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#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.
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Systematic Approach to #VertexCover

G = (V,E)

0

1

1 10

OR

OR OR

OR OR

OR

∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1
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Systematic Approach to #VertexCover

G = (V,E)
σ : V → {0, 1}

0

1

1 10

OR

OR OR

OR OR

OR

#VertexCover(G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

OR(σ(u), σ(v))
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Generalize

Z(G) =

∑
σ:V→{0,1}

∏
(u,v)∈E

OR (σ(u), σ(v))

Input Output
p q OR(p, q)
0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f(p, q)
0 0 w

0 1 x

1 0 y

1 1 z

where w, x, y, z ∈ C
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Generalize

Partition Function: Z(·)

Z(G) =
∑

σ:V→{0,1}
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Main Result

Theorem (Dichotomy Theorem)

Over 3-regular graphs G, the counting problem for any (binary)
complex-weighted function f

Z(G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

f(σ(u), σ(v))

is either computable in polynomial time or #P-hard.

Furthermore, the
complexity is efficiently decidable.
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Outline

1 Main result

2 Related work

3 Define Holant function

4 Proof sketch

Anti-Gadgets
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Related Work: Dichotomy Theorems

Symmetric f

f(0, 1) = f(1, 0)
3-regular graphs with weights in

{0, 1} [Cai, Lu, Xia 08]
{0, 1,−1} [Kowalczyk 09]
R [Cai, Lu, Xia 09]
C [Cai, Kowalczyk 10]

k-regular graphs with weights in

R [Cai, Kowalczyk 10]
C [Cai, Kowalczyk 11]

This work:

Asymmetric f

3-regular graphs with weights in

C
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Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f

∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f

∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 8 / 19



Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f

∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f

∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 8 / 19



Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f

∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f

∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 8 / 19



Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f

∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f

∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)
Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 8 / 19



Definition of Holant Function

Holant({f} |{=3}) is a
counting problem defined
over (2,3)-regular bipartite
graphs.

Holant Function

Assignment to edges
Functions on vertices
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Definition of Holant Function

Holant({f} |{=3}) is a
counting problem defined
over (2,3)-regular bipartite
graphs.

Degree 2 vertices take f .

Degree 3 vertices take =3.

Holant Function

Assignment to edges
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Example Holant Problems

Holant({OR2} |{=3}) is #VertexCover on 3-regular graphs.

Holant({NAND2} |{=3}) is #IndependentSet on 3-regular
graphs.

Holant({=2} |{AT-MOST-ONE}) is #Matching.

Holant({=2} |{EXACTLY-ONE}) is #PerfectMatching.
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General Bipartite Holant Definition

More generally, Holant(G |R) is a counting problem defined over
bipartite graphs.

g1

g2

g3

g4

r1

r2

r3

∑
σ:E→{0,1}

∏
v∈V

fv
(
σ |E(v)

)
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Symmetric vs Asymmetric Function

(2,3)-regular

=3

=3

=3 =3

f

f f

f f

f

Input Output
p q f(p, q)
0 0 w

0 1 x

1 0 y

1 1 z

Directed 3-regular

=3

=3

=3 =3

f

f f

f f

f

Define p to be on the tail

Define q to be on the head
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Strategy for Proving #P-hardness

#VertexCover is #P-hard over 3-regular graphs.

Holant({OR2} |{=3}) is #VertexCover on 3-regular graphs.

Our problem is Holant({f} |{=3}).

Goal: simulate OR2 using f .

First step:

Holant({OR2} |{=3}) ≤P
m Holant({f} ∪ U |{=3})

where U is the set of all unary functions.

Second step:

Holant({f} ∪ U |{=3}) ≤P
T Holant({f} |{=3})

Obtain U via interpolation.
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Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients

, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Interpolation

A degree n polynomial is uniquely defined by

n+ 1 coefficients, or
evaluations at n+ 1 (different) points.

Interpolation is evaluations → coefficients.

Construct unary functions gi such that evaluation points are gi(0)
gi(1) .

Distinct evaluation points ⇐⇒ unary functions pairwise linearly
independent, as length-2 vectors (gi(0), gi(1)).

Tyson Williams (UW-M) Gadgets and Anti-Gadgets ITCS 2012 13 / 19



Construction of Unary Functions

Projective Gadget Recursive Gadget

Unary Function

. . . . . .
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Matrix Representation

Left side indexes the row.

Right side indexes the column.

High order bit on top.

[
w x
y z

]⊗2


w 0 0 0
0 0 0
0 0 0
0 0 0 z


[
w x
y z

]⊗2


w 0 0 0
0 y 0 0
0 0 x 0
0 0 0 z


Matrix of the composition is the product of the component matrices.
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Anti-Gadget Construction

Want set of matrix powers to form an infinite set of pairwise linearly
independent matrices.

If this matrix has this property, then we are done.

[
w x
y z

]⊗2


w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z


Otherwise, some power k is a multiple of the identity matrix.

Using only k − 1 compositions creates an anti-gadget.[w x
y z

]⊗2


w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z



−1
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Anti-Gadget Technique



w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z



−1([

w x
y z

]⊗2
)−1

[
w x
y z

]⊗2


w 0 0 0
0 y 0 0
0 0 x 0
0 0 0 z


The composition of these two gadgets yields...

1 0 0 0
0 y

x 0 0
0 0 x

y 0
0 0 0 1


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First Lemma Using Anti-Gadgets

Lemma

For w, x, y, z ∈ C, if

wz 6= xy,

wxyz 6= 0, and

|x| 6= |y|,
then there exists a recursive gadget whose matrix powers form an infinite
set of pairwise linearly independent matrices.

Corollary

For w, x, y, z ∈ C as above, Holant({f} |{=3}) is #P-hard.
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Thank You

Paper and slides available on my website.
www.cs.wisc.edu/~tdw
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