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Abstract. We prove a complexity dichotomy theorem for symmetric
complex-weighted Boolean #CSP when the constraint graph of the input
must be planar. The problems that are #P-hard over general graphs
but tractable over planar graphs are precisely those with a holographic
reduction to matchgates. This generalizes a theorem of Cai, Lu, and
Xia for the case of real weights. We also obtain a dichotomy theorem
for a symmetric arity 4 signature with complex weights in the planar
Holant framework, which we use in the proof of our #CSP dichotomy.
In particular, we reduce the problem of evaluating the Tutte polynomial
of a planar graph at the point (3,3) to counting the number of Eulerian
orientations over planar 4-regular graphs to show the latter is #P-hard.
This strengthens a theorem by Huang and Lu to the planar setting.

1 Introduction

In 1979, Valiant [2] defined the class #P to explain the apparent intractability
of counting the number of perfect matchings in a graph. Yet over a decade
earlier, Kasteleyn [3] gave a polynomial-time algorithm to compute this quantity
for planar graphs. This was an important milestone in a decades-long research
program by physicists in statistical mechanics to determine what problems the
restriction to the planar setting renders tractable [4-10, 3, 11-13]. More recently,
Valiant introduced matchgates [14, 15] and holographic algorithms [16,17] that
rely on Kasteleyn’s algorithm to solve certain counting problems over planar
graphs. In a series of papers [18-21], Cai et al. characterized the local constraint
functions (which define counting problems) that are representable by matchgates
in a holographic algorithm.

From the viewpoint of computational complexity, we seek to understand ex-
actly which intractable problems the planarity restriction enable us to efficiently
compute. Partial answers to this question have been given in the context of var-
ious counting frameworks [22-25]. In every case, the problems that are #P-hard
over general graphs but tractable over planar graphs are essentially those char-
acterized by Cai et al. In this paper, we give more evidence for this phenomenon
by extending the results of [23] to the setting of complex-valued constraint func-
tions. This provides the most natural setting to express holographic algorithms
and transformations.

* Full version with proofs available at [1].



Our main result is a dichotomy theorem for the framework of counting Con-
straint Satisfaction Problems (#CSP), but our proof is in a generalized frame-
work called Holant problems [26-29]. We briefly introduce the Holant framework
and then explain its main advantages. A set of functions F defines the problem
Holant(F). An instance of this problem is a tuple 2 = (G, F,n) called a sig-
nature grid, where G = (V, E) is a graph, 7 labels each v € V with a function
fo € F,and f, maps {0,1}9¢(*) to C. We also call the functions in F signatures.
An assignment o for every e € E gives an evaluation [[, .y fo(0 |g(v)), where
E(v) denotes the incident edges of v and o |g(,) denotes the restriction of o to
E(v). The counting problem on the instance {2 is to compute

Holant, = Z H fo (0 |E(v)) . (1)

0:E—{0,1} veV

Counting the number of perfect matchings in G corresponds to attaching the
ExAcT-ONE signature at every vertex of G. A function or signature is called
symmetric if its output depends only on the Hamming weight of the input. We
often denote a symmetric signature by the list of its outputs sorted by input
Hamming weight in ascending order. For example, [0,1,0,0] is the EXACT-ONE
function on three bits. The output is 1 if and only if the input is 001, 010, or
100, and 0 otherwise.

We consider #CSP, which are also parametrized by a set of functions F. The
problem #CSP(F) is equivalent to Holant(F U £Q), where £Q = {=1,=3,...}
and (=) = [1,0,...,0,1] is the equality signature of arity k. This explicit role
of equality signatures permits a finer classification of problems. For a direct
definition of #CSP, see [30].

We often consider a Holant problem over bipartite graphs, which is denoted
by Holant(F | G), where the sets F and G contain the signatures available
for assignment to the vertices in each partition. Considering the edge-vertex
incidence graph, one can see that Holant(F) is equivalent to Holant(=z| F).
One powerful tool in this setting is the holographic transformation. Let T be a
nonsingular 2-by-2 matrix and define TF = {T®> W) f | f € F1 where T®*
is the tensor product of k factors of T'. Here we view f as a column vector by
listing its values in lexicographical order as in a truth table. Similarly F7T is

defined by viewing f € F as a row vector. Valiant’s Holant theorem [16] states
that Holant(F | G) is equivalent to Holant(FT ! | TG).

Cai, Lu, and Xia gave a dichotomy for complex-weighted Boolean #CSP(F)
n [28]. Let PI-#CSP(F) (resp. Pl-Holant(F)) denote the #CSP (resp. Holant
problem) defined by F when the inputs are restricted to planar graphs. In this
paper, we investigate the complexity of Pl-#CSP(F) for a set F of symmetric
complex-weighted functions. In particular, we would like to determine which sets
become tractable under this planarity restriction. Holographic algorithms with
matchgates provide planar tractable problems for sets that are matchgate real-
izable after a holographic transformation. From the Holant perspective, the sig-
natures in £Q are always available in #CSP(F). By the signature theory of Cai



and Lu [21], the Hadamard matrix H = [{ ;| essentially defines the only! holo-

graphic transformation under which £Q becomes matchgate realizable. Let F
denote HF for any set of signatures F. Then £Q is {[1,0],[1,0,1],[1,0,1,0],...}
while (=2)(H1)®? is still =5. Therefore #CSP(F) and Holant(F U £Q) are
equivalent to Holant(F U 5@) by Valiant’s Holant theorem.

Our main dichotomy theorem is stated as follows.

Theorem 1. Let F be a set of symmetric, complex-valued signatures in Boolean
variables. Then Pl-#CSP(F) is #P-hard unless F satisfies one of the following
conditions, in which case it is tractable:

1. #CSP(F) is tractable (cf. [28]); or

2. F is realizable by matchgates (cf. [21]).

A more explicit description of the tractable cases can be found in Theorem 19.

In many previous dichotomy theorems for Boolean #CSP(F), the proof of
hardness began by pinning. The goal of this technique is to realize the constant
functions [1,0] and [0,1] and was always achieved by a nonplanar reduction.
This does not imply the collapse of any complexity classes because the tractable
sets for #CSP(F) include [1,0] and [0, 1]. However, £Q with {[1,0], [0, 1]} are
not simultaneously realizable as matchgates. Therefore, according to our main
result, if pinning were possible for Pl-#CSP(F), then #P collapses to P! In-
stead, apply the Hadamard transformation and consider Pl—Holant(j-: U <€/'\Q)
In this Hadamard basis, pinning becomes possible again since [1,0] and [0, 1]
are included in every tractable set. Indeed, we prove our pinning result in this
Hadamard basis, which is discussed in Section 4.

For Holant problems, it is often important to understand the complexity of
the small arity cases first [23, 31, 32]. In [23], Cai, Lu, and Xia gave a dichotomy
for Pl-Holant(f) when f is a symmetric arity 3 signature while a dichotomy
for Holant(f) when f is a symmetric arity 4 signature was shown in [32]. In
the proof of the latter result, most of the reductions were planar. However,
the crucial starting point for hardness, namely counting Eulerian orientations
(#EO) over 4-regular graphs, was not known to be #P-hard under the planarity
restriction. Huang and Lu [31] had recently proved that #EO is #P-hard over
4-regular graphs but left open its complexity when the input is also planar. We
show that #EO remains #P-hard over planar 4-regular graphs. The problem
we reduce from is the evaluation of the Tutte polynomial of a planar graph at
the point (3,3), which has a natural expression in the Holant framework. In
addition, we determine the complexity of counting complex-weighted matchings
over planar 4-regular graphs. The problem is #P-hard except for the tractable
case of counting perfect matchings. With these two ingredients, we obtain a
dichotomy for Pl-Holant(f) when f is a symmetric arity 4 signature.

Our main result is a generalization of the dichotomy by Cai, Lu, and Xia [23]
for PI-#CSP(F) when F contains symmetric real-weighted Boolean functions. Tt
is natural to consider complex weights in the Holant framework because surpris-
ing equivalences between problems are often discovered via complex holographic

! Up to transformations under which matchgates are closed.



transformations, sometimes even between problems using only rational weights.
Our proof of hardness for #EO over planar 4-regular graphs in Section 3 is a
prime example of this. Extending the range from R to C also enlarges the set of
problems that can be transformed into the framework.

However, a dichotomy for complex weights is more technically challenging.
The proof technique of polynomial interpolation often has infinitely many failure
cases in C corresponding to the infinitely many roots of unity, which prevents
a brute force analysis of failure cases as was done in [23]. This increased diffi-
culty requires us to develop new ideas to bypass previous interpolation proofs.
In particular, we perform a planar interpolation with a rotationally invariant
signature to prove the #P-hardness of #EO over planar 4-regular graphs. For
the complexity of counting complex-weighted matchings over planar 4-regular
graphs, we introduce the notion of planar pairings to build reductions. We show
that every planar 3-regular graph has a planar pairing and that it can be effi-
ciently computed. We also refine and extend existing techniques for application
in the new setting, including the recursive unary construction, the anti-gadget
technique, compressed matrix criteria, and domain pairing.

2 Preliminaries

The framework of Holant problems is defined for functions mapping any [¢]* — F
for a finite ¢ and some field F. In this paper, we investigate the complex-weighted
Boolean Holant problems, that is, all functions are [2]¥ — C. Technically, func-
tions must take complex algebraic numbers for issues of computability.

A signature grid 2 = (G, F,w) consists of a graph G = (V, E), where each
vertex is labeled by a function f, € F, and 7 : V — F is the labeling. If the
graph G is planar, then we call {2 a planar signature grid. The Holant problem
on instance {2 is to evaluate Holanto = > [[,cy fo(0 |B(v)), @ sum over all
edge assignments o : E — {0,1}.

A function f, can be represented by listing its values in lexicographical order
as in a truth table, which is a vector in C2*"”, or as a tensor in (C2)®4°5() We
also use f* to denote the value f(«), where « is a binary string. A function f € F
is also called a signature. A symmetric signature f on k& Boolean variables can
be expressed as [fo, f1, ..., fx], where f, is the value of f on inputs of Hamming
weight w. In this paper, we consider symmetric signatures. Since a signature of
arity k£ must be placed on a vertex of degree k, we can represent a signature
of arity k£ by a labeled vertex with k ordered dangling edges. Throughout this
paper, we do not distinguish between these two views.

A Holant problem is parametrized by a set of signatures.

Definition 2. For a signature set F, define the counting problem Holant(F) as:
Input: A signature grid 2 = (G, F,7);
Output: Holantg,.

The problem Pl-Holant(F) is defined similarly using a planar signature grid.
The Holant® framework is the special case of Holant problems when the constant



signatures of the domain are freely available. In the Boolean domain, the constant
signatures are [1,0] and [0, 1].

Definition 3. For signature set F, Holant®(F) denotes Holant(FU{[0,1],[1,0]}).

The problem Pl-Holant®(F) is defined similarly. A symmetric signature f of
arity n is degenerate if there exists a unary signature u such that f = u®".
Replacing a signature f € F by a constant multiple cf, where ¢ # 0, does not
change the complexity of Holant(F). It introduces a global factor to Holanty,.
Hence, for two signatures f, g of the same arity, we use f # g to mean that these
signatures are not equal in the projective space sense, i.e. not equal up to any
nonzero constant factor. We denote polynomial time Turing equivalence by =7.

An instance of #CSP(F) has the following bipartite view. Create a node for
each variable and each constraint. Connect a variable node to a constraint node
if the variable appears in the constraint function. This bipartite graph is also
known as the constraint graph. Under this view, we can see that #CSP(F) =
Holant(F | £Q) =7 Holant(F U EQ), where £Q = {=1,=2,=3,... } is the set of
equality signatures of all arities. This equivalence also holds for the planar ver-
sions of these frameworks. For the #CSP framework, the following two signature
sets are tractable [28].

Definition 4. A k-ary function f(x1,...,xx) is affine if it has the form Ax az—o-
\/TIZ};M%@)’ where A € C, x = (1,2, ...,2%,1)T, A is a matriz over Fa, a;
is a vector over Fy, and x is a 0-1 indicator function such that Xaz—o s 1
iff Az = 0. Note that the dot product (a;,x) is calculated over Fo, while the
summation Y ., on the exponent of i = \/—1 is evaluated as a sum mod 4 of
0-1 terms. We use o to denote the set of all affine functions.

Definition 5. A function is of product type if it can be expressed as a product
of unary functions, binary equality functions ([1,0,1]), and binary disequality
functions ([0,1,0]). We use & to denote the set of product type functions.

In the Holant framework, there are two corresponding signature sets that
are tractable. A signature f is «&/-transformable if there exists a holographic
transformation 7" such that f € T/ and [1,0,1]T®? € /. Similarly, a signature
f is P-transformable if there exists a holographic transformation 7' such that
feTP and [1,0,1]T%? € &. These two families are tractable because after a
transformation by 7', it is a tractable #CSP instance.

Matchgates were introduced by Valiant [14, 15] and are combinatorial in na-
ture. They encode computation as a sum of weighted perfect matchings, which
has a polynomial-time algorithm by the work of Kasteleyn [3].

We say a signature is a matchgate signature if there is some matchgate that
realizes this signature and use .# to denote the set of all matchgate signatures.
Lemmas 6.2 and 6.3 in [18] (and the paragraph the follows them) characterize
the symmetric signatures in .. Instead of formally stating these two lemmas,
we explicitly list all the symmetric signatures in .#: For any «, 8 € C,

1. [@",0,a""18,0,...,0,a8"" 1 0,5");



2. [a™,0,a"713,0,...,0,a8""1,0,8™,0];

3. [0,a™,0,a""13,0,...,0,a8™ 1,0, B"];

4. [0,a™,0,a"713,0,...,0,ap""1,0,3",0].
Roughly speaking, the symmetric matchgate signatures have 0 for every other
entry (which is called the parity condition), and form a geometric progression
with the remaining entries. We also say a signature f is .#-transformable if there
exists a holographic transformation 7" such that f € T.# and [1,0,1]T®? € .4 .

3 PIl-Holant Dichotomy for a Symmetric 4-ary Signature

One of our main results is a dichotomy theorem for Pl-Holant(f) when f is a
symmetric arity 4 signature with complex weights, which uses the #P-hardness
of counting Eulerian orientations over planar 4-regular graphs in a crucial way.
Recall that an orientation of the edges of a graph G is an Fulerian orientation
if for each vertex v of G, the number of incoming edges of v equals the number
of outgoing edges of v.

Counting the number of (unweighted) Eulerian orientations over 4-regular
graphs was shown to be #P-hard in Theorem V.10 of [31]. We improve this
result by showing that this problem remains #P-hard when the input is also
planar. We reduce from the problem of counting weighted Eulerian orientations
over medial graphs, which are planar 4-regular graphs (see Section 2 in [33] for a
definition). Las Vergnas [34] showed that this problem is equivalent to evaluating
the Tutte polynomial at the point (3,3), which is #P-hard for planar graphs [22].

Theorem 6 (Theorem 2.1 in [34]). Let G be a connected plane graph and let
O(H) be the set of all FEulerian orientations of the medial graph H of G. Then

2. T(G;3,3)= Y. 200, (2)
Oco(H)

where B(0) is the number of saddle vertices in the orientation O, i.e. the number
of vertices in which the edges are oriented “in, out, in, out” in cyclic order.

Our proof also uses two notions from [32].

0000 0010 0001 0011
g9 g g
0100 0110 0101 0111

Definition 7. The matriz My = | 7,000 ilolo 9001 L1011 | s the signature matrix

Q@ Q «

gllOO glllO gllOl gllll
of an arity 4 signature g. When we present g pictorially, we order the four
external edges ABCD counterclockwise. In My, the row index bits are ordered
AB and the column index bits are ordered DC, in a reverse way. This is for
convenience so that the signature matriz of the linking of two arity 4 signatures

18 the matriz product of the signature matrices of the two signatures.
Now we can prove our hardness result.

Theorem 8. #EULERIAN-ORIENTATIONS is #P-hard on planar 4-reqular graphs.



Fig. 1: The planar tetrahedron gadget. Each vertex is assigned [3,0, 1,0, 3].

Proof. We reduce from calculating the right-hand side of (2) to Pl-Holant(#, |
[0,0,1,0,0]). The bipartite Holant problem Pl-Holant(#2 | f) expresses the

0001
right-hand side of (2), where the signature matrix of f is My = [8 12 8} A

1000

holographic transformation by Z = [} ;] transforms Pl-Holant(#, | f) to
X . 2001

Pl-Holant(f), where the signature matrix of f is M = h é g g] . We also per-

form a holographic transformation by Z on our target problem Pl-Holant(#, |
[0,0,1,0,0]) to get Pl-Holant([3,0,1,0,3]). Using the planar tetrahedron gad-
get in Figure 1, we assign [3,0, 1,0, 3] to every vertex and obtain a gadget with

1900 7
signature 329, where the signature matrix of g is My = 1 [ R } .

70019

Now we show how to reduce Pl-Holant(f) to Pl-Holant(g) by interpolation.

Consider an instance {2 of Pl-Holant( f ). Suppose that f appears n times in (2.
We construct from §2 a sequence of instances (2, of Holant(g§) indexed by s > 1.
We obtain 2, from {2 by replacing each occurrence of f with the gadget N,
in Figure 2 with § assigned to all vertices. Although f and § are asymmetric
signatures, they are invariant under a cyclic permutation of their inputs. Thus,
it is unnecessary to specify which edge corresponds to which input. We call such
signatures rotationally symmetric.

To obtain (2, from {2, we effectively replace M ; with My, = (Mj)®, the sth

f
0011
power of the signature matrix M. Let T = {11 e 8} . Then Mf = T/lfT*1 =
00-11
1000 1000
T {8 59 8] TVand My =TA, T =T [888 9 } T—'. We can view our con-
0003 000 13
n N TAfT_l, which does not change the

struction of {2 as first replacing each M i b

Fig. 2: Recursive construction to interpolate f . The vertices are assigned g.



Holant value, and then replacing each A ; with A3. We stratify the assignments
in {2 based on the assignment to A - We only need to consider the assignments to
/lf that assign 0000 57 many times, 0110 or 1001 k£ many times, and 1111 ¢ many
times. Let cjre be the sum over all such assignments of the products of evalu-
ations (including the contributions from 7' and 7~!) on (2. Then Pl-Holantg,
and Pl-Holantg,, for s > 1, can be expressed as Pl-Holant, = Ej+k:+€:n SECW
and Pl-Holanto, =37, 4, (6%13%)c;ke. This coefficient matrix in the linear
system involving Pl-Holantg,, is Vandermonde and of full rank since for any
0<k+/¢<nand0 <k +¢ <nsuch that (k,¢) # (K, ¢), 6513 # 613"
Therefore, we can solve the linear system for the unknown c;x,’s and obtain the
value of Holant ;. O

The previous proof can be easily modified to reduce from #EQO over 4-regular
graphs by interpolating the so-called crossover signature. Conceptually, the cur-
rent proof is simpler because the #P-hardness proof for #EO over 4-regular
graphs in [31] reduces from the same starting point as our current proof.

It was shown that any symmetric signature with a rank 3 signature matrix
defines a #P-hard Holant problem (see Corollary 5.7 [32]). The only nonplanar
part of the proof is that the initial problem in the reduction, counting Eulerian
orientations over 4-regular graphs, was not known to be #P-hard when the
input is also input planar. The reductions themselves were all planar. Here we
have shown the #P-hardness of this problem under the planarity restriction in
Theorem 8, and therefore obtain the planar version of Corollary 5.7 in [32].

Corollary 9. For a symmetric arity 4 signature [fo, f1, f2, f3, fa] with complex
weights, if there does not exist a,b,c € C, not all zero, such that for all k €
{0,1,2}, afx + bfrs1 + cfrr2 = 0, then Pl-Holant(f) is #P-hard.

With Corollary 9, only one obstacle remains in proving a dichotomy for a
symmetric arity 4 signature in the Pl-Holant framework: the case [v,1,0,0,0]
when v # 0. We handle this by a reduction from Pl-Holant([v, 1,0,0]), which is
#P-hard over planar graphs for v # 0. These problems are the weighted versions
of counting matchings over planar k-regular graphs for k& = 4,3 respectively.
This proof uses a refined interpolation technique. A planar F-gate is essentially
a planar graph gadget where the vertices are assigned signatures in F.

Lemma 10. Let F be a set of signatures. If there exists a planar F-gate with
signature matriz M € C**2 and a planar F-gate with signature s € C2*! such
that (1) det(M) # 0, (2) det([s Ms]) # 0, and (3) M has infinite order modulo
a scalar, then Pl-Holant(F U {[a, b]}) <¢ Pl-Holant(F) for any a,b € C.

The refinement is in the third condition. Previous work [35,27,29] used a
stronger third condition: the ratio of the eigenvalues of M is not a root of unity.
The first two conditions of Lemma 10 are easy to check. Our third condition
holds in one of these two cases: either the eigenvalues are the same but M is not
a multiple of the identity matrix, or the eigenvalues are different but their ratio is
not a root of unity. The power of this lemma is that when our third condition fails



to hold, we can construct M ~! by some constant number of copies of M and use

this in other gadget constructions. This is called the anti-gadget technique [25].

We use this interpolation lemma or the anti-gadget technique to realize [1, 0, 0].
To effectively use [1,0,0], we introduce the notion of a planar pairing.

Definition 11 (Planar pairing). A planar pairing in a graph G = (V, E) is a
set of edges P C V XV such that P is a perfect matching in the graph (V,V xV),
and the graph (V, E U P) is planar.

Lemma 12. For any planar 3-regular graph G, there exists a planar pairing
that can be computed in polynomial time.

With this lemma, we may use [1,0,0] as [1,0] on every vertex of a planar
3-regular graph, and obtain the hardness of the weighted versions of counting
matchings over planar 4-regular graphs.

Lemma 13. Ifv € C— {0}, then Pl-Holant([v, 1,0,0,0]) is #P-hard.

Combining Corollary 9 and Lemma 12 with Theorem 22 in [36], we can
prove our Pl-Holant dichotomy for a symmetric arity 4 signature. A signature is
vanishing if the Holant is always 0 [32].

Theorem 14. If f is a non-degenerate, symmetric, complex-valued signature
of arity 4 in Boolean wvariables, then Pl-Holant(f) is #P-hard unless f is o -
transformable or &-transformable or vanishing or M -transformable, in which
case the problem is in P.

4 Pinning for Planar Graphs

The idea of “pinning” is a common reduction technique between counting prob-
lems. For the #CSP framework, pinning fixes some variables to specific values
of the domain by means of the constant functions [37, 30, 38, 31]. For counting
graph homomorphisms, pinning is used when the input graph is connected and
the target graph is disconnected. Pinning a vertex of the input graph to a vertex
of the target graph forces all the vertices of the input graph to map to the same
connected component of the target graph [39-42]. In the Boolean domain, the
constant 0 and 1 functions are the signatures [1,0] and [0, 1] respectively.

From these works, the most relevant pinning lemma for the Pl-#CSP frame-
work is by Dyer, Goldberg, and Jerrum in [30], where they show how to pin
in the #CSP framework. However, the proof of this pinning lemma is highly
nonplanar. Cai, Lu, and Xia [23] overcame this difficultly in the proof of their
dichotomy theorem for the real-weighted Pl-#CSP framework by first under-
going a holographic transformation by the Hadamard matrix H = H ,11] and
then pinning in this Hadamard basis.? We stress that this holographic transfor-
mation is necessary. Indeed, if one were able to pin in the standard basis of the

2 The pinning in [23], which is accomplished in Section IV, is not summarized in a
single statement but is implied by the combination of all the results in that section.



P1-#CSP framework, then P = #P would follow since Pl—#CSP(////\) is tractable
but Pl—#CSP(////\U {[1,0],[0,1]}) is #P-hard by our main result, Theorem 19.

Since P1-#CSP(F) is Turing equivalent to P1- Holant(]—'UEQ) its expression
in the Hadamard basis is Pl-Holant(HF U EQ) As [1,0] € £0, pinning in this
Hadamard basis amounts to obtaining the missing signature [0, 1].

Theorem 15 (Pinning). Let F be any set of complez-weighted symmetric szg—

natures. Then Pl-Holant®(F U EQ) is #P-hard (or in P) iff Pl-Holant(F U EQ)
is #P-hard (or in P).

This theorem does not exclude the possibility that either framework can ex-
press a problem of intermediate complexity. It merely says that if one framework
does not contain a problem of intermediate complexity, then neither does the
other. Our goal is to prove a dichotomy for Pl-Holant(FUE Q) By Theorem 15,
this is equivalent to proving a dichotomy for Pl-Holant®(F U & Q)

In Theorem 15, the difference between the two counting problems is the
presence of [0,1] in the first problem. The proof is quite involved and can be
found in the full version of this paper [1]. It is proved in several steps under
various assumptions on F. Each of these steps is proved in one of three ways:

1. either the first problem is tractable (so the second problem is as well);

2. or the second problem is #P-hard (so the first problem is as well);

3. or the first problem reduces to the second problem by constructing [0, 1]
using the signatures from the second problem.

5 Main Dichotomy

Our main dichotomy theorem relies on a dichotomy for a single signature.

Theorem 16. If f is a non-degenerate symmetric signature of arity at least 2
with complex weights in Boolean variables, then Pl- Holant({f}UEQ) is #P-hard

unless f € o/ U P M, in which case the problem is in P.
We also prove a useful result that we call the Mixing Theorem.

Theorem 17 (Mixing). Let F be any set of symmetric, complex-valued signa-
tures. If F C o/ U P U A, then Pl-Holant(F U EQ) is #P-hard unless F C o,
FC P, orFC M.

By Theorems 15, 16, and 17, the proof of our main theorem is straightforward.

Theorem 18. Let F be any set of symmetric, complex-valued signatures i
Boolean variables. Then Pl- Holant(]—'Ué'Q) is #P-hard unless F C o/, F C 3”
or F C ., in which case the problem is in P.

We also have the corresponding theorem for the PI-#CSP framework in the
standard basis, which is equivalent to Theorem 1.

Theorem 19. Let F be any set of symmetric, complex-valued signatures in
Boolean variables. Then P1-#CSP(F) is #P-hard unless F C &, F C 2,

or F C ////\, in which case the problem is in P.
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