The Complexity of Counting Problems

Tyson Williams
(University of Wisconsin-Madison)

Joint with:
Jin-Yi Cai and Heng Guo
(University of Wisconsin-Madison)

Michael Kowalczyk
(Northern Michigan University)

Complexity Theory Review

In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: "Yes" if there is a satisfying assignment
"No" otherwise.

In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
(w \vee \bar{x} \vee \bar{y} \vee z) \wedge(x \vee y) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{w} \vee x \vee \bar{y} \vee \bar{z})
$$

In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
(w \vee \bar{x} \vee \bar{y} \vee z) \wedge(x \vee y) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{w} \vee x \vee \bar{y} \vee \bar{z})
$$

Example output: Yes

In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: "Yes" if there is a satisfying assignment
"No" otherwise.
Example input:

$$
(w \vee \bar{x} \vee \bar{y} \vee z) \wedge(x \vee y) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{w} \vee x \vee \bar{y} \vee \bar{z})
$$

Example output: Yes
Satisfying assignment:

$$
w=x=\text { True } \quad y=z=\text { False }
$$

In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
(w \vee \bar{x} \vee \bar{y} \vee z) \wedge(x \vee y) \wedge(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{w} \vee x \vee \bar{y} \vee \bar{z})
$$

Example output: Yes
Satisfying assignment:

$$
w=x=\text { True } \quad y=z=\text { False }
$$

Theorem (Cook '71, Levin '73)

SAT \in NP-Complete.

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
\begin{aligned}
(\bar{w} \vee x \vee z) & \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z}) \\
& \wedge(\bar{w} \vee y \vee \bar{z}) \wedge(w \vee x \vee y) \wedge(\bar{w} \vee \bar{x} \vee \bar{y})
\end{aligned}
$$

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
\begin{aligned}
(\bar{w} \vee x \vee z) & \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z}) \\
& \wedge(\bar{w} \vee y \vee \bar{z}) \wedge(w \vee x \vee y) \wedge(\bar{w} \vee \bar{x} \vee \bar{y})
\end{aligned}
$$

Example output: No

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$
\begin{aligned}
(\bar{w} \vee x \vee z) & \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z}) \\
& \wedge(\bar{w} \vee y \vee \bar{z}) \wedge(w \vee x \vee y) \wedge(\bar{w} \vee \bar{x} \vee \bar{y})
\end{aligned}
$$

Example output: No

Theorem

3 SAT \in NP-Complete.

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

Problem: NAE-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

$$
(\bar{w} \vee x \vee z) \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})
$$

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if each clause has exactly 1 true literal "No" otherwise.

Problem: NAE-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

$$
(\bar{w} \vee x \vee z) \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})
$$

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if each clause has exactly 1 true literal "No" otherwise.

Problem: NAE-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if the literals in each clause are not all equal "No" otherwise.

$$
(\bar{w} \vee x \vee z) \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})
$$

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if each clause has exactly 1 true literal "No" otherwise.

Problem: NAE-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if the literals in each clause are not all equal "No" otherwise.

$$
(\bar{w} \vee x \vee z) \wedge(\bar{x} \vee y \vee z) \wedge(w \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})
$$

Theorem

1-IN-3SAT, NAE-3SAT \in NP-Complete.

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT?
- Mon-1-in-3SAT?
- Mon-NAE-3SAT?

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT?
- Mon-1-in-3SAT \in NP-Complete
- Mon-NAE-3SAT \in NP-Complete

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT $\in \mathrm{P}$
- Mon-1-In-3SAT \in NP-Complete
- Mon-NAE-3SAT \in NP-Complete

What else is tractable?

Problem: Horn-SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment
"No" otherwise.

What else is tractable?

Problem: Horn-SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment
"No" otherwise.
Example input:

$$
(\bar{w} \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z}) \wedge(\bar{w} \vee y \vee \bar{z}) \wedge(\bar{w} \vee \bar{x} \vee \bar{y})
$$

What else is tractable?

Problem: Horn-SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment
"No" otherwise.
Example input:

$$
(\bar{w} \vee \bar{y} \vee z) \wedge(w \vee \bar{x} \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z}) \wedge(\bar{w} \vee y \vee \bar{z}) \wedge(\bar{w} \vee \bar{x} \vee \bar{y})
$$

Theorem

Horn-SAT \in P.

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints \mathcal{F} is denoted by $\operatorname{CSP}(\mathcal{F})$.

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints \mathcal{F} is denoted by $\operatorname{CSP}(\mathcal{F})$.

Examples:

SAT	has	$\mathcal{F}=\left\{\mathrm{OR}_{k} \mid k \in \mathbb{N}\right\} \cup\left\{\mathrm{NOT}_{2}\right\}$
3SAT	has	$\mathcal{F}=\left\{\mathrm{OR}_{3}, \mathrm{NOT}_{2}\right\}$
1-IN-3SAT	has	$\mathcal{F}=\left\{\mathrm{EXACTLY-ONE}_{3}, \mathrm{NOT}_{2}\right\}$
NAE-3SAT	has	$\mathcal{F}=\left\{\right.$ NOT-All-EQUAL $_{3}$, NOT $\left._{2}\right\}$
MON-3SAT	has	$\mathcal{F}=\left\{\mathrm{OR}_{3}\right\}$
MON-1-IN-3SAT	has	$\mathcal{F}=\left\{\mathrm{EXACTLY}^{2} \mathrm{ONE}_{3}\right\}$
MON-NAE-3SAT	has	$\mathcal{F}=\left\{\right.$ NOT-All-EQUAL $\left._{3}\right\}$

One theorem to rule them all

One theorem to rule them all

Theorem (Schaefer's dichotomy theorem '78)

For any set of constraint functions \mathcal{F}, the problem $\operatorname{CSP}(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P :

One theorem to rule them all

Theorem (Schaefer's dichotomy theorem '78)

For any set of constraint functions \mathcal{F}, the problem $\operatorname{CSP}(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P :

All constraints in \mathcal{F}...
(1) that are not constantly false are true when all its arguments are true;
(2) that are not constantly false are true when all its arguments are false;
(3) are equivalent to a conjunction of binary clauses;
(4) are equivalent to a conjunction of Horn clauses;
(5) are equivalent to a conjunction of dual-Horn clauses;
(1) are equivalent to a conjunction of affine formula.

One theorem to rule them all

Theorem (Schaefer's dichotomy theorem '78)

For any set of constraint functions \mathcal{F}, the problem $\operatorname{CSP}(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P:

All constraints in \mathcal{F}...
(1) that are not constantly false are true when all its arguments are true;
(2) that are not constantly false are true when all its arguments are false;
(3) are equivalent to a conjunction of binary clauses;
(4) are equivalent to a conjunction of Horn clauses;
(5) are equivalent to a conjunction of dual-Horn clauses;
(0) are equivalent to a conjunction of affine formula.

One theorem to rule them all

Theorem (Schaefer's dichotomy theorem '78)

For any set of constraint functions \mathcal{F}, the problem $\operatorname{CSP}(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P :

All constraints in \mathcal{F}...
(1) that are not constantly false are true when all its arguments are true;
(2) that are not constantly false are true when all its arguments are false;
(3) are equivalent to a conjunction of binary clauses;
(9) are equivalent to a conjunction of Horn clauses;
(5) are equivalent to a conjunction of dual-Horn clauses;
(1) are equivalent to a conjunction of affine formula.

Three takeaways from Schaefer's dichotomy theorem

Three takeaways from Schaefer's dichotomy theorem

- Theorist: describes the line between easy problems and hard problems

Three takeaways from Schaefer's dichotomy theorem

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary

Three takeaways from Schaefer's dichotomy theorem

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary
- Observation: no problems of intermediate complexity

Three takeaways from Schaefer's dichotomy theorem

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary
- Observation: no problems of intermediate complexity

Theorem (Ladner's theorem '75)

 If $\mathrm{P} \neq \mathrm{NP}$, then there exists problems in NP of intermediate complexity.

A Motivation for Counting

Independent Set

Want large independent set.

Independent Set

Want large independent set.

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

The Facts

Problem: IndependentSet

Input: A graph G and $k \in \mathbb{N}$.
Output: "Yes" if G contains an independent set of size at least k "No" otherwise.

The Facts

Problem: IndependentSet
Input: A graph G and $k \in \mathbb{N}$.
Output: "Yes" if G contains an independent set of size at least k "No" otherwise.

IndependentSet \in NP-Complete

The Facts

Problem: IndependentSet
Input: A graph G and $k \in \mathbb{N}$.
Output: "Yes" if G contains an independent set of size at least k "No" otherwise.

IndependentSet \in NP-Complete
Next question: how close to optimal can we get?

A Different Approach

Let $\mathcal{I}(G)$ be the set of independent sets in G.

A Different Approach

Let $\mathcal{I}(G)$ be the set of independent sets in G.
Want to randomly sample / from $\mathcal{I}(G)$ such that

$$
\operatorname{Pr}(I) \propto w(I)
$$

A Different Approach

Let $\mathcal{I}(G)$ be the set of independent sets in G.
Want to randomly sample / from $\mathcal{I}(G)$ such that

$$
\operatorname{Pr}(I) \propto w(I)
$$

Then must have

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)},
$$

where

$$
Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

A Different Approach

Let $\mathcal{I}(G)$ be the set of independent sets in G.
Want to randomly sample / from $\mathcal{I}(G)$ such that

$$
\operatorname{Pr}(I) \propto w(I)
$$

Then must have

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)},
$$

where

$$
Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

Know as the partition function in statistical physics.

Weight functions

$$
\operatorname{Pr}(/)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

Weight functions

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

If $w(I)=1$, then $Z(G)=|\mathcal{I}(G)|$ is the number of independent sets.

Weight functions

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

If $w(I)=1$, then $Z(G)=|\mathcal{I}(G)|$ is the number of independent sets.
Statistical physicists considered $w(I)=\lambda^{|/|}$from some nonnegative $\lambda \in \mathbb{R}$.

Weight functions

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

If $w(I)=1$, then $Z(G)=|\mathcal{I}(G)|$ is the number of independent sets.
Statistical physicists considered $w(I)=\lambda^{|/|}$from some nonnegative $\lambda \in \mathbb{R}$.

- If $\lambda=1$, then $Z(G)=|\mathcal{I}(G)|$ again.

Weight functions

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

If $w(I)=1$, then $Z(G)=|\mathcal{I}(G)|$ is the number of independent sets.
Statistical physicists considered $w(I)=\lambda^{|/|}$from some nonnegative $\lambda \in \mathbb{R}$.

- If $\lambda=1$, then $Z(G)=|\mathcal{I}(G)|$ again.
- If $\lambda=0$, then $Z(G)=1$.

Weight functions

$$
\operatorname{Pr}(I)=\frac{w(I)}{Z(G)} \quad \text { where } \quad Z(G)=\sum_{I \in \mathcal{I}(G)} w(I)
$$

If $w(I)=1$, then $Z(G)=|\mathcal{I}(G)|$ is the number of independent sets.
Statistical physicists considered $w(I)=\lambda^{|/|}$from some nonnegative $\lambda \in \mathbb{R}$.

- If $\lambda=1$, then $Z(G)=|\mathcal{I}(G)|$ again.
- If $\lambda=0$, then $Z(G)=1$.

Theorem (Sly,Sun '12)

For $d \geq 3$ and $\lambda>\lambda_{c}(d)=\frac{(d-1)^{d-1}}{(d-2)^{d}}$, unless $N P=R P$ there is no approximation algorithm for the partition function with $w(I)=\lambda^{|/|}$ on d-regular graphs.

Local Constraints

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

Systematic Approach to \#VertexCover

- $G=(V, E)$

Systematic Approach to \#VertexCover

- $G=(V, E)$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$$
\prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1
$$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$$
\prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1=0
$$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))
$$

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, q)$
0	0	0
0	1	1
1	0	1
1	1	1

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, q)$
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
p	q	$f(p, q)$
0	0	w
0	1	x
1	0	y
1	1	z

Generalize

Partition Function: $Z(\cdot)$

$$
Z(G)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, q)$
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
p	q	$f(\boldsymbol{p}, \boldsymbol{q})$
0	0	w
0	1	x
1	0	y
1	1	z

where $w, x, y, z \in \mathbb{C}$

A Counting Dichotomy

Theorem (Cai, Kowalczyk, W'12)

Over 3-regular graphs G, the exact counting problem for any (binary) complex-weighted function f

$$
Z(G)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

is either computable in polynomial time or \#P-hard.

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: Connected
Input: A graph G.
Output: "Yes" if G is connected
"No" otherwise.

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: Connected
Input: A graph G.
Output: "Yes" if G is connected "No" otherwise.

Confessions of a theorists:

Nonlocal Examples

Problem: HamiltonianCycle

Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: Connected
Input: A graph G.
Output: "Yes" if G is connected "No" otherwise.

Confessions of a theorists:

- Some proofs of this depending on definition of "local".

Nonlocal Examples

Problem: HamiltonianCycle

Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: Connected
Input: A graph G.
Output: "Yes" if G is connected "No" otherwise.

Confessions of a theorists:

- Some proofs of this depending on definition of "local".
- Formally, just think of these as conjectures.

Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.

Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.

Examples:

$$
\begin{aligned}
\mathrm{OR}_{2} & =[0,1,1] \\
\mathrm{AND}_{3} & =[0,0,0,1] \\
\text { EVEN-PARITY }_{4} & =[1,0,1,0,1] \\
\text { MAJORITY }_{5} & =[0,0,0,1,1,1] \\
(=6)=\text { EQUALITY }_{6} & =[1,0,0,0,0,0,1]
\end{aligned}
$$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{3}\right\}$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

NOT planar, so NOT an instance of Pl-\#CSP (\{EVEN-PARITY 3 , MAJORITY 3, OR $\left.\left._{3}\right\}\right)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

NOT planar, so NOT an instance of Pl-\#CSP (\{EVEN-PARITY 3, MAJORITY $\left.\left._{3}, \mathrm{OR}_{3}\right\}\right)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{2}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{2}(x, y)$

Constraint Graph for \# $\operatorname{CSP}(\mathcal{F})$ Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{2}\right\}$
$\operatorname{EVEN}^{\operatorname{PARITY}}{ }_{3}(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{2}(x, y)$

VALID instance of PI-\#CSP(\{EVEN-PARITY ${ }_{3}$, MAJORITY $_{3}$, OR $\left.\left._{2}\right\}\right)$

More Counting Dichotomies

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then \#CSP (\mathcal{F}) is either \#P-hard or computable in polynomial time.

More Counting Dichotomies

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then \#CSP (\mathcal{F}) is either \#P-hard or computable in polynomial time.

Theorem (Cai, Xia '12)

Let \mathcal{F} be any set of complex-valued constraints.
Then \#CSP (\mathcal{F}) is either \#P-hard or computable in polynomial time.

More Counting Dichotomies

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then \# $\operatorname{CSP}(\mathcal{F})$ is either \#P-hard or computable in polynomial time.

Theorem (Cai, Xia '12)

Let \mathcal{F} be any set of complex-valued constraints.
Then \#CSP (\mathcal{F}) is either \#P-hard or computable in polynomial time.

Theorem (Guo, W'13)

Let \mathcal{F} be any set of symmetric, complex-valued constraints in Boolean variables.
Then $\mathrm{PI}-\mathrm{CSP}(\mathcal{F})$ is either \#P-hard or computable in polynomial time.

Definition of Holant Function

- Partition Function

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

- Holant Function
- Assignment to edges
- Functions on vertices

Definition of Holant Function

- Partition Function
- Assignments to vertices
- Functions on edges

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

- Holant Function
- Assignment to edges
- Functions on vertices

Definition of Holant Function

- Holant $(\{f\} \mid\{=3\})$ is a counting problem defined over (2,3)-regular bipartite graphs.
- Holant Function
- Assignment to edges
- Functions on vertices

$$
\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} g_{v}(\sigma \mid E(v))
$$

Definition of Holant Function

- Holant $(\{f\} \mid\{=3\})$ is a counting problem defined over (2,3)-regular bipartite graphs.
- Degree 2 vertices take f.
- Degree 3 vertices take $=3$.
-

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant $\left(\left\{\mathrm{NAND}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#IndependentSet on 3-regular graphs.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant $\left(\left\{\mathrm{NAND}_{2}\right\} \mid\{=3\}\right)$ is \#IndependentSet on 3-regular graphs.
$\left.\begin{array}{l}\text { Holant }(\{=2\} \mid\{\text { AT-MOST-ONE }\}) \\ \text { Holant(AT-MOST-ONE) }\end{array}\right\}$ is \#Matching.

Example Holant Problems

- Holant $\left(\left\{\mathrm{OR}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#VertexCover on 3-regular graphs.
- Holant $\left(\left\{\mathrm{NAND}_{2}\right\} \mid\left\{=_{3}\right\}\right)$ is \#IndependentSet on 3-regular graphs.

Final Dichotomy

Theorem (Cai, Guo, W'13)

Let \mathcal{F} be any set of symmetric, complex-valued constraints in Boolean variables.
Then Holant (\mathcal{F}) is either \#P-hard or computable in polynomial time.

A Proof Technique: Polynomial Interpolation

Polynomial Interpolation

- 2 (distinct) points defines a (unique) line

Polynomial Interpolation

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

Polynomial Interpolation

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

Lemma

Given $n+1$ distinct points $\left(x_{i}, y_{i}\right)$, there is a unique polynomial $p(\cdot)$ of degree at most n such that $p\left(x_{i}\right)=y_{i}$.

Polynomial Interpolation

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

Lemma

Given $n+1$ distinct points $\left(x_{i}, y_{i}\right)$, there is a unique polynomial $p(\cdot)$ of degree at most n such that $p\left(x_{i}\right)=y_{i}$.

Furthermore, the coefficients of p can be computed in polynomial time.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

- Let m_{k} be the number of matchings that omit k vertices.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

- Let m_{k} be the number of matchings that omit k vertices.
- Let G_{ℓ} be the graph G after adding, for each vertex v, ℓ vertices incident only to v.

\#PerfectMatching \leq_{T} \#Matching [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

- Let m_{k} be the number of matchings that omit k vertices.
- Let G_{ℓ} be the graph G after adding, for each vertex v, ℓ vertices incident only to v.

$$
\# \operatorname{MATChing}\left(G_{\ell}\right)=\sum_{k=0}^{n} m_{k}(\ell+1)^{k}
$$

Thank You

