Gadgets and Anti-Gadgets Leading to a Complexity Dichotomy

Tyson Williams
University of Wisconsin-Madison

Joint with:
Jin-Yi Cai (University of Wisconsin-Madison) Michael Kowalczyk (Northern Michigan University)

To appear at ITCS 2012

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

Systematic Approach to \#VertexCover

- $G=(V, E)$

Systematic Approach to \#VERTEXCover

- $G=(V, E)$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VERTExCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$$
\prod_{(u, v) \in E} \mathrm{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1
$$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$$
\prod_{(u, v) \in E} \mathrm{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1=0
$$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} \mathrm{OR}(\sigma(u), \sigma(v))
$$

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1} \prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))
$$

Input		Output
p	q	OR (p, q)
0	0	0
0	1	1
1	0	1
1	1	1

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\mathrm{OR}(p, q)$
0	0	0
0	1	1
1	0	1
1	1	1

Input		
p	Output	
0	0	$f(p, q)$
0	1	x
1	0	y
1	1	z

Generalize

Partition Function: $Z(\cdot)$

$$
Z(G)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	OR (p, q)
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output	
p	q	$f(p, q)$
0	0	w
0	1	x
1	0	y
1	1	z

where $w, x, y, z \in \mathbb{C}$

Main Result

Theorem (Dichotomy Theorem)

Over 3-regular graphs G, the counting problem for any (binary) complex-weighted function f

$$
Z(G)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

is either computable in polynomial time or \#P-hard.

Main Result

Theorem (Dichotomy Theorem)

Over 3-regular graphs G, the counting problem for any (binary) complex-weighted function f

$$
Z(G)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

is either computable in polynomial time or \#P-hard. Furthermore, the complexity is efficiently decidable.

Outline

(1) Related work
(2) Define Holant function
(3) Proof sketch

- Anti-gadgets

Related Work: Dichotomy Theorems

- Symmetric f
- $f(0,1)=f(1,0)$
- 3-regular graphs with outputs in
- $\{0,1\} \quad$ [Cai, Lu, Xia 08]
- $\{0,1,-1\}$ [Kowalczyk 09]
- \mathbb{R} [Cai, Lu, Xia 09]
- $\mathbb{C} \quad$ [Cai, Kowalczyk 10]
- k-regular graphs with outputs in
- $\mathbb{R} \quad$ [Cai, Kowalczyk 10]
- \mathbb{C}
[Cai, Kowalczyk 11]

Related Work: Dichotomy Theorems

- Symmetric f
- $f(0,1)=f(1,0)$
- 3-regular graphs with outputs in
- $\{0,1\} \quad$ [Cai, Lu, Xia 08]
- $\{0,1,-1\}$ [Kowalczyk 09]
- $\mathbb{R} \quad$ [Cai, Lu, Xia 09]
- $\mathbb{C} \quad$ [Cai, Kowalczyk 10]
- k-regular graphs with outputs in
- $\mathbb{R} \quad$ [Cai, Kowalczyk 10]
- \mathbb{C}
[Cai, Kowalczyk 11]

This work:

- Asymmetric f
- 3-regular graphs with outputs in
- \mathbb{C}

Definition of Holant Function

- Partition Function

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$$
\sum_{\sigma \cdot V \rightarrow(0,1)} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

- Holant Function
- Assignment to edges
- Functions on vertices

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$\sum_{\sigma} \prod_{f} f(\sigma(u), \sigma(v))$
$\sigma: V \rightarrow\{0,1\}(u, v) \in E$
- Holant Function
- Assignment to edges
- Functions on vertices

$$
\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} g_{v}\left(\left.\sigma\right|_{E(v)}\right)
$$

Definition of Holant Function

- Holant $\left(\{f\} \mid\left\{==_{3}\right\}\right)$ is a counting problem defined over $(2,3)$-regular bipartite graphs.
- Holant Function
- Assignment to edges
- Functions on vertices

$\sum_{a=E=(0,1)} \prod_{n \in v} g_{v}\left(\left.\sigma\right|_{(v)}\right.$

Definition of Holant Function

- Holant $\left(\{f\} \mid\left\{==_{3}\right\}\right)$ is a counting problem defined over (2,3)-regular bipartite graphs.
- Degree 2 vertices take f.
- Degree 3 vertices take $={ }_{3}$.
- Holant Function
- Assignment to edges
- Functions on vertices

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant $\left(\left\{\mathrm{NAND}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#IndependentSet on 3-regular graphs.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant($\left.\left\{\mathrm{NAND}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#IndependentSet on 3-regular graphs.
- Holant $\left(\left\{==_{2}\right\} \mid\{\right.$ AT-MOST-ONE $\left.\}\right)$ is \#Matching.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant($\left.\left\{\mathrm{NAND}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#IndependentSet on 3-regular graphs.
- Holant $\left(\left\{==_{2}\right\} \mid\{\right.$ AT-MOST-ONE $\left.\}\right)$ is \#Matching.
- Holant $\left(\left\{=_{2}\right\} \mid\{\right.$ EXACTLY-ONE $\left.\}\right)$ is \#PerfectMatching.

General Bipartite Holant Definition

- More generally, $\operatorname{Holant}(\mathcal{G} \mid \mathcal{R})$ is a counting problem defined over bipartite graphs.

General Bipartite Holant Definition

- More generally, $\operatorname{Holant}(\mathcal{G} \mid \mathcal{R})$ is a counting problem defined over bipartite graphs.

$$
\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)
$$

Symmetric vs Asymmetric Function

Input		Output
p	q	$f(p, q)$
0	0	w
0	1	x
1	0	y
1	1	z

Symmetric vs Asymmetric Function

- Define p to be on the tail
- Define q to be on the head

Symmetric vs Asymmetric Function

- $(2,3)$-regular

Input		Output
p	q	$f(p, q)$
0	0	w
0	1	x
1	0	y
1	1	z

- Directed 3-regular

- Define p to be on the tail
- Define q to be on the head

Strategy for Proving \#P-hardness

- \#VertexCover is \#P-hard over 3-regular graphs.
- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.

Strategy for Proving \#P-hardness

- \#VertexCover is \#P-hard over 3-regular graphs.
- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} \mid\{=3\})$.
- Goal: simulate OR_{2} using f.

Strategy for Proving \#P-hardness

- \#VertexCover is \#P-hard over 3-regular graphs.
- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} \mid\{=3\})$.
- Goal: simulate OR_{2} using f.
- First step:

Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{==_{3}\right\}\right) \leq_{m}^{\mathrm{P}} \operatorname{Holant}\left(\{f\} \cup \mathcal{U} \mid\left\{==_{3}\right\}\right)$
where \mathcal{U} is the set of all unary functions.

Strategy for Proving \#P-hardness

- \#VertexCover is \#P-hard over 3-regular graphs.
- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} \mid\{=3\})$.
- Goal: simulate OR_{2} using f.
- First step:

$$
\operatorname{Holant}\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{==_{3}\right\}\right) \leq_{m}^{\mathrm{P}} \operatorname{Holant}\left(\{f\} \cup \mathcal{U} \mid\left\{==_{3}\right\}\right)
$$

where \mathcal{U} is the set of all unary functions.

- Second step:

$$
\text { Holant }\left(\{f\} \cup \mathcal{U} \mid\left\{=_{3}\right\}\right) \leq_{T}^{P} \operatorname{Holant}\left(\{f\} \mid\left\{=_{3}\right\}\right)
$$

Strategy for Proving \#P-hardness

- \#VertexCover is \#P-hard over 3-regular graphs.
- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} \mid\{=3\})$.
- Goal: simulate OR_{2} using f.
- First step:

$$
\text { Holant }\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right) \leq_{m}^{\mathrm{P}} \operatorname{Holant}\left(\{f\} \cup \mathcal{U} \mid\left\{==_{3}\right\}\right)
$$

where \mathcal{U} is the set of all unary functions.

- Second step:

$$
\text { Holant }\left(\{f\} \cup \mathcal{U} \mid\left\{=_{3}\right\}\right) \leq_{T}^{P} \operatorname{Holant}\left(\{f\} \mid\left\{=_{3}\right\}\right)
$$

- Obtain \mathcal{U} via interpolation.

Interpolation

- A degree n polynomial is uniquely defined by

Interpolation

- A degree n polynomial is uniquely defined by
- $n+1$ coefficients

Interpolation

- A degree n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.

Interpolation

- A degree n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.
- Interpolation is the process of converting from evaluations to coefficients.

Interpolation

- A degree n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.
- Interpolation is the process of converting from evaluations to coefficients.
- We construct unary functions g_{i} such that the evaluation points are $\frac{g_{i}(0)}{g_{i}(1)}$.

Interpolation

- A degree n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.
- Interpolation is the process of converting from evaluations to coefficients.
- We construct unary functions g_{i} such that the evaluation points are $\frac{g_{i}(0)}{g_{i}(1)}$.
- Distinct evaluation points \Longleftrightarrow unary functions pairwise linearly independent (as length-2 vectors).

Construction of Unary Functions

Unary Function

Matrix Representation

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

Matrix Representation

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

Matrix Representation

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

Matrix Representation

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

Matrix Representation

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

- Matrix of the composition is the product of the component matrices.

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

- Otherwise, some power k is a multiple of the identity matrix.

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

- Otherwise, some power k is a multiple of the identity matrix.
- Using only $k-1$ compositions creates an anti-gadget.

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

- Otherwise, some power k is a multiple of the identity matrix.
- Using only $k-1$ compositions creates an anti-gadget.

Anti-Gadget Construction

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

- Otherwise, some power k is a multiple of the identity matrix.
- Using only $k-1$ compositions creates an anti-gadget.

$$
\xrightarrow{-}\left(\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}
$$

Anti-Gadget Technique

$$
\left(\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}
$$

Anti-Gadget Technique

$$
\begin{gathered}
\xrightarrow{\rightarrow-\left(\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}} \\
\xrightarrow{-}\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]
\end{gathered}
$$

Anti-Gadget Technique

$$
\begin{aligned}
& \xrightarrow{\rightarrow}\left(\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1} \\
& {\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] \otimes 2\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]}
\end{aligned}
$$

- The composition of these two gadgets yields...

Anti-Gadget Technique

$$
\begin{gathered}
\xrightarrow{\rightarrow-\left(\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}} \\
\xrightarrow{-\infty}\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]
\end{gathered}
$$

- The composition of these two gadgets yields...

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{y}{x} & 0 & 0 \\
0 & 0 & \frac{x}{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The First Anti-Gadget Lemma

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $w z \neq x y$,
- $w x y z \neq 0$, and
- $|x| \neq|y|$,
then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

The First Anti-Gadget Lemma

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $w z \neq x y$,
- $w x y z \neq 0$, and
- $|x| \neq|y|$,
then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

Corollary

For $w, x, y, z \in \mathbb{C}$ as above, $\operatorname{Holant}\left(\{f\} \mid\left\{==_{3}\right\}\right)$ is \#P-hard.

Thank You

Thank You

Paper and slides available on my website.
www.cs.wisc.edu/~tdw

