The Complexity of Counting Problems

Tyson Williams (University of Wisconsin-Madison)

Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison)

Michael Kowalczyk (Northern Michigan University)

Complexity Theory Review

Example input:

$$(w \lor \overline{x} \lor \overline{y} \lor z) \land (x \lor y) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{w} \lor x \lor \overline{y} \lor \overline{z})$$

Example input:

$$(w \lor \overline{x} \lor \overline{y} \lor z) \land (x \lor y) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{w} \lor x \lor \overline{y} \lor \overline{z})$$

Example output: Yes

Example input:

$$(w \lor \overline{x} \lor \overline{y} \lor z) \land (x \lor y) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{w} \lor x \lor \overline{y} \lor \overline{z})$$

Example output: *Yes* Satisfying assignment:

$$w = x =$$
True $y = z =$ False

Example input:

$$(w \lor \overline{x} \lor \overline{y} \lor z) \land (x \lor y) \land (\overline{x} \lor \overline{y} \lor z) \land (\overline{w} \lor x \lor \overline{y} \lor \overline{z})$$

Example output: *Yes* Satisfying assignment:

$$w = x =$$
True $y = z =$ False

Theorem (Cook '71, Levin '73)

 $SAT \in \mathsf{NP}\text{-}\mathsf{Complete}.$

Problem: 3SAT

- **Input:** A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
- **Output:** "*Yes*" if there is a satisfying assignment "*No*" otherwise.

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \\ \land (\overline{w} \lor y \lor \overline{z}) \land (w \lor x \lor y) \land (\overline{w} \lor \overline{x} \lor \overline{y})$$

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{w} \lor y \lor \overline{z}) \land (w \lor x \lor y) \land (\overline{w} \lor \overline{x} \lor \overline{y})$$

Example output: No

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \\ \land (\overline{w} \lor y \lor \overline{z}) \land (w \lor x \lor y) \land (\overline{w} \lor \overline{x} \lor \overline{y})$$

Example output: No

Theorem

 $3SAT \in \mathsf{NP}\text{-}\mathsf{Complete}.$

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

Problem: NAE-3SAT Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

$$(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$$

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

Output: "*Yes*" if each clause has exactly 1 true literal "*No*" otherwise.

Problem: NAE-3SAT

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

$$(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$$

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

Output: "*Yes*" if each clause has exactly 1 true literal "*No*" otherwise.

Problem: NAE-3SAT

- **Input:** A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
- **Output:** "*Yes*" if the literals in each clause are not all equal "*No*" otherwise.

 $(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$

Input: A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.

Output: "*Yes*" if each clause has exactly 1 true literal "*No*" otherwise.

Problem: NAE-3SAT

- **Input:** A Boolean formula (in conjunctive normal form) such that each clause has exactly 3 literals.
- **Output:** "*Yes*" if the literals in each clause are not all equal "*No*" otherwise.

 $(\overline{w} \lor x \lor z) \land (\overline{x} \lor y \lor z) \land (w \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z})$

Theorem

 $1\text{-in-3SAT}, \text{NAE-3SAT} \in \mathsf{NP}\text{-}\mathsf{Complete}.$

A Boolean formula is monotone if the formula contains no negations.

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT?
- Mon-1-in-3SAT?
- MON-NAE-3SAT?

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT?
- Mon-1-in-3SAT \in NP-Complete
- MON-NAE-3SAT \in NP-Complete

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

- Mon-3SAT $\in P$
- Mon-1-in-3SAT \in NP-Complete
- MON-NAE-3SAT \in NP-Complete

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$(\overline{w} \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{w} \lor y \lor \overline{z}) \land (\overline{w} \lor \overline{x} \lor \overline{y})$$

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form) such that each clause has at most 1 positive literal.
Output: "Yes" if there is a satisfying assignment "No" otherwise.

Example input:

$$(\overline{w} \lor \overline{y} \lor z) \land (w \lor \overline{x} \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{w} \lor y \lor \overline{z}) \land (\overline{w} \lor \overline{x} \lor \overline{y})$$

Theorem

HORN-SAT $\in P$.

These types of problems called Constraint Satisfaction Problems (CSPs).

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints \mathcal{F} is denoted by $CSP(\mathcal{F})$.

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints \mathcal{F} is denoted by $CSP(\mathcal{F})$.

Examples:

SAT 3SAT 1-in-3SAT NAE-3SAT	has has has has	$\mathcal{F} = \{ OR_k \mid k \in \mathbb{N} \} \cup \{ NOT_2 \}$ $\mathcal{F} = \{ OR_3, NOT_2 \}$ $\mathcal{F} = \{ EXACTLY-ONE_3, NOT_2 \}$ $\mathcal{F} = \{ NOT-AII-EQUAL_3, NOT_2 \}$
Mon-3SAT Mon-1-in-3SAT Mon-NAE-3SAT	has has has	$ \begin{aligned} \mathcal{F} &= \{OR_3\} \\ \mathcal{F} &= \{EXACTLY-ONE_3\} \\ \mathcal{F} &= \{NOT-AII-EQUAL_3\} \end{aligned} $

For any set of constraint functions \mathcal{F} , the problem $CSP(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P:

For any set of constraint functions \mathcal{F} , the problem $CSP(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P:

All constraints in \mathcal{F} ...

- that are not constantly false are true when all its arguments are true;
- 2 that are not constantly false are true when all its arguments are false;
- are equivalent to a conjunction of binary clauses;
- are equivalent to a conjunction of Horn clauses;
- I are equivalent to a conjunction of dual-Horn clauses;
- are equivalent to a conjunction of affine formula.

For any set of constraint functions \mathcal{F} , the problem $CSP(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P:

All constraints in \mathcal{F} ...

- Ithat are not constantly false are true when all its arguments are true;
- 2 that are not constantly false are true when all its arguments are false;
- are equivalent to a conjunction of binary clauses;
- are equivalent to a conjunction of Horn clauses;
- I are equivalent to a conjunction of dual-Horn clauses;
- are equivalent to a conjunction of affine formula.

For any set of constraint functions \mathcal{F} , the problem $CSP(\mathcal{F})$ is NP-Complete unless one of the following conditions holds, in which case the problem is in P:

All constraints in \mathcal{F} ...

- that are not constantly false are true when all its arguments are true;
- 2 that are not constantly false are true when all its arguments are false;
- are equivalent to a conjunction of binary clauses;
- are equivalent to a conjunction of Horn clauses;
- I are equivalent to a conjunction of dual-Horn clauses;
- are equivalent to a conjunction of affine formula.

• Theorist: describes the line between easy problems and hard problems

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary
- Observation: no problems of intermediate complexity

- Theorist: describes the line between easy problems and hard problems
- Practitioner (i.e. employee of Google): a complexity dictionary
- Observation: no problems of intermediate complexity

Theorem (Ladner's theorem '75)

If $P \neq NP$, then there exists problems in NP of intermediate complexity.

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

A Motivation for Counting

Want large independent set.

Want large independent set.

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

Problem: INDEPENDENTSET **Input:** A graph G and $k \in \mathbb{N}$. **Output:** "*Yes*" if G contains an independent set of size at least k"*No*" otherwise. **Problem:** INDEPENDENTSET **Input:** A graph G and $k \in \mathbb{N}$. **Output:** "Yes" if G contains an independent set of size at least k"No" otherwise.

 $\mathbf{INDEPENDENTSET} \in \mathsf{NP}\text{-}\mathsf{Complete}$

Problem: INDEPENDENTSET Input: A graph G and $k \in \mathbb{N}$. Output: "Yes" if G contains an independent set of size at least k"No" otherwise.

 $\mathsf{INDEPENDENTSET} \in \mathsf{NP}\text{-}\mathsf{Complete}$

Next question: how close to optimal can we get?

Want to randomly sample I from $\mathcal{I}(G)$ such that

 $\Pr(I) \propto w(I)$.

Want to randomly sample I from $\mathcal{I}(G)$ such that

 $\Pr(I) \propto w(I)$.

Then must have

$$\Pr(I) = \frac{w(I)}{Z(G)},$$

where

$$Z(G) = \sum_{I \in \mathcal{I}(G)} w(I).$$

Want to randomly sample I from $\mathcal{I}(G)$ such that

 $\Pr(I) \propto w(I)$.

Then must have

$$\Pr(I) = \frac{w(I)}{Z(G)},$$

where

$$Z(G) = \sum_{I \in \mathcal{I}(G)} w(I).$$

Know as the partition function in statistical physics.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I)$.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I)$.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I)$.

Statistical physicists considered $w(I) = \lambda^{|I|}$ from some nonnegative $\lambda \in \mathbb{R}$.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I)$.

Statistical physicists considered $w(I) = \lambda^{|I|}$ from some nonnegative $\lambda \in \mathbb{R}$.

• If
$$\lambda = 1$$
, then $Z(G) = |\mathcal{I}(G)|$ again.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I).$

Statistical physicists considered $w(I) = \lambda^{|I|}$ from some nonnegative $\lambda \in \mathbb{R}$.

$$\Pr(I) = \frac{w(I)}{Z(G)}$$
 where $Z(G) = \sum_{I \in \mathcal{I}(G)} w(I)$.

Statistical physicists considered $w(I) = \lambda^{|I|}$ from some nonnegative $\lambda \in \mathbb{R}$.

Theorem (Sly,Sun '12)

For $d \ge 3$ and $\lambda > \lambda_c(d) = \frac{(d-1)^{d-1}}{(d-2)^d}$, unless NP = RP there is no approximation algorithm for the partition function with $w(I) = \lambda^{|I|}$ on d-regular graphs.

Tyson Williams (UW-M)

Local Constraints

Systematic Approach to #VertexCover

• *G* = (*V*, *E*)

Systematic Approach to #VertexCover

• *G* = (*V*, *E*)

G = (V, E)
σ : V → {0,1}

Systematic Approach to #VertexCover

• G = (V, E)• $\sigma : V \rightarrow \{0, 1\}$

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}\left(\sigma(u), \sigma(v)\right)$

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}\left(\sigma(u), \sigma(v)\right)$

Input		Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

Input		Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
р	q	f (p,q)
0	0	W
0	1	X
1	0	у
1	1	Ζ

where $w, x, y, z \in \mathbb{C}$

Partition Function: $Z(\cdot)$

$$Z(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

Input		Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
р	q	f (p,q)
0	0	W
0	1	X
1	0	у
1	1	Ζ

where $w, x, y, z \in \mathbb{C}$

Theorem (Cai, Kowalczyk, W '12)

Over 3-regular graphs G, the exact counting problem for any (binary) complex-weighted function **f**

$$Z(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

is either computable in polynomial time or #P-hard.

Problem: HAMILTONIANCYCLE
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle
"No" otherwise.

Problem: CONNECTED Input: A graph *G*. Output: "*Yes*" if *G* is connected "*No*" otherwise.
Problem: HAMILTONIANCYCLE
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle
"No" otherwise.

Problem: CONNECTED Input: A graph *G*. Output: "*Yes*" if *G* is connected "*No*" otherwise.

Confessions of a theorists:

Problem: HAMILTONIANCYCLE
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: CONNECTED
Input: A graph G.
Output: "Yes" if G is connected
"No" otherwise.

Confessions of a theorists:

• Some proofs of this depending on definition of "local".

Problem: HAMILTONIANCYCLE
Input: A graph G.
Output: "Yes" if G contains an Hamiltonian cycle "No" otherwise.

Problem: CONNECTED
Input: A graph G.
Output: "Yes" if G is connected
"No" otherwise.

Confessions of a theorists:

- Some proofs of this depending on definition of "local".
- Formally, just think of these as conjectures.

Definition

A function is symmetric if invariant under any permutation of its inputs.

Definition

A function is symmetric if invariant under any permutation of its inputs.

Examples:

$$\begin{split} \mathsf{OR}_2 &= [0,1,1]\\ \mathsf{AND}_3 &= [0,0,0,1]\\ \mathsf{EVEN}\text{-}\mathsf{PARITY}_4 &= [1,0,1,0,1]\\ \mathsf{MAJORITY}_5 &= [0,0,0,1,1,1]\\ (=_6) &= \mathsf{EQUALITY}_6 = [1,0,0,0,0,0,0,1] \end{split}$$

Constraint Graph for $\#CSP(\mathcal{F})$ Instance

$\mathcal{F} = \{\mathsf{EVEN}\text{-}\mathsf{PARITY}_3, \mathsf{MAJORITY}_3, \mathsf{OR}_3\}$

 EVEN - $\mathsf{PARITY}_3(x, y, z) \land \mathsf{MAJORITY}_3(x, y, z) \land \mathsf{OR}_3(x, y, z)$

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_3(x, y, z)$

 EVEN - $\mathsf{PARITY}_3(x, y, z) \land \mathsf{MAJORITY}_3(x, y, z) \land \mathsf{OR}_3(x, y, z)$

NOT planar, so **NOT** an instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₃})

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_3(x, y, z)$

NOT planar, so **NOT** an instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₃})

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_2(x, y)$

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_2(x, y)$

VALID instance of PI-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₂})

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then $\#CSP(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then $\#CSP(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia '12)

Let \mathcal{F} be any set of complex-valued constraints. Then $\#CSP(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Theorem (Cai, Lu, Xia '09)

Let \mathcal{F} be any set of complex-valued constraints in Boolean variables. Then $\#CSP(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia '12)

Let \mathcal{F} be any set of complex-valued constraints. Then $\#CSP(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Theorem (Guo, W '13)

Let \mathcal{F} be any set of symmetric, complex-valued constraints in Boolean variables.

Then $\text{Pl-}\#\text{CSP}(\mathcal{F})$ is either #P-hard or computable in polynomial time.

Partition Function

 $\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

- Partition Function
 - Assignments to vertices
 - Functions on edges

 $\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

- Partition Function
 - Assignments to vertices
 - Functions on edges

- Holant Function
 - Assignment to edges
 - Functions on vertices

 $\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

- Partition Function
 - Assignments to vertices
 - Functions on edges

 $\sum \prod f(\sigma(u), \sigma(v))$

- Assignment to edges
- Functions on vertices

 $\sum \quad \prod g_{v} \left(\sigma \mid_{E(v)} \right)$ $\sigma: E \rightarrow \{0,1\} v \in V$

 $\sigma: V \rightarrow \{0,1\} (u,v) \in E$

Definition of Holant Function

Holant({*f*} | {=₃}) is a counting problem defined over (2,3)-regular bipartite graphs.

- Holant Function
 - Assignment to edges
 - Functions on vertices

Definition of Holant Function

- Holant({*f*} | {=₃}) is a counting problem defined over (2,3)-regular bipartite graphs.
- Degree 2 vertices take *f*.
- Degree 3 vertices take $=_3$.

- Holant Function
 - Assignment to edges
 - Functions on vertices

• Holant($\{OR_2\} \mid \{=_3\}$) is #VERTEXCOVER on 3-regular graphs.

- Holant($\{OR_2\} | \{=_3\}$) is #VERTEXCOVER on 3-regular graphs.
- Holant({NAND₂} | {=₃}) is #INDEPENDENTSET on 3-regular graphs.

- Holant($\{OR_2\} | \{=_3\}$) is #VERTEXCOVER on 3-regular graphs.
- Holant({NAND₂} | {=₃}) is #INDEPENDENTSET on 3-regular graphs.

• Holant(
$$\{=_2\} | \{AT-MOST-ONE\}$$
)
Holant(AT-MOST-ONE) $\}$ is #MATCHING.

- Holant($\{OR_2\} | \{=_3\}$) is #VERTEXCOVER on 3-regular graphs.
- Holant({NAND₂} | {=₃}) is #INDEPENDENTSET on 3-regular graphs.

• Holant(
$$\{=_2\} | \{AT-MOST-ONE\}$$
)
Holant(AT-MOST-ONE) $\}$ is #MATCHING.

 Holant({=₂} | {EXACTLY-ONE}) Holant(EXACTLY-ONE)
 is #PERFECTMATCHING.

Theorem (Cai, Guo, W '13)

Let \mathcal{F} be any set of symmetric, complex-valued constraints in Boolean variables.

Then $Holant(\mathcal{F})$ is either #P-hard or computable in polynomial time.

A Proof Technique: Polynomial Interpolation

• 2 (distinct) points defines a (unique) line

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (x_i, y_i) , there is a unique polynomial $p(\cdot)$ of degree at most n such that $p(x_i) = y_i$.

- 2 (distinct) points defines a (unique) line
- 3 (distinct) points defines a (unique) quadratic (actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (x_i, y_i) , there is a unique polynomial $p(\cdot)$ of degree at most n such that $p(x_i) = y_i$.

Furthermore, the coefficients of p can be computed in polynomial time.

• Given a graph G with n vertices.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

• Let m_k be the number of matchings that omit k vertices.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

- Let m_k be the number of matchings that omit k vertices.
- Let G_{ℓ} be the graph G after adding, for each vertex v, ℓ vertices incident only to v.

#PerfectMatching \leq_T **#Matching** [Valiant '79]

- Given a graph G with n vertices.
- Assume we can compute the number of matchings in any graph.
- Goal is to compute the number of perfect matchings in G.

- Let m_k be the number of matchings that omit k vertices.
- Let G_{ℓ} be the graph G after adding, for each vertex v, ℓ vertices incident only to v.

#MATCHING
$$(G_{\ell}) = \sum_{k=0}^{n} m_k (\ell+1)^k.$$

Thank You