The Complexity of Planar Boolean #CSP with Complex Weights

Tyson Williams University of Wisconsin-Madison

Joint with: Heng Guo (University of Wisconsin-Madison)

- Xi Chen
 - $\#CSP(\mathcal{F})$
 - Any domain size

- Xi Chen
 - #CSP(*F*)
 - Any domain size
- Mingji Xia
 - Holant^{*}(f) (symmetric arity 3)
 - Domain size 3

- Xi Chen
 - #CSP(𝔅)
 - Any domain size
- Mingji Xia
 - Holant^{*}(f) (symmetric arity 3)
 - Domain size 3
- Heng Guo
 - Holant(\mathcal{F})
 - Domain size 2 (Boolean domain)

- Xi Chen
 - #CSP(𝔅)
 - Any domain size
- Mingji Xia
 - Holant^{*}(f) (symmetric arity 3)
 - Domain size 3
- Heng Guo
 - Holant(\mathcal{F})
 - Domain size 2 (Boolean domain)

This talk:

- PI -#CSP(\mathcal{F})
- Domain size 2
- View PI-#CSP(\mathcal{F}) in Holant framework

$$\begin{split} \mathsf{OR}_2 &= [0,1,1]\\ \mathsf{AND}_3 &= [0,0,0,1]\\ \mathsf{EVEN}\text{-}\mathsf{PARITY}_4 &= [1,0,1,0,1]\\ \mathsf{MAJORITY}_5 &= [0,0,0,1,1,1]\\ (=_6) &= \mathsf{EQUALITY}_6 = [1,0,0,0,0,0,1] \end{split}$$

$$\begin{split} \mathsf{OR}_2 &= [0,1,1]\\ \mathsf{AND}_3 &= [0,0,0,1]\\ \mathsf{EVEN}\text{-}\mathsf{PARITY}_4 &= [1,0,1,0,1]\\ \mathsf{MAJORITY}_5 &= [0,0,0,1,1,1]\\ (=_6) &= \mathsf{EQUALITY}_6 = [1,0,0,0,0,0,1] \end{split}$$

$$(=_n) = [1, 0, \dots, 0, 1]^{\mathrm{T}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes n}$$

Quick Review: Holographic transformation

• A transformation by the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Quick Review: Holographic transformation

• A transformation by the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Quick Review: Holographic transformation

• A transformation by the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$H^{\otimes n}(=_{n}) = H^{\otimes n} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes n} \right)$$
$$= \left(H \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)^{\otimes n} + \left(H \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)^{\otimes n}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\otimes n}$$
$$= [2, 0, 2, 0, 2, 0, 2, \dots]^{\mathrm{T}} \qquad (n+1 \text{ entries})$$
$$= 2 \cdot \mathrm{EVEN}\text{-PARITY}_{n}$$

NEW: Let $H\mathcal{F} = \widehat{\mathcal{F}}$

• A transformation by the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$H^{\otimes n}(=_n) = H^{\otimes n} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes n} \right)$$
$$= \left(H \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)^{\otimes n} + \left(H \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)^{\otimes n}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\otimes n}$$
$$= [2, 0, 2, 0, 2, 0, 2, \dots]^{\mathrm{T}} \qquad (n+1 \text{ entries})$$
$$= 2 \cdot \mathrm{EVEN}\text{-PARITY}_n$$

NEW: Let
$$H\mathcal{F} = \widehat{\mathcal{F}}$$

Note: $H\widehat{\mathcal{F}} = \mathcal{F}$ since $H\widehat{\mathcal{F}} = HH\mathcal{F} = 2\mathcal{F} = \mathcal{F}$

EVEN - $\mathsf{PARITY}(x, y, z) \land \mathsf{MAJORITY}(x, y, z) \land \mathsf{OR}(x, y, z)$

NOT planar, so **NOT** an instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₃})

NOT planar, so **NOT** an instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₃})

VALID instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₂})

$\#\mathsf{CSP}(\mathcal{F})$ in Holant Framework

 $\#\mathsf{CSP}(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma: V \to \{0,1\}} \prod_{c \in C} f_c\left(\sigma \mid_{N(c)}\right),$$

where N(c) are the neighbors of c.

$\#\mathsf{CSP}(\mathcal{F})$ in Holant Framework

 $\#CSP(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma: V \to \{0,1\}} \prod_{c \in C} f_c\left(\sigma \mid_{N(c)}\right),$$

where N(c) are the neighbors of c. Holant(\mathcal{F})

• On input graph G = (V, E), compute

$$\sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)} \right),$$

where E(v) are the incident edges of v.

$\#\mathsf{CSP}(\mathcal{F})$ in Holant Framework

 $\#CSP(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma: V \to \{0,1\}} \prod_{c \in C} f_c\left(\sigma \mid_{N(c)}\right),$$

where N(c) are the neighbors of c. Holant(\mathcal{F})

• On input graph G = (V, E), compute

$$\sum_{\sigma: E \to \{0,1\}} \prod_{\nu \in V} f_{\nu} \left(\sigma \mid_{E(\nu)} \right),$$

where E(v) are the incident edges of v.

$$\#\mathsf{CSP}(\mathcal{F}) \equiv_{\mathcal{T}} \mathsf{Holant}(\mathcal{EQ} \mid \mathcal{F}) \equiv_{\mathcal{T}} \mathsf{Holant}(\mathcal{EQ} \cup \mathcal{F}),$$

where $\mathcal{EQ} = \{=_1, =_2, =_3, \dots\}$ is the set of equalities of all arities.

Example

Example

Some Signature Sets

Affine signatures $\mathscr{A} = \mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3$, where

$$\begin{split} \mathscr{F}_1 &= \left\{ \lambda \left([1,0]^{\otimes k} + i^r [0,1]^{\otimes k} \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \dots, r = 0, 1, 2, 3 \right\} \\ \mathscr{F}_2 &= \left\{ \lambda \left([1,1]^{\otimes k} + i^r [1,-1]^{\otimes k} \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \dots, r = 0, 1, 2, 3 \right\} \\ \mathscr{F}_3 &= \left\{ \lambda \left([1,i]^{\otimes k} + i^r [1,-i]^{\otimes k} \right) \mid \lambda \in \mathbb{C}, k = 1, 2, \dots, r = 0, 1, 2, 3 \right\}. \end{split}$$

Up to a scalar from \mathbb{C} :

1	$[1, 0, \dots, 0, \pm 1];$	$(\mathscr{F}_1, r=0, 2)$
2	$[1, 0, \dots, 0, \pm i];$	$(\mathscr{F}_1, r=1,3)$
3	$[1, 0, 1, 0, \dots, 0 \text{ or } 1];$	$(\mathscr{F}_2, r=0)$
4	$[1, -i, 1, -i, \dots, (-i) \text{ or } 1];$	$(\mathscr{F}_2, r=1)$
5	$[0, 1, 0, 1, \dots, 0 \text{ or } 1];$	$(\mathscr{F}_2, r=2)$
6	$[1, i, 1, i, \dots, i \text{ or } 1];$	$(\mathscr{F}_2, r=3)$
0	$[1,0,-1,0,1,0,-1,0,\ldots,0 \text{ or } 1 \text{ or } (-1)];$	$(\mathscr{F}_3, r=0)$
8	$[1,1,-1,-1,1,1,-1,-1,\ldots,1 \text{ or } (-1)];$	$(\mathscr{F}_3, r=1)$
9	$[0, 1, 0, -1, 0, 1, 0, -1, \dots, 0 \text{ or } 1 \text{ or } (-1)];$	$(\mathscr{F}_3, r=2)$
10	$[1, -1, -1, 1, 1, -1, -1, 1, \dots, 1 \text{ or } (-1)].$	$(\mathscr{F}_3, r=3)$

Some Signature Sets

Product-type signatures \mathscr{P} are:

- **1** [0, *x*, 0]
- 2 [y, 0, ..., 0, z] (includes all unary signatures)

Product-type signatures \mathscr{P} are:

1 [0, *x*, 0]

2 [y, 0, ..., 0, z] (includes all unary signatures)

Matchgate signatures *M* are:

They satisfy

- Parity condition
- Geometric progression

Product-type signatures \mathcal{P} are:

0 [0, x, 0]

 $(y, 0, \ldots, 0, z)$ (includes all unary signatures)

Matchgate signatures *M* are:

$$\begin{array}{c} \bullet & [\alpha^{n}, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^{n}] \\ \bullet & [\alpha^{n}, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^{n}, 0] \\ \bullet & [0, \alpha^{n}, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^{n}] \\ \bullet & [0, \alpha^{n}, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^{n}, 0] \\ \end{array}$$

They satisfy

- Parity condition
- Geometric progression

Example:

$$H\mathcal{E}\mathcal{Q} = \widehat{\mathcal{E}\mathcal{Q}} = \{2 \cdot \text{EVEN-PARITY}_n \mid n \in \mathbb{Z}^+\}$$

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables.

Then $\text{Pl-}\#\text{CSP}(\mathcal{F})$ is #P-hard unless $\mathcal{F} \subseteq \mathscr{A}$, $\mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq \widetilde{\mathscr{M}}$, in which case the problem is in P.

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then Pl - $\#\mathrm{CSP}(\mathcal{F})$ is $\#\mathrm{P}$ -hard unless $\mathcal{F} \subseteq \mathscr{A}$, $\mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq \widehat{\mathscr{M}}$, in which case the problem is in P .

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then $\operatorname{Pl-Holant}(\mathcal{F} \cup \widehat{\mathcal{EQ}})$ is $\#\operatorname{P-hard}$ unless $\mathcal{F} \subseteq \mathscr{A}$, $\mathcal{F} \subseteq \widehat{\mathcal{P}}$, or $\mathcal{F} \subseteq \mathscr{M}$, in which case the problem is in P .

If f is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean variables, then Pl-Holant(f) is #P-hard unless f is

- *A*-transformable,
- *P*-transformable,
- vanishing, or
- *M*-transformable,

in which case the problem is in P.

If f is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean variables, then Pl-Holant(f) is #P-hard unless f is

- *A*-transformable,
- *P*-transformable,
- vanishing, or
- *M*-transformable,

in which case the problem is in P.

Definition (*F*-transformable)

A signature f is \mathcal{F} -transformable if there exists $\mathcal{T} \in \mathbb{C}^{2 \times 2}$ such that

• $f \in T\mathcal{F}$ and

•
$$=_2 T^{\otimes 2} \in \mathcal{F}.$$

[Cai, Lu, Xia 10]

• Dichotomy for $PI-\#CSP(\mathcal{F})$ with **REAL** weights

[Cai, Lu, Xia 10]

- Dichotomy for $PI-\#CSP(\mathcal{F})$ with **REAL** weights
- Dichotomy for PI-Holant(f) for arity 3 signature with complex weights

[Cai, Lu, Xia 10]

- Dichotomy for $PI-\#CSP(\mathcal{F})$ with **REAL** weights
- Dichotomy for PI-Holant(f) for arity 3 signature with complex weights

[Cai, Kowalczyk 10]

• Dichotomy for PI-#CSP([a, b, c]) with complex weights

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe, Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe, Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma

$\#\mathsf{CSP}(\mathcal{F} \cup \{[1,0],[0,1]\}) \leq_T \#\mathsf{CSP}(\mathcal{F})$

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe, Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma

$\# CSP(\mathcal{F} \cup \{[1, 0], [0, 1]\}) \leq_T \# CSP(\mathcal{F})$

 $PI-\#CSP(\widehat{\mathscr{M}} \cup \{[1,0],[0,1]\})$ is #P-hard but $PI-\#CSP(\widehat{\mathscr{M}})$ is tractable

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe, Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma

$\# CSP(\mathcal{F} \cup \{[1, 0], [0, 1]\}) \leq_T \# CSP(\mathcal{F})$

 $PI-\#CSP(\widehat{\mathscr{M}} \cup \{[1,0],[0,1]\})$ is #P-hard but $PI-\#CSP(\widehat{\mathscr{M}})$ is tractable

Lemma

$$\begin{array}{l} \mathsf{PI-Holant}(\mathcal{F} \cup \widehat{\mathcal{EQ}}) \text{ is } \# \mathsf{P}\text{-hard (or in } \mathsf{P}) \\ & \\ & \\ \mathsf{I-Holant}(\mathcal{F} \cup \widehat{\mathcal{EQ}} \cup \{[1,0],[0,1]\}) \text{ is } \# \mathsf{P}\text{-hard (or in } \mathsf{P}) \end{array}$$

Definition

At each vertex in an Eulerian orientation of a graph,

in-degree equals out-degree.

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Proof.

Reduction from the evaluation of the Tutte polynomial at the point (3,3) for planar graphs:

$$PI-Tutte(3,3) \leq_{\mathcal{T}} \vdots$$
$$\leq_{\mathcal{T}} \#PI-4Reg-EO$$

Theorem (Vertigan 05)

For any $x, y \in \mathbb{C}$, the problem of computing the Tutte polynomial at (x, y) over planar graphs is #P-hard unless $(x - 1)(y - 1) \in \{1, 2\}$ or $(x, y) \in \{(1, 1), (-1, -1), (j, j^2), (j^2, j)\}$, where $j = e^{2\pi i/3}$. In each of these exceptional cases, the computation can be done in polynomial time.

Definition

For a connected plane graph G, its medial graph H has a vertex for each edge of G and two vertices in H are joined by an edge for each face of G in which their corresponding edges occur consecutively.

Example

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant ([0, 1, 0] | f)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Pl-Holant ([0, 1, 0] | f) $(\neq_2) = [0, 1, 0] \bullet$

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant ([0, 1, 0] | f)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

 $\mathsf{PI-Holant}([0,1,0] \mid f)$

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant ([0, 1, 0] | f)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

•	Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature Row index is (w, x) , BUT the column index is (z, y)	$M_f =$	$\begin{bmatrix} f^{0000} \\ f^{0100} \\ f^{1000} \\ f^{1100} \end{bmatrix}$	f^{0010} f^{0110} f^{1010} f^{1110}	f^{0001} f^{0101} f^{1001} f^{1101}	$ \begin{array}{c} f^{0011} \\ f^{0111} \\ f^{1011} \\ f^{1111} \\ \end{array} $	
	(order reversed)		-			_	
	Tyson Williams (UW-M) PI-#	CSP			Dagstuhl 201	3 19 /	ſ

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

٩	Let $f(w, x, y, z) = f$	-wxyz		Γ <i>f</i> ⁰⁰⁰⁰	f^{0010}	f ⁰⁰⁰¹	f ⁰⁰¹¹	1
	be an arity 4 signatu	ire		f^{0100}	f^{0110}	f^{0101}	f^{0111}	
٩	Row index is (w, x) ,		$M_f =$	f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹	
	BUT the column index is (z, y)			f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹	
	(order reversed)			-			_	'
	Tyson Williams (UW-M)	PI-#	CSP			Dagstuhl 201	.3 19 /	

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:

•	Let $f(w, x, y, z) = f^{w \times yz}$ be an arity 4 signature Row index is (w, x) , BUT the column index is (z, y) (order reversed)	$M_f =$	$\begin{bmatrix} 0\\0\\f^{1100}\end{bmatrix}$	0 f^{0110} f^{1010} 0	0 f ⁰¹⁰¹ f ¹⁰⁰¹ 0	f ⁰⁰¹¹⁻ 0 0 0_	
	Tyson Williams (UW-M) PI-#	ÉCSP			Dagstuhl 2013	19 /	3

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:

•	Let $f(w, x, y, z) = f^{w \times yz}$ be an arity 4 signature Row index is (w, x) , BUT the column index is (z, y) (order reversed)	$M_f =$	$\begin{bmatrix} 0\\0\\f^{1100}\end{bmatrix}$	0 f ⁰¹¹⁰ f ¹⁰¹⁰ 0	$0 \\ f^{0101} \\ f^{1001} \\ 0$	f ⁰⁰¹¹⁻ 0 0 0	
	Tyson Williams (UW-M) PI-#	PI-#CSP			Dagstuhl 2013	19 /	1

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

•	Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature Row index is (w, x) , BUT the column index is (z, y) (order reversed)	$M_f =$	$\begin{bmatrix} 0\\0\\f^{1100}\end{bmatrix}$	0 f ⁰¹¹⁰ 2 0	0 2 f ¹⁰⁰¹ 0	f ⁰⁰¹¹ 0 0 0	
	Tyson Williams (UW-M) PI-#	ÉCSP			Dagstuhl 2013	3 19 /	3

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

•	Let $f(w, x, y, z) = f$ be an arity 4 signatu Row index is (w, x) , BUT the column ind (order reversed)	w <i>xyz</i> ire dex is (<i>z</i> , <i>y</i>)	$M_f =$	$\begin{bmatrix} 0\\0\\f^{1100}\end{bmatrix}$	0 f ⁰¹¹⁰ 2 0	0 2 f ¹⁰⁰¹ 0	f ⁰⁰¹¹ 0 0 0	
	Tyson Williams (UW-M)	PI-#	CSP			Dagstuhl 201	3 19/	3

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \mathsf{PI-Tutte}_{G}(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y) (order reversed)

$$M_f = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \mathsf{Pl}\text{-}\mathsf{Tutte}(3,3) \equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ \leq_{\mathcal{T}} & \vdots \end{aligned}$$

$\leq_{\mathcal{T}} \# \mathsf{PI-4Reg-EO}$

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$I-Tutte(3,3) \equiv_{\mathcal{T}} \mathsf{PI}-\mathsf{Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \right)$$
$$\leq_{\mathcal{T}} \qquad \vdots$$
$$\leq_{\mathcal{T}} \mathsf{PI}-\mathsf{Holant}([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix})$$
$$\equiv_{\mathcal{T}} \#\mathsf{PI}-\mathsf{4Reg}-\mathsf{EO}$$

Ρ

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \mathsf{PI-Tutte}(3,3) \equiv_{\mathcal{T}} \mathsf{PI-Holant} \left(\begin{bmatrix} 0,1,0 \end{bmatrix} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ \leq_{\mathcal{T}} & \vdots \\ \leq_{\mathcal{T}} \mathsf{PI-Holant}([0,1,0] \mid [0,0,1,0,0]) \\ \equiv_{\mathcal{T}} \# \mathsf{PI-4Reg-EO} \end{aligned}$$

Let
$$Z = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
.

Let $Z = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$. Then

$$\begin{aligned} \mathsf{Pl}\text{-}\mathsf{Holant}\left([0,1,0] \mid f\right) &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}\left([0,1,0](\mathbf{Z}^{-1})^{\otimes 2} \mid \mathbf{Z}^{\otimes 4}f\right) \\ &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}\left([1,0,1]/2 \mid 4\hat{f}\right) \\ &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}(\hat{f}), \end{aligned}$$

where

$$M_{\hat{f}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.$$

Similarly,

 $\begin{aligned} \mathsf{PI-Holant}\left([0,1,0] \mid [0,0,1,0,0]\right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant}\left([0,1,0](\mathbb{Z}^{-1})^{\otimes 2} \mid \mathbb{Z}^{\otimes 4}[0,0,1,0,0]\right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant}\left([1,0,1]/2 \mid 2[3,0,1,0,3]\right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant}([3,0,1,0,3]). \end{aligned}$

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \mathsf{I}\text{-}\mathsf{Tutte}(3,3) &\equiv_{\mathcal{T}} \mathsf{PI}\text{-}\mathsf{Holant}\left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}\right) \\ &\equiv_{\mathcal{T}} \mathsf{PI}\text{-}\mathsf{Holant}\left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}} & \vdots \\ &\leq_{\mathcal{T}} \mathsf{PI}\text{-}\mathsf{Holant}([3,0,1,0,3]) \\ &\equiv_{\mathcal{T}} \mathsf{PI}\text{-}\mathsf{Holant}\left([0,1,0] \mid [0,0,1,0,0]\right) \\ &\equiv_{\mathcal{T}} \#\mathsf{PI}\text{-}\mathsf{4}\mathsf{Reg}\text{-}\mathsf{EO} \end{aligned}$$

Ρ

#PI-4Reg-EO: Planar Tetrahedron Gadget

Assign [3, 0, 1, 0, 3] to every vertex of this gadget...

...to get a signature $32\hat{g}$ with

$$M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

•

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$Pl\text{-Tutte}(3,3) \equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 0,1,0 \end{bmatrix} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right)$$
$$\equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \right)$$
$$\leq_{T} Pl\text{-Holant} \left(\begin{bmatrix} 1 & 9 & 0 & 7 & 0 \\ 0 & 7 & 5 & 0 & 0 \\ 0 & 7 & 5 & 0 & 0 \\ 0 & 7 & 5 & 0 & 0 \end{bmatrix} \right)$$
$$\leq_{T} Pl\text{-Holant} \left(\begin{bmatrix} 3, 0, 1, 0, 3 \end{bmatrix} \right)$$
$$\equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 0, 1, 0 \end{bmatrix} \mid \begin{bmatrix} 0, 0, 1, 0, 0 \end{bmatrix} \right)$$
$$\equiv_{T} \# Pl\text{-4Reg-EO}$$

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$Pl\text{-Tutte}(3,3) \equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 0,1,0 \end{bmatrix} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right)$$
$$\equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \right)$$
$$\leq_{T} Pl\text{-Holant} \left(\frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 0 & 19 \end{bmatrix} \right)$$
$$\leq_{T} Pl\text{-Holant} \left(\begin{bmatrix} 3, 0, 1, 0, 3 \end{bmatrix} \right)$$
$$\equiv_{T} Pl\text{-Holant} \left(\begin{bmatrix} 0, 1, 0 \end{bmatrix} \mid \begin{bmatrix} 0, 0, 1, 0, 0 \end{bmatrix} \right)$$
$$\equiv_{T} \# Pl\text{-4Reg-EO}$$

#PI-4Reg-EO: Rotationally Symmetric

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

#PI-4Reg-EO: Rotationally Symmetric

(b) Movement of signature matrix entries under a counterclockwise rotation.
#PI-4Reg-EO: Rotationally Symmetric

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

#PI-4Reg-EO: Rotationally Symmetric

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation. Suppose that \hat{f} appears *n* times in Ω of Pl-Holant(\hat{f}). Construct instances Ω_s of Holant(\hat{g}) indexed by $s \ge 1$. Obtain Ω_s from Ω by replacing each \hat{f} with N_s (\hat{g} assigned to all vertices).

Suppose that \hat{f} appears *n* times in Ω of Pl-Holant(\hat{f}). Construct instances Ω_s of Holant(\hat{g}) indexed by $s \ge 1$. Obtain Ω_s from Ω by replacing each \hat{f} with N_s (\hat{g} assigned to all vertices).

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
.

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
. Then

$$M_{\hat{f}} = T\Lambda_{\hat{f}}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}$$
and

$$M_{\hat{g}} = T\Lambda_{\hat{g}}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}.$$

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
. Then

$$M_{\hat{f}} = T\Lambda_{\hat{f}}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}$$
and

$$M_{\hat{g}} = T\Lambda_{\hat{g}}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}$$

Follows from being both rotationally symmetric and complement invariant.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω_s ,

we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

• To obtain Ω_s from Ω , we first replace $M_{\hat{f}}$ with $T\Lambda_{\hat{f}}T^{-1}$. (Holant unchanged)

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

 To obtain Ω_s from Ω, we first replace M_β with TΛ_βT⁻¹. (Holant unchanged)
 Then we replace TΛ_βT⁻¹ with T(Λ_β)^sT⁻¹.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

 To obtain Ω_s from Ω, we first replace M_f with TΛ_f T⁻¹. (Holant unchanged)
 Then we replace TΛ_f T⁻¹ with T(Λ_f)^s T⁻¹.

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

 To obtain Ω_s from Ω, we first replace M_f with TΛ_f T⁻¹. (Holant unchanged)
 Then we replace TΛ_f T⁻¹ with T(Λ_f)^s T⁻¹.

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- 0000 j many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

 To obtain Ω_s from Ω, we first replace M_f with TΛ_f T⁻¹. (Holant unchanged)
 Then we replace TΛ_f T⁻¹ with T(Λ_f)^s T⁻¹.

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

 To obtain Ω_s from Ω, we first replace M_f with TΛ_f T⁻¹. (Holant unchanged)
 Then we replace TΛ_f T⁻¹ with T(Λ_f)^s T⁻¹.

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

Then

$$\mathsf{Pl} ext{-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^\ell c_{jk\ell}$$

$$\Lambda_{\hat{f}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

Then

$$\mathsf{Pl} ext{-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^\ell c_{jk\ell}$$

and

$$\mathsf{PI-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (6^k 13^\ell)^s c_{jk\ell}$$

is a full rank Vandermonde system (row index s, column index $c_{ik\ell}$).

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

P

$$\begin{aligned} \mathsf{I}\text{-}\mathsf{Tutte}(3,3) &\equiv_{\mathcal{T}} \mathsf{PI\text{-}\mathsf{Holant}} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) \\ & & \equiv_{\mathcal{T}} \mathsf{PI\text{-}\mathsf{Holant}} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ & & \leq_{\mathcal{T}} \mathsf{PI\text{-}\mathsf{Holant}} \left(\frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 7 & 0 \end{bmatrix} \right) \\ & & \leq_{\mathcal{T}} \mathsf{PI\text{-}\mathsf{Holant}} ([3,0,1,0,3]) \\ & & \equiv_{\mathcal{T}} \mathsf{PI\text{-}\mathsf{Holant}} ([0,1,0] \mid [0,0,1,0,0]) \\ & & \equiv_{\mathcal{T}} \#\mathsf{PI\text{-}\mathsf{4}\mathsf{Reg\text{-}}\mathsf{EO} \qquad \Box \end{aligned}$$

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \mathsf{PI}\text{-}\mathsf{Tutte}(3,3) &\equiv_{\mathcal{T}}\mathsf{PI}\text{-}\mathsf{Holant}\left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}\right) \\ &\equiv_{\mathcal{T}}\mathsf{PI}\text{-}\mathsf{Holant}\left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}}\mathsf{PI}\text{-}\mathsf{Holant}\left(\frac{1}{2}\begin{bmatrix} 19 & 0 & 5 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 0 & 19 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}}\mathsf{PI}\text{-}\mathsf{Holant}([3,0,1,0,3]) \\ &\equiv_{\mathcal{T}}\mathsf{PI}\text{-}\mathsf{Holant}\left([0,1,0] \mid [0,0,1,0,0]\right) \\ &\equiv_{\mathcal{T}}\#\mathsf{PI}\text{-}\mathsf{4}\mathsf{Reg}\text{-}\mathsf{EO} \end{aligned}$$

Major proof techniques:

- Holographic transformation
- Gadget construction
- Interpolation

Recursive unary construction (M, s)

$$-M$$
 $-M$ M s

Recursive unary construction (M, s)

Lemma (Vadhan 01, Cai-Lu-Xia 12, Cai-Lu-Xia 11)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$.

$$-M$$
 $-M$ M $-M$ s

Recursive unary construction (M, s)

Lemma (Vadhan 01, Cai-Lu-Xia 12, Cai-Lu-Xia 11)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$. If

$$-M$$
 $-M$ M s

Recursive unary construction (M, s)

Lemma (Vadhan 01, Cai-Lu-Xia 12, Cai-Lu-Xia 11)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$. If the following three conditions are satisfied,

- det $(M) \neq 0$;
- $lage det([s Ms]) \neq 0;$

Ithe ratio of the eigenvalues of M is not a root of unity;

then

$$-M$$
 $-M$ M s

Recursive unary construction (M, s)

Lemma (Vadhan 01, Cai-Lu-Xia 12, Cai-Lu-Xia 11)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$. If the following three conditions are satisfied,

- det $(M) \neq 0$;
- $lage det([s Ms]) \neq 0;$
- the ratio of the eigenvalues of M is not a root of unity;

then

$$-M$$
 $-M$ M s

Recursive unary construction (M, s)

Lemma (Our Result)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$. If the following three conditions are satisfied,

- det $(M) \neq 0$;
- $lage det([s Ms]) \neq 0;$
- **3** *M* has infinite order modulo a scalar;

then

$$-M$$
 $-M$ $-M$ $-M$ s

Recursive unary construction (M, s)

Lemma (Our Result)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$.

- det $(M) \neq 0$;
- $lage det([s Ms]) \neq 0;$
- 3 M has infinite order modulo a scalar;

 \iff

$$-M$$
 $-M$ $-M$ $-S$

Recursive unary construction (M, s)

Lemma (Our Result)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$.

- det $(M) \neq 0$;
- **2** det([s Ms]) \neq 0;
- **3** *M* has infinite order modulo a scalar;

 \iff

the vectors in the set $V = \{M^k s\}_{k \ge 0}$ are pairwise linearly independent.

Suppose M has finite order modulo a scalar.

$$-M$$
 $-M$ $-M$ $-S$

Recursive unary construction (M, s)

Lemma (Our Result)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$.

- det $(M) \neq 0$;
- $lage det([s Ms]) \neq 0;$

(3) *M* has infinite order modulo a scalar;

 \iff the vectors in the set $V = \{M^k s\}_{k \ge 0}$ are pairwise linearly independent.

Suppose *M* has finite order modulo a scalar. Then we can construct M^{-1} .

$$-M$$
 $-M$ $-M$ $-S$

Recursive unary construction (M, s)

Lemma (Our Result)

Suppose $M \in \mathbb{C}^{2 \times 2}$ and $s \in \mathbb{C}^{2 \times 1}$.

- det $(M) \neq 0$;
- 2 det([s Ms]) \neq 0;
- **3** *M* has infinite order modulo a scalar;

 \iff

the vectors in the set $V = \{M^k s\}_{k \ge 0}$ are pairwise linearly independent.

Suppose *M* has finite order modulo a scalar. Then we can construct M^{-1} . This is called the anti-gadget technique [Cai, Kowalczyk, **W** 12].

Thank You

Thank You

Paper and slides available on my website: www.cs.wisc.edu/~tdw

