
The Complexity of Counting Problems

Tyson Williams
(University of Wisconsin-Madison)

Joint with:
Jin-Yi Cai and Heng Guo

(University of Wisconsin-Madison)

Michael Kowalczyk
(Northern Michigan University)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 1 / 32

Complexity Theory Review

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 2 / 32

In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ x ∨ y ∨ z)

Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Theorem (Cook ’71, Levin ’73)

SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 3 / 32

In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ x ∨ y ∨ z)

Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Theorem (Cook ’71, Levin ’73)

SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 3 / 32

In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ x ∨ y ∨ z)

Example output: Yes

Satisfying assignment:

w = x = True y = z = False

Theorem (Cook ’71, Levin ’73)

SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 3 / 32

In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ x ∨ y ∨ z)

Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Theorem (Cook ’71, Levin ’73)

SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 3 / 32

In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ x ∨ y ∨ z)

Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Theorem (Cook ’71, Levin ’73)

SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 3 / 32

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y) ∧ (w ∨ x ∨ y)

Example output: No

Theorem

3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 4 / 32

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y) ∧ (w ∨ x ∨ y)

Example output: No

Theorem

3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 4 / 32

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y) ∧ (w ∨ x ∨ y)

Example output: No

Theorem

3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 4 / 32

And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y) ∧ (w ∨ x ∨ y)

Example output: No

Theorem

3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 4 / 32

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-in-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.

Output: “Yes” if each clause has exactly 1 true literal
“No” otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.

Output: “Yes” if the literals in each clause are not all equal
“No” otherwise.

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

Theorem

1-in-3SAT,NAE-3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 5 / 32

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-in-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if each clause has exactly 1 true literal

“No” otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.

Output: “Yes” if the literals in each clause are not all equal
“No” otherwise.

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

Theorem

1-in-3SAT,NAE-3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 5 / 32

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-in-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if each clause has exactly 1 true literal

“No” otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if the literals in each clause are not all equal

“No” otherwise.

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

Theorem

1-in-3SAT,NAE-3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 5 / 32

And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-in-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if each clause has exactly 1 true literal

“No” otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has exactly 3 literals.
Output: “Yes” if the literals in each clause are not all equal

“No” otherwise.

(w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

Theorem

1-in-3SAT,NAE-3SAT ∈ NP-Complete.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 5 / 32

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

Mon-3SAT?

Mon-1-in-3SAT?

Mon-NAE-3SAT?

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 6 / 32

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

Mon-3SAT?

Mon-1-in-3SAT?

Mon-NAE-3SAT?

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 6 / 32

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

Mon-3SAT?

Mon-1-in-3SAT ∈ NP-Complete

Mon-NAE-3SAT ∈ NP-Complete

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 6 / 32

Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...

Mon-3SAT ∈ P

Mon-1-in-3SAT ∈ NP-Complete

Mon-NAE-3SAT ∈ NP-Complete

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 6 / 32

What else is tractable?

Problem: Horn-SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has at most 1 positive literal.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y)

Theorem

Horn-SAT ∈ P.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 7 / 32

What else is tractable?

Problem: Horn-SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has at most 1 positive literal.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y)

Theorem

Horn-SAT ∈ P.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 7 / 32

What else is tractable?

Problem: Horn-SAT
Input: A Boolean formula (in conjunctive normal form)

such that each clause has at most 1 positive literal.
Output: “Yes” if there is a satisfying assignment

“No” otherwise.

Example input:

(w ∨ y ∨ z) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y)

Theorem

Horn-SAT ∈ P.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 7 / 32

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints F is denoted by CSP(F).

Examples:
SAT has F = {ORk | k ∈ N} ∪ {NOT2}

3SAT has F = {OR3,NOT2}
1-in-3SAT has F = {EXACTLY-ONE3,NOT2}

NAE-3SAT has F = {NOT-All-EQUAL3,NOT2}

Mon-3SAT has F = {OR3}
Mon-1-in-3SAT has F = {EXACTLY-ONE3}

Mon-NAE-3SAT has F = {NOT-All-EQUAL3}

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 8 / 32

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints F is denoted by CSP(F).

Examples:
SAT has F = {ORk | k ∈ N} ∪ {NOT2}

3SAT has F = {OR3,NOT2}
1-in-3SAT has F = {EXACTLY-ONE3,NOT2}

NAE-3SAT has F = {NOT-All-EQUAL3,NOT2}

Mon-3SAT has F = {OR3}
Mon-1-in-3SAT has F = {EXACTLY-ONE3}

Mon-NAE-3SAT has F = {NOT-All-EQUAL3}

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 8 / 32

Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints F is denoted by CSP(F).

Examples:
SAT has F = {ORk | k ∈ N} ∪ {NOT2}

3SAT has F = {OR3,NOT2}
1-in-3SAT has F = {EXACTLY-ONE3,NOT2}

NAE-3SAT has F = {NOT-All-EQUAL3,NOT2}

Mon-3SAT has F = {OR3}
Mon-1-in-3SAT has F = {EXACTLY-ONE3}

Mon-NAE-3SAT has F = {NOT-All-EQUAL3}

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 8 / 32

One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F ,
the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

1 that are not constantly false are true when all its arguments are true;

2 that are not constantly false are true when all its arguments are false;

3 are equivalent to a conjunction of binary clauses;

4 are equivalent to a conjunction of Horn clauses;

5 are equivalent to a conjunction of dual-Horn clauses;

6 are equivalent to a conjunction of affine formula.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 9 / 32

One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F ,
the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

1 that are not constantly false are true when all its arguments are true;

2 that are not constantly false are true when all its arguments are false;

3 are equivalent to a conjunction of binary clauses;

4 are equivalent to a conjunction of Horn clauses;

5 are equivalent to a conjunction of dual-Horn clauses;

6 are equivalent to a conjunction of affine formula.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 9 / 32

One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F ,
the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

1 that are not constantly false are true when all its arguments are true;

2 that are not constantly false are true when all its arguments are false;

3 are equivalent to a conjunction of binary clauses;

4 are equivalent to a conjunction of Horn clauses;

5 are equivalent to a conjunction of dual-Horn clauses;

6 are equivalent to a conjunction of affine formula.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 9 / 32

One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F ,
the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

1 that are not constantly false are true when all its arguments are true;

2 that are not constantly false are true when all its arguments are false;

3 are equivalent to a conjunction of binary clauses;

4 are equivalent to a conjunction of Horn clauses;

5 are equivalent to a conjunction of dual-Horn clauses;

6 are equivalent to a conjunction of affine formula.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 9 / 32

One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F ,
the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

1 that are not constantly false are true when all its arguments are true;

2 that are not constantly false are true when all its arguments are false;

3 are equivalent to a conjunction of binary clauses;

4 are equivalent to a conjunction of Horn clauses;

5 are equivalent to a conjunction of dual-Horn clauses;

6 are equivalent to a conjunction of affine formula.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 9 / 32

Three takeaways from Schaefer’s dichotomy theorem

Theorist: describes the line between easy problems and hard problems

Practitioner (i.e. employee of Google): a complexity dictionary

Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P 6= NP, then there exists problems in NP of intermediate complexity.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 10 / 32

Three takeaways from Schaefer’s dichotomy theorem

Theorist: describes the line between easy problems and hard problems

Practitioner (i.e. employee of Google): a complexity dictionary

Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P 6= NP, then there exists problems in NP of intermediate complexity.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 10 / 32

Three takeaways from Schaefer’s dichotomy theorem

Theorist: describes the line between easy problems and hard problems

Practitioner (i.e. employee of Google): a complexity dictionary

Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P 6= NP, then there exists problems in NP of intermediate complexity.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 10 / 32

Three takeaways from Schaefer’s dichotomy theorem

Theorist: describes the line between easy problems and hard problems

Practitioner (i.e. employee of Google): a complexity dictionary

Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P 6= NP, then there exists problems in NP of intermediate complexity.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 10 / 32

Three takeaways from Schaefer’s dichotomy theorem

Theorist: describes the line between easy problems and hard problems

Practitioner (i.e. employee of Google): a complexity dictionary

Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P 6= NP, then there exists problems in NP of intermediate complexity.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 10 / 32

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 11 / 32

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 11 / 32

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

A Motivation for Counting

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 12 / 32

Independent Set

Want large independent set.

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 13 / 32

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

Independent Set

Want large independent set.

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 13 / 32

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg

The Facts

Problem: IndependentSet
Input: A graph G and k ∈ N.
Output: “Yes” if G contains an independent set of size at least k

“No” otherwise.

IndependentSet ∈ NP-Complete

Next question: how close to optimal can we get?

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 14 / 32

The Facts

Problem: IndependentSet
Input: A graph G and k ∈ N.
Output: “Yes” if G contains an independent set of size at least k

“No” otherwise.

IndependentSet ∈ NP-Complete

Next question: how close to optimal can we get?

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 14 / 32

The Facts

Problem: IndependentSet
Input: A graph G and k ∈ N.
Output: “Yes” if G contains an independent set of size at least k

“No” otherwise.

IndependentSet ∈ NP-Complete

Next question: how close to optimal can we get?

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 14 / 32

A Different Approach

Let I(G) be the set of independent sets in G .

Want to randomly sample I from I(G) such that

Pr(I) ∝ w(I).

Then must have

Pr(I) =
w(I)

Z (G)
,

where
Z (G) =

∑
I∈I(G)

w(I).

Know as the partition function in statistical physics.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 15 / 32

A Different Approach

Let I(G) be the set of independent sets in G .

Want to randomly sample I from I(G) such that

Pr(I) ∝ w(I).

Then must have

Pr(I) =
w(I)

Z (G)
,

where
Z (G) =

∑
I∈I(G)

w(I).

Know as the partition function in statistical physics.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 15 / 32

A Different Approach

Let I(G) be the set of independent sets in G .

Want to randomly sample I from I(G) such that

Pr(I) ∝ w(I).

Then must have

Pr(I) =
w(I)

Z (G)
,

where
Z (G) =

∑
I∈I(G)

w(I).

Know as the partition function in statistical physics.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 15 / 32

A Different Approach

Let I(G) be the set of independent sets in G .

Want to randomly sample I from I(G) such that

Pr(I) ∝ w(I).

Then must have

Pr(I) =
w(I)

Z (G)
,

where
Z (G) =

∑
I∈I(G)

w(I).

Know as the partition function in statistical physics.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 15 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Weight functions

Pr(I) =
w(I)

Z (G)
where Z (G) =

∑
I∈I(G)

w(I).

If w(I) = 1, then Z (G) = |I(G)| is the number of independent sets.

Statistical physicists considered w(I) = λ|I | from some nonnegative λ ∈ R.

If λ = 1, then Z (G) = |I(G)| again.

If λ = 0, then Z (G) = 1.

Theorem (Sly,Sun ’12)

For d ≥ 3 and λ > λc(d) = (d−1)d−1

(d−2)d , unless NP = RP there is no

approximation algorithm for the partition function with w(I) = λ|I |

on d-regular graphs.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 16 / 32

Local Constraints

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 17 / 32

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

X X

X X

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 18 / 32

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

X

X

X X

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 18 / 32

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

X X

X X

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 18 / 32

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

X X

X X

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 18 / 32

Systematic Approach to #VertexCover

G = (V ,E)

0

1

1 10

OR

OR OR

OR OR

OR

∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

0

1

1 10

OR

OR OR

OR OR

OR

∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

σ : V → {0, 1}
0

1

1 1

0

OR

OR OR

OR OR

OR

∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

σ : V → {0, 1}
0

1

1 1

0

OR

OR OR

OR OR

OR∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

σ : V → {0, 1}
0

1

1 1

0

OR

OR OR

OR OR

OR∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

σ : V → {0, 1}
0

1

1

1

0

OR

OR OR

OR OR

OR∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 0 · 1 · 1 · 1 = 0

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Systematic Approach to #VertexCover

G = (V ,E)

σ : V → {0, 1}

0

1

1 10

OR

OR OR

OR OR

OR

#VertexCover(G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

OR(σ(u), σ(v))

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 19 / 32

Generalize

Z (G) =

∑
σ:V→{0,1}

∏
(u,v)∈E

OR (σ(u), σ(v))

Input Output
p q OR(p, q)

0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f (p, q)

0 0 w

0 1 x

1 0 y

1 1 z

where w , x , y , z ∈ C

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 20 / 32

Generalize

Z (G) =

∑
σ:V→{0,1}

∏
(u,v)∈E

OR (σ(u), σ(v))

Input Output
p q OR(p, q)

0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f (p, q)

0 0 w

0 1 x

1 0 y

1 1 z

where w , x , y , z ∈ C

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 20 / 32

Generalize

Z (G) =

∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Input Output
p q OR(p, q)

0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f (p, q)

0 0 w

0 1 x

1 0 y

1 1 z

where w , x , y , z ∈ C

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 20 / 32

Generalize

Partition Function: Z (·)

Z (G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Input Output
p q OR(p, q)

0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f (p, q)

0 0 w

0 1 x

1 0 y

1 1 z

where w , x , y , z ∈ C

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 20 / 32

A Counting Dichotomy

Theorem (Cai, Kowalczyk, W ’12)

Over 3-regular graphs G , the exact counting problem for any (binary)
complex-weighted function f

Z (G) =
∑

σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

is either computable in polynomial time or #P-hard.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 21 / 32

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G .
Output: “Yes” if G contains an Hamiltonian cycle

“No” otherwise.

Problem: Connected
Input: A graph G .
Output: “Yes” if G is connected

“No” otherwise.

Confessions of a theorists:

Some proofs of this depending on definition of “local”.

Formally, just think of these as conjectures.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 22 / 32

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G .
Output: “Yes” if G contains an Hamiltonian cycle

“No” otherwise.

Problem: Connected
Input: A graph G .
Output: “Yes” if G is connected

“No” otherwise.

Confessions of a theorists:

Some proofs of this depending on definition of “local”.

Formally, just think of these as conjectures.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 22 / 32

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G .
Output: “Yes” if G contains an Hamiltonian cycle

“No” otherwise.

Problem: Connected
Input: A graph G .
Output: “Yes” if G is connected

“No” otherwise.

Confessions of a theorists:

Some proofs of this depending on definition of “local”.

Formally, just think of these as conjectures.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 22 / 32

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G .
Output: “Yes” if G contains an Hamiltonian cycle

“No” otherwise.

Problem: Connected
Input: A graph G .
Output: “Yes” if G is connected

“No” otherwise.

Confessions of a theorists:

Some proofs of this depending on definition of “local”.

Formally, just think of these as conjectures.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 22 / 32

Nonlocal Examples

Problem: HamiltonianCycle
Input: A graph G .
Output: “Yes” if G contains an Hamiltonian cycle

“No” otherwise.

Problem: Connected
Input: A graph G .
Output: “Yes” if G is connected

“No” otherwise.

Confessions of a theorists:

Some proofs of this depending on definition of “local”.

Formally, just think of these as conjectures.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 22 / 32

Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.

Examples:

OR2 = [0, 1, 1]

AND3 = [0, 0, 0, 1]

EVEN-PARITY4 = [1, 0, 1, 0, 1]

MAJORITY5 = [0, 0, 0, 1, 1, 1]

(=6) = EQUALITY6 = [1, 0, 0, 0, 0, 0, 1]

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 23 / 32

Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.

Examples:

OR2 = [0, 1, 1]

AND3 = [0, 0, 0, 1]

EVEN-PARITY4 = [1, 0, 1, 0, 1]

MAJORITY5 = [0, 0, 0, 1, 1, 1]

(=6) = EQUALITY6 = [1, 0, 0, 0, 0, 0, 1]

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 23 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR3}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR3(x , y , z)

x

y

z

EVEN-PARITY3

MAJORITY3

OR3

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})
VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR3}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR3(x , y , z)

x

y

z

EVEN-PARITY3

MAJORITY3

OR3

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})
VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR3}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR3(x , y , z)

x

y

z

EVEN-PARITY3

MAJORITY3

OR3

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})
VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR3}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR3(x , y , z)

x

y

z

EVEN-PARITY3

MAJORITY3

OR3

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})

VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR3}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR3(x , y , z)

x

y

z

EVEN-PARITY3

MAJORITY3

OR3

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})

VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR2}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR2(x , y), z

x

y

z

EVEN-PARITY3

MAJORITY3

OR2

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})
VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3,MAJORITY3,OR2}

EVEN-PARITY3(x , y , z) ∧MAJORITY3(x , y , z) ∧ OR2(x , y), z

x

y

z

EVEN-PARITY3

MAJORITY3

OR2

x

OR2

y

EVEN-PARITY3

z

MAJORITY3

NOT planar, so NOT an instance of
Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR3})

VALID instance of Pl-#CSP({EVEN-PARITY3,MAJORITY3,OR2})
Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32

More Counting Dichotomies

Theorem (Cai, Lu, Xia ’09)

Let F be any set of complex-valued constraints in Boolean variables.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia ’12)

Let F be any set of complex-valued constraints.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Guo, W ’13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.
Then Pl-#CSP(F) is either #P-hard or computable in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 25 / 32

More Counting Dichotomies

Theorem (Cai, Lu, Xia ’09)

Let F be any set of complex-valued constraints in Boolean variables.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia ’12)

Let F be any set of complex-valued constraints.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Guo, W ’13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.
Then Pl-#CSP(F) is either #P-hard or computable in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 25 / 32

More Counting Dichotomies

Theorem (Cai, Lu, Xia ’09)

Let F be any set of complex-valued constraints in Boolean variables.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia ’12)

Let F be any set of complex-valued constraints.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Guo, W ’13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.
Then Pl-#CSP(F) is either #P-hard or computable in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 25 / 32

Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Definition of Holant Function

Partition Function

Assignments to vertices
Functions on edges

f

f f

f f

f∑
σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Definition of Holant Function

Holant({f } | {=3}) is a
counting problem defined
over (2,3)-regular bipartite
graphs.

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)
Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Definition of Holant Function

Holant({f } | {=3}) is a
counting problem defined
over (2,3)-regular bipartite
graphs.

Degree 2 vertices take f .

Degree 3 vertices take =3.

Holant Function

Assignment to edges
Functions on vertices

=3

=3

=3 =3

f

f f

f f

f∑
σ:E→{0,1}

∏
v∈V

gv
(
σ |E(v)

)
Tyson Williams (UW-M) Counting Complexity Google Madison 2013 26 / 32

Example Holant Problems

Holant({OR2} | {=3}) is #VertexCover on 3-regular graphs.

Holant({NAND2} | {=3}) is #IndependentSet on 3-regular
graphs.

Holant({=2} | {AT-MOST-ONE})
Holant(AT-MOST-ONE)

}
is #Matching.

Holant({=2} | {EXACTLY-ONE})
Holant(EXACTLY-ONE)

}
is #PerfectMatching.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 27 / 32

Example Holant Problems

Holant({OR2} | {=3}) is #VertexCover on 3-regular graphs.

Holant({NAND2} | {=3}) is #IndependentSet on 3-regular
graphs.

Holant({=2} | {AT-MOST-ONE})
Holant(AT-MOST-ONE)

}
is #Matching.

Holant({=2} | {EXACTLY-ONE})
Holant(EXACTLY-ONE)

}
is #PerfectMatching.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 27 / 32

Example Holant Problems

Holant({OR2} | {=3}) is #VertexCover on 3-regular graphs.

Holant({NAND2} | {=3}) is #IndependentSet on 3-regular
graphs.

Holant({=2} | {AT-MOST-ONE})
Holant(AT-MOST-ONE)

}
is #Matching.

Holant({=2} | {EXACTLY-ONE})
Holant(EXACTLY-ONE)

}
is #PerfectMatching.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 27 / 32

Example Holant Problems

Holant({OR2} | {=3}) is #VertexCover on 3-regular graphs.

Holant({NAND2} | {=3}) is #IndependentSet on 3-regular
graphs.

Holant({=2} | {AT-MOST-ONE})
Holant(AT-MOST-ONE)

}
is #Matching.

Holant({=2} | {EXACTLY-ONE})
Holant(EXACTLY-ONE)

}
is #PerfectMatching.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 27 / 32

Final Dichotomy

Theorem (Cai, Guo, W ’13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.
Then Holant(F) is either #P-hard or computable in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 28 / 32

A Proof Technique:
Polynomial Interpolation

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 29 / 32

Polynomial Interpolation

2 (distinct) points defines a (unique) line

3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (xi , yi), there is a unique polynomial p(·) of
degree at most n such that p(xi) = yi .

Furthermore, the coefficients of p can be computed in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 30 / 32

Polynomial Interpolation

2 (distinct) points defines a (unique) line

3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (xi , yi), there is a unique polynomial p(·) of
degree at most n such that p(xi) = yi .

Furthermore, the coefficients of p can be computed in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 30 / 32

Polynomial Interpolation

2 (distinct) points defines a (unique) line

3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (xi , yi), there is a unique polynomial p(·) of
degree at most n such that p(xi) = yi .

Furthermore, the coefficients of p can be computed in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 30 / 32

Polynomial Interpolation

2 (distinct) points defines a (unique) line

3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Lemma

Given n + 1 distinct points (xi , yi), there is a unique polynomial p(·) of
degree at most n such that p(xi) = yi .

Furthermore, the coefficients of p can be computed in polynomial time.

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 30 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

#PerfectMatching ≤T #Matching [Valiant ’79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.

Goal is to compute the number of perfect matchings in G .

Let mk be the number of matchings that omit k vertices.

Let G ` be the graph G after adding, for each vertex v , ` vertices
incident only to v .

#Matching(G `) =
n∑

k=0

mk(`+ 1)k .

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31 / 32

Thank You

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 32 / 32

