Holant, Dichotomy Theorems, and Interpolation

Tyson Williams

Preliminary Examination
Computer Science Department
University of Wisconsin-Madison
June 25, 2013

Outline

(1) Introduction
(2) Previous Work

- Dichotomy for $Z_{3}(\vec{G} ; f)$
- Dichotomy for PI-\#CSP (\mathcal{F})
- Dichotomy for $\operatorname{Holant}(\mathcal{F})$
(3) Current Work
(4) Future Work

Outline

(1) Introduction

(2) Previous Work

- Dichotomy for $Z_{3}(\vec{G} ; f)$
- Dichotomy for PI-\#CSP (\mathcal{F})
- Dichotomy for $\operatorname{Holant}(\mathcal{F})$

(3) Current Work

4. Future Work

Holant, Dichotomy Theorems, and Interpolation

Holant, Dichotomy Theorems, and Interpolation

- Holant
- Framework to express counting problems on graphs.
- Input: Graph.
- Output: Number.

Holant, Dichotomy Theorems, and Interpolation

- Holant
- Framework to express counting problems on graphs.
- Input: Graph.
- Output: Number.
- Dichotomy Theorem
- Every problem in some class is either easy or hard (i.e. computable in polynomial time or \#P-hard).

Holant, Dichotomy Theorems, and Interpolation

- Holant
- Framework to express counting problems on graphs.
- Input: Graph.
- Output: Number.
- Dichotomy Theorem
- Every problem in some class is either easy or hard (i.e. computable in polynomial time or \#P-hard).
- Polynomial Interpolation
- Main reduction technique for proving hardness.

Proving Hardness

Proving Hardness

Essentially three reduction techniques:

Proving Hardness

Essentially three reduction techniques:

- Gadget Constructions
- Generic term for some graph fragment.

Proving Hardness

Essentially three reduction techniques:

- Gadget Constructions
- Generic term for some graph fragment.
- Polynomial Interpolation
- Degree (at most) n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.

Proving Hardness

Essentially three reduction techniques:

- Gadget Constructions
- Generic term for some graph fragment.
- Polynomial Interpolation
- Degree (at most) n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.
- (point, evaluation)'s \longrightarrow coefficients

Proving Hardness

Essentially three reduction techniques:

- Gadget Constructions
- Generic term for some graph fragment.
- Polynomial Interpolation
- Degree (at most) n polynomial is uniquely defined by
- $n+1$ coefficients, or
- evaluations at $n+1$ (different) points.
- (point, evaluation)'s \longrightarrow coefficients
- Holographic Transformation
- Change of basis

Outline

(1) Introduction

(2) Previous Work

- Dichotomy for $Z_{3}(\vec{G} ; f)$
- Dichotomy for $\mathrm{PI}-\# \operatorname{CSP}(\mathcal{F})$
- Dichotomy for $\operatorname{Holant}(\mathcal{F})$

(3) Current Work

(4) Future Work

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

\#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

Systematic Approach to \#VertexCover

- $G=(V, E)$

Systematic Approach to \#VertexCover

- $G=(V, E)$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$\prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

$\prod_{(u, v) \in E} \operatorname{OR}(\sigma(u), \sigma(v))=1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1=0$

Systematic Approach to \#VertexCover

- $G=(V, E)$
- $\sigma: V \rightarrow\{0,1\}$

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover
- NAND corresponds to \#IndependentSet

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover
- NAND corresponds to \#IndependentSet
- \neq corresponds to \#Bipartition

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover
- NAND corresponds to \#IndependentSet
- \neq corresponds to \#Bipartition
- \Longrightarrow

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover
- NAND corresponds to \#IndependentSet
- \neq corresponds to \#Bipartition
- \Longrightarrow

Other Edge Constraints

Example

- OR corresponds to \#VERTEXCover
- NAND corresponds to \#IndependentSet
- \neq corresponds to \#Bipartition
- \Longrightarrow corresponds to \#UPSET

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} O R(\sigma(u), \sigma(v))
$$

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} \mathrm{OR}(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, \boldsymbol{q})$
0	0	0
0	1	1
1	0	1
1	1	1

Generalize

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, \boldsymbol{q})$
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
p	q	$f(p, \boldsymbol{q})$
0	0	w
0	1	x
1	0	y
1	1	z

where $w, x, y, z \in \mathbb{C}$

Generalize

Partition Function:

$$
Z(\vec{G} ; f)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

Input		Output
p	q	$\operatorname{OR}(p, \boldsymbol{q})$
0	0	0
0	1	1
1	0	1
1	1	1

Input		Output
p	q	$f(p, q)$
0	0	w
0	1	x
1	0	y
1	1	z

where $w, x, y, z \in \mathbb{C}$

Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

For 3-regular \vec{G},

$$
Z(\vec{G} ; f)=\sum_{\sigma \cdot v \rightarrow\{0} \prod_{1\}(u v) \in F} f(\sigma(u), \sigma(v))
$$

is either computable in polynomial time or \#P-hard.

Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

For 3-regular \vec{G},

$$
Z(\vec{G} ; f)=\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{(u, v) \in E} f(\sigma(u), \sigma(v))
$$

is either computable in polynomial time or \#P-hard.
Explicit form for tractable cases.

Relation to Previous Work: Dichotomy Theorems

Relation to Previous Work: Dichotomy Theorems

Previous work:

- Symmetric f

Relation to Previous Work: Dichotomy Theorems

Previous work:

- Symmetric $f \quad f(0,1)=f(1,0) \quad$ (i.e. undirected graphs)

Relation to Previous Work: Dichotomy Theorems

Previous work:

- Symmetric $f \quad f(0,1)=f(1,0)$
(i.e. undirected graphs)
- 3-regular graphs with weights in
- $\{0,1\} \quad$ [Cai, Lu, Xia 08]
- $\{0,1,-1\}$ [Kowalczyk 09]
- \mathbb{R}
[Cai, Lu, Xia 09]
- \mathbb{C} [Kowalczyk, Cai 10]
- k-regular graphs with weights in
- \mathbb{R}
[Cai, Kowalczyk 10]
- \mathbb{C} [Cai, Kowalczyk 11]

Relation to Previous Work: Dichotomy Theorems

Previous work:

- Symmetric $f \quad f(0,1)=f(1,0)$
(i.e. undirected graphs)
- 3-regular graphs with weights in
- $\{0,1\} \quad$ [Cai, Lu, Xia 08]
- $\{0,1,-1\}$ [Kowalczyk 09]
- $\mathbb{R} \quad[C a i, L u$, Xia 09]
- \mathbb{C} [Kowalczyk, Cai 10]
- k-regular graphs with weights in
- $\mathbb{R} \quad$ [Cai, Kowalczyk 10]
- \mathbb{C} [Cai, Kowalczyk 11]

This work:

- Asymmetric f (i.e. directed graphs)
- 3-regular graphs with weights in
- \mathbb{C}

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.
First step:

$$
Z_{3}(\vec{G} ; O R) \leq_{T} Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U})
$$

where \mathcal{U} is the set of all unary signatures.

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.
First step:

$$
Z_{3}(\vec{G} ; O R) \leq_{T} Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U})
$$

where \mathcal{U} is the set of all unary signatures.
Second step:

$$
Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U}) \leq_{T} Z_{3}(\vec{G} ; f)
$$

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.
First step:

$$
Z_{3}(\vec{G} ; O R) \leq_{T} Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U})
$$

where \mathcal{U} is the set of all unary signatures.
Second step:

$$
Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U}) \leq_{T} Z_{3}(\vec{G} ; f)
$$

Obtain \mathcal{U} via interpolation:

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.
First step:

$$
Z_{3}(\vec{G} ; O R) \leq_{T} Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U})
$$

where \mathcal{U} is the set of all unary signatures.
Second step:

$$
Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U}) \leq_{T} Z_{3}(\vec{G} ; f)
$$

Obtain \mathcal{U} via interpolation:

- Construct unary signatures g_{i} with evaluation points $\frac{g_{i}(0)}{g_{i}(1)}$

Strategy for Proving \#P-hardness

$\# 3$-Reg-VertexCover $=Z_{3}(\vec{G} ;$ OR $)$ is \#P-hard.
Our problem is $Z_{3}(\vec{G} ; f)$.
Goal: simulate OR using f.
First step:

$$
Z_{3}(\vec{G} ; O R) \leq_{T} Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U})
$$

where \mathcal{U} is the set of all unary signatures.
Second step:

$$
Z_{3}(\vec{G} ;\{f\} \cup \mathcal{U}) \leq_{T} Z_{3}(\vec{G} ; f)
$$

Obtain \mathcal{U} via interpolation:

- Construct unary signatures g_{i} with evaluation points $\frac{g_{i}(0)}{g_{i}(1)}$
- Distinct evaluation points $\Leftrightarrow\left(g_{i}(0), g_{i}(1)\right)$ pairwise linearly independent

Construction of Unary Signatures

Projective Gadget Recursive Gadget

Unary Signature

Construction of Unary Signatures

Projective Gadget Recursive Gadget

Unary Signature

Construction of Unary Signatures

Projective Gadget Recursive Gadget

Unary Signature

Signature Matrix

Definition

Weighted truth table for a signature $g(a, b, c, d)=g^{a b c d}$ written as

$$
\mathrm{SM}(g)=\left[\begin{array}{llll}
g^{0000} & g^{0010} & g^{0001} & g^{0011} \\
g^{0100} & g^{0110} & g^{0101} & g^{0111} \\
g^{1000} & g^{1010} & g^{1001} & g^{1011} \\
g^{1100} & g^{1110} & g^{1101} & g^{1111}
\end{array}\right]
$$

is called its signature matrix.

- Row index $(a, b) \in\{0,1\}^{2}$
- Column index $(d, c) \in\{0,1\}^{2}$

Signature Matrix

Definition

Weighted truth table for a signature $g(a, b, c, d)=g^{a b c d}$ written as

$$
\mathrm{SM}(g)=\left[\begin{array}{llll}
g^{0000} & g^{0010} & g^{0001} & g^{0011} \\
g^{0100} & g^{0110} & g^{0101} & g^{0111} \\
g^{1000} & g^{1010} & g^{1001} & g^{1011} \\
g^{1100} & g^{1110} & g^{1101} & g^{1111}
\end{array}\right]
$$

is called its signature matrix.

- Row index $(a, b) \in\{0,1\}^{2}$
- Column index $(d, c) \in\{0,1\}^{2}$

Example Signature Matrices

Example

Example Signature Matrices

Example

$$
=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\left.\otimes 2\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right], ~\right]}
$$

$$
\mathrm{SM}\left(\longrightarrow-\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right.
$$

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices. Consider matrix powers of a single matrix.

If this matrix has this property, then we are done.

$$
\mathrm{SM}(\xrightarrow{\longrightarrow})=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices. Consider matrix powers of a single matrix.

If this matrix has this property, then we are done.

Otherwise, some power k is a multiple of the identity matrix.

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.
If this matrix has this property, then we are done.

Otherwise, some power k is a multiple of the identity matrix. Using only $k-1$ compositions creates an anti-gadget.

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.
If this matrix has this property, then we are done.

$$
\mathrm{SM}(\xrightarrow{\longrightarrow})=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]
$$

Otherwise, some power k is a multiple of the identity matrix. Using only $k-1$ compositions creates an anti-gadget.

$$
\mathrm{SM}\left(\left[\begin{array}{c}
-> \\
\vdots \\
\vdots \\
y
\end{array} z^{w}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\right.
$$

Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.
If this matrix has this property, then we are done.

Otherwise, some power k is a multiple of the identity matrix. Using only $k-1$ compositions creates an anti-gadget.

$$
\mathrm{SM}\left(\left[\begin{array}{ccc}
w & 0 & 0 \\
0 & 0 \\
0 & x & 0 \\
0 \\
0 & 0 & y \\
0 & 0 & 0 \\
\vdots
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}
$$

Anti-Gadget Technique

$$
\mathrm{SM}\left(\left[\begin{array}{ccc}
w & 0 & 0 \\
0 & 0 \\
0 & x & 0 \\
0 \\
0 & 0 & y \\
0 & 0 & 0 \\
\vdots & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}
$$

Anti-Gadget Technique

$$
\left.\mathrm{SM}\left(\begin{array}{cc}
-> \\
\vdots & -> \\
\hdashline & 0
\end{array}\right)=\left(\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1}
$$

Anti-Gadget Technique

$$
\begin{aligned}
& \mathrm{SM}\left(\begin{array}{l}
-> \\
\left.\mathrm{SM}\left(\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1} \\
\longrightarrow
\end{array}\right)=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{cccc}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]
\end{aligned}
$$

Composition of these two gadgets yields...

Anti-Gadget Technique

$$
\begin{aligned}
& \mathrm{SM}\left(\begin{array}{l}
-> \\
\mathrm{SM}\left(\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\right)^{-1} \\
\longrightarrow->
\end{array}\right)=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{\otimes 2}\left[\begin{array}{llll}
w & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & z
\end{array}\right]
\end{aligned}
$$

Composition of these two gadgets yields...

First Lemma Using Anti-Gadgets

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $w z \neq x y$,
- $w x y z \neq 0$, and
- $|x| \neq|y|$,
then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

First Lemma Using Anti-Gadgets

Lemma

For $w, x, y, z \in \mathbb{C}$, if

- $w z \neq x y$,
- $w x y z \neq 0$, and
- $|x| \neq|y|$,
then there exists a recursive gadget whose matrix powers form an infinite set of pairwise linearly independent matrices.

Corollary

For $w, x, y, z \in \mathbb{C}$ as above, $\operatorname{Holant}(f \mid=3)$ is \#P-hard.

Outline

(1) Introduction

(2) Previous Work

- Dichotomy for $Z_{3}(\vec{G} ; f)$
- Dichotomy for $\operatorname{PI}-\# \operatorname{CSP}(\mathcal{F})$
- Dichotomy for Holant (\mathcal{F})
(3) Current Work
(4) Future Work

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{3}\right\}$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$

$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$
$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

NOT planar, so NOT an instance of
Pl-\#CSP (\{EVEN-PARITY 3 , MAJORITY 3, OR $\left.\left._{3}\right\}\right)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $\left._{3}, \mathrm{OR}_{3}\right\}$
$\operatorname{EVEN}^{\operatorname{PARITY}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{3}(x, y, z)$

NOT planar, so NOT an instance of
Pl-\#CSP (\{EVEN-PARITY 3 , MAJORITY 3, OR $\left.\left._{3}\right\}\right)$

Constraint Graph for \#CSP (\mathcal{F}) Instance

$$
\mathcal{F}=\left\{\text { EVEN-PARITY }_{3}, \text { MAJORITY }_{3}, \mathrm{OR}_{2}\right\}
$$

${\operatorname{EVEN}-\operatorname{PARITY}_{3}(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{2}(x, y)}^{\log }$

Constraint Graph for \# $\operatorname{CSP}(\mathcal{F})$ Instance

$\mathcal{F}=\left\{\right.$ EVEN-PARITY $_{3}$, MAJORITY $_{3}$, OR $\left._{2}\right\}$
$\operatorname{EVEN}^{-P_{A R I T Y}} 3(x, y, z) \wedge \operatorname{MAJORITY}_{3}(x, y, z) \wedge \mathrm{OR}_{2}(x, y)$

VALID instance of PI-\#CSP(\{EVEN-PARITY 3 , MAJORITY 3, OR $\left.\left._{2}\right\}\right)$

\#CSP (\mathcal{F}) in Holant Framework

\#CSP (\mathcal{F})

- On input with (bipartite) constraint graph $G=(V, C, E)$, compute

$$
\sum_{\sigma: V \rightarrow\{0,1\}} \prod_{c \in C} f_{c}\left(\left.\sigma\right|_{N(c)}\right),
$$

where $N(c)$ are the neighbors of c.

\#CSP (\mathcal{F}) in Holant Framework

\#CSP (\mathcal{F})

- On input with (bipartite) constraint graph $G=(V, C, E)$, compute

$$
\sum_{: V \rightarrow\{0,1\}} \prod_{c \in C} f_{c}\left(\left.\sigma\right|_{N(c)}\right)
$$

where $N(c)$ are the neighbors of c.
Holant (\mathcal{F})

- On input graph $G=(V, E)$, compute

$$
\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right),
$$

where $E(v)$ are the incident edges of v.

\#CSP (\mathcal{F}) in Holant Framework

\#CSP (\mathcal{F}) in Holant Framework

\#CSP (\mathcal{F}) in Holant Framework

$$
\# \operatorname{CSP}(\mathcal{F}) \equiv_{T} \operatorname{Holant}(\mathcal{E} \mathcal{Q} \mid \mathcal{F})
$$

where $\mathcal{E Q}=\left\{=_{1},==_{2},=3, \ldots\right\}$ is the set of equalities of all arities.

Visualizing a Holographic Transformation

Visualizing a Holographic Transformation

$\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)_{x}\left(\begin{array}{llllll}1 & 0 & 0 & 1\end{array}\right)_{y}\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)_{z}$

Visualizing a Holographic Transformation

$(1001)_{x} \quad(1001)_{y} \quad(1001)_{z}$

Visualizing a Holographic Transformation

$(10001)_{x} \otimes\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)_{y} \otimes\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)_{z}$

Visualizing a Holographic Transformation

$$
\left.\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{O R_{3}}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right)_{N_{N A N D}}
$$

Visualizing a Holographic Transformation

$$
\left.\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{\mathrm{OR}_{3}}
$$

Visualizing a Holographic Transformation

$$
\left.\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{0}
$$

Visualizing a Holographic Transformation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z} .
\end{aligned}
$$

Visualizing a Holographic Transformation

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{lllll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z} T^{\otimes 6}\left(T^{-1}\right)^{\otimes 6}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{\mathrm{OR}_{3}}
$$

Visualizing a Holographic Transformation

$$
\left.\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z} T^{\otimes 6}\left(T^{-1}\right)^{\otimes 6}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{\mathrm{OR}_{3}}
$$

Visualizing a Holographic Transformation

$$
\left.\begin{array}{lll}
1 & 0 & 0
\end{array} 1\right)_{x} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z}\left(T^{\otimes 2}\right)^{\otimes 3}\left(T^{-1}\right)^{\otimes 6}\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{\mathrm{OR}_{3}}
$$

Visualizing a Holographic Transformation

Visualizing a Holographic Transformation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} T^{\otimes 2} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} T^{\otimes 2} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z} T^{\otimes 2}\left(T^{-1}\right)^{\otimes 6} \\
& \begin{array}{l}
\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)_{\mathrm{OR}_{3}} \\
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right)_{\mathrm{NAND}_{3}}
\end{array}
\end{aligned}
$$

Visualizing a Holographic Transformation

Visualizing a Holographic Transformation

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{x} T^{\otimes 2} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{y} T^{\otimes 2} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)_{z} T^{\otimes 2}
$$

$\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)^{O_{2}}$
\otimes
$\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)_{\text {NAND }_{3}}$

Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.

Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.
Express by $f=\left[f_{0}, f_{1}, \ldots, f_{n}\right]$ where f_{w} is output for inputs with Hamming weight w.

Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.
Express by $f=\left[f_{0}, f_{1}, \ldots, f_{n}\right]$ where f_{w} is output for inputs with Hamming weight w.

Example

$$
\begin{aligned}
\mathrm{OR}_{2} & =[0,1,1] \\
\mathrm{AND}_{3} & =[0,0,0,1] \\
\text { EVEN-PARITY }_{4} & =[1,0,1,0,1] \\
\text { MAJORITY }_{5} & =[0,0,0,1,1,1] \\
=\text { EQUALITY }_{6} & =[1,0,0,0,0,0,1]
\end{aligned}
$$

Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.
Express by $f=\left[f_{0}, f_{1}, \ldots, f_{n}\right]$ where f_{w} is output for inputs with Hamming weight w.

Example

$$
\begin{aligned}
\mathrm{OR}_{2} & =[0,1,1] \\
\mathrm{AND}_{3} & =[0,0,0,1] \\
\text { EVEN-PARITY }_{4} & =[1,0,1,0,1] \\
\text { MAJORITY }_{5} & =[0,0,0,1,1,1] \\
(=6)=\text { EQUALITY }_{6} & =[1,0,0,0,0,0,1]
\end{aligned}
$$

$$
\left(=_{n}\right)=[1,0, \ldots, 0,1]=\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{\otimes n}+\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{\otimes n}
$$

Example Holographic Transformation

Transformation by the Hadamard matrix $H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

Example Holographic Transformation

Transformation by the Hadamard matrix $H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

$$
\begin{array}{rlr}
\left(={ }_{n}\right) H^{\otimes n} & =\left\{\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{\otimes n}+\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{\otimes n}\right\} H^{\otimes n} \\
& \left.=\left\{\left(\begin{array}{ll}
1 & 0
\end{array}\right) H\right\}^{\otimes n}+\left\{\begin{array}{ll}
0 & 1
\end{array}\right) H\right\}^{\otimes n} \quad \text { (mixed-product property) } \\
& =\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{\otimes n}+\left(\begin{array}{ll}
1 & -1
\end{array}\right)^{\otimes n} \\
& =\left[\begin{array}{ll}
2,0,2,0,2,0,2, \ldots
\end{array}\right] \\
& =2 \cdot \text { EVEN-PARITY } n & \\
(n+1 \text { entries) }
\end{array}
$$

Some Signature Sets

Affine signatures \mathscr{A} :
(1) $[1,0, \ldots, 0, \pm 1]$
(2) $[1,0, \ldots, 0, \pm i]$
(3) $[1,0,1,0, \ldots, 0$ or 1$]$
(9) $[1,-i, 1,-i, \ldots,(-i)$ or 1$]$
(6) $[0,1,0,1, \ldots, 0$ or 1$]$
(0) $[1, i, 1, i, \ldots, i$ or 1$]$
(- $[1,0,-1,0,1,0,-1,0, \ldots, 0$ or 1 or $(-1)]$
(8) $[1,1,-1,-1,1,1,-1,-1, \ldots, 1$ or $(-1)]$
(0 $[0,1,0,-1,0,1,0,-1, \ldots, 0$ or 1 or (-1)]
(10) $[1,-1,-1,1,1,-1,-1,1, \ldots, 1$ or $(-1)]$

Product-type signatures \mathscr{P} :
(1) $[0, x, 0]$
(2) $[y, 0, \ldots, 0, z]$ (includes all unary signatures)

Some Signature Sets

Matchgate signatures \mathscr{M} :
(1) $\left[\alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}\right]$
(2) $\left[\alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}, 0\right]$
(3) $\left[0, \alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}\right]$
(9) $\left[0, \alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}, 0\right]$

They satisfy

- Parity condition
- Geometric progression

Some Signature Sets

Matchgate signatures \mathscr{M} :
(1) $\left[\alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}\right]$
(2) $\left[\alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}, 0\right]$
(3) $\left[0, \alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}\right]$
(9) $\left[0, \alpha^{n}, 0, \alpha^{n-1} \beta, 0, \ldots, 0, \alpha \beta^{n-1}, 0, \beta^{n}, 0\right]$

They satisfy

- Parity condition
- Geometric progression

Example

$$
\mathcal{E Q H}=\left\{2 \cdot \text { EVEN-PARITY } n \mid n \in \mathbb{Z}^{+}\right\}
$$

Dichotomy Theorem

Theorem (Guo, W 13)
PI- $\# \operatorname{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Dichotomy Theorem

Theorem (Guo, W 13)
PI- $\# \operatorname{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?

Dichotomy Theorem

Theorem (Guo, W 13)
$\mathrm{Pl}-\mathrm{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?
Because

$$
\mathrm{Pl}-\# \operatorname{CSP}(H \mathscr{M}) \equiv_{T} \mathrm{PI}-H o l a n t(\mathcal{E} \mathcal{Q} \mid H \mathscr{M})
$$

Dichotomy Theorem

Theorem (Guo, W 13)
PI- $\# \operatorname{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?
Because

$$
\begin{aligned}
\text { PI-\#CSP }(H \mathscr{M}) & \equiv_{T} \text { PI-Holant }(\mathcal{E Q} \mid H \mathscr{M}) \\
& \equiv_{T} \text { PI-Holant }\left(\mathcal{E Q} H \mid H^{-1} H \mathscr{M}\right)
\end{aligned}
$$

Dichotomy Theorem

Theorem (Guo, W 13)
PI- $\# \operatorname{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?
Because

$$
\begin{aligned}
\mathrm{Pl}-\# \operatorname{CSP}(H \mathscr{M}) & \equiv_{T} \text { PI-Holant }(\mathcal{E Q} \mid H \mathscr{M}) \\
& \equiv_{T} \text { PI-Holant }\left(\mathcal{E Q} H \mid H^{-1} H \mathscr{M}\right) \\
& \equiv_{T} \text { PI-Holant }(\mathcal{E Q} H \mid \mathscr{M})
\end{aligned}
$$

Dichotomy Theorem

Theorem (Guo, W 13)

$\mathrm{PI}-\mathrm{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?
Because

$$
\begin{aligned}
\mathrm{Pl}-\# \mathrm{CSP}(H \mathscr{M}) & \equiv_{T} \text { Pl-Holant }(\mathcal{E Q} \mid H \mathscr{M}) \\
& \equiv_{T} \text { PI-Holant }\left(\mathcal{E Q H} \mid H^{-1} H \mathscr{M}\right) \\
& \equiv_{T} \text { PI-Holant }(\mathcal{E Q H} \mid \mathscr{M}) \\
& \leq_{T} \text { PI-Holant }(\mathscr{M})
\end{aligned}
$$

Dichotomy Theorem

Theorem (Guo, W 13)

$\mathrm{PI}-\mathrm{CSP}(\mathcal{F})$ is \#P-hard unless $\mathcal{F} \subseteq \mathscr{A}, \mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq H \mathscr{M}$, in which case the problem is efficiently computable.

Why $H \mathscr{M}$ instead of \mathscr{M} ?
Because

$$
\begin{aligned}
\mathrm{Pl}-\# \mathrm{CSP}(H \mathscr{M}) & \equiv_{T} \text { PI-Holant }(\mathcal{E Q} \mid H \mathscr{M}) \\
& \equiv_{T} \text { PI-Holant }\left(\mathcal{E Q H} \mid H^{-1} H \mathscr{M}\right) \\
& \equiv_{T} \text { PI-Holant }(\mathcal{E Q H} \mid \mathscr{M}) \\
& \leq_{T} \text { PI-Holant }(\mathscr{M})
\end{aligned}
$$

is tractable by reduction to counting perfect matchings in planar graphs.

Relation to Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]

- PI-\#CSP (\mathcal{F}) with real weights
- PI-Holant $([a, b, c, d])$ with complex weights
[Cai, Kowalczyk 10]
- PI-\#CSP $([a, b, c])$ with complex weights

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Pinning

Graph Homomorphism \#CSP

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]
- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Pinning

Graph Homomorphism \#CSP

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]
- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\# \operatorname{CSP}(\mathcal{F} \cup\{[1,0],[0,1]\}) \leq \tau \# \operatorname{CSP}(\mathcal{F})$.

Pinning

Graph Homomorphism \#CSP

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]
- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\# \operatorname{CSP}(\mathcal{F} \cup\{[1,0],[0,1]\}) \leq_{\tau} \# \operatorname{CSP}(\mathcal{F})$.
$\mathrm{Pl}-\# \operatorname{CSP}(H \mathscr{M} \cup\{[1,0],[0,1]\})$ \#P-hard but PI-\#CSP $(H \mathscr{M})$ tractable

Pinning

Graph Homomorphism \#CSP

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]
- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\# \operatorname{CSP}(\mathcal{F} \cup\{[1,0],[0,1]\}) \leq_{\tau} \# \operatorname{CSP}(\mathcal{F})$.
$\operatorname{Pl}-\# \operatorname{CSP}(H \mathscr{M} \cup\{[1,0],[0,1]\})$ \#P-hard but PI-\#CSP $(H \mathscr{M})$ tractable

Lemma (Cai, Lu, Xia 10)

For any set of signatures \mathcal{F} with real weights,

$$
\text { PI-Holant }(\mathcal{E Q H} \mid \mathcal{F}) \text { is \#P-hard (or in P) }
$$

PI-Holant $(\mathcal{E Q H} \mid \mathcal{F} \cup\{[1,0],[0,1]\})$ is \#P-hard (or in P)

Pinning

Graph Homomorphism \#CSP

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]
- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\# \operatorname{CSP}(\mathcal{F} \cup\{[1,0],[0,1]\}) \leq_{\tau} \# \operatorname{CSP}(\mathcal{F})$.
$\mathrm{Pl}-\# \operatorname{CSP}(H \mathscr{M} \cup\{[1,0],[0,1]\})$ \#P-hard but PI-\#CSP $(H \mathscr{M})$ tractable

Lemma (Guo, W 13)

For any set of signatures \mathcal{F} with complex weights,

$$
\text { PI-Holant }(\mathcal{E Q H} \mid \mathcal{F}) \text { is \#P-hard (or in } \mathrm{P} \text {) }
$$

PI-Holant $(\mathcal{E Q H} \mid \mathcal{F} \cup\{[1,0],[0,1]\})$ is \#P-hard (or in P)

Outline

(1) Introduction

(2) Previous Work

- Dichotomy for $Z_{3}(\vec{G} ; f)$
- Dichotomy for Pl-\#CSP (\mathcal{F})
- Dichotomy for $\operatorname{Holant}(\mathcal{F})$
(3) Current Work
(4) Future Work

Holant Framework

Holant Framework

Definition

A signature grid $\Omega=(G, \mathcal{F})$ consists of

- a graph $G=(V, E)$,
- a set of signatures \mathcal{F} with $\{0,1\}$ inputs and a \mathbb{C} output, and
- f_{v} is the signature on vertex v.

Holant Framework

Definition

A signature grid $\Omega=(G, \mathcal{F})$ consists of

- a graph $G=(V, E)$,
- a set of signatures \mathcal{F} with $\{0,1\}$ inputs and a \mathbb{C} output, and
- f_{v} is the signature on vertex v.

On input Ω, the goal is to compute

$$
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right),
$$

where $E(v)$ is the edges incident to v.

Holant Framework

Definition

A signature grid $\Omega=(G, \mathcal{F})$ consists of

- a graph $G=(V, E)$,
- a set of signatures \mathcal{F} with $\{0,1\}$ inputs and a \mathbb{C} output, and
- f_{v} is the signature on vertex v.

On input Ω, the goal is to compute

$$
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right),
$$

where $E(v)$ is the edges incident to v.

Example

- $f_{v}=[0,1,0, \ldots, 0]=$ Exactly-One gives \#PerfectMatching

Holant Framework

Definition

A signature grid $\Omega=(G, \mathcal{F})$ consists of

- a graph $G=(V, E)$,
- a set of signatures \mathcal{F} with $\{0,1\}$ inputs and a \mathbb{C} output, and
- f_{v} is the signature on vertex v.

On input Ω, the goal is to compute

$$
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right),
$$

where $E(v)$ is the edges incident to v.

Example

- $f_{v}=[0,1,0, \ldots, 0]=$ Exactly-One gives \#PerfectMatching
- $f_{v}=[1,1,0, \ldots, 0]=$ At-Most-One gives \#Matching

Holant Framework

Definition

A signature grid $\Omega=(G, \mathcal{F})$ consists of

- a graph $G=(V, E)$,
- a set of signatures \mathcal{F} with $\{0,1\}$ inputs and a \mathbb{C} output, and
- f_{v} is the signature on vertex v.

On input Ω, the goal is to compute

$$
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right),
$$

where $E(v)$ is the edges incident to v.

Example

- $f_{v}=[0,1,0, \ldots, 0]=$ Exactly-One gives \#PerfectMatching
- $f_{v}=[1,1,0, \ldots, 0]=$ At-Most-One gives \#Matching
- $f_{v}=[3,0,1,0,3]$ gives \#4-Reg-EulerianOrientation

Tractable Cases for Holant (f)

Tractable Cases for Holant (f)

- Degenerate signatures

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- A
- \mathscr{P}

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- \mathscr{A}-transformable
- \mathscr{P}-transformable

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- A-transformable
- \mathscr{P}-transformable
- Vanishing signatures (i.e. Holant is always 0)

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- \mathscr{A}-transformable
- \mathscr{P}-transformable
- Vanishing signatures
(i.e. Holant is always 0)

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- \mathscr{A}-transformable
- \mathscr{P}-transformable
- Vanishing signatures (i.e. Holant is always 0)

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- \mathscr{A}-transformable
- \mathscr{P}-transformable
- Vanishing signatures (i.e. Holant is always 0)

Tractable Cases for Holant (f)

- Degenerate signatures
- Signatures with arity 2
- \#CSP tractable cases
- \mathscr{A}-transformable
- \mathscr{P}-transformable
- Vanishing signatures
(i.e. Holant is always 0)

Single Signature Dichotomy

Theorem (Cai, Guo, W 13)

Holant (f) is \#P-hard unless
(1) f is degenerate,
(2) f is binary,
(3) f is \mathscr{A}-transformable,
(4) f is \mathscr{P}-transformable, or
(5) f is vanishing,
which are computable in polynomial time.

Signature Set Dichotomy

Theorem (Cai, Guo, W 13)

Holant (\mathcal{F}) is \#P-hard unless
(1) $\mathcal{F} \subseteq\{$ degenerate $\} \cup\{$ binary $\}$,
(2) \mathcal{F} is \mathscr{A}-transformable,
(3) \mathcal{F} is \mathscr{P}-transformable,
(4) $\mathcal{F} \subseteq\{$ vanishing $\} \cup\{$ special binary $\}$, or
(6) $\mathcal{F} \subseteq\{$ "highly" vanishing $\} \cup\{$ special binary $\} \cup\{$ degenerate $\}$, which are computable in polynomial time.

Relation to Previous Work: Dichotomy Theorems

Single signature:

- Holant($[a, b, c, d])$ with complex weights [Cai, Huang, Lu 10]
- Holant $\left([a, b, c] \mid={ }_{k}\right)$ with complex weights [Cai, Kowalczyk 11]

Signature set:

- Holant ${ }^{(}(\mathcal{F})$ with complex weights [Cai, Lu, Xia 09]
- Holant ${ }^{c}(\mathcal{F})$ with complex weights [Cai, Huang, Lu 10]
- $\# \operatorname{CSP}^{d}(\mathcal{F})$ with complex weights [Huang, Lu 12]
- Holant (\mathcal{F}) with real weights [Huang, Lu 12]

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has

- identical middle two rows and
- identical middle two columns.

Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has

- identical middle two rows and
- identical middle two columns.

Example

$$
\operatorname{SM}\left(\left[f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right]\right)=\left[\begin{array}{cccc}
f_{0} & f_{1} & f_{1} & f_{2} \\
f_{1} & f_{2} & f_{2} & f_{3} \\
f_{1} & f_{2} & f_{2} & f_{3} \\
f_{2} & f_{3} & f_{3} & f_{4}
\end{array}\right]
$$

Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has

- identical middle two rows and
- identical middle two columns.

Example

$$
\operatorname{SM}\left(\left[f_{0}, f_{1}, f_{2}, f_{3}, f_{4}\right]\right)=\left[\begin{array}{cccc}
f_{0} & f_{1} & f_{1} & f_{2} \\
f_{1} & f_{2} & f_{2} & f_{3} \\
f_{1} & f_{2} & f_{2} & f_{3} \\
f_{2} & f_{3} & f_{3} & f_{4}
\end{array}\right]
$$

Let $\operatorname{SM}(f)=M_{f}$.

Semi-group Isomorphism

Let $\mathrm{RM}_{4}(\mathbb{C})$ be the set of 4-by-4 redundant matrices.

Semi-group Isomorphism

Let $\mathrm{RM}_{4}(\mathbb{C})$ be the set of 4-by-4 redundant matrices.
There is a semi-group isomorphism

$$
\begin{gathered}
\varphi: \mathrm{RM}_{4}(\mathbb{C}) \rightarrow \mathbb{C}^{3 \times 3} \\
{\left[\begin{array}{llll}
a & b & b & c \\
d & e & e & f \\
d & e & e & f \\
g & h & h & i
\end{array}\right] \mapsto\left[\begin{array}{lll}
a & 2 b & c \\
d & 2 e & f \\
g & 2 h & i
\end{array}\right]}
\end{gathered}
$$

Semi-group Isomorphism

Let $\mathrm{RM}_{4}(\mathbb{C})$ be the set of 4-by-4 redundant matrices.
There is a semi-group isomorphism

$$
\begin{gathered}
\varphi: \mathrm{RM}_{4}(\mathbb{C}) \rightarrow \mathbb{C}^{3 \times 3} \\
{\left[\begin{array}{llll}
a & b & b & c \\
d & e & e & f \\
d & e & e & f \\
g & h & h & i
\end{array}\right] \mapsto\left[\begin{array}{lll}
a & 2 b & c \\
d & 2 e & f \\
g & 2 h & i
\end{array}\right]}
\end{gathered}
$$

Let $\varphi(M)=\widetilde{M}$ and $\psi=\varphi^{-1}$.

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma (Cai, Guo, W 13)
Holant (g)

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma (Cai, Guo, W 13)
Holant $([3,0,1,0,3]) \leq_{T} \operatorname{Holant}(g)$

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma (Cai, Guo, W 13)

$$
\# \mathrm{EO} \equiv{ }_{T} \operatorname{Holant}([3,0,1,0,3]) \leq_{T} \operatorname{Holant}(g)
$$

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma (Cai, Guo, W 13)

$\# \mathrm{EO} \equiv_{T} \operatorname{Holant}([3,0,1,0,3]) \leq_{T} \operatorname{Holant}(g) \leq_{T} \operatorname{Holant}(f)$
for any f such that M_{f} is redundant and \widetilde{M}_{f} is nonsingular.

Identity of $\mathrm{RM}_{4}(\mathbb{C})$

Let g have signature matrix

$$
M_{g}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
\widetilde{M_{g}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma (Cai, Guo, W 13)

$\# \mathrm{EO} \equiv_{T} \operatorname{Holant}([3,0,1,0,3]) \leq_{T} \operatorname{Holant}(g) \leq_{T} \operatorname{Holant}(f)$
for any f such that M_{f} is redundant and \widetilde{M}_{f} is nonsingular.

Interpolation

Consider an instance Ω of Pl-Holant (g) with n vertices.

Interpolation

Consider an instance Ω of PI-Holant (g) with n vertices.

Construct instance Ω_{s} of PI-Holant (f) using N_{s}

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \wedge T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.

Interpolation

By the Jordan normal form of \widetilde{M}_{f}, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \wedge T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \wedge T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.
Thus $\lambda_{1}=\lambda_{2}=\lambda_{3}$

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \wedge T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.
Thus $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \Lambda T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.
Thus $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda \neq 0$ by assumption.

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \wedge T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.
Thus $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda \neq 0$ by assumption.
We have

$$
\left(\widetilde{M_{f}}\right)^{s}=T \Lambda^{s} T^{-1}
$$

where

$$
\Lambda=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Interpolation

By the Jordan normal form of $\widetilde{M_{f}}$, there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$
\widetilde{M}_{f}=T \Lambda T^{-1}=T\left[\begin{array}{ccc}
\lambda_{1} & b_{1} & 0 \\
0 & \lambda_{2} & b_{2} \\
0 & 0 & \lambda_{3}
\end{array}\right] T^{-1}
$$

where $b_{1}, b_{2} \in\{0,1\}$.
Only consider $b_{1}=b_{2}=1$.
Thus $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda \neq 0$ by assumption.
We have

$$
\left(\widetilde{M_{f}}\right)^{s}=T \Lambda^{s} T^{-1}
$$

where

$$
\Lambda=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

Notice

$$
\widetilde{M_{g}}=T \widetilde{M_{g}} T^{-1}
$$

Interpolation

To obtain Ω_{s} from Ω, effectively replace M_{g} with $M_{N_{s} .}=\left(M_{f}\right)^{s}$.

Interpolation

To obtain Ω_{s} from Ω, effectively replace M_{g} with $M_{N_{s}}=\left(M_{f}\right)^{s}$.
(1) To obtain Ω_{s} from Ω, replace M_{g} with $\psi(T) M_{g} \psi\left(T^{-1}\right)$ to obtain Ω^{\prime}. (Holant unchanged)

Interpolation

To obtain Ω_{s} from Ω, effectively replace M_{g} with $M_{N_{s}}=\left(M_{f}\right)^{s}$.
(1) To obtain Ω_{s} from Ω, replace M_{g} with $\psi(T) M_{g} \psi\left(T^{-1}\right)$ to obtain Ω^{\prime}.
(Holant unchanged)
(2) Then replace M_{g} with $\psi\left(\Lambda^{s}\right)$.

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1) j$ many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1)$ j many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1) j$ many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1)$ j many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1) j$ many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1)$ j many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Stratify

We stratify all assignments to M_{g} in Ω^{\prime} according to:

- $(0,0)$ or $(2,2)$ i many times;
- $(1,1) j$ many times;
- $(0,1) k$ many times;
- $(1,2) \ell$ many times;
- $(0,2) m$ many times.

All other assignments contribute a factor 0 .

$$
\psi\left(\Lambda^{s}\right)=\psi\left(\left[\begin{array}{ccc}
\lambda^{s} & s \lambda^{s-1} & \binom{s}{2} \lambda^{s-2} \\
0 & \lambda^{s} & s \lambda^{s-1} \\
0 & 0 & \lambda^{s}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\lambda^{s} & \frac{s \lambda^{s-1}}{2} & \frac{s \lambda^{s-1}}{2} & \binom{s}{2} \lambda^{s-2} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & \frac{\lambda^{s}}{2} & \frac{\lambda^{s}}{2} & s \lambda^{s-1} \\
0 & 0 & 0 & \lambda^{s}
\end{array}\right]
$$

Linear System

Let $c_{i j \ell \ell m}$ be the sum over all such assignments of the products of evaluations from $\psi(T)$ and $\psi\left(T^{-1}\right)$ but excluding M_{g} on Ω^{\prime}.

$$
\text { Holant }_{\Omega}=\sum_{i+j=n} \frac{c_{i j 000}^{2 j}}{2^{j}} .
$$

The value of the Holant on Ω_{s}, for $s \geq 1$, is

$$
\begin{aligned}
\text { Holant }_{\Omega_{s}} & =\sum_{i+j+k+\ell+m=n} \lambda^{(i+j) s}\left(s \lambda^{s-1}\right)^{k+\ell}\left(s(s-1) \lambda^{s-2}\right)^{m}\left(\frac{c_{i j k \ell m}}{2^{j+k+m}}\right) \\
& =\lambda^{n s} \sum_{i+j+k+\ell+m=n} s^{k+\ell+m}(s-1)^{m}\left(\frac{c_{i j k \ell m}}{\left.\lambda^{k+\ell+2 m 2^{j+k+m}}\right) .}\right.
\end{aligned}
$$

Linear System

Let $c_{i j k \ell m}$ be the sum over all such assignments of the products of evaluations from $\psi(T)$ and $\psi\left(T^{-1}\right)$ but excluding M_{g} on Ω^{\prime}.

$$
\text { Holant }_{\Omega}=\sum_{i+j=n} \frac{c_{i j 000}^{2 j}}{2^{j}} .
$$

The value of the Holant on Ω_{s}, for $s \geq 1$, is

$$
\begin{aligned}
\text { Holant }_{\Omega_{s}} & =\sum_{i+j+k+\ell+m=n} \lambda^{(i+j) s}\left(s \lambda^{s-1}\right)^{k+\ell}\left(s(s-1) \lambda^{s-2}\right)^{m}\left(\frac{c_{i j k \ell m}}{2^{j+k+m}}\right) \\
& =\lambda^{n s} \sum_{i+j+k+\ell+m=n} s^{k+\ell+m}(s-1)^{m}\left(\frac{c_{i j k \ell m}}{\lambda^{k+\ell+2 m} 2^{j+k+m}}\right) .
\end{aligned}
$$

In the linear system,

- rows are indexed by s and
- columns are indexed by (i,j,k,, m).

Rank Deficient

The linear system is rank deficient. Define new unknowns for any

$$
\begin{aligned}
0 & \leq q, m \quad \text { and } \quad q+m \leq n, \\
x_{q, m} & =\sum_{\substack{k+\ell=q \\
i+j=n-q-m}}\left(\frac{c_{i j k \ell m}}{\left.\lambda^{k+\ell+2 m 2^{j+k+m}}\right) .}\right.
\end{aligned}
$$

Holant of Ω is now $x_{0,0}$.

Rank Deficient

The linear system is rank deficient. Define new unknowns for any

$$
\begin{aligned}
0 & \leq q, m \quad \text { and } \quad q+m \leq n, \\
x_{q, m} & =\sum_{\substack{k+\ell=q \\
i+j=n-q-m}}\left(\frac{c_{i j k \ell m}}{\left.\lambda^{k+\ell+2 m 2^{j+k+m}}\right) .}\right.
\end{aligned}
$$

Holant of Ω is now $x_{0,0}$.
New linear system is

$$
\text { Holant }_{\Omega_{s}}=\lambda^{n s} \sum_{p+q+m=n} s^{q+m}(s-1)^{m} x_{q, m} .
$$

Rank Deficient

The linear system is rank deficient. Define new unknowns for any

$$
\begin{aligned}
0 & \leq q, m \quad \text { and } \quad q+m \leq n, \\
x_{q, m} & =\sum_{\substack{k+\ell=q \\
i+j=n-q-m}}\left(\frac{c_{i j k \ell m}}{\lambda^{k+\ell+2 m} 2^{j+k+m}}\right) .
\end{aligned}
$$

Holant of Ω is now $x_{0,0}$.
New linear system is

$$
\text { Holant }_{\Omega_{s}}=\lambda^{n s} \sum_{p+q+m=n} s^{q+m}(s-1)^{m} x_{q, m} .
$$

Let $\alpha_{q, m}=s^{q+m}(s-1)^{m}$.

Rank Deficient Again

New system still rank deficient since

$$
s^{q+m}(s-1)^{m}=s^{q-1+m}(s-1)^{m}+s^{q-2+m+1}(s-1)^{m+1} .
$$

Rank Deficient Again

New system still rank deficient since

$$
s^{q+m}(s-1)^{m}=s^{q-1+m}(s-1)^{m}+s^{q-2+m+1}(s-1)^{m+1} .
$$

Thus,

$$
\alpha_{q, m}=\alpha_{q-1, m} \quad+\alpha_{q-2, m+1}
$$

Rank Deficient Again

New system still rank deficient since

$$
s^{q+m}(s-1)^{m}=s^{q-1+m}(s-1)^{m}+s^{q-2+m+1}(s-1)^{m+1} .
$$

Thus,

$$
\alpha_{\boldsymbol{q}, m} x_{\boldsymbol{q}, m}=\alpha_{\boldsymbol{q}-1, m} x_{\boldsymbol{q}, m}+\alpha_{\boldsymbol{q}-2, m+1} x_{\boldsymbol{q}, m}
$$

Rank Deficient Again

New system still rank deficient since

$$
s^{q+m}(s-1)^{m}=s^{q-1+m}(s-1)^{m}+s^{q-2+m+1}(s-1)^{m+1} .
$$

Thus,

$$
\alpha_{\boldsymbol{q}, m} x_{\boldsymbol{q}, m}=\alpha_{\boldsymbol{q}-1, m} x_{\boldsymbol{q}, m}+\alpha_{\boldsymbol{q}-2, m+1} x_{\boldsymbol{q}, m}
$$

We recursively define new variables

$$
\begin{gathered}
x_{q-1, m} \leftarrow x_{q, m}+x_{q-1, m} \\
x_{q-2, m+1} \leftarrow x_{q, m}+x_{q-2, m+1}
\end{gathered}
$$

from $q=n$ down to 2 .

$x_{0,0}$	$x_{0,1}$	$x_{0,2}$	\cdots	$x_{0, n-2}$	$x_{0, n-1}$	$x_{0, n}$
$x_{1,0}$	$x_{1,1}$	$x_{1,2}$	\cdots	$x_{1, n-2}$	$x_{1, n-1}$	
$x_{2,0}$	$x_{2,1}$	$x_{2,2}$	\cdots	$x_{2, n-2}$		

$$
\begin{aligned}
& x_{n-2,0} \quad x_{n-2,1} \quad x_{n-2,2} \\
& x_{n-1,0} \quad x_{n-1,1}
\end{aligned}
$$

$$
x_{n, 0}
$$

$x_{0,0}$	$x_{0,1}$	$x_{0,2}$	$x_{0,3}$	$x_{0,4}$	$x_{0,5}$	$x_{0,6}$
$x_{1,0}$	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	$x_{1,5}$	
$x_{2,0}$	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$		
$x_{3,0}$	$x_{3,1}$	$x_{3,2}$	$x_{3,3}$			
$x_{4,0}$	$x_{4,1}$	$x_{4,2}$				
$x_{5,0}$	$x_{5,1}$					

$X_{6,0}$

```
x llllll}\mp@subsup{x}{0,0}{\mp@subsup{x}{0,1}{}
\mp@subsup{x}{1,0}{0}}\begin{array}{lllll}{\mp@subsup{x}{1,1}{}}&{\mp@subsup{x}{1,2}{}}&{\mp@subsup{x}{1,3}{}}&{\mp@subsup{x}{1,4}{}}&{\mp@subsup{x}{1,5}{}}
\mp@subsup{x}{2,0}{}}\begin{array}{llll}{\mp@subsup{x}{2,1}{}}&{\mp@subsup{x}{2,2}{}}&{\mp@subsup{x}{2,3}{}}&{\mp@subsup{x}{2,4}{}}
\mp@subsup{x}{3,0}{}
\(x_{4,0} \quad x_{4,1} \quad x_{4,2}\)
```

$x_{4,0} \quad x_{4,1} \quad x_{4,2}$

```


```

$x_{6,0}$

```
```

$x_{6,0}$

```
```

x0,0
x0,1
x0,3
x0,5
x0,6
\mp@subsup{x}{1,0}{0}}\begin{array}{lllll}{\mp@subsup{x}{1,1}{}}\&{\mp@subsup{x}{1,2}{}}\&{\mp@subsup{x}{1,3}{}}\&{\mp@subsup{x}{1,4}{}}\&{\mp@subsup{x}{1,5}{}}
\mp@subsup{x}{2,0}{}}\begin{array}{llll}{\mp@subsup{x}{2,1}{}}\&{\mp@subsup{x}{2,2}{}}\&{\mp@subsup{x}{2,3}{}}\&{\mp@subsup{x}{2,4}{}}
\mp@subsup{x}{3,0}{\prime}}\begin{array}{llll}{\mp@subsup{x}{3,1}{}}\&{\mp@subsup{x}{3,2}{}}\&{\mp@subsup{x}{3,3}{}}
<<<<
x6,0

```
```

x0,0
x0,1
x0,3
x0,5
x0,6
\mp@subsup{x}{1,0}{}}\begin{array}{lllll}{\mp@subsup{x}{1,1}{}}\&{\mp@subsup{x}{1,2}{}}\&{\mp@subsup{x}{1,3}{}}\&{\mp@subsup{x}{1,4}{}}\&{\mp@subsup{x}{1,5}{}}
x x llll}\mp@subsup{x}{2,1}{
<<<
x6,0

```
```

x llllll}\mp@subsup{x}{0,0}{\mp@subsup{x}{0,1}{}
\mp@subsup{x}{1,0}{0}}\begin{array}{lllll}{\mp@subsup{x}{1,1}{}}\&{\mp@subsup{x}{1,2}{}}\&{\mp@subsup{x}{1,3}{}}\&{\mp@subsup{x}{1,4}{}}\&{\mp@subsup{x}{1,5}{}}

```



\section*{Finally Full Rank}

The \(2 n+1\) unknowns that remain are
\[
x_{0,0}, x_{1,0}, x_{0,1}, x_{1,1}, x_{0,2}, x_{1,2}, \ldots, x_{0, n-1}, x_{1, n-1}, x_{0, n}
\]
and their coefficients in row \(s\) are
\(1, s, s(s-1), s^{2}(s-1), s^{2}(s-1)^{2}, \ldots, s^{n-1}(s-1)^{n-1}, s^{n}(s-1)^{n-1}, s^{n}(s-1)^{n}\).

\section*{Finally Full Rank}

The \(2 n+1\) unknowns that remain are
\[
x_{0,0}, x_{1,0}, x_{0,1}, x_{1,1}, x_{0,2}, x_{1,2}, \ldots, x_{0, n-1}, x_{1, n-1}, x_{0, n}
\]
and their coefficients in row \(s\) are
\(1, s, s(s-1), s^{2}(s-1), s^{2}(s-1)^{2}, \ldots, s^{n-1}(s-1)^{n-1}, s^{n}(s-1)^{n-1}, s^{n}(s-1)^{n}\).

The \(\kappa\) th entry is a monic polynomial in \(s\) of degree \(\kappa\) (for \(0 \leq \kappa \leq 2 n\) ). Then \(s^{\kappa}\) is a linear combination of the first \(\kappa\) entries.

\section*{Finally Full Rank}

The \(2 n+1\) unknowns that remain are
\[
x_{0,0}, x_{1,0}, x_{0,1}, x_{1,1}, x_{0,2}, x_{1,2}, \ldots, x_{0, n-1}, x_{1, n-1}, x_{0, n}
\]
and their coefficients in row \(s\) are
\(1, s, s(s-1), s^{2}(s-1), s^{2}(s-1)^{2}, \ldots, s^{n-1}(s-1)^{n-1}, s^{n}(s-1)^{n-1}, s^{n}(s-1)^{n}\).

The \(\kappa\) th entry is a monic polynomial in \(s\) of degree \(\kappa\) (for \(0 \leq \kappa \leq 2 n\) ). Then \(s^{\kappa}\) is a linear combination of the first \(\kappa\) entries.

Thus, our system is a full rank Vandermonde times an upper triangular matrix with 1's on the diagonal.

\section*{Finally Full Rank}

The \(2 n+1\) unknowns that remain are
\[
x_{0,0}, x_{1,0}, x_{0,1}, x_{1,1}, x_{0,2}, x_{1,2}, \ldots, x_{0, n-1}, x_{1, n-1}, x_{0, n}
\]
and their coefficients in row \(s\) are
\(1, s, s(s-1), s^{2}(s-1), s^{2}(s-1)^{2}, \ldots, s^{n-1}(s-1)^{n-1}, s^{n}(s-1)^{n-1}, s^{n}(s-1)^{n}\).

The \(\kappa\) th entry is a monic polynomial in \(s\) of degree \(\kappa\) (for \(0 \leq \kappa \leq 2 n\) ). Then \(s^{\kappa}\) is a linear combination of the first \(\kappa\) entries.

Thus, our system is a full rank Vandermonde times an upper triangular matrix with 1's on the diagonal.

Therefore, we can solve for \(x_{0,0}=\) Holant \(_{\Omega}\).

\section*{Outline}

\section*{(1) Introduction}
(2) Previous Work
- Dichotomy for \(Z_{3}(\vec{G} ; f)\)
- Dichotomy for PI-\#CSP ( \(\mathcal{F})\)
- Dichotomy for Holant \((\mathcal{F})\)
(3) Current Work
(4) Future Work

\section*{Higher Domain Holant}

\section*{Higher Domain Holant}

\section*{Definition}

A signature grid \(\Omega=(G, \mathcal{F})\) consists of
- a graph \(G=(V, E)\),
- a set of signatures \(\mathcal{F}\) with \(\{0,1\}\) inputs and a \(\mathbb{C}\) output, and
- \(f_{v}\) is the signature on vertex \(v\).

On input \(\Omega\), the goal is to compute
\[
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{V}\left(\left.\sigma\right|_{E(v)}\right)
\]

\section*{Higher Domain Holant}

\section*{Definition}

A signature grid \(\Omega=(G, \mathcal{F})\) consists of
- a graph \(G=(V, E)\),
- a set of signatures \(\mathcal{F}\) with \(\{0,1\}\) inputs and a \(\mathbb{C}\) output, and
- \(f_{v}\) is the signature on vertex \(v\).

On input \(\Omega\), the goal is to compute
\[
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow\{0,1\}} \prod_{v \in V} f_{V}\left(\left.\sigma\right|_{E(v)}\right)
\]

\section*{Higher Domain Holant}

\section*{Definition}

A signature grid \(\Omega=(G, \mathcal{F})\) consists of
- a graph \(G=(V, E)\),
- a set of signatures \(\mathcal{F}\) with \([\kappa]\) inputs and a \(\mathbb{C}\) output, and
- \(f_{v}\) is the signature on vertex \(v\).

On input \(\Omega\), the goal is to compute
\[
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow[k]} \prod_{v \in V} f_{V}\left(\left.\sigma\right|_{E(v)}\right) .
\]

\section*{Higher Domain Holant}

\section*{Definition}

A signature grid \(\Omega=(G, \mathcal{F})\) consists of
- a graph \(G=(V, E)\),
- a set of signatures \(\mathcal{F}\) with \([\kappa]\) inputs and a \(\mathbb{C}\) output, and
- \(f_{v}\) is the signature on vertex \(v\).

On input \(\Omega\), the goal is to compute
\[
\text { Holant }_{\Omega}=\sum_{\sigma: E \rightarrow[k]} \prod_{v \in V} f_{V}\left(\left.\sigma\right|_{E(v)}\right)
\]

\section*{Example}
\(f_{v}=\) ALL-DISTINCT gives \(\# \kappa\)-EdgECoLoring

\section*{Current Result}

Theorem (Cai, Guo, W, Xia)
Counting \(\kappa\)-edge colorings over planar r-regular graphs is \#P-hard for \(\kappa \geq r \geq 3\).

\section*{Relation to Previous Work: Dichotomy Theorems}
[Cai, Lu, Xia 13]
- Holant* \((f)\) with domain size \(\kappa=3\) such that
- \(f\) has arity 3 ,
- \(f\) is symmetric, and
- \(f\) has complex weights.

\section*{Proof Overview}

\section*{Theorem (Vertigan 05)}

For any \(x, y \in \mathbb{C}\), the problem of computing the Tutte polynomial at \((x, y)\) over planar graphs is \#P-hard unless \((x-1)(y-1) \in\{1,2\}\) or \((x, y) \in\left\{(1,1),(-1,-1),\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}\), where \(j=e^{2 \pi i / 3}\). In each of these exceptional cases, the computation can be done in polynomial time.


\section*{Proof Overview}

\section*{Theorem (Vertigan 05)}

For any \(x, y \in \mathbb{C}\), the problem of computing the Tutte polynomial at \((x, y)\) over planar graphs is \#P-hard unless \((x-1)(y-1) \in\{1,2\}\) or \((x, y) \in\left\{(1,1),(-1,-1),\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}\), where \(j=e^{2 \pi i / 3}\). In each of these exceptional cases, the computation can be done in polynomial time.

- For \(\kappa=r\), reduction from

Tutte \((\kappa+1, \kappa+1)\) for planar graphs

\section*{Proof Overview}

\section*{Theorem (Vertigan 05)}

For any \(x, y \in \mathbb{C}\), the problem of computing the Tutte polynomial at \((x, y)\) over planar graphs is \#P-hard unless \((x-1)(y-1) \in\{1,2\}\) or \((x, y) \in\left\{(1,1),(-1,-1),\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}\), where \(j=e^{2 \pi i / 3}\). In each of these exceptional cases, the computation can be done in polynomial time.

- For \(\kappa=r\), reduction from Tutte \((\kappa+1, \kappa+1)\) for planar graphs
- For \(\kappa>r\), reduction from Tutte \((1-\kappa, 0)\) for planar graphs (i.e. counting \(\kappa\)-VERTEXCOLORING)

\section*{Outline}

\section*{(1) Introduction}

\section*{(2) Previous Work}
- Dichotomy for \(Z_{3}(\vec{G} ; f)\)
- Dichotomy for PI-\#CSP( F)
- Dichotomy for Holant \((\mathcal{F})\)

\section*{(3) Current Work}
(4) Future Work

\section*{Asymmetric Signatures}

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant \({ }^{*}(\mathcal{F})\) with complex weights

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant* \((\mathcal{F})\) with complex weights

Ideas:
- My \(Z_{3}(\vec{G} ; f)\) dichotomy with Cai and Kowalczyk should be useful.

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant* \((\mathcal{F})\) with complex weights

Ideas:
- My \(Z_{3}(\vec{G} ; f)\) dichotomy with Cai and Kowalczyk should be useful.
- Plan to extend this dichotomy to \(Z_{4}(\vec{G} ; f)\).

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant* \((\mathcal{F})\) with complex weights

Ideas:
- My \(Z_{3}(\vec{G} ; f)\) dichotomy with Cai and Kowalczyk should be useful.
- Plan to extend this dichotomy to \(Z_{4}(\vec{G} ; f)\).

\section*{\#CSP over Planar Graphs:}
- Dichotomy for \(\# \operatorname{CSP}(\mathcal{F})\) with asymmetric signatures and complex weights but only over general graphs. [Cai, Lu, Xia 09]

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant \({ }^{*}(\mathcal{F})\) with complex weights

Ideas:
- \(M y Z_{3}(\vec{G} ; f)\) dichotomy with Cai and Kowalczyk should be useful.
- Plan to extend this dichotomy to \(Z_{4}(\vec{G} ; f)\).

\section*{\#CSP over Planar Graphs:}
- Dichotomy for \(\# \operatorname{CSP}(\mathcal{F})\) with asymmetric signatures and complex weights but only over general graphs. [Cai, Lu, Xia 09]
- No dichotomy theorems for asymmetric signatures over planar graphs.

\section*{Asymmetric Signatures}

\section*{Holant over General Graphs:}
[Cai, Lu, Xia 11]
- Dichotomy for Holant \({ }^{*}(\mathcal{F})\) with complex weights

Ideas:
- \(M y Z_{3}(\vec{G} ; f)\) dichotomy with Cai and Kowalczyk should be useful.
- Plan to extend this dichotomy to \(Z_{4}(\vec{G} ; f)\).

\section*{\#CSP over Planar Graphs:}
- Dichotomy for \(\# \operatorname{CSP}(\mathcal{F})\) with asymmetric signatures and complex weights but only over general graphs. [Cai, Lu, Xia 09]
- No dichotomy theorems for asymmetric signatures over planar graphs.
- True test for the universality of matchgates.

\section*{PI-Holant \((\mathcal{F})\) with Symmetric Signatures}

\section*{Pl-Holant \((\mathcal{F})\) with Symmetric Signatures}

My \(\mathrm{PI}-\# \operatorname{CSP}(\mathcal{F})\) dichotomy with Guo is crucial.

My \(\mathrm{PI}-\# \operatorname{CSP}(\mathcal{F})\) dichotomy with Guo is crucial.

Need to extend \(\# \operatorname{CSP}^{d}(\mathcal{F})\) dichotomy by Huang and Lu to \(\mathrm{PI}^{-} \# \operatorname{CSP}^{d}(\mathcal{F})\).

My PI-\#CSP \((\mathcal{F})\) dichotomy with Guo is crucial.

Need to extend \(\# \operatorname{CSP}^{d}(\mathcal{F})\) dichotomy by Huang and Lu to \(\mathrm{PI}^{-} \# \operatorname{CSP}^{d}(\mathcal{F})\).

Expect the rest of the proof to be similar to previous work (i.e. dichotomy for \(\operatorname{Holant}(\mathcal{F})\) over general graphs with Cai and Guo)

\section*{Graph Polynomials}

\section*{Example}
- Chromatic polynomial \(\chi(\lambda)\)
- Tutte polynomial T(x,y)

\section*{Graph Polynomials}

\section*{Example}
- Chromatic polynomial \(\chi(\lambda)\)
- Tutte polynomial T(x,y)

Holant is a graph polynomial with an infinite number of indeterminates.

\section*{Graph Polynomials}

\section*{Example}
- Chromatic polynomial \(\chi(\lambda)\)
- Tutte polynomial T(x,y)

Holant is a graph polynomial with an infinite number of indeterminates.

Give back to the Tutte polynomial via consideration of regular graphs.

\section*{Summary}

\section*{Previous Work:}

Dichotomy theorems for
(1) \(Z_{3}(\vec{G} ; f)\),
(2) PI-\#CSP \((\mathcal{F})\), and
(3) Holant \((\mathcal{F})\).

\section*{Summary}

\section*{Previous Work:}

Dichotomy theorems for
(1) \(Z_{3}(\vec{G} ; f)\),
(2) PI-\#CSP \((\mathcal{F})\), and
(3) Holant \((\mathcal{F})\).

\section*{Current Work:}
\#P-hardness of \(\# \kappa\)-EdgeColoring problems.

\section*{Summary}

\section*{Previous Work:}

Dichotomy theorems for
(1) \(Z_{3}(\vec{G} ; f)\),
(2) \(\mathrm{PI}-\# \operatorname{CSP}(\mathcal{F})\), and
(3) Holant \((\mathcal{F})\).

\section*{Current Work:}
\#P-hardness of \(\# \kappa\)-EdgeColoring problems.

\section*{Future Work:}
- Extend all my results.
- Consider other graph polynomials.

\section*{Thank You}

\section*{Eulerian Orientation}

\section*{Definition}

At each vertex in an Eulerian orientation of a graph, in-degree equals out-degree.

\section*{Example}


\section*{Theorem and Proof Overview}

Theorem (Guo, W 13)
Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Theorem and Proof Overview}

Theorem (Guo, W 13)
Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

\section*{Theorem and Proof Overview}

\section*{Theorem (Guo, W 13)}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

\section*{Proof.}

Reduction from the evaluation of the Tutte polynomial at the point \((3,3)\) for planar graphs:
\[
\begin{aligned}
\text { PI-Tutte }(3,3) & \leq_{T} \quad \vdots \\
& \leq_{T} \# \mathrm{PI}-4 R e g-E O
\end{aligned}
\]

\section*{Tutte Polynomial}

\section*{Theorem (Vertigan 05)}

For any \(x, y \in \mathbb{C}\), the problem of computing the Tutte polynomial at \((x, y)\) over planar graphs is \#P-hard unless \((x-1)(y-1) \in\{1,2\}\) or \((x, y) \in\left\{(1,1),(-1,-1),\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}\), where \(j=e^{2 \pi i / 3}\). In each of these exceptional cases, the computation can be done in polynomial time.


\section*{Medial Graph}

\section*{Definition}

For a connected plane graph \(G\), its medial graph \(H\) has a vertex for each edge of \(G\) and two vertices in \(H\) are joined by an edge for each face of \(G\) in which their corresponding edges occur consecutively.

\section*{Example}


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant \(([0,1,0] \mid f)\)


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant \(([0,1,0] \mid f)\)


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant \(([0,1,0] \mid f)\)


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant \(([0,1,0] \mid f)\)


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

PI-Holant \(([0,1,0] \mid f)\)


\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{llll}
f^{0000} & f^{0010} & f^{0001} & f^{0011} \\
f^{0100} & f^{0110} & f^{0101} & f^{0111} \\
f^{1000} & f^{1010} & f^{1001} & f^{1011} \\
f^{1100} & f^{1110} & f^{1101} & f^{1111}
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{llll}
f^{0000} & f^{0010} & f^{0001} & f^{0011} \\
f^{0100} & f^{0110} & f^{0101} & f^{0111} \\
f^{1000} & f^{1010} & f^{1001} & f^{1011} \\
f^{1100} & f^{1110} & f^{1101} & f^{1111}
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{cccc}
0 & 0 & 0 & f^{0011} \\
0 & f^{0110} & f^{0101} & 0 \\
0 & f^{1010} & f^{1001} & 0 \\
f^{1100} & 0 & 0 & 0
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{cccc}
0 & 0 & 0 & f^{0011} \\
0 & f^{0110} & f^{0101} & 0 \\
0 & f^{1010} & f^{1001} & 0 \\
f^{1100} & 0 & 0 & 0
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{cccc}
0 & 0 & 0 & f^{0011} \\
0 & f^{0110} & 2 & 0 \\
0 & 2 & f^{1001} & 0 \\
f^{1100} & 0 & 0 & 0
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{cccc}
0 & 0 & 0 & f^{0011} \\
0 & f^{0110} & 2 & 0 \\
0 & 2 & f^{1001} & 0 \\
f^{1100} & 0 & 0 & 0
\end{array}\right]
\]

\section*{The Connection}

\section*{Theorem (Las Vergnas 88)}

Let \(G\) be a connected plane graph and let \(\mathscr{O}(H)\) be the set of all Eulerian orientations in the medial graph \(H\) of \(G\). Then
\[
2 \cdot \text { Pl-Tutte }_{G}(3,3)=\sum_{O \in \mathscr{O}(H)} 2^{\beta(O)}
\]
where \(\beta(O)\) is the number of saddle vertices in the orientation \(O\), i.e. vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Signature matrix:
- Let \(f(w, x, y, z)=f^{w x y z}\) be an arity 4 signature
- Row index is \((w, x)\), BUT the column index is \((z, y)\) (order reversed)
\[
M_{f}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
\text { PI-Tutte }(3,3) & \equiv_{T} \text { Pl-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \leq_{T} \quad \vdots \\
& \leq_{T} \# \text { Pl-4Reg-EO }
\end{aligned}
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
\text { PI-Tutte }(3,3) & \equiv{ }_{T} \mathrm{PI} \text {-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \leq_{T} \vdots \\
& \leq_{T} \text { PI-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv_{T} \# \text { PI-4Reg-EO }
\end{aligned}
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
\text { PI-Tutte }(3,3) & \equiv{ }_{T} \text { Pl-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 \\
0 & 1 & 2 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\right.\right) \\
& \leq_{T} \vdots \\
& \leq_{T} \operatorname{PI} \text {-Holant }([0,1,0] \mid[0,0,1,0,0]) \\
& \equiv{ }_{T} \# \text { PI-4Reg-EO }
\end{aligned}
\]

\section*{Holographic Transformations}

Let \(Z=\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]\).

\section*{Holographic Transformations}

Let \(Z=\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]\). Then
\[
\begin{aligned}
\text { PI-Holant }([0,1,0] \mid f) & \equiv_{T} \text { PI-Holant }\left([0,1,0]\left(Z^{-1}\right)^{\otimes 2} \mid Z^{\otimes 4} f\right) \\
& \equiv_{T} \text { PI-Holant }([1,0,1] / 2 \mid 4 \hat{f}) \\
& \equiv_{T} \operatorname{PI}-H o l a n t(\hat{f}),
\end{aligned}
\]
where
\[
M_{\hat{f}}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]
\]

\section*{Holographic Transformations}

Similarly,
\[
\begin{aligned}
\text { Pl-Holant } & ([0,1,0] \mid[0,0,1,0,0]) \\
& \equiv_{T} \text { Pl-Holant }\left([0,1,0]\left(Z^{-1}\right)^{\otimes 2} \mid Z^{\otimes 4}[0,0,1,0,0]\right) \\
& \equiv_{T} \text { Pl-Holant }([1,0,1] / 2 \mid 2[3,0,1,0,3]) \\
& \equiv_{T} \text { Pl-Holant }([3,0,1,0,3]) .
\end{aligned}
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
\text { Pl-Tutte }(3,3) & \equiv_{T} \text { Pl-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv_{T} \text { Pl-Holant }\left(\left[\begin{array}{llll}
2 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]\right) \\
& \leq_{T} \quad \vdots \\
& \leq_{T} \mathrm{Pl} \text {-Holant }([3,0,1,0,3]) \\
& \equiv_{T} \mathrm{Pl} \text {-Holant }([0,1,0] \mid[0,0,1,0,0]) \\
& \equiv_{T} \# \text { Pl-4Reg-EO }
\end{aligned}
\]

\section*{Planar Tetrahedron Gadget}

Assign \([3,0,1,0,3]\) to every vertex of this gadget...

...to get a signature \(32 \hat{g}\) with
\[
M_{\hat{g}}=\frac{1}{2}\left[\begin{array}{cccc}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
& \text { Pl-Tutte }(3,3) \equiv{ }_{T} \mathrm{PI} \text {-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv{ }_{T} \text { PI-Holant }\left(\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant }\left(\frac{1}{2}\left[\begin{array}{llll}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant }([3,0,1,0,3]) \\
& \equiv{ }_{T} \text { Pl-Holant }([0,1,0] \mid[0,0,1,0,0]) \\
& \equiv_{T} \# \text { Pl-4Reg-EO }
\end{aligned}
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
& \text { Pl-Tutte }(3,3) \equiv{ }_{T} \mathrm{PI} \text {-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv{ }_{T} \mathrm{PI} \text {-Holant }\left(\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]\right) \\
& \leq{ }_{T} \text { PI-Holant }\left(\frac{1}{2}\left[\begin{array}{llll}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant }([3,0,1,0,3]) \\
& \equiv{ }_{T} \text { Pl-Holant }([0,1,0] \mid[0,0,1,0,0]) \\
& \equiv_{T} \# \text { Pl-4Reg-EO }
\end{aligned}
\]

\section*{Rotationally Symmetric}
\[
M_{\hat{f}}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad M_{\hat{g}}=\frac{1}{2}\left[\begin{array}{cccc}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]
\]


\section*{Rotationally Symmetric}
\[
M_{\hat{f}}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad M_{\hat{g}}=\frac{1}{2}\left[\begin{array}{cccc}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]
\]


\section*{Rotationally Symmetric}
\[
M_{\hat{f}}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad M_{\hat{g}}=\frac{1}{2}\left[\begin{array}{cccc}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]
\]


\section*{Rotationally Symmetric}
\[
M_{\hat{f}}=\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad M_{\hat{g}}=\frac{1}{2}\left[\begin{array}{cccc}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]
\]


\section*{Interpolation}

Suppose that \(\hat{f}\) appears \(n\) times in \(\Omega\) of \(\mathrm{PI}-\operatorname{Holant}(\hat{f})\).
Construct instances \(\Omega_{s}\) of Holant \((\hat{g})\) indexed by \(s \geq 1\). Obtain \(\Omega_{s}\) from \(\Omega\) by replacing each \(\hat{f}\) with \(N_{s}\) ( \(\hat{g}\) assigned to all vertices).


\section*{Interpolation}

Suppose that \(\hat{f}\) appears \(n\) times in \(\Omega\) of \(\mathrm{PI}-\operatorname{Holant}(\hat{f})\).
Construct instances \(\Omega_{s}\) of Holant \((\hat{g})\) indexed by \(s \geq 1\). Obtain \(\Omega_{s}\) from \(\Omega\) by replacing each \(\hat{f}\) with \(N_{s}\) ( \(\hat{g}\) assigned to all vertices).


To obtain \(\Omega_{s}\) from \(\Omega\), we effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).

\section*{Interpolation}

Let \(T=\left[\begin{array}{cccc}0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]\).

\section*{Interpolation}

Let \(T=\left[\begin{array}{cccc}0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]\). Then
\[
M_{\hat{f}}=T \Lambda_{\hat{f}} T^{-1}=T\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] T^{-1}
\]
and
\[
M_{\hat{g}}=T \Lambda_{\hat{g}} T^{-1}=T\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right] T^{-1}
\]

\section*{Interpolation}

Let \(T=\left[\begin{array}{cccc}0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]\). Then
\[
M_{\hat{f}}=T \Lambda_{\hat{f}} T^{-1}=T\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] T^{-1}
\]
and
\[
M_{\hat{g}}=T \Lambda_{\hat{g}} T^{-1}=T\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right] T^{-1}
\]

Follows from being both rotationally symmetric and complement invariant.

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\).
(Holant unchanged)

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\).
(Holant unchanged)
(2) Then replace \(\Lambda_{\hat{f}}\) with \(\left(\Lambda_{\hat{g}}\right)^{s}\).

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\). (Holant unchanged)
(2) Then replace \(\Lambda_{\hat{f}}\) with \(\left(\Lambda_{\hat{g}}\right)^{s}\).

We only need to consider the assignments to \(\Lambda_{\hat{f}}\) that assign
- 0000 j many times,
- 0110 or 1001 k many times, and
- 1111 l many times.

Let \(c_{j k \ell}\) be the sum over all such assignments of the products of evaluations from \(T\) and \(T^{-1}\) but excluding \(\Lambda_{\hat{f}}\) on \(\Omega^{\prime}\).

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\). (Holant unchanged)
(2) Then replace \(\Lambda_{\hat{f}}\) with \(\left(\Lambda_{\hat{g}}\right)^{s}\).

We only need to consider the assignments to \(\Lambda_{\hat{f}}\) that assign
- 0000 j many times,
- 0110 or 1001 k many times, and
- 1111 l many times.

Let \(c_{j k \ell}\) be the sum over all such assignments of the products of evaluations from \(T\) and \(T^{-1}\) but excluding \(\Lambda_{\hat{f}}\) on \(\Omega^{\prime}\).

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\). (Holant unchanged)
(2) Then replace \(\Lambda_{\hat{f}}\) with \(\left(\Lambda_{\hat{g}}\right)^{s}\).

We only need to consider the assignments to \(\Lambda_{\hat{f}}\) that assign
- 0000 j many times,
- 0110 or 1001 k many times, and
- 1111 l many times.

Let \(c_{j k \ell}\) be the sum over all such assignments of the products of evaluations from \(T\) and \(T^{-1}\) but excluding \(\Lambda_{\hat{f}}\) on \(\Omega^{\prime}\).

\section*{Stratify}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

To obtain \(\Omega_{s}\) from \(\Omega\), effectively replace \(M_{\hat{f}}\) with \(M_{N_{s}}=\left(M_{\hat{g}}\right)^{s}\).
(1) To obtain \(\Omega_{s}\) from \(\Omega\), replace \(M_{\hat{f}}\) with \(T \Lambda_{\hat{f}} T^{-1}\) to obtain \(\Omega^{\prime}\). (Holant unchanged)
(2) Then replace \(\Lambda_{\hat{f}}\) with \(\left(\Lambda_{\hat{g}}\right)^{s}\).

We only need to consider the assignments to \(\Lambda_{\hat{f}}\) that assign
- 0000 j many times,
- 0110 or 1001 k many times, and
- 1111 l many times.

Let \(c_{j k \ell}\) be the sum over all such assignments of the products of evaluations from \(T\) and \(T^{-1}\) but excluding \(\Lambda_{\hat{f}}\) on \(\Omega^{\prime}\).

\section*{Linear System}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

Then
\[
\text { PI-Holant }_{\Omega}=\sum_{j+k+\ell=n} 3^{\ell} c_{j k \ell}
\]

\section*{Linear System}
\[
\Lambda_{\hat{f}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \Lambda_{\hat{g}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 13
\end{array}\right]
\]

Then
\[
\text { PI-Holant }_{\Omega}=\sum_{j+k+\ell=n} 3^{\ell} c_{j k \ell}
\]
and
\[
\text { PI-Holant }_{\Omega_{s}}=\sum_{j+k+\ell=n}\left(6^{k} 13^{\ell}\right)^{s} c_{j k \ell}
\]
is a full rank Vandermonde system (row index \(s\), column index \((j, k, \ell)\) ).

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
& \text { Pl-Tutte(3, 3) } \equiv{ }_{T} \text { PI-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv{ }_{T} \text { PI-Holant }\left(\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant }\left(\frac{1}{2}\left[\begin{array}{llll}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant ([3, 0, 1, 0, 3]) } \\
& \equiv{ }_{T} \text { Pl-Holant }([0,1,0] \mid[0,0,1,0,0]) \\
& \text { 三т\#PI-4Reg-EO }
\end{aligned}
\]

\section*{Proof Overview}

\section*{Theorem}

Counting Eulerian Orientations for planar 4-regular graphs is \#P-hard.

\section*{Proof.}
\[
\begin{aligned}
& \text { PI-Tutte(3, 3) } \equiv{ }_{T} \text { PI-Holant }\left([0,1,0] \left\lvert\,\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right.\right) \\
& \equiv{ }_{T} \text { PI-Holant }\left(\left[\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]\right) \\
& \leq_{T} \text { PI-Holant }\left(\frac{1}{2}\left[\begin{array}{llll}
19 & 0 & 0 & 7 \\
0 & 7 & 5 & 0 \\
0 & 5 & 7 & 0 \\
7 & 0 & 0 & 19
\end{array}\right]\right) \\
& \leq_{T} \mathrm{PI} \text {-Holant }([3,0,1,0,3]) \\
& \equiv{ }_{T} \text { PI-Holant ([0, 1, 0] | [0, 0, 1, 0, 0]) } \\
& \equiv_{\tau} \# \text { Pl-4Reg-EO }
\end{aligned}
\]

Major proof techniques:
(1) Holographic transformation
(2) Gadget construction
(3) Interpolation```

