Gadgets and Anti-Gadgets Leading to a Complexity Dichotomy

Tyson Williams University of Wisconsin-Madison

Joint with: Jin-Yi Cai (University of Wisconsin-Madison) Michael Kowalczyk (Northern Michigan University)

To appear at ITCS 2012

•
$$G = (V, E)$$

•
$$G = (V, E)$$

• G = (V, E)• $\sigma : V \to \{0, 1\}$

• G = (V, E)• $\sigma : V \rightarrow \{0, 1\}$

• G = (V, E)• $\sigma : V \to \{0, 1\}$

• G = (V, E)• $\sigma : V \to \{0, 1\}$

• G = (V, E)• $\sigma: V \to \{0, 1\}$

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \, \operatorname{OR}\left(\sigma(u), \sigma(v)\right)$

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \, \operatorname{OR}\left(\sigma(u), \sigma(v)\right)$

In	put	Output
p	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

$\sum_{\sigma:V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

In	put	Output
p	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

In	put	Output
p	q	f(p,q)
0	0	w
0	1	x
1	0	y
1	1	z

where $w,x,y,z\in\mathbb{C}$

Partition Function: $Z(\cdot)$

$$Z(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

In	put	Output
p	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

In	put	Output
p	q	f(p,q)
0	0	w
0	1	x
1	0	y
1	1	z

where $w,x,y,z\in\mathbb{C}$

Theorem (Dichotomy Theorem)

Over 3-regular graphs G, the counting problem for any (binary) complex-weighted function f

$$Z(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

is either computable in polynomial time or #P-hard.

Theorem (Dichotomy Theorem)

Over 3-regular graphs G, the counting problem for any (binary) complex-weighted function f

$$Z(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

is either computable in polynomial time or #P-hard. Furthermore, the complexity is efficiently decidable.

Related work

2 Define Holant function

Proof sketch

Anti-gadgets

Related Work: Dichotomy Theorems

• Symmetric *f*

•
$$f(0,1) = f(1,0)$$

- 3-regular graphs with outputs in
 - $\{0,1\}$ [Cai, Lu, Xia 08]
 - $\{0, 1, -1\}$ [Kowalczyk 09]
 - ℝ [Cai, Lu, Xia 09]
 - C [Cai, Kowalczyk 10]
- k-regular graphs with outputs in
 - ℝ [Cai, Kowalczyk 10]
 - C [Cai, Kowalczyk 11]

Related Work: Dichotomy Theorems

• Symmetric *f*

•
$$f(0,1) = f(1,0)$$

- 3-regular graphs with outputs in
 - {0,1} [Cai, Lu, Xia 08]
 - {0,1,-1} [Kowalczyk 09]
 - ℝ [Cai, Lu, Xia 09]
 - C [Cai, Kowalczyk 10]
- k-regular graphs with outputs in
 - ℝ [Cai, Kowalczyk 10]
 - \mathbb{C} [Cai, Kowalczyk 11]

This work:

- Asymmetric *f*
- 3-regular graphs with outputs in

• C

Partition Function

 $\sum_{\sigma:V \to \{0,1\}} \prod_{(u,v) \in E} f\left(\sigma(u), \sigma(v)\right)$

- Partition Function
 - Assignments to vertices
 - Functions on edges

 $\sum_{\sigma:V \to \{0,1\}} \prod_{(u,v) \in E} f\left(\sigma(u), \sigma(v)\right)$

- Partition Function
 - Assignments to vertices
 - Functions on edges

- Holant Function
 - Assignment to edges
 - Functions on vertices

 $\sum_{\sigma:V \to \{0,1\}} \prod_{(u,v) \in E} f\left(\sigma(u), \sigma(v)\right)$

- Partition Function
 - Assignments to vertices
 - Functions on edges

- Holant Function
 - Assignment to edges
 - Functions on vertices

Holant({*f*} | {=₃}) is a counting problem defined over (2,3)-regular bipartite graphs.

- Holant Function
 - Assignment to edges
 - Functions on vertices

- Holant({*f*} | {=₃}) is a counting problem defined over (2,3)-regular bipartite graphs.
- Degree 2 vertices take *f*.
- Degree 3 vertices take $=_3$.

- Holant Function
 - Assignment to edges
 - Functions on vertices

• $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.

- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Holant({NAND₂}|{=₃}) is #INDEPENDENTSET on 3-regular graphs.

- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Holant({NAND₂}|{=₃}) is #INDEPENDENTSET on 3-regular graphs.
- $Holant(\{=_2\} | \{AT-MOST-ONE\})$ is #MATCHING.

- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- $Holant({NAND_2} | {=_3})$ is #INDEPENDENTSET on 3-regular graphs.
- $Holant(\{=_2\} | \{AT-MOST-ONE\})$ is #MATCHING.
- $Holant(\{=_2\} | \{EXACTLY-ONE\})$ is #PERFECTMATCHING.

General Bipartite Holant Definition

• More generally, $\operatorname{Holant}(\mathcal{G} \mid \mathcal{R})$ is a counting problem defined over bipartite graphs.

General Bipartite Holant Definition

• More generally, $\operatorname{Holant}(\mathcal{G} | \mathcal{R})$ is a counting problem defined over bipartite graphs.

Symmetric vs Asymmetric Function

Input		Output
p	q	f(p,q)
0	0	w
0	1	x
1	0	y
1	1	z

Symmetric vs Asymmetric Function

Input		Output
p	q	f(p,q)
0	0	w
0	1	x
1	0	y
1	1	z

 $\bullet \ \mbox{Define} \ p$ to be on the tail

• Define q to be on the head

Symmetric vs Asymmetric Function

• Directed 3-regular

 $\bullet \ \mbox{Define} \ p$ to be on the tail

• Define q to be on the head

Strategy for Proving #P-hardness

- #VERTEXCOVER is #P-hard over 3-regular graphs.
- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.

Strategy for Proving #P-hardness

- #VERTEXCOVER is #P-hard over 3-regular graphs.
- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} | \{=_3\})$.
- Goal: simulate OR_2 using f.

Strategy for Proving #P-hardness

- #VERTEXCOVER is #P-hard over 3-regular graphs.
- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} | \{=_3\})$.
- Goal: simulate OR₂ using *f*.
- First step:

 $\operatorname{Holant}(\{\operatorname{OR}_2\} | \{=_3\}) \leq_m^{\operatorname{P}} \operatorname{Holant}(\{f\} \cup \mathcal{U} | \{=_3\})$

where ${\cal U}$ is the set of all unary functions.

Strategy for Proving #P-hardness

- #VERTEXCOVER is #P-hard over 3-regular graphs.
- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} | \{=_3\})$.
- Goal: simulate OR_2 using f.
- First step:

 $\operatorname{Holant}({\operatorname{OR}_2} | {=_3}) \leq_m^{\operatorname{P}} \operatorname{Holant}({\boldsymbol{f}} \cup \mathcal{U} | {=_3})$

where $\ensuremath{\mathcal{U}}$ is the set of all unary functions.

• Second step:

 $\operatorname{Holant}(\{f\} \cup \mathcal{U} | \{=_3\}) \leq_T^{\operatorname{P}} \operatorname{Holant}(\{f\} | \{=_3\})$

Strategy for Proving #P-hardness

- #VERTEXCOVER is #P-hard over 3-regular graphs.
- $Holant({OR_2}|{=_3})$ is #VERTEXCOVER on 3-regular graphs.
- Our problem is $\operatorname{Holant}(\{f\} | \{=_3\})$.
- Goal: simulate OR_2 using f.
- First step:

 $\operatorname{Holant}({\operatorname{OR}_2} | {=_3}) \leq_m^{\operatorname{P}} \operatorname{Holant}({\boldsymbol{f}} \cup \mathcal{U} | {=_3})$

where ${\cal U}$ is the set of all unary functions.

• Second step:

 $\operatorname{Holant}(\{\boldsymbol{f}\} \cup \mathcal{U} | \{=_3\}) \leq_T^{\operatorname{P}} \operatorname{Holant}(\{\boldsymbol{f}\} | \{=_3\})$

• Obtain \mathcal{U} via interpolation.

 \bullet A degree n polynomial is uniquely defined by

\bullet A degree n polynomial is uniquely defined by

• n+1 coefficients

 $\bullet\ {\rm A}$ degree n polynomial is uniquely defined by

- n+1 coefficients, or
- evaluations at n+1 (different) points.

- A degree n polynomial is uniquely defined by
 - n+1 coefficients, or
 - evaluations at n+1 (different) points.
- Interpolation is the process of converting from evaluations to coefficients.

- A degree n polynomial is uniquely defined by
 - n+1 coefficients, or
 - evaluations at n+1 (different) points.
- Interpolation is the process of converting from evaluations to coefficients.
- We construct unary functions g_i such that the evaluation points are $\frac{g_i(0)}{g_i(1)}$.

- A degree n polynomial is uniquely defined by
 - n+1 coefficients, or
 - evaluations at n+1 (different) points.
- Interpolation is the process of converting from evaluations to coefficients.
- We construct unary functions g_i such that the evaluation points are $\frac{g_i(0)}{g_i(1)}$.
- Distinct evaluation points \iff unary functions pairwise linearly independent (as length-2 vectors).

Construction of Unary Functions

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

- Left side indexes the row.
- Right side indexes the column.
- High order bit on top.

Matrix of the composition is the product of the component matrices.

• Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

• Otherwise, some power k is a multiple of the identity matrix.

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

• Otherwise, some power k is a multiple of the identity matrix.

• Using only k-1 compositions creates an anti-gadget.

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

• Otherwise, some power k is a multiple of the identity matrix.

• Using only k-1 compositions creates an anti-gadget.

$$\left(\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix}\right)^{-1}$$

- Want set of matrix powers to form an infinite set of pairwise linearly independent matrices.
- If this matrix has this property, then we are done.

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

- Otherwise, some power k is a multiple of the identity matrix.
- Using only k-1 compositions creates an anti-gadget.

$$\begin{pmatrix} \begin{bmatrix} w & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \right)^{-1}$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right)^{-1} \left(\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \right)^{-1} \\ \left(\begin{bmatrix} w & x \\ y & z \end{bmatrix}^{\otimes 2} \right)^{-1}$$

• The composition of these two gadgets yields...

• The composition of these two gadgets yields...

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $wz \neq xy$,
- $wxyz \neq 0$, and
- $\bullet \ |x| \neq |y| \text{,}$

then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $wz \neq xy$,
- $wxyz \neq 0$, and
- $\bullet \ |x| \neq |y|,$

then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

Corollary

For $w, x, y, z \in \mathbb{C}$ as above, $\operatorname{Holant}(\{f\} | \{=_3\})$ is #P-hard.

Thank You

Thank You

Paper and slides available on my website. www.cs.wisc.edu/~tdw