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Abstract. Holographic algorithms based on matchgates were introduced
by Valiant. These algorithms run in polynomial-time and are intrinsically
for planar problems. We introduce two new families of holographic al-
gorithms, which work over general, i.e., not necessarily planar, graphs.
The two underlying families of constraint functions are of the affine and
product types. These play the role of Kasteleyn’s algorithm for counting
planar perfect matchings. The new algorithms are obtained by transform-
ing a problem to one of these two families by holographic reductions. We
present a polynomial-time algorithm to decide if a given counting prob-
lem has a holographic algorithm using these constraint families. When
the constraints are symmetric, we give a polynomial-time decision pro-
cedure in the size of the succinct presentation of symmetric constraint
functions. This procedure shows that the recent dichotomy theorem for
Holant problems with symmetric constraints is polynomial-time decid-
able.

1 Introduction

Recently a number of complexity dichotomy theorems have been obtained for
counting problems. Typically, such dichotomy theorems assert that a vast ma-
jority of problems expressible within the framework are #P-hard, however an
intricate subset manages to escape this fate. They exhibit a great deal of math-
ematical structure, which leads to a polynomial time algorithm. In recent di-
chotomy theorems, a pattern has emerged [14,19,21,15,34,23,11,32]. Some of the
tractable cases are expressible as “those problems for which there exists a holo-
graphic algorithm.” However, this understanding has been largely restricted to
problems where the local constraint functions are symmetric over the Boolean
domain. In order to gain a better understanding, we must determine the full
extent of holographic algorithms, beyond the symmetric constraints.

Holographic algorithms were first introduced by Valiant [44,43]. They are
applicable for any problem that can be expressed as the contraction of a tensor
network. Valiant’s algorithms have two main ingredients. The first ingredient is
to encode computation in planar graphs using matchgates [42,41,9,17,10]. The
result of the computation is then obtained by counting the number of perfect
matchings in a related planar graph, which can be done in polynomial time by
Kasteleyn’s (a.k.a. the FKT) algorithm [35,40,36]. The second ingredient is a
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holographic reduction, which is achieved by a choice of linear basis vectors. The
computation can be carried out in any basis since the output of the computation
is independent of the basis.

In this paper, we introduce two new families of holographic algorithms. These
algorithms holographically reduce to problems expressible by either the affine
type or the product type of constraint functions. Both types of problems are
tractable over general (i.e. not necessarily planar) graphs [25], so the holographic
algorithms are all polynomial time algorithms and work over general graphs. We
present a polynomial time algorithm to decide if a given counting problem has
a holographic algorithm over general graphs using the affine or product-type
constraint functions. Our algorithm also finds a holographic algorithm when one
exists. To formally state this result, we briefly introduce some notation.

The counting problems we consider are those expressible as a Holant prob-
lem [24,22,20,25]. A Holant problem is defined by a set F of constraint functions,
which we call signatures, and is denoted by Holant(F). An instance to Holant(F)
is a tuple Ω = (G,F , π) called a signature grid, where G = (V,E) is a graph and
π labels each vertex v ∈ V and its incident edges with some fv ∈ F and its input
variables. Here fv maps {0, 1}deg(v) to C. We consider all possible 0-1 edge as-
signments. An assignment σ to the edges E gives an evaluation

∏
v∈V fv(σ|E(v)),

where E(v) denotes the incident edges of v and σ|E(v) denotes the restriction of
σ to E(v). The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv
(
σ|E(v)

)
. (1)

For example, consider the problem of counting Perfect Matching on G. This
problem corresponds to attaching the Exact-One function at every vertex of
G. The Exact-One function is an example of a symmetric signature, which are
functions that only depend on the Hamming weight of the input. We denote a
symmetric signature by f = [f0, f1, . . . , fn] where fw is the value of f on inputs
of Hamming weight w. For example, [0, 1, 0, 0] is the Exact-One function on
three bits. The output is 1 if and only if the input is 001, 010, or 100, and the
output is 0 otherwise.

Holant problems contain both counting constraint satisfaction problems and
counting graph homomorphisms as special cases. All three classes of problems
have received considerable attention, which has resulted in a number of di-
chotomy theorems (see [38,33,28,2,27,5,30,8] and [4,3,26,1,25,7,13,29,31,14,6]).
Despite this success with #CSP and graph homomorphisms, the case with
Holant problems is more difficult. A recent dichotomy theorem for Holant prob-
lems with symmetric signatures was obtained in [11]. But the general (i.e. not
necessarily symmetric) case has a richer and more intricate structure. The same
dichotomy for general signatures remains open. Our first main result makes a
solid step forward in understanding holographic algorithms based on affine and
product-type signatures in this more difficult setting.



Theorem 1. There is a polynomial time algorithm to decide, given a finite set
of signatures F , whether Holant(F) admits a holographic algorithm based on
affine or product-type signatures.

These holographic algorithms for Holant(F) are all polynomial time in the
size of the problem input Ω. The polynomial time decision algorithm of Theo-
rem 1 is on another level; it decides based on any specific set of signatures F
whether the counting problem Holant(F) defined by F has such a holographic
algorithm.

However, symmetric signatures are an important special case. Because sym-
metric signatures can be presented exponentially more succinctly, we would like
the decision algorithm to be efficient when measured in terms of this succinct
presentation. An algorithm for this case needs to be exponentially faster than
the one in Theorem 1. In Theorem 2, we present a polynomial time algorithm
for the case of symmetric signatures. The increased efficiency is based on several
signature invariants under orthogonal transformations.

Theorem 2. There is a polynomial time algorithm to decide, given a finite set
of symmetric signatures F expressed in the succinct notation, whether Holant(F)
admits a holographic algorithm based on affine or product-type signatures.

A dichotomy theorem classifies every set of signatures as defining either a
tractable problem or an intractable problem (e.g. #P-hard). Yet it would be
more useful if given a specific set of signatures, one could decide to which case
it belongs. This is the decidability problem of a dichotomy theorem. In [11], a
dichotomy regarding symmetric complex-weighted signatures for Holant prob-
lem was proved. However, the decidability problem was left open. Of the five
tractable cases in this dichotomy theorem, three of them are easy to decide, but
the remaining two cases are more challenging, which are (1) holographic algo-
rithms using affine signatures and (2) holographic algorithms using product-type
signatures. As a consequence of Theorem 2, this decidability is now proved.

Corollary 3. The dichotomy theorem for symmetric complex-weighted Holant
problems in [11] is decidable in polynomial time.

Previous work on holographic algorithms focused almost exclusively on those
with matchgates [44,43,16,19,17,18,32]. (This has led to a misconception in the
community that holographic algorithms are always based on matchgates.) The
first example of a holographic algorithm using something other than matchgates
came in [24]. These holographic algorithms use generalized Fibonacci gates. A
symmetric signature f = [f0, f1, . . . , fn] is a generalized Fibonacci gate of type
λ ∈ C if fk+2 = λfk+1 + fk holds for all k ∈ {0, 1, . . . , n − 2}. The standard
Fibonacci gates are of type λ = 1, in which case, the entries of the signature sat-
isfy the recurrence relation of the Fibonacci numbers. The generalized Fibonacci
gates were immediately put to use in a dichotomy theorem [22]. As it turned
out, for nearly all values of λ, the generalized Fibonacci gates are holographically
equivalent to product-type signatures. However, generalized Fibonacci gates are



symmetric by definition. A main contribution of this paper is to extend the reach
of holographic algorithms, other than those based on matchgates, beyond the
symmetric case.

The constraint functions we call signatures are essentially tensors. Our central
object of study can be rephrased as the orbits of affine and product-type tensors
when acted upon by the orthogonal group (and related groups). We show that
one can efficiently decide if any such orbit of a given tensor intersects the set
of affine or product-type tensors. This result also generalizes to a set of tensors
as stated in Theorems 1 and 2. In contrast, this orbit problem with the general
linear group acting on two arbitrary tensors is NP-hard [37]. The so-called orbit
closure problem has a fundamental importance in the foundation of geometric
complexity theory [39].

Our techniques are mainly algebraic. A particularly important insight is that
an orthogonal transformation in the standard basis is equivalent to a diagonal
transformation in the

[
1 1
i −i

]
basis, a type of correspondence as in Fourier trans-

form. Since diagonal transformations are much easier to understand, this gives
us a great advantage in understanding orbits under orthogonal transformations.
Also, the groups of transformations that stabilize the affine and product-type
signatures play an important role in our proofs.

2 Preliminaries

The framework of Holant problems is defined for functions mapping any [q]k → F
for a finite q and some field F. In this paper, we investigate some of the tractable
complex-weighted Boolean Holant problems, that is, all functions are [2]k → C.
Strictly speaking, for consideration of models of computation, functions take
complex algebraic numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where each
vertex is labeled by a function fv ∈ F , and π : V → F is the labeling. The
Holant problem on instance Ω is to evaluate HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a

sum over all edge assignments σ : E → {0, 1}. A function fv can be represented
by listing its values in lexicographical order as in a truth table, which is a vector

in C2deg(v)

, or as a tensor in (C2)⊗ deg(v). We also use fx to denote the value
f(x), where x is a binary string. A function f ∈ F is also called a signature. A
symmetric signature f on k Boolean variables can be expressed as [f0, f1, . . . , fk],
where fw is the value of f on inputs of Hamming weight w. A signature f of
arity n is degenerate if there exist unary signatures uj ∈ C2 (1 ≤ j ≤ n) such
that f = u1 ⊗ · · · ⊗ un. A symmetric degenerate signature has the form u⊗n.

A Holant problem is parametrized by a set of signatures.

Definition 4. Given a set of signatures F , we define Holant(F) as:
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

To introduce the idea of holographic reductions, it is convenient to consider
bipartite graphs. For a general graph, we can always transform it into a bipartite



graph while preserving the Holant value, as follows. For each edge in the graph,
we replace it by a path of length two. (This operation is called the 2-stretch of the
graph and yields the edge-vertex incidence graph.) Each new vertex is assigned
the binary Equality signature (=2) = [1, 0, 1]. We use Holant (F | G) to denote
the Holant problem on bipartite graphs H = (U, V,E), where each vertex in U
or V is assigned a signature in F or G, respectively. An instance for this bipartite
Holant problem is a bipartite signature grid denoted by Ω = (H; F | G; π).
Signatures in F are considered as row vectors (or covariant tensors); signatures
in G are considered as column vectors (or contravariant tensors).

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of
arity n, g = T⊗nf}, similarly for FT . Whenever we write T⊗nf or TF , we view
the signatures as column vectors; similarly for fT⊗n or FT as row vectors. Let
T be an element of GL2(C), the group of invertible 2-by-2 complex matrices.
The holographic transformation defined by T is the following operation: given
a signature grid Ω = (H; F | G; π), for the same graph H, we get a new
grid Ω′ = (H; FT | T−1G; π′) by replacing each signature in F or G with the
corresponding signature in FT or T−1G.

Theorem 5 (Valiant’s Holant Theorem [44]). If there is a holographic
transformation mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

Therefore, an invertible holographic transformation does not change the com-
plexity of the Holant problem in the bipartite setting. Furthermore, there is a
particular kind of holographic transformation, the orthogonal transformation,
that preserves the binary equality and thus can be used freely in the standard
setting. Let O2(C) be the group of 2-by-2 complex matrices that are orthogonal.
Recall that a matrix T is orthogonal if TT T = I. We also use SO2(C) to de-
note the group of special orthogonal matrices, i.e. the subgroup of O2(C) with
determinant 1.

The following two signature sets are tractable without a holographic trans-
formation [25].

Definition 6. A k-ary function f(x1, . . . , xk) is affine if it has the form λ ·
χAx=0 · i

∑n
j=1〈vj ,x〉, where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over

F2, vj is a vector over F2, and χ is a 0-1 indicator function such that χAx=0

is 1 iff Ax = 0. Note that the dot product 〈vj , x〉 is calculated over F2, while the
summation

∑n
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of

0-1 terms. We use A to denote the set of all affine functions.

An equivalent way to express the exponent of i is as a quadratic polynomial
where all cross terms have an even coefficient.

Definition 7. A function is of product type if it can be expressed as a product
of unary functions, binary equality functions ([1, 0, 1]), and binary disequality
functions ([0, 1, 0]). We use P to denote the set of product-type functions.

The tractable sets A and P are still tractable under a suitable holographic
transformation. This is captured by the following definition.



Definition 8. A set F of signatures is A -transformable (resp. P-transformable)
if there exists a holographic transformation T such that F ⊆ TA (resp. F ⊆
TP) and [1, 0, 1]T⊗2 ∈ A (resp. [1, 0, 1]T⊗2 ∈P).

To refine the above definition, we consider the stabilizer group of A , which is
Stab(A ) = {T ∈ GL2(C) | TA ⊆ A }. Technically this set is the left stabilizer
group of A , but it turns out that the left and right stabilizer groups of A
coincide. Let D = [ 1 0

0 i ] and H2 = 1√
2

[
1 1
1 −1

]
. Also let X = [ 0 1

1 0 ] and Z =
1√
2

[
1 1
i −i

]
. Note that Z = DH2 and that D2Z = 1√

2

[
1 1
−i i

]
= ZX, hence X =

Z−1D2Z. It is easy to verify that D,H2, X, Z ∈ Stab(A ). In fact, Stab(A ) =
C∗ · 〈D,H2〉, i.e. all nonzero scalar multiples of the group generated by D and

H2. Throughout the paper, we use α to denote 1+i√
2

=
√
i = e

πi
4 .

Definition 9. A symmetric signature f of arity n is in, respectively, A1, or
A2, or A3 if there exist an H ∈ O2(C) and c ∈ C − {0} such that f has

the form, respectively, cH⊗n([ 11 ]
⊗n

+ β
[

1
−1
]⊗n

), cH⊗n([ 1i ]
⊗n

+
[

1
−i
]⊗n

), or

cH⊗n([ 1α ]
⊗n

+ ir
[

1
−α
]⊗n

) with β = αtn+2r, r ∈ {0, 1, 2, 3}, and t ∈ {0, 1}.

The three sets A1, A2, and A3 capture all symmetric A -transformable sig-
natures. For i ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ai

with transformation H.

Lemma 10 (Lemma 8.10 in full version of [11]). Let f be a non-degenerate
symmetric signature. Then f is A -transformable iff f ∈ A1 ∪A2 ∪A3.

We have a similar characterization for P-transformable signatures using the
stabilizer group of P, Stab(P) = {T ∈ GL2(C) | TP ⊆ P}. The group
Stab(P) is generated by matrices of the form [ 1 0

0 ν ] for any ν ∈ C and X = [ 0 1
1 0 ].

Definition 11. A symmetric signature f of arity n is in P1 if there exist an

H ∈ O2(C) and a nonzero c ∈ C such that f = cH⊗n
(

[ 11 ]
⊗n

+ β
[

1
−1
]⊗n)

,

where β 6= 0.

It is easy to check that A1 ⊂ P1. We define P2 = A2. Similarly, for i ∈
{1, 2}, when such an H exists, we say that f ∈Pi with transformation H. The
following lemma is similar to Lemma 10.

Lemma 12 (Lemma 8.13 in full version of [11]). Let f be a non-degenerate
symmetric signature. Then f is P-transformable iff f ∈P1 ∪P2.

3 General Signatures

In this section we consider general (i.e. not necessarily symmetric) signatures.
Let f be a signature of arity n. It is given as a column vector in C2n with bit
length N = O(2n). We denote its entries by fx = f(x) indexed by x ∈ {0, 1}n.



The entries are from a fixed degree algebraic extension of Q and we may assume
arithmetic operations take unit time.

We begin with A -transformable signatures. Let f be a signature and H =[
a b
−b a

]
∈ SO2(C) where a2 + b2 = 1. Notice that v0 = (1, i) and v1 = (1,−i) are

row eigenvectors of H with eigenvalues a− bi and a+ bi respectively.

For a vector u = (u1, . . . , un) ∈ {0, 1}n of length n, let vu = vu1 ⊗ vu2 ⊗
. . . ⊗ vun , and let w(u) be the Hamming weight of u. Then for the 2n-by-2n

matrix H⊗n, vu is a row eigenvector with eigenvalue (a−bi)n−w(u)(a+bi)w(u) =
(a−bi)n−2w(u) = (a+bi)2w(u)−n as (a+bi)(a−bi) = a2+b2 = 1. Let Z ′ =

[
1 i
1 −i

]
and f̂ = Z ′⊗nf . Then f̂u = 〈vu, f〉, as a dot product. The following lemma
summarizes the above discussion and is a very important ingredient of this paper.
It states that proper orthogonal transformations are diagonal transformations
in the

[
1 i
1 −i

]
basis.

Lemma 13. Suppose f and g are signatures of arity n and let H =
[
a b
−b a

]
and

T =
[
a−bi 0
0 a+bi

]
. Then g = H⊗nf iff ĝ = T⊗nf̂ .

With Lemma 13, we characterize signatures that are invariant under SO2(C)
transformations.

Lemma 14. Let f be a signature. Then f is invariant under transformations
in SO2(C) (up to a nonzero constant) iff the support of f̂ contains at most one
Hamming weight.

With Lemma 13 and Lemma 14, we are able to give the algorithm for A -
transformable signatures.

Theorem 15. There is a polynomial time algorithm to decide, for any finite set
of signatures F , whether F is A -transformable. If so, at least one transformation
can be found.

The algorithm for P is also based on Lemma 13. The difference here is that
we need to first factor the signatures. We show a unique factorization lemma for
signatures in general.

Definition 16. We call a function f of arity n on variable set x reducible if
there exist f1 and f2 of arities n1 and n2 on variable sets x1 and x2, respectively,
such that 1 ≤ n1, n2 ≤ n−1, x1∪x2 = x, x1∩x2 = ∅, and f(x) = f1(x1)f2(x2).
Otherwise we call f irreducible.

If a function f is reducible, then we can factor it into functions of smaller arity.
This procedure can be applied recursively and terminates when all components
are irreducible. Therefore any function has at least one irreducible factorization.
We show that such a factorization is unique for functions that are not identically
zero. Furthermore, it can be computed in polynomial time.



Lemma 17. Let f be a function of arity n on variables x that is not identically
zero. Assume there exist irreducible functions fi and gj, and two partitions {xi}
and {yj} of x for 1 ≤ i ≤ k and 1 ≤ j ≤ k′, such that f(x) =

∏k
i=1 fi(xi) =∏k′

j=1 gj(yj). Then k = k′, the partitions are the same, and {fi} and {gj} are
the same up to a permutation.

The factorization algorithm leads to a decision algorithm for membership in
P. Combined with Lemma 13, we can obtain the algorithm for P-transformable
signatures.

Theorem 18. There is a polynomial time algorithm to decide, for any finite set
of signatures F , whether F is P-transformable. If so, at least one transformation
can be found.

4 Symmetric Signatures

In this section, we consider the case when the signatures are symmetric. The
significant difference is that a symmetric signature of arity n is given by n + 1
values, instead of 2n values. This exponentially more succinct representation
requires us to find a more efficient algorithm. To begin, we provide efficient
algorithms to decide membership each of A1, A2, and A3 for a single signature.
If the signature is in one of the sets, then the algorithm also finds at least one
corresponding orthogonal transformation. By Lemma 10, this is enough to check
if a signature is A -transformable.

We say a signature f satisfies a second order recurrence relation, if for all
0 ≤ k ≤ n−2, there exist a, b, c ∈ C not all zero, such that afk+bfk+1+cfk+2 = 0.
In fact, satisfying a second order recurrence relation with b2 − 4ac 6= 0 is a
necessary condition for a signature to be A - or P-transformable. This also
implies a tensor decomposition of f . The following definition of the θ function
is crucial.

Definition 19. For a pair of linearly independent vectors v0 =
[ a0
b0

]
and v1 =[ a1

b1

]
, we define θ(v0, v1) =

(
a0a1+b0b1
a1b0−a0b1

)2
. Furthermore, suppose that a signature

f of arity n ≥ 3 can be expressed as f = v⊗n0 +v⊗n1 , where v0 and v1 are linearly
independent. Then we define θ(f) = θ(v0, v1).

Intuitively, this formula is the square of the cotangent of the angle from v0
to v1. This notion of cotangent is properly extended to the complex domain.
By insisting that v0 and v1 be linearly independent, we ensure θ(v0, v1) is well-
defined. The expression is squared so that θ(v0, v1) = θ(v1, v0). Let f = v⊗n0 +v⊗n1

be a non-degenerate signature of arity n ≥ 3. Since f is non-degenerate, v0 and
v1 are linearly independent. This expression for f via v0 and v1 is unique to
up a root of unity. In particular, θ(f) from Definition 19 is well-defined since
every possible expression gives the same value for θ. It is easy to verify that θ is
invariant under an orthogonal transformation. Formally, we have the following
lemma, which is proved by simple algebra.



Lemma 20. For two linearly independent vectors v0, v1 ∈ C2 and H ∈ O2(C),
let v̂0 = Hv0 and v̂1 = Hv1. Then θ(v0, v1) = θ(v̂0, v̂1).

Now we have some necessary conditions for a signature f to be in A1∪A2∪A3.
First f must satisfy a second order recurrence relation with b2 − 4ac 6= 0. Then
θ(f) is well defined. It is easy to observe θ(f) = 0,−1,− 1

2 for f in P1, A2, A3

respectively. Recall that A1 ⊆P1 and A2 = P2.
This condition via θ(f) is not sufficient for f to be A -transformable. For

example, if f = v⊗n0 + v⊗n1 with v0 = [1, i] and v1 is not a multiple of [1,−i],
then θ(f) = −1 but f is not in A2 = P2. Nevertheless, this is essentially the
only exceptional case. The other cases are handled with some extra conditions
on the coefficients, as follows.

Lemma 21. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where
v0 =

[ a0
b0

]
and v1 =

[ a1
b1

]
are linearly independent. Then f ∈ A1 iff θ(f) = 0

and there exist an r ∈ {0, 1, 2, 3} and t ∈ {0, 1} such that an1 = αtn+2rbn0 6= 0 or
bn1 = αtn+2ran0 6= 0.

Lemma 22. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where
v0 =

[ a0
b0

]
and v1 =

[ a1
b1

]
are linearly independent. Then f ∈ A3 iff there exist an

ε ∈ {1,−1} and r ∈ {0, 1, 2, 3} such that a1
(√

2a0 + εib0
)

= b1
(
εia0 −

√
2b0
)
,

an1 = ir
(
εia0 −

√
2b0
)n

, and bn1 = ir
(√

2a0 + εib0
)n

.

For A2 = P2, we require a stronger condition.

Lemma 23 (Lemma 8.8 in full version of [11]). Let f be a non-degenerate

symmetric signature. Then f ∈ A2 iff f is of the form c
(

[ 1i ]
⊗n

+ β
[

1
−i
]⊗n)

for

some c, β 6= 0.

To summarize, we have the following lemma.

Lemma 24. Given a non-degenerate symmetric signature f of arity at least 3,
there is a polynomial time algorithm to decide whether f ∈ Ak for each k ∈
{1, 2, 3}. If so, k is unique and at least one corresponding orthogonal transfor-
mation can be found in polynomial time.

Next we show that if a non-degenerate signature f of arity n ≥ 3 is in A1, A2,
or A3, then for any set F containing f , there are only O(n) many transformations
to be checked to decide whether F is A -transformable.

Lemma 25. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ A1 of arity n ≥ 3 with H ∈ O2(C). Then F is
A -transformable iff F is a subset of HA , or H

[
1 1
1 −1

]
A , or H

[
1 1
1 −1

]
[ 1 0
0 α ] A .

Lemma 26. Let F be a set of symmetric signatures and suppose F contains
a non-degenerate signature f ∈ A2 of arity n ≥ 3. Then there exists a set
H ⊆ O2(C) of size O(n) such that F is A -transformable iff there exists an
H ∈ H such that F ⊆ HA . Moreover H can be computed in polynomial time in
the input length of the symmetric signature f .



Lemma 27. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ A3 of arity n ≥ 3 with H ∈ O2(C). Then F is
A -transformable iff F ⊆ H [ 1 0

0 α ] A .

Now we can decide if a finite set of signatures is A -transformable. To avoid
trivialities, we assume F contains a non-degenerate signature of arity at least 3.

Theorem 28. There is a polynomial time algorithm to decide, for any finite
input set F of symmetric signatures containing a non-degenerate signature f of
arity n ≥ 3, whether F is A -transformable.

Now we consider P-transformable signatures. To decide if a single signa-
ture is P-transformable, it is equivalent to decide membership in P1 ∪P2 by
Lemma 12. The following lemma tells how to decide the membership of P1.

Lemma 29. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where
v0 and v1 are linearly independent. Then f ∈P1 iff θ(f) = 0.

Since A2 = P2, deciding membership in P2 is handled by Lemma 23. Using
Lemma 29 and Lemma 23, we can efficiently decide membership in P1 ∪P2.

Lemma 30. Given a non-degenerate symmetric signature f of arity at least 3,
there is a polynomial time algorithm to decide whether f ∈ Pk for some k ∈
{1, 2}. If so, k is unique and at least one corresponding orthogonal transformation
can be found in polynomial time.

With a signature in P1 ∪P2, we can decide if a set of symmetric signatures
is P-transformable.

Lemma 31. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈ P1 of arity n ≥ 3 with H ∈ O2(C). Then F is
P-transformable iff F ⊆ H

[
1 1
1 −1

]
P.

Lemma 32. Let F be a set of symmetric signatures and suppose F contains a
non-degenerate signature f ∈P2 of arity n ≥ 3. Then F is P-transformable iff
all non-degenerate signatures in F are contained in P2 ∪ {=2}.

With all these results, we show how to decide if a finite set of signatures is
P-transformable. To avoid trivialities, we assume F contains a non-degenerate
signature of arity at least 3.

Theorem 33. There is a polynomial time algorithm to decide, for any finite
input set F of symmetric signatures containing a non-degenerate signature f of
arity n ≥ 3, whether F is P-transformable.
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