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In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Tyson Williams (UW-M)

Counting Complexity

Google Madison 2013 3/32

/



In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:

(WVXVFVZ)A(XVY)ARVYVZ)A(WVXVYVZ)

Tyson Williams (UW-M)

Counting Complexity

Google Madison 2013 3/



In the beginning, there was SAT

Problem: SAT

Input: A Boolean formula (in conjunctive normal form).
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:

(WVXVFVZ)A(XVY)ARVYVZ)A(WVXVYVZ)

Example output: Yes

Tyson Williams (UW-M)

Counting Complexity

Google Madison 2013 3/
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Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Tyson Williams (UW-M)

Counting Complexity Google Madison 2013 3/



In the beginning, there was SAT

Problem: SAT
Input: A Boolean formula (in conjunctive normal form).
Output: “Yes' if there is a satisfying assignment

“No" otherwise.

Example input:
(WVXVYVZ)A(XVY)ARVYVZ)A(WVXVYVZ)

Example output: Yes
Satisfying assignment:

w = x = True y = z = False

Theorem (Cook '71, Levin '73)
SAT € NP-Complete.
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And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.
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And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:
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And SAT begat 3SAT

Problem: 3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:

(WVxVZ)ANXVyVZ)AWVYVZ)A(WVXVZ)A(XxVYVZ)
AWVYyVZ)A(WVXVy)A(WVEVY)

Example output: No

3SAT € NP-Complete. \
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And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.

(WVxVZ)ANXVyVZ)AWVYVZ)A(WVXVZ)A(XxVYVZ)
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And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if each clause has exactly 1 true literal
“No" otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
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And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if each clause has exactly 1 true literal
“No" otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes’ if the literals in each clause are not all equal
“No" otherwise.
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And 3SAT begat 1-in-3SAT and NAE-3SAT

Problem: 1-IN-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes' if each clause has exactly 1 true literal
“No" otherwise.

Problem: NAE-3SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has exactly 3 literals.
Output: “Yes’ if the literals in each clause are not all equal
“No" otherwise.

(WVxVZ)ANXVyVZ)AWVYVZ)A(WVXVZ)A(XxVYVZ)

1-IN-3SAT, NAE-3SAT € NP-Complete. \
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Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.
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Then came the monotone versions

Definition

A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...
o MON-3SAT?
@ MON-1-IN-3SAT?
o MON-NAE-3SAT?
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Then came the monotone versions

Definition
A Boolean formula is monotone if the formula contains no negations.

What is the complexity of...
e MON-3SAT € P
@ MON-1-IN-3SAT € NP-Complete
o MON-NAE-3SAT € NP-Complete

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 6/



What else is tractable?

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has at most 1 positive literal.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.
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What else is tractable?

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has at most 1 positive literal.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:

(WVYVZIA(WVRVZ)A(XVYVE)A(WVYVI)A(WVRVY)
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What else is tractable?

Problem: HORN-SAT
Input: A Boolean formula (in conjunctive normal form)
such that each clause has at most 1 positive literal.
Output: “Yes' if there is a satisfying assignment
“No" otherwise.

Example input:

(WVYVZIA(WVRVZ)A(XVYVE)A(WVYVI)A(WVRVY)

HoORN-SAT € P.
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Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).
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The CSP defined by a set of constraints F is denoted by CSP(F).
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Constraint Satisfaction Problems

These types of problems called Constraint Satisfaction Problems (CSPs).

Definition

The CSP defined by a set of constraints F is denoted by CSP(F).

Examples:
SAT

3SAT
1-IN-3SAT
NAE-3SAT

MON-3SAT
MON-1-IN-3SAT
MoN-NAE-3SAT

Tyson Williams (UW-M)

has
has
has
has

has
has
has

F = {ORk | k € N} U {NOT2}
F = {ORs3,NOT,}

F = {EXACTLY-ONE3,NOT>,}
F = {NOT-AII-EQUAL3,NOT,}

F = {ORs}
F = {EXACTLY-ONE;}
F = {NOT-AI-EQUAL3}
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One theorem to rule them all
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One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F,

the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:
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One theorem to rule them all

Theorem (Schaefer’s dichotomy theorem ’78)

For any set of constraint functions F,

the problem CSP(F) is NP-Complete
unless one of the following conditions holds,
in which case the problem is in P:

All constraints in F ...

that are not constantly false are true when all its arguments are true;
that are not constantly false are true when all its arguments are false;
are equivalent to a conjunction of binary clauses;

are equivalent to a conjunction of Horn clauses;

are equivalent to a conjunction of dual-Horn clauses;

000000

are equivalent to a conjunction of affine formula.
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Three takeaways from Schaefer’s dichotomy theorem
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Three takeaways from Schaefer’s dichotomy theorem

@ Theorist: describes the line between easy problems and hard problems
@ Practitioner (i.e. employee of Go gle): a complexity dictionary

@ Observation: no problems of intermediate complexity

Theorem (Ladner’s theorem ’75)

If P # NP, then there exists problems in NP of intermediate complexity.
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NP-Hard

NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

P = NP
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NP-Hard

NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

P = NP

http://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
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A Motivation for Counting
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Independent Set

Want large independent set.
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Independent Set

Want large independent set.

http://commons.wikimedia.org/wiki/File:Independent_set_graph.svg
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Problem: INDEPENDENTSET

Input: A graph G and k € N.

Output: "Yes' if G contains an independent set of size at least k
“No" otherwise.
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Problem: INDEPENDENTSET

Input: A graph G and k € N.

Output: "Yes' if G contains an independent set of size at least k
“No" otherwise.

INDEPENDENTSET € NP-Complete

Next question: how close to optimal can we get?
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A Different Approach

Let Z(G) be the set of independent sets in G.
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A Different Approach

Let Z(G) be the set of independent sets in G.

Want to randomly sample / from Z(G) such that

Pr(/) oc w(l).
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A Different Approach

Let Z(G) be the set of independent sets in G.

Want to randomly sample / from Z(G) such that

Pr(/) oc w(l).

Then must have

Pr(l) = 38
where
Z(G)= Y w(l).
1€Z(G)

Know as the partition function in statistical physics.
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Weight functions
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Weight functions

Pr(/) = 7(6) where  Z(G) = Z w(/).
1€Z(G)

If w(/) =1, then Z(G) = |Z(G)| is the number of independent sets.
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Weight functions

Pr(/) = 7(6) where  Z(G) = Z w(/).
1€Z(G)

If w(/) =1, then Z(G) = |Z(G)| is the number of independent sets.

Statistical physicists considered w(/) = Al from some nonnegative X € R.

o If A\ =1, then Z(G) = |Z(G)| again.
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Weight functions

Pr(/) = 7(6) where  Z(G) = Z w(/).
1€Z(G)

If w(/) =1, then Z(G) = |Z(G)| is the number of independent sets.

Statistical physicists considered w(/) = Al from some nonnegative X € R.

o If A\ =1, then Z(G) = |Z(G)| again.
e If A\=0, then Z(G) = 1.
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Weight functions

Pr(l) = 76 where  Z(G) = Z w(l).
1€Z(G)

If w(/) =1, then Z(G) = |Z(G)| is the number of independent sets.

Statistical physicists considered w(/) = Al from some nonnegative X € R.

o If A\ =1, then Z(G) = |Z(G)| again.
e If A\=0, then Z(G) = 1.

Theorem (Sly,Sun ’12)

Ford >3 and \ > Ac(d) = “ZH, unless NP = RP there is no

approximation algorithm for the partition function with w(l) = Al
on d-regular graphs.
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Local Constraints
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#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.
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#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

oo o o

o— O 0@
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Systematic Approach to #VertexCover

A

e G=(V,E)
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Systematic Approach to #VertexCover

e G=(V,E)
eoc:V—{0,1}

II OR(e(v),o(v))=1-1-1-1-1-1=1
(u,v)EE
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Systematic Approach to #VertexCover

e G=(V,E)
eoc:V—{0,1}

II OR(e(v),0(v))=1-1-0-1-1-1=0
(u,v)EE
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Systematic Approach to #VertexCover

o G=(V,E)

el T
/‘\

#VERTEXCOVER(G) = Y [ OR(o(u),0o(v))

o0:V—{0,1} (u,v)€E
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Generalize

> Il Or(s(u).a(v)

o:V—{0,1} (u,v)€EE
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Generalize

> Il Or(s(u).a(v)

o:V—{0,1} (u,v)€EE

Input | Output
p| q | OR(p,q)

0|0 0
0]1 1
1|0 1
1)1 1
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Generalize

> Il fo(w).o(v)

o:V—{0,1} (u,v)€EE

Input | Output Input | Output
p| q | OR(p,q) plaql flpa)
00 0 0|0 w
0|1 1 01 X
110 1 110 y
111 1 1|1 z

where w,x,y,z € C
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Generalize

Partition Function: Z(-)

z(c)=" > ]I flo(u),a(v)

0:V—{0,1} (u,v)EE

Input | Output Input | Output
p| q | OR(p,q) plaql flpag)
00 0 0|0 w
0|1 1 0|1 X
110 1 10 y
111 1 1|1 z

where w,x,y,z € C
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A Counting Dichotomy

Theorem (Cai, Kowalczyk, W '12)

Over 3-regular graphs G, the exact counting problem for any (binary)
complex-weighted function f

z(c)= > ]I flo(u),a(v)

0:V—{0,1} (u,v)€E

is either computable in polynomial time or #P-hard.

Tyson Williams (UW-M)
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Nonlocal Examples

Problem: HAMILTONIANCYCLE
Input: A graph G.

Output: “Yes' if G contains an Hamiltonian cycle
“No" otherwise.
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Output: “Yes' if G contains an Hamiltonian cycle
“No" otherwise.
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Input: A graph G.

Output: “Yes' if G is connected
“No" otherwise.
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Nonlocal Examples

Problem: HAMILTONIANCYCLE

Input: A graph G.

Output: “Yes' if G contains an Hamiltonian cycle
“No" otherwise.

Problem: CONNECTED

Input: A graph G.

Output: “Yes' if G is connected
“No" otherwise.

Confessions of a theorists:
@ Some proofs of this depending on definition of “local”.

@ Formally, just think of these as conjectures.
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Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.
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Symmetric Function

Definition

A function is symmetric if invariant under any permutation of its inputs.

Examples:

OR, = [0,1, 1]
AND; = [0,0,0, 1]
EVEN-PARITY, = [1,0,1,0,1]
MAJORITYs = [0,0,0,1,1,1]
(=¢) = EQUALITYg = [1,0,0,0,0,0, 1]
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Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,OR3}
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Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,OR3}

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y,z) A OR3(x, y, 2)

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 24 / 32



Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,OR3}

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y,z) A OR3(x, y, 2)

X EVEN-PARITY3
y MAJORITY
z OR;3
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Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,OR3}

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y,z) A OR3(x, y, 2)

X EVEN-PARITY3
y MAJORITY
z OR;3

NOT planar, so NOT an instance of
PI-#CSP({EVEN-PARITY3, MAJORITY3,0R3})
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z OR;3
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Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,0R>}

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y,z) A ORa(x, y)

X EVEN-PARITY3
y MAJORITY3
z OR,
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Constraint Graph for #CSP(F) Instance

F = {EVEN-PARITY3, MAJORITY3,0Rz}

EVEN-PARITY3(x, y,z) A MAJORITY3(x,y, z) A ORz(x, y)

(x,y,2)
X EVEN-PARITY;  x EVEN-PARITY;
y MAJORITY; ®:
z OR; MAJORITY;

VALID instance of PI-#CSP({EVEN-PARITY3, MAJORITY3,0R>})
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More Counting Dichotomies

Theorem (Cai, Lu, Xia ’09)

Let F be any set of complex-valued constraints in Boolean variables.
Then #CSP(F) is either #P-hard or computable in polynomial time.
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More Counting Dichotomies

Theorem (Cai, Lu, Xia ’09)

Let F be any set of complex-valued constraints in Boolean variables.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Cai, Xia '12)

Let F be any set of complex-valued constraints.
Then #CSP(F) is either #P-hard or computable in polynomial time.

Theorem (Guo, W ’'13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.

Then PI-#CSP(F) is either #P-hard or computable in polynomial time.
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Definition of Holant Function

@ Partition Function

> Il fle.av)

0:V—{0,1} (u,v)€EE
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Definition of Holant Function

@ Partition Function @ Holant Function
o Assignments to vertices e Assignment to edges
o Functions on edges o Functions on vertices

:\
@ o0
S I fetw),ev) Yo Ile @ lew)

o:V—{0,1} (u,v)EE 0:E—~{0,1} veV
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Definition of Holant Function

e Holant({f} | {=3}) isa @ Holant Function
counting problem defined o Assignment to edges
over (2,3)-regular bipartite o Functions on vertices
graphs.

> Ile(@lew)

o:E—{0,1} veV
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Definition of Holant Function

e Holant({f} | {=3}) isa @ Holant Function
counting problem defined o Assignment to edges
over (2,3)-regular bipartite o Functions on vertices
graphs.

@ Degree 2 vertices take f. .
@ Degree 3 vertices take =3. +

> Ile(@lew)

o:E—{0,1} veV
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Example Holant Problems

@ Holant({OR2} | {=3}) is # VERTEXCOVER on 3-regular graphs.
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Example Holant Problems

Holant({OR2} | {=3}) is # VERTEXCOVER on 3-regular graphs.

Holant({NAND>} | {=3}) is #INDEPENDENTSET on 3-regular
graphs.

Holant({=2} | {AT-MOST-ONE})

Holant(AT-MOST-ONE) } is #MATCHING.

Holant({=»} | {EXACTLY-ONE})

Holant(EXACTLY-ONE) } is # PERFECTMATCHING.
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Final Dichotomy

Theorem (Cai, Guo, W ’13)

Let F be any set of symmetric, complex-valued constraints in Boolean
variables.

Then Holant(F) is either #P-hard or computable in polynomial time.
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A Proof Technique:
Polynomial Interpolation
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Polynomial Interpolation

@ 2 (distinct) points defines a (unique) line
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Polynomial Interpolation

@ 2 (distinct) points defines a (unique) line

@ 3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Given n+ 1 distinct points (x;, y;), there is a unique polynomial p(-) of
degree at most n such that p(x;) = y;.
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Polynomial Interpolation

@ 2 (distinct) points defines a (unique) line

@ 3 (distinct) points defines a (unique) quadratic
(actually: polynomial of degree at most 2)

Given n+ 1 distinct points (x;, y;), there is a unique polynomial p(-) of
degree at most n such that p(x;) = y;.

Furthermore, the coefficients of p can be computed in polynomial time.
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#PerfectMatching <; #Matching [Valiant '79]
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@ Given a graph G with n vertices.
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@ Let my be the number of matchings that omit k vertices.
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#PerfectMatching <; #Matching [Valiant '79]

@ Given a graph G with n vertices.
@ Assume we can compute the number of matchings in any graph.
@ Goal is to compute the number of perfect matchings in G.

@ Let my be the number of matchings that omit k vertices.
@ Let Gy be the graph G after adding, for each vertex v, £ vertices
incident only to v.
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#PerfectMatching <; #Matching [Valiant '79]

Given a graph G with n vertices.

Assume we can compute the number of matchings in any graph.
Goal is to compute the number of perfect matchings in G.

Let my be the number of matchings that omit k vertices.
Let Gy be the graph G after adding, for each vertex v, ¢ vertices
incident only to v.

n
#MATCHING(Gy) = > mye(£ + 1)*,
k=0

Tyson Williams (UW-M) Counting Complexity Google Madison 2013 31/32



Thank You

Tyson Williams (U
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