve I-cache performance during this time.

8.2.1  Is There An I-Cache Bottleneck?

The first step of measurement checks whether code positioning is needed.

Kperfmon applies the metric I-cache vstall time/vtime to the group’s root function,

which yield the fraction of that function’s virtual time in which the CPU is stalled

due to an I-cache miss. The denominator is virtual time, an inclusive, virtualized

interval count metric (see Section 5.4) whose underlying event counter is the on-chip

elapsed cycle counter. The numerator is similar, with the underlying event counter of

the on-chip I-cache stall cycle counter [96, 97]. (Because an I-cache miss does not

cause a context switch, I-cache miss cycles are included in a function’s virtual time.)

If the ratio is above a threshold (which is arbitrarily set to 10% by default and can be

changed by the user), then the algorithm continues, on the assumption that I-cache

performance might benefit from code positioning.

The UltraSPARC processor, like most modern processors, decouples instruction

fetching from instruction execution by executing instructions out of an instruction
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buffer, which is filled via prefetching out of the I-cache. This decoupling can tolerate

some I-cache miss time by executing other instructions in the instruction buffer.

Accordingly, the UltraSPARC performance register for I-cache stall cycles measures

the number of cycles that the CPU spends idling due to an empty instruction buffer;

the cause will be an I-cache miss whose miss handling latency could not be fully

tolerated.

Like all of kperfmon’s interval measurements, both the number of virtualized

I-cache stall cycles and the number of virtualized cycles are inclusive measurements.

Therefore, any time that the root function spends in its descendant functions (and

any I-cache misses that occur during such times) while the root function is on the call

stack are included in the measurements. This inclusion is desirable because it takes

into account the descendants’ effect on the root function’s I-cache behavior.

8.2.2  Collecting Block Execution Counts for Functions

The second phase of measurement performs a breadth-first traversal of the call

graph, collecting basic block execution counts of any function that is called at least

once while the root function is on the stack.

The traversal begins by instrumenting the root function to collect its basic block

execution counts. After a user-defined delay to let a benchmark run (the default is 20

seconds), the instrumentation is removed and the block counts are examined. Among

the blocks that were executed at least once, statically identifiable callee functions

have their block counts measured in the same way.
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Pruning is applied to the call graph traversal in two cases. First, a function that

has already had its block execution counts collected is not re-measured. Second, a

function that is only called from within a basic block whose execution count is zero is

not measured.

Because indirect function calls (such as through a function pointer) do not appear

in the call graph, a function reached only via such calls will not have its block counts

measured. Such functions will not have a chance be included in the optimized group.

8.2.3  Measuring Block Execution Counts Only When Called from the Root
Function

Block execution count instrumentation should include only those executions

when the root function is on the call stack, to only consider the extent to which a

descendant function contributes to the root function’s I-cache behavior. In particular,

a descendant may be called not only when the root function is on the call stack, but

also from other kernel functions having nothing to do with the root function. Block

executions in the latter case should not be counted.

This more selective block counting is achieved by performing code positioning

twice—re-optimizing the optimized code. (The first time, the group is generated

using block counts that were probably too high.) Code replacement is performed

solely on the root function, so the non-root group functions only are invoked while

optimized root function is on the call stack. This technique ensures that block

execution counts during re-optimization include only executions when the root

function is on the call stack, as desired.
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Collecting block counts in a single pass, without re-optimization, could require

predicating block counting instrumentation code with a test for whether the code

was called (directly or indirectly) from root function. Paradyn uses such “constraint”

predicates in user-level instrumentation by keeping instrumentation that increments

a counter when the root function is entered, and decrements that counter when the

root function exits [43, 44]. The counter acts as a flag that can be tested by block

counting instrumentation. (The counter is non-zero when the root function is on the

call stack.) However, beyond the extra run-time cost, thread-safety requires per-

thread flags, with corresponding extra complexity [104].

8.3  Obtaining A Relocatable Representation of the Group’s Code

After the measurement phase of the optimization, kerninstd parses each of the

group functions into a relocatable representation. This representation allows an

optimized version of a function to be re-emitted with arbitrary basic block ordering,

even to the point of interleaving the blocks from different functions, as required by

procedure splitting. In general, basic blocks can be reordered while maintaining

semantics by adjusting branch displacements, adding unconditional branches, and

rewriting jump tables.

Kerninstd obtains a relocatable representation of a function by parsing its

machine code into a control flow graph of basic blocks, much like what is done on

kerninstd startup. No source code is required for this step. The difference is what is

stored for a basic block. A relocatable basic block contains a sequence of code objects.

There are two categories of code objects: those which execute a PC-independent
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sequence of non-control-flow instructions (the simple case), and those which

represent a control transfer. In both cases, a code object is represented in a location-

independent manner, so that a basic block can be re-emitted elsewhere in kernel

memory with equivalent semantics. To achieve this, a code object’s control transfer

information avoids keeping any absolute addresses.

An intra-procedural conditional branch code object contains the condition to test,

a delay slot instruction, and the ID (not the address) of the if-taken and if-not-taken

basic blocks. Inter-procedural branch code objects store the name of the if-taken

function instead of a block ID. A procedure call code object stores the name of the

callee, not its address, because if the callee ends up as part of the optimized group, its

address will have changed.

Code objects for jump instructions that implement jump tables (as in a C switch

statement) are the most complex. They store a list of basic block IDs representing the

individual destinations, so that when the function is emitted with differing ordering,

the jump table data can be altered appropriately. A jump table object also contains the

block ID and offset of the instructions that set a register to the fixed address of the

jump table, so these instructions may be backpatched in the new version of the

function, which has its own jump table data. As with other code objects, no

significant kerninstd infrastructure additions were needed for parsing code objects,

because the necessary structural information was already being calculated as a

matter of course during control flow graph parsing (see Section 3.3).

The simplest code object is one that represents a sequence of PC-independent

instructions that do not alter control flow such as adds, loads, and stores. However,
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control flow information may still need to be stored. If the code object ends its basic

block, which occurs when a basic block falls through to another one, then the

PC-independent code object stores the basic block ID of the fall-through block.

In general, for any code object that stores a fall-through block that happens to be

at the start of another function, then the name of the succeeding function is stored

instead of a basic block ID. When the code object is emitted in a new location, extra

code is emitted to jump to the destination function in the (likely) case that the

succeeding function no longer resides immediately after this basic block.

With only one exception, kerninstd is able to parse code objects for any function

that it was able to parse into a control flow graph during startup. The exception is a

non-loading jump table, which only occurs in two kernel functions (see Section 3.3.2).

In this case, the jump semantics are not amenable to destination block reordering,

because the jump’s destination is a non-loaded register offset from the jump

instruction. This kind of code object can be implemented in the future by emitting a

more traditional jump table sequence that matches the original semantics. A

traditional jump table provides the necessary level of indirection to account for the

possible reordering of the destination blocks. Any function whose code objects are

not successfully parsed will be excluded from the optimized group. Calls to such a

function from within the group will be directed to the original version of that

function.
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8.4  Code Positioning: Choosing the Block Ordering

There are three steps taken in choosing the ordering of basic blocks within the

optimized group. First, the set of functions to include in the optimized group is

determined. Second, procedure splitting is applied to each such function, segregating

the group-wide hot blocks from the cold ones. Third, basic block ordering is applied

within the distinct hot and cold sections of each function. These steps determine the

ordering of basic blocks within the group, which are emitted contiguously in virtual

memory, implicitly performing procedure placement. A sample group layout is

shown in Figure 8.1.

Figure 8.1: Sample Layout of an Optimized Function Group
In this example, the function group consists of the root function, ufs_create, three of its descendants: dnlc_lookup,
ufs_lockfs_begin, and ufs_lockfs_end. The chunks are not shown to scale; the cold chunks will typically be larger

than the hot ones. Code in the group may call other functions within the group.

Hot basic blocks of ufs_create (ordered via block positioning)

Hot basic blocks of dnlc_lookup (ordered via block positioning)

Hot basic blocks of ufs_lockfs_begin (ordered via block positioning)

Hot basic blocks of ufs_lockfs_end (ordered via block positioning)

Cold basic blocks of ufs_create (ordered via block positioning)

Cold basic blocks of dnlc_lookup (ordered via block positioning)

Cold basic blocks of ufs_lockfs_begin (ordered via block positioning)

Cold basic blocks of ufs_lockfs_end (ordered via block positioning)

Jump table data for ufs_create, dnlc_lookup, ufs_lockfs_begin, and
ufs_lockfs_end, respectively (if any).



177

8.4.1  Which Functions to Include in the Group?

Among the functions that had their basic block execution counts measured, the

optimized group will include those having at least one hot block. A hot basic block is

one whose measured execution frequency, when the root function is on the call stack,

is greater than 5% of the frequency that the root function is called. (The threshold is

user-adjustable.) The technique presented in Section 7.4 is used to accurately

determine how often the root function is called.

8.4.2  Procedure Splitting

Procedure splitting is the first of the code positioning optimizations that is

applied. For each function in the group, a chunk (a contiguous layout of basic blocks)

containing its hot basic blocks is segregated from the chunk containing the function’s

cold basic blocks, if any. The test for a hot block is the same as described in

Section 8.4.1, with the exception that a function’s entry block is always placed in the

hot chunk, and always at the beginning of that chunk, for simplicity.

Pettis and Hansen consider any block that is executed at least once to be hot.

Kperfmon can mimic this behavior by setting the user-defined hot block threshold to

0%, since an execution count of zero is always considered cold.

To help the optimization, not only are the hot and cold blocks of a single function

segregated, but all of the group-wide hot blocks are segregated from the group-wide

cold blocks, as shown in Figure 8.1. In other words, procedure splitting is applied on

a group-wide basis.
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8.4.3  Block Positioning

Block positioning uses edge execution counts to choose a layout for basic blocks

that is optimized to execute straight-line code in the common case. Kperfmon applies

block positioning to the hot subset of basic blocks, ordering one function’s hot blocks

chunk. Block positioning is also applied to the function’s cold blocks chunk, although

this is relatively unimportant, assuming that cold blocks are seldom executed. The

remainder of this section discusses the positioning of hot basic blocks.

The algorithm that we use for block positioning is a variant of that described by

Pettis and Hansen. Given a function’s control flow graph, the set of hot basic blocks

and their corresponding block execution counts, edge execution counts are derived,

using the algorithm of Chapter 7. The hot blocks are each placed in a chain, a

sequence of blocks that will be emitted as straight-lined code. Initially, each block is

in its own chain. The graph’s edges are then visited, ordered by their execution

frequency (highest first). If an edge connects a block that is the tail block in a chain to

a block that is the head of a different chain, then the two chains are merged. The

process repeats until all edges are traversed.

The motivation behind the chains strategy is to place the more frequently taken

successor block immediately after the block containing a branch. In this way, chains

can eliminate some unconditional branches. For a conditional branch, placing the

likeliest of the two successors immediately after the branch allows the fall-through

case to be the more commonly executed path (after reversing the condition being

tested by the branch instruction, if appropriate).
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In general, the number of basic blocks (or instructions) in a chain gives the

expected distance between taken branches, assuming that the edge counts are an

accurate approximation of path counts [7]. The higher the number of instructions

between taken branches, the better the I-cache utilization and the lower the

mispredicted branch penalty.

If there is more than one chain among the hot blocks, then a decision needs to be

made on their respective ordering. The control flow graph edges connecting blocks

contained in two chains (inter-chain edges) are used to guide relative chain ordering.

Intuitively, an inter-chain edge (A,B) connects two basic blocks A and B that were not

laid out contiguously because a higher-weighted edge led to a presumably better

choice for a successor block to A, or another edge led to a presumably better

predecessor choice for B. The algorithm for chain placements starts by placing the

chain containing the function’s entry block, then chooses the next chain based on the

most frequently executed inter-chain edge, which is essentially a weighted depth-

first search of the chain graph. Pettis and Hansen add an extra layer of logic to this

step, attempting to order chains so that inter-chain edges are forward branches

whenever possible. This decision matches the assumption made by early HP-RISC

processors that forward branches are predicted not taken. Because modern

processors dynamically update their prediction logic in hardware, we did not

implement this step.
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8.5 Emitting and Installing the Optimized Code

Once each function has segregated its basic blocks into hot and cold chunks

(through procedure splitting) and chosen an ordering of basic blocks within those

chunks (through block positioning), the optimized group code is generated, installed

into the kernel, and then has its functions analyzed like any other kernel function.

8.5.1  Code Generation

Like emitting instrumentation code into a code patch, emitting functions of the

outlined group is done in a relocatable form, because the group’s memory location is

presently unknown. An example of a relocatable element is an inter-chunk branch,

whose displacement is unknown until the distance between chunks are defined. Call

instructions to non-group functions specify the address of the callee; the instruction

will later be patched to contain the proper PC-relative offset. Calls to group functions

are specified by callee name, since the callee’s address is presently unknown. Jump

table data is another relocatable element. In the example of an offset jump table

(Section 3.3.2), the entries depend on the displacement between the jump instruction

and the destination basic block, which is represented in the relocatable code as the

difference between two labels.

Branch instructions are emitted to take advantage of block positioning. If an

unconditional branch’s destination block now resides immediately after the block

containing the branch, then the branch is optimized away, leaving only its delay slot

instruction, if any. An unconditional inter-procedural branch requires extra attention.

If the destination function lies within the group, then it is re-emitted as a single
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branch instruction. Otherwise, because we are no longer sure that the branch

instruction’s displacement is sufficient, it is emitted with a long jump sequence to a

constant address. (As with emitting long jumps in code patches (Section 4.2),

kerninstd’s live register analysis helps, by identifying an available scratch register to

use, when possible.)

A conditional branch is emitted by branching to a label that represents the

beginning of the if-taken block, after which an unconditional branch (with no delay

slot) is emitted to reach the former fall-through block. If the former fall-through block

still resides after the branch, then the unconditional branch can be optimized away,

yielding a code sequence that, aside from the possibly updated offset to reach the

if-taken block, is unchanged.

The more challenging case of intra-procedural conditional branches occurs when,

due to code positioning, the former if-taken block now resides immediately after the

block containing the branch instruction. In this case, the condition being tested by the

branch is reversed, the destination of the branch is set to the former fall-through

block, and the branch’s predict bit is set to false. If the conditional branch had a delay

slot instruction that was only executed when the branch was taken (this depends on

its annul bit), then the reversal of the condition test means that the delay slot

instruction should now be executed only if the branch is not taken. There is no such

setting for SPARC branch instructions, so in this case, the delay slot is filled with a

nop instruction, and the former delay slot instruction is emitted immediately after the

nop, which makes it immediately precede the fall-through basic block, achieving the

desired effect.
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Inter-procedural conditional branches are the most complex relocatable element

to emit. If the destination function lies within the optimized group, then kperfmon

assumes that it can (still) be reached with a branch instruction, and a conditional

branch to a label representing the callee is emitted. After the branch, code is emitted

to reach the former fall-through block. As with intra-procedural conditional

branches, there are three cases. First, if the fall-through block is intra-procedural and

still resides immediately after the block containing the branch, then no extra code is

emitted. Second, if the fall-through block is intra-procedural but has been moved,

then an unconditional branch (with no delay slot) to a label representing that block is

emitted. In the final case, if the fall-through block resides in another function (a case

occurring 116 times in optimized assembly code; see Section 3.3.1), then a jump to

that function is emitted: an unconditional branch instruction if that function resides

in the group (and thus is guaranteed to be nearby), or a long jump sequence

otherwise.

8.5.2 Installing the Optimized Group

Once the relocatable structures are emitted, they are sent to kerninstd with a

request to download the code, with the specific chunk ordering shown in Figure 8.1,

into a contiguous area of kernel nucleus memory. At this time, kerninstd will resolve

the inter-chunk branches, call instructions, jump table data, and other such

relocatable elements, much like a linker does.

The contiguous group layout has two consequences. First, it implicitly performs

procedure placement. Second, it ensures that both the ± 512 ΚΒ and the ± 8 MB
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displacement provided by the two classes of SPARC branch instructions is enough to

transfer control between any two chunks.

Pettis and Hansen’s method of emitting branches between hot and cold basic

blocks differs from KernInst’s. In their system, any such branch is redirected to a

nearby stub, which performs a long jump. Although these stubs are infrequently

executed (because transfers between hot and cold blocks seldom occur), they increase

total hot code size. For each branch from a hot to a cold block within a function, a

stub is placed at the end of that function’s hot blocks. This layout ensures that hot

blocks of multiple functions cannot be contiguously laid out for minimal I-cache

footprint, because the stubs, which are effectively small but cold basic blocks, reside

between the hot chunks.

8.5.3 Parsing the Group Functions

After group installation, kerninstd analyzes the group’s functions in the same

way that kernel functions were analyzed on kerninstd startup: control flow graphs

are constructed, register analysis is performed, and the call graph is updated. This

first-class treatment of runtime-generated code allows the new functions to be

instrumented (so the speedup achieved by the optimization can be measured, for

example) and even re-optimized (a requirement, as mentioned in Section 8.2.3).

Procedure splitting and the consequent interleaving of functions within the

optimized group required improving kerninstd’s control flow graph parsing

algorithm. First, a function can now contain several disjoint “chunks”. The chunk

bounds must be provided, so that branches can properly be recognized as intra-



184

procedural or inter-procedural, and so basic blocks that fall through to another

function can be identified. Fortunately, it is easy to pass the chunk bounds of each

group function to the parsing code; that information follows immediately from the

procedure splitting phase (Section 8.4.2).

The group’s parsed functions appear in kperfmon’s code resource hierarchy.

Group functions are assigned to a dummy module whose name is groupX, where X is a

unique group identifier. Within this module, each function’s name is a colon-

separated concatenation of the original function’s module and function names. For

example, a group function containing the function tcp_rput_data from the tcp module

is assigned the function name tcp:tcp_rput_data. (Concatenation avoids any chance of

a name conflict within the group functions. Two kernel functions may have the same

name as long as they reside in different modules. Now that kerninstd is placing them

in the same “module”, unique names are required for the group functions.)

8.6 Kernel Code Positioning: Case Study with TCP running FTP

As a concrete demonstration of the efficacy of run-time kernel code positioning,

this section presents initial results in optimizing the I-cache performance of a Web

retrieval benchmark. We study the performance of tcp_rput_data (and its callees), the

major TCP function that processes incoming network data. tcp_rput_data is called

thousands of times per second in the benchmark, and has poor I-cache

performance—about 36% of tcp_rput_data’s execution time is due to delays caused by

I-cache misses. Using our prototype implementation of code positioning, this

percentage was reduced to about 28.5%. The optimization is presently limited by the
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inability to include within the group routines that are called via function pointers.

Nevertheless, code positioning reduces the time per invocation of tcp_rput_data from

6.6 µs to 5.44 µs, a decrease in execution time of 17.6%.

8.6.1  Benchmark

We used the GNU wget tool [38] to (repeatedly) fetch the Paradyn research papers

Web page [67], and all of the files that are linked to it. In all, 34 files are fetched,

totaling about 28 MB of data, largely comprised of postscript, compressed postscript,

and PDF files. The benchmark contained ten simultaneous connections, each running

the wget program as just described.

The benchmark spends a large amount of time in TCP code. In particular, the

read-side of a TCP connection is stressed, especially the routine tcp_rput_data, which

processes data that has been received over an Ethernet connection and recognized as

an IP packet. We chose to perform code positioning on tcp_rput_data because of its

size (about 12K bytes of code across 681 basic blocks), which suggests there is room

for I-cache improvement in this function.

8.6.2  The Performance of tcp_rput_data Before Code Positioning

The above benchmark completes in 36.0 seconds before code positioning is

applied. To investigate where the time was being spent, we used kperfmon to

measure the performance of each invocation of tcp_rput_data.

We concentrated on optimizing the time spent per invocation of tcp_rput_data to

identify a performance improvement that will scale with the execution frequency of
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tcp_rput_data. The execution frequency is a function of processor and network speed,

and the network load of the benchmark.

To determine whether tcp_rput_data is likely to benefit from code positioning, we

measured the amount of inclusive virtual execution time that tcp_rput_data spends in

I-cache misses. The result is surprisingly high; each invocation of tcp_rput_data takes

about 6.6 µs, of which about 2.4 µs is idled waiting for I-cache misses. In other words,

tcp_rput_data spends about 36% of its execution time in I-cache miss processing.

The basic block execution counts of tcp_rput_data and its descendants that were

gathered in Section 8.2.2 give an estimate on the basic blocks that are executed while

the benchmark is running. The measured execution counts are an approximation,

both because code reached via an indirect function call is not measured, and because

the measurement includes executions of a basic block without regard to whether the

group’s root function is on the call stack. These approximate block counts were used

to estimate the likely I-cache layout of the subset of these blocks that are hot, based

on kperfmon’s default interpretation that the hot blocks are those which are executed

over 5% as frequently as tcp_rput_data is called. The result is shown in Figure 8.2.

Because tcp_rput_data is called frequently, it is important that the function

executes well out of the I-cache. Two conclusions about I-cache performance can be

drawn from Figure 8.2. First, having greater than 2-way set associativity in the

I-cache would have helped performance. The hot subset of tcp_rput_data and its

descendants cannot execute without I-cache conflict misses. Second, even if the

I-cache were fully associative, it may be too small to effectively run the benchmark.

The bottom of Figure 8.2 estimates that 244 I-cache blocks (about 7.8K) are needed to
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hold the hot basic blocks of tcp_rput_data and its descendants, which is about half of

the total I-cache size. Because other code, particularly Ethernet and IP processing

code that invokes tcp_rput_data, is also executed thousands of times per second, the

total set of hot basic blocks likely exceeds the capacity of the I-cache.

0 0 0 0 1 1 1 0 1 1 0 0 0 1 2 2
1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0
1 1 1 2 2 2 1 0 0 0 0 0 1 2 2 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 2 0 1 1 3 2 2 1 1 1 1 1
2 2 0 0 0 0 0 1 1 1 1 2 2 2 1 2
2 1 1 2 2 2 0 1 1 3 3 3 3 1 2 3
1 3 2 1 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 2 1 1 1 1 1 1 1 1 1 0 0 1
2 2 3 2 2 1 2 2 1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 2 1 1 1 1 2 2 1 2 1 2
3 3 4 4 4 3 4 4 4 3 2 1 0 2 2 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Total # of cache blocks: 244 (47.7% of the I-Cache size)

Figure 8.2: I-cache Layout of the Hot Blocks of tcp_rput_data and its Descendants (Pre-optimization)
Each cell represents a 32-byte I-cache block; the number within a cell is how many hot basic blocks, with distinct
I-cache tags, fall on that block. This figure shows 256 cache blocks, totalling 8K. The UltraSparc I-cache is 16K 2-
way set associative, so two addresses can map onto the same block in this figure without causing a conflict miss.

Cells that are highlighted have more than two addresses mapping to that I-cache block, indicating a conflict.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total # of cache blocks: 132 (25.8% of I-Cache size)

Figure 8.3: The I-cache Layout of the Optimized tcp_rput_data Group
There are no I-cache conflicts among the hot basic blocks. Compare to Figure 8.2.



188

8.6.3  The Performance of tcp_rput_data After Code Positioning

Code positioning was performed to improve the inclusive I-cache performance of

tcp_rput_data. Figure 8.3 presents the I-cache layout of the optimized code, estimated

in the same way as the data in Figure 8.2. There are no I-cache conflicts among the

group’s hot basic blocks, which could have fit comfortably within the confines of an

8K direct-mapped I-cache.

Figure 8.4 shows the functions in the optimized group along with the relative

sizes of the hot and cold chunks. The fourth column of the figure shows how many

chains were needed to cover the hot chunk. One is ideal, indicating a likelihood that

all of the hot code is covered by a single path that is contiguously laid out in memory.

Code positioning reduced the benchmark’s end-to-end run-time by about 7%,

from 36.0 seconds to 33.6 seconds. To explain the speedup, we used kperfmon to

measure the performance improvement in each invocation of tcp_rput_data. Code

positioning reduced the I-cache stall time per invocation of tcp_rput_data by about

35%, the branch mispredict stall time by about 47%, and the overall virtual execution

time by about 18%. In addition, the IPC (instructions per cycle) increased by about

36%. Pre- and post-optimization numbers are shown in Figure 8.5.

8.6.4  Analysis of Code Positioning Limitations

Code positioning performs well unless there are indirect function calls among the

hot basic blocks of the group. This section analyzes the limitations that indirect calls

placed on the optimization of tcp_rput_data (and System V streams code in general),

and present measurements on the frequency of indirect function calls throughout the
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kernel, to give a quantitative idea of how the present inability to optimize across

indirect function calls constrains code positioning. We then discuss a unique

technical limitation that prevents the dynamic optimization of the Solaris function

mutex_exit.

Function
Jump Table

Data
Hot Chunk Size

(bytes)

Number of
Chains in Hot

Chunk (1 is best)

Cold Chunk Size
(bytes)

group1/tcp:tcp_rput_data 56 1980 10 11152
group1/unix:mutex_enter 0 44 1 0
group1/unix:putnext 0 160 1 132
group1/unix:lock_set_spl_spin 0 32 1 276
group1/genunix:canputnext 0 60 1 96
group1/genunix:strwakeq 0 108 1 296
group1/genunix:isuioq 0 40 1 36
group1/ip:mi_timer 0 156 1 168
group1/ip:ip_cksum 0 200 1 840
group1/tcp:tcp_ack_mp 0 248 1 444
group1/genunix:pollwakeup 0 156 1 152
group1/genunix:timeout 0 40 1 0
group1/genunix:.div 0 28 1 0
group1/unix:ip_ocsum 0 372 4 80
group1/genunix:allocb 0 132 1 44
group1/unix:mutex_tryenter 0 24 1 20
group1/genunix:cv_signal 0 36 1 104
group1/genunix:pollnotify 0 64 1 0
group1/genunix:timeout_common 0 204 1 52
group1/genunix:kmem_cache_alloc 0 112 1 700
group1/unix:disp_lock_enter 0 28 1 12
group1/unix:disp_lock_exit 0 36 1 20
Totals 56 4260 34 14624

Figure 8.4: The Size of Optimized Functions in the tcp_rput_data Group
The group contains a new version of tcp_rput_data, and the hot subset of its statically identifiable call graph

descendants, with code positioning applied. This figure shows the effects of procedure splitting, in which all hot
chunks are moved away from all cold chunks. The fourth column contains the number of chains in the hot chunk.

One chain covering the entire hot chunk is ideal, indicating a likelihood that a single hot path, laid out
contiguously, covers all of a function’s hot blocks.

Measurement Original Optimized Change

Total virtual execution time per invocation 6.6 µs 5.44 µs -1.16 µs (-17.6%)
I-cache stall time per invocation 2.4 µs 1.55 µs -0.85 µs (-35.4%)
Branch mispredict stall time per invocation 0.38 µs 0.20 µs -0.18 µs (-47.4%)
IPC (instructions per cycle) 0.28 0.38 +0.10 (+35.7%)

Figure 8.5: Measured Performance Improvements in tcp_rput_data After Code Positioning
The performance of tcp_rput_data has improved by 17.6%, mostly due to fewer I-cache stalls and fewer branch

mispredict stalls.
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The System V streams code has enough indirect calls to effectively limit what can

presently be optimized to a single streams module (TCP, IP, or Ethernet). Among the

measured hot code of tcp_rput_data and its descendants, there are two frequently-

executed indirect function calls. Both calls are made from putnext, a stub routine that

forwards data to the next upstream queue by indirectly calling the next module’s

stream “put” procedure. This call is made when TCP has completed its data

processing (verifying check sums and stripping off the TCP header from the data

block), and is ready to forward the processed data upstream. Because callees reached

by hot indirect function calls cannot currently be optimized, we miss the opportunity

to include the remaining upstream processing code in the group. At the other end of

the System V stream, by using TCP’s data processing function as the root of the

optimized group, we missed the opportunity to include downstream data processing

code performed by the Ethernet and IP protocol processing.

To give a quantitative indication of how the inability to optimize indirect calls

limits code positioning, Figure 8.6 contains the number of indirect calls made by each

kernel module. The figure shows that direct calls (or direct inter-procedural

branches) greatly outnumber indirect calls, and some modules make no indirect calls.

However, because indirect calls exist in the unix and genunix modules, which contain

many utility routines that are invoked throughout the kernel, any large group will

likely contain at least one indirect function call. For example, although the figure

shows that TCP makes no indirect function calls, we have seen that the unix module’s

putnext function, which performs an indirect call, is pulled into the group.
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Module
#Functions

Parsed

Average # of direct calls
(or inter-procedural

branches) by a function
in this module

Average # of indirect
calls made by a

function in this module

genunix 2589 5.3 0.2
afs (afs syscall interface) 922 8.2 0.2
unix 1758 2.8 0.1
ufs (filesystem for ufs) 337 8.4 0.7
nfs (NFS syscall, client, and common) 479 7.3 0.2
ip (IP Streams module) 373 6.4 0.1
md (Meta disk base module) 390 6.3 0.6
tcp (TCP Streams module) 159 9.1 0.0
procfs (filesystem for proc) 174 8.8 0.4
sd (SCSI Disk Driver 1.308) 115 14.4 0.0
rpcmod (RPC syscall) 209 5.7 0.5
sockfs (filesystem for sockfs) 149 8.8 0.1
pci (PCI Bus nexus driver) 127 5.7 1.0
hme (FEPS Ethernet Driver  v1.121 ) 97 11.0 0.1
se (Siemens SAB 82532 ESCC2 1.93) 69 14.3 0.2
fd (Floppy Driver v1.102) 54 15.0 0.0
zs (Z8530 serial driver V4.120) 48 14.0 0.3
uata (ATA AT-bus attachment disk controller Driver) 127 5.7 0.1
krtld 127 3.7 0.8
rpcsec (kernel RPC security module.) 122 5.1 0.3
ufs_log (Logging UFS Module) 131 4.9 0.0
xfb (xfb driver 1.2 Sep  7 1999 11:46:39) 99 3.6 0.8
audiocs (CS4231 audio driver) 83 7.5 0.3
dad (DAD Disk Driver 1.16) 56 11.1 0.0
tmpfs (filesystem for tmpfs) 66 7.1 0.1
ldterm (terminal line discipline) 45 9.6 0.0
afb (afb driver v1.36 Sep  7 1999 11:47:45) 60 5.0 0.8
scsi (SCSI Bus Utility Routines) 78 4.9 0.4
tl (TPI Local Transport Driver - tl) 57 7.7 0.0
specfs (filesystem for specfs) 48 6.5 0.4
arp (ARP Streams module) 67 5.6 0.0
SUNW,UltraSPARC-IIi 60 3.2 0.0
vol (Volume Management Driver, 1.85) 23 21.0 0.0
doorfs (doors) 52 7.9 0.2
su (su driver 1.24) 31 14.5 0.0
udp (UDP Streams module) 43 6.6 0.1
timod (transport interface str mod) 36 10.6 0.0
kerninst (kerninst driver v0.4.1) 116 2.9 0.0
fifofs (filesystem for fifo) 40 6.7 0.2
kb (streams module for keyboard) 36 5.8 0.0
tnf (kernel probes driver 1.47) 55 3.4 0.3
pm (power manager driver v1.65) 29 11.4 0.1
TS (time sharing sched class) 36 4.6 0.1
devinfo (DEVINFO Driver 1.24) 35 7.4 0.1
ipdcm (IP/Dialup v1.9) 52 4.8 0.1
ttcompat (alt ioctl calls) 14 5.4 0.0
diaudio (Generic Audio) 28 5.1 0.8
elfexec (exec module for elf) 12 12.5 0.2
shmsys (System V shared memory) 19 10.0 0.0
ptc (tty pseudo driver control ‘ptc’) 16 11.0 0.0
tlimod (KTLI misc module) 21 6.9 0.0

Figure 8.6: Average Number of Direct and Indirect Calls Made by Kernel Functions
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winlock (Winlock Driver v1.39) 39 3.8 0.0
hwc (streams module for hardware cursor support) 11 12.9 0.0
ms (streams module for mouse) 17 6.5 0.0
ptem (pty hardware emulator) 13 12.4 0.0
simba (SIMBA PCI to PCI bridge nexus driver) 18 8.7 0.0
seg_drv (Segment Device Driver v1.1) 25 3.1 0.5
sad (Streams Administrative driver’sad’) 23 4.7 0.0
namefs (filesystem for namefs) 32 3.4 0.3
lockstat (Lock Statistics) 27 2.4 0.0
ptsl (tty pseudo driver slave ‘ptsl’) 14 9.9 0.0
rootnex (sun4u root nexus) 19 3.9 0.0
dada ( ATA Bus Utility Routines) 30 2.8 0.3
dada_ata ( ATA Bus Utility Routines) 30 2.8 0.3
md5 (MD5 Message-Digest Algorithm) 8 1.6 0.0
sysmsg (System message redirection (fanout) driver) 15 4.5 0.5
mm (memory driver) 13 4.8 0.0
wc (Workstation multiplexer Driver ‘wc’) 18 5.1 0.0
ebus (ebus nexus driver) 13 6.7 0.0
ptm (Master streams driver ‘ptm’) 12 10.2 0.0
pts (Slave Stream Pseudo Terminal driver ‘pts’) 12 10.0 0.0
RT (realtime scheduling class) 24 2.4 0.0
iwscn (Workstation Redirection driver ‘iwscn’) 19 4.5 0.3
fdfs (filesystem for fd) 17 2.4 0.0
eide (PC87415 Nexus driver v2.0) 19 4.7 0.1
conskbd (Console kbd Multiplexer driver ‘conskbd’) 14 4.1 0.0
todmostek (tod module for Mostek M48T59) 10 2.7 0.0
log (streams log driver) 9 5.4 0.0
sy (Indirect driver for tty ‘sy’) 12 5.5 0.0
consms (Mouse Driver for Sun ‘consms’) 14 3.8 0.0
kstat (kernel statistics driver) 12 4.2 0.3
pckt (pckt module) 11 4.5 0.0
ksyms (kernel symbols driver) 11 4.4 0.0
inst_sync (instance binding syscall) 11 3.5 0.4
power (power driver v1.4) 11 4.5 0.0
cn (Console redirection driver) 13 1.9 0.2
sysacct (acct(2) syscall) 6 4.5 0.8
clone (Clone Pseudodriver ‘clone’) 7 3.4 0.3
intpexec (exec mod for interp) 5 3.6 0.0
pseudo (nexus driver for ‘pseudo’) 10 2.8 0.0
ipc (common ipc code) 5 1.2 0.0
pipe (pipe(2) syscall) 4 6.2 0.2
connld (Streams-based pipes) 6 1.7 0.0
options (options driver) 7 0.6 0.0
redirmod (redirection module) 6 1.5 0.0
TS_DPTBL (Time sharing dispatch table) 5 0.4 0.0
IA (interactive scheduling class) 3 0.7 0.0
RT_DPTBL (realtime dispatch table) 3 0.7 0.0
platmod 5 0.0 0.0
Kernel-wide: 10637 6.0 0.2

Module
#Functions

Parsed

Average # of direct calls
(or inter-procedural

branches) by a function
in this module

Average # of indirect
calls made by a

function in this module

Figure 8.6: Average Number of Direct and Indirect Calls Made by Kernel Functions
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8.7 Future Work

Future work that can improve the effectiveness of runtime kernel code

positioning includes better handling of function pointers, automated selection of the

optimized group’s root function, block ordering across procedure boundaries, and

additional inline expansions.

Calls via function pointers are never included in an optimized group, because

they are not recognized in the call graph traversal. This can limit the effectiveness of

the code positioning optimization. As mentioned in Section 3.3.2, such calls occur

about 2,400 times in the kernel. It would be useful to employ an instrumentation

technique, similar to what is done in Paradyn [14], to dynamically update the

contents of the call graph when indirect calls are made.

Once indirect callees are measured, they can be found to be hot enough to deserve

inclusion in the group. Ensuring that such optimized callees are actually invoked

requires informing the indirect call instruction of the callee’s new location. The

desired effect can be achieved by emitting a few instructions immediately before the

indirect call. These instructions change the value of the register containing the

callee’s address to the address of the group’s version of the callee, if the previous

value of that register was the original location of the callee. (The test is needed

because there can be many callees of any one indirect call instruction.)

Another candidate for future work is to remove user involvement in the first code

positioning step (choosing the group’s root function), thus allowing all steps to be

performed automatically. Paradyn’s Performance Consultant [14, 42] has already
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shown that bottlenecks can be automatically located for non-threaded user programs,

through a call graph traversal. It should be possible to develop a multi-thread aware

Performance Consultant, and then adapt it to kperfmon, which uses the same

underlying measurement concepts of metrics and resources. Completely automating

the optimization allows for a truly evolving kernel, where, in the background,

kperfmon periodically finds and attempts to optimize I-cache bottlenecks.

Although it is not explicitly stated in Pettis and Hansen’s paper, basic block

ordering uses edge counts merely as an approximation of path counts in choosing

chains. Toward that end, it would be useful for kperfmon to be able to collect path

profiles of group functions.

Other than emitting all hot sections before any cold sections, the relative

placement of functions within the group is arbitrary. With future work, this situation

can be improved by performing basic block positioning across procedure call

bounds, allowing chains to contain basic blocks from different functions. The benefit

would be execution of even longer sequences of straight-lined code in the common

case. This change would not necessarily blur the bounds between group functions or

otherwise make it impossible to parse their control flow graphs. The only major

complexity would be functions whose code is spread out in more than the three

chunks that are presently supported (jump table data, hot basic blocks, and cold basic

blocks). Note that this implementation would not by itself cause any increase in the

optimized group size.

A further optimization is to expand several hot paths, duplicating any basic

block(s) that reside in multiple hot paths. Path expansion can increase the length of



195

straight-lined code execution. Pettis and Hansen essentially try to order code for one

such hot path (using edge counts as an approximation of path counts), though like

kperfmon, it currently does not allow a path to extend beyond a function call

boundary. Removing this limitation enables inter-procedural paths. Duplicating hot

basic blocks (in effect, inlining just the hot portions of callees) will place several

optimized paths in the group. This optimization is performed by the Dynamo user-

level run-time optimization system [5], which has found path expansion generally

beneficial, though it can backfire on some occasions due to code explosion when the

code size exceeds the size of the I-cache. Dynamo runs on an HP-PA processor, which

has the luxury of an unusually large (1 MB) dedicated I-cache. It remains to be seen

whether a different processor would be less tolerant of code explosion. For example,

the UltraSPARC-I and II processors have only a 16 KB I-cache.

Because non-root group functions are always invoked while the root function is

on the call stack, certain invariants may hold that enable improved optimizations.

For example, a variable may always be constant, allowing constant propagation and

dead code elimination. Other optimizations include inlining, specialization, path

expansion, and super-blocks. Such optimizations are presently unimplemented,

demonstrating the need for a general-purpose back-end machine code optimizer.

Unfortunately, such optimizations are typically performed by compilers, on

intermediate code, not by assemblers. However, the full suite of optimizations

implemented by Dynamo shows that (with much effort) many optimizations can be

achieved by operating directly on machine code.



196

8.8 Conclusion and Research Contributions

This chapter has introduced the notion of evolving kernels, which are able to

change their code in response to runtime circumstance. As a proof of concept, we

have implemented one kind of evolving kernel algorithm, a run-time version of

Pettis and Hansen’s code positioning optimizations. Our implementation of code

positioning is the first on-line kernel version of this optimization. Aside from

adaptive algorithms and tunable variables built into a kernel’s source code (such as

adaptive mutex locks in Solaris), this implementation is also the first on-line evolving

algorithm of a kernel. The implementation provides evidence that an unmodified

commodity operating system kernel can be made into an evolving one; there is no

need to limit research into evolving systems to custom kernels.
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Chapter 9

Conclusion

Run-time changing of kernel code has many uses, including performance

profiling, kernel debugging, tracing, testing via code coverage, inserting security

auditing checks at runtime, dynamic optimizations, process-specific resource

management extensibility, transparent data modification, and adapting to security

attacks. This thesis has investigated mechanisms for fine-grained dynamic kernel

instrumentation, allowing the code of a commodity operating system to change at

runtime. We have shown its application to performance profiling and dynamic

optimizations. This chapter summarizes the research contributions of this

dissertation, and discusses areas of future work.

9.1  Summary and Research Contributions

We have designed and implemented a technology, fine-grained dynamic

instrumentation of a commodity operating system kernel, and investigated two of its

applications: kernel performance measurement and evolving kernels.
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The primary question raised by this line of research,

Is fine-grained dynamic instrumentation of a completely unmodified,

already-running modern commodity operating system kernel possible?

has been answered in the affirmative. The following technical challenges were

overcome, which serve as further contributions:

• Bootstrapping. It is possible to attach to and instrument a running kernel.

• Structural Analysis. The kernel’s control flow graphs, call graph, and live register

analysis information were calculated without kernel source code. The control

flow graphs are important because they identify allowable instrumentation

points, and help to understand complex instruction sequences such as tail calls.

Live register usage allows instrumentation code to often avoid spilling registers

to the stack.

• Hazard-Free Splicing. Single-instruction splicing avoids a race condition where

some thread(s) may be executing near or within the instrumentation point. The

kernel cannot be paused to check for this condition, so it was necessary to avoid,

rather than detect, the hazard.

• The Reach Problem. Single-instruction splicing is difficult because no single

branch or jump instruction can always reach a code patch. Two novel solutions

were designed: springboards and in-nucleus code patch allocation.

• Instruction Relocation. Some instructions cannot be trivially relocated to the

code patch: control transfer instructions having delay slots, instructions that are

pc-dependent, tail calls, and otherwise trivial-to-relocate instructions that reside

in a delay slot. A relocation mechanism was designed for all but one intractable

scenario: delay slot instructions that are also the destination of another control

flow instruction.

An unexpected result was that it was important (and possible) to splice at a

finer granularity than instruction level in two cases: conditional branches (both

the if-taken and fall-through points) and tail calls (the point where, logically, the

call has returned, but the caller itself has not yet returned).



199

Kperfmon demonstrates the utility of fine-grained dynamic kernel instrumentation,

but more importantly, it is a powerful performance tool in its own right. The major

research contributions of kperfmon are:

• Measure Almost Anywhere. Kperfmon can measure almost any kernel function

or basic block.

• Dynamic. Unlike a static instrumentation system, dynamic instrumentation

allows the user to instrument only what is of interest, when it is of interest.

• Extensible Metrics. Kperfmon can create new interval counter metrics out of any

monotonically increasing event counter.

• Classes of Metrics. Wall time metrics and inclusive metrics are difficult to achieve

with sampling-based profilers.

• Virtualization. Any wall time metric can be virtualized via dynamic

instrumentation of the kernel’s context switch code. Virtual time metrics are

normally easy to achieve with sampling-based profiler (though not combined

with the inclusive property) but are difficult to achieve via instrumentation.

The final component of this dissertation is a framework for evolving kernels. An

evolving kernel (1) performs measurements to identify a problem, (2) generates

improved code to insert into the kernel, (3) installs this code into a running kernel,

and (4) repeats the process. The first step is well-suited to kperfmon. The third step is

performed through code replacement, an instrumentation primitive that

complements code splicing. The following contributions have been made in the area

of evolving kernels:

• General Framework for Dynamically Changing a Commodity Kernel’s Code.

Code replacement allows almost any kernel function to have its implementation

changed at run-time.
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• Prototype Dynamic Kernel Optimizer. Our implementation of code positioning

is the first run-time optimization of an unmodified modern commodity operating

system kernel that does not leverage any built-in kernel tuning facilities.

• An Unmodified Commodity Kernel Can Be Made Into an Evolving One.

Research into runtime kernel code modification need not be limited to custom

kernels or modified versions of otherwise commodity kernels.

9.2  Future Work

9.2.1  Dynamic Kernel Instrumentation

When splicing at a non-nucleus instrumentation point, there is presently no

guarantee that a code patch can be allocated nearby. Instrumentation may have to

rely on outside-of-nucleus springboard space, which can be scarce; unlike the

nucleus, where modules are allocated close to each other and can reach each other’s

_init and _fini springboard space, no such guarantee applies to outside-of-nucleus

modules. A solution resides in directed virtual memory allocation, allocating kernel

virtual memory pages from the kernel’s internal structures, with care to pick a page

within the reach of a single branch instructions.

Code removal can be unsafe, possibly freeing code patches or springboards while

while some kernel thread(s) are still executing within them. This issue, and a

potential solution, are discussed in Section 4.4.

A KernInst port to the x86 architecture would show that fine-grained splicing of

an unmodified kernel can be made ubiquitous. Creating control flow graphs and

performing a live register analysis is no more difficult on variable-length instruction

architectures than on RISC1; the major x86 challenge is achieving single-instruction

splicing, given variable-length instructions, as discussed in Section 4.6.1.
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It would be convenient to accept instrumentation code directly out of ELF

relocatable files. However, because kerninstd may bracket instrumentation code with

SPARC save and restore instructions, clients currently generate two versions of

instrumentation code, one using scratch registers as determined by a live register

analysis, and other assuming the code will be bracketed with save and restore. A

better form for instrumentation code would use virtual registers, which are assigned

to actual registers by kerninstd. Unfortunately, there is no ELF standard for such a

format.

9.2.2  Kernel Performance Profiling

Kperfmon’s instrumentation code requires numerous changes when run on a

multiprocessor, as detailed in Sections 5.4.4 and 5.5. Fortunately, the changes are all

straightforward to implement.

A fruitful area of future work would combine the kernel instrumentation features

of KernInst with the user-level instrumentation features of Paradyn [43, 44], allowing

bottleneck searches to continue through system calls.

Paradyn’s Performance Consultant [14, 42] automatically searches for

bottlenecks. Nowhere would the seamless transition between user-level and kernel

dynamic instrumentation be more immediately useful than in a logical extension of

the Performance Consultant to kernel code.

1. Vic Zandy has completed a prototype implementation of kerninstd’s structural analysis
steps on x86/Linux.
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Kperfmon would be more powerful with high-level metrics, such as “number of

TCP re-transmissions”, “number of ethernet collisions”, “elapsed time spent

performing disk seeks”, “average number of threads blocked of a mutex lock”.

Measurements predicated on the caller’s identify would be useful, allowing

queries such as “How many threads are presently blocked on a mutex lock while

running in procedure P?”. More generally, such predicates could be extended to

arbitrary desired chains of basic blocks, to provide kernel path profiling.

As discussed in Section 5.6, it would be useful to extend kperfmon’s resource

hierarchy to include data objects, such as specific mutex objects, files, TCP

connections, IP ports, and physical disks. This extension would provide end users

with a higher-level view of performance data that is easier to interpret.

Kernel tools that access symbols via /dev/ksyms would benefit if kerninstd updated

the kernel’s internal information upon code replacement. This change would allow

replacement code to be recognized as first-class in applications that do not use

kerninstd to obtain their structural analysis information.

9.2.3  Dynamic Kernel Optimization and Evolving Kernels

The implementation of the code positioning optimization within KernInst was

time-consuming. It would have been useful to leverage an existing tool-kit that

provided a number of runtime kernel optimizations (operating directly on binary

code), to avoid re-implementing optimizations that are already implemented in

compilers.
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Among the unanswered questions in the evolving kernel framework are whether

all traditional compiler optimizations are feasible at runtime, especially without

access to the kernel’s source code.

And finally, a vision for KernInst is to enable fully evolving systems, where all

operations such as kernel compilation, installation, linking, debugging and applying

patches take place at run-time. It remains to be seen whether this is feasible and

practical. Among the questions to be raised are whether such a system be easily

debugged.

9.3  Final Thoughts

In this dissertation, we have tried to make two key points:

• That fine-grained dynamic kernel instrumentation, if possible, would have many

applications.

• That fine-grained dynamic instrumentation is possible on a completely

unmodified, already-running commodity operating system kernel.

This research has been performed at runtime, on a production commodity kernel. We

believe that this was important to show the feasibility of kernel code modification.

We hope that this thesis research is but the tip of an iceberg that eventually

culminates in fully evolving kernels, where an operating system is never taken off-

line—whether for performance measurement, to apply patches, to debug, or even

when making major developmental changes. By its very nature, an operating system

is ideally never taken off-line or even momentarily paused (especially when running

mission-critical server software), and we believe that this ideal can some day be

made a reality.
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