The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems

Tyson Williams
(University of Wisconsin-Madison)

Joint with:
Jin-Yi Cai and Heng Guo
(University of Wisconsin-Madison)

Edge Coloring

Definition

Counting Edge Colorings

Problem: \# κ-EdgeColoring
Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Counting Edge Colorings

Problem: \# κ-EdgeColoring
Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Theorem

$\# \kappa$-EdgeColoring is \#P-hard over planar r-regular graphs for all $\kappa \geq r \geq 3$.

Counting Edge Colorings

Problem: \# κ-EdgeColoring
Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Theorem

$\# \kappa$-EdgeColoring is \#P-hard over planar r-regular graphs for all $\kappa \geq r \geq 3$.

Trivially tractable when $\kappa \geq r \geq 3$ does not hold.

Counting Edge Colorings

Problem: \# κ-EdgeColoring
Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Theorem

$\# \kappa$-EdgeColoring is \#P-hard over planar r-regular graphs for all $\kappa \geq r \geq 3$.

Trivially tractable when $\kappa \geq r \geq 3$ does not hold.

Proved in two cases:
(1) $\kappa=r$, and
(2) $\kappa>r$.

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

Place $A D_{3}$ at each vertex with incident edges x, y, z in a 3-regular graph G.

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

Place $A D_{3}$ at each vertex with incident edges x, y, z in a 3-regular graph G.

Then we define the sum of product

$$
\operatorname{Holant}_{\kappa}\left(G ; \mathrm{AD}_{3}\right)=\sum_{\sigma: E(G) \rightarrow[\kappa]} \prod_{v \in V(G)} \mathrm{AD}_{3}\left(\left.\sigma\right|_{E(v)}\right) .
$$

Clearly computes $\# \kappa$-EdgeColoring.
Same as the partition function of the edge-coloring model.

Holant Problems

In general, we consider all local constraint functions

$$
f(x, y, z)=\left\{\begin{array}{lll}
a & \text { if } x=y=z & \text { (all equal) } \\
b & \text { otherwise } & \\
c & \text { if } x \neq y \neq z \neq x & \text { (all distinct). }
\end{array}\right.
$$

The Holant problem is to compute

$$
\operatorname{Holant}_{\kappa}(G ; f)=\sum_{\sigma: E(G) \rightarrow[\kappa]} \prod_{v \in V(G)} f\left(\left.\sigma\right|_{E(v)}\right)
$$

Denote f by $\langle a, b, c\rangle$.
Thus $\mathrm{AD}_{3}=\langle 0,0,1\rangle$.

Dichotomy Theorem for Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing $\operatorname{Holant}_{\kappa}(-;\langle a, b, c\rangle)$ is in P or \#P-hard, even when the input is restricted to planar graphs.

Dichotomy Theorem for Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$ is in P or \#P-hard, even when the input is restricted to planar graphs.

Recall \# κ-EdgeColoring is the special case $\langle a, b, c\rangle=\langle 0,0,1\rangle$.
Let's prove the theorem for $\kappa=3$ and $\langle a, b, c\rangle=\langle 0,0,1\rangle$.

Graph Polynomial Identities

For a plane graph G,

- $T(G ; x, x)=m\left(\vec{G}_{m} ; x\right)$
(Martin polynomial, [Martin '77])

Graph Polynomial Identities

For a plane graph G,

- $T(G ; x, x)=m\left(\vec{G}_{m} ; x\right)$
(Martin polynomial, [Martin '77])

Definition (Medial Graph)

(a)

(b)

(c)

A plane graph (a), its medial graph (c), and the two graphs superimposed (b).

Graph Polynomial Identities

For a plane graph G,

- $T(G ; x, x)=m\left(\vec{G}_{m} ; x\right)$
(Martin polynomial, [Martin '77])

Definition (Directed Medial Graph)

(a)

(b)

(c)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

Graph Polynomial Identities

For a plane graph G,

- $T(G ; x, x)=m\left(\vec{G}_{m} ; x\right)$
- $x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right)$
(Martin polynomial, [Martin '77])
(circuit partition polynomial)

Graph Polynomial Identities

For a plane graph G,

- $T(G ; x, x)=m\left(\vec{G}_{m} ; x\right)$
- $x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right)$
- $j(\vec{G} ; x)=\sum_{c \in \pi_{x}\left(\vec{G}_{m}\right)} 2^{\mu(c)}$
(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Graph Polynomial Identities

For a plane graph G,

$$
\begin{aligned}
& \text { - } T(G ; x, x)=m\left(\vec{G}_{m} ; x\right) \\
& \text { - } x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right) \\
& \\
& \\
& j(\vec{G} ; x)=\sum_{c \in \pi_{x}\left(\vec{G}_{m}\right)} 2^{\mu(c)}
\end{aligned}
$$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" $=$ "out degree".

Graph Polynomial Identities

For a plane graph G,

$$
\begin{aligned}
& \text { - } T(G ; x, x)=m\left(\vec{G}_{m} ; x\right) \\
& \text { - } x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right) \\
& \\
& j(\vec{G} ; x)=\sum_{c \in \pi_{x}\left(\vec{G}_{m}\right)} 2^{\mu(c)}
\end{aligned}
$$

(Martin polynomial, [Martin '77]) (circuit partition polynomial)
(state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" $=$ "out degree".
Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

Graph Polynomial Identities

For a plane graph G,

$$
\begin{aligned}
& \text { - } T(G ; x, x)=m\left(\vec{G}_{m} ; x\right) \\
& \text { - } x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right) \\
& \\
& j(\vec{G} ; x)=\sum_{c \in \pi_{x}\left(\vec{G}_{m}\right)} 2^{\mu(c)}
\end{aligned}
$$

(Martin polynomial, [Martin '77]) (circuit partition polynomial)
(state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" $=$ "out degree". Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
$\pi_{x}(\vec{G})$ is the set of Eulerian partitions of \vec{G} into at most x parts.

$$
x \geq 2
$$

Graph Polynomial Identities

For a plane graph G,

$$
\begin{aligned}
& \text { - } T(G ; x, x)=m\left(\vec{G}_{m} ; x\right) \\
& \text { - } x m\left(\vec{G}_{m} ; x+1\right)=j\left(\vec{G}_{m} ; x\right) \\
& \\
& j(\vec{G} ; x)=\sum_{c \in \pi_{x}\left(\vec{G}_{m}\right)} 2^{\mu(c)}
\end{aligned}
$$

(Martin polynomial, [Martin '77]) (circuit partition polynomial)
(state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" $=$ "out degree".
Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
$\pi_{x}(\vec{G})$ is the set of Eulerian partitions of \vec{G} into at most \times parts.
$\mu(c)$ is number of monochromatic vertices in c.

$$
x \geq 2 \quad \mu(c)=1
$$

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Proof.

$$
\mathcal{E}\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}2 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
0 & \text { if } w=y \neq x=z \\
1 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Denote \mathcal{E} by $\langle 2,1,0,1,0\rangle$.

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Proof.

$$
\mathcal{E}\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}2 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
0 & \text { if } w=y \neq x=z \\
1 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Denote \mathcal{E} by $\langle 2,1,0,1,0\rangle$.

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Proof.

$$
\mathcal{E}\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}2 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
0 & \text { if } w=y \neq x=z \\
1 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Denote \mathcal{E} by $\langle 2,1,0,1,0\rangle$.

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\text { Holant }_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Proof.

$$
\mathcal{E}\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}2 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
0 & \text { if } w=y \neq x=z \\
1 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Denote \mathcal{E} by $\langle 2,1,0,1,0\rangle$.

One More Identity

Lemma

$$
\sum_{c \in \pi_{\kappa}\left(\vec{G}_{m}\right)} 2^{\mu(c)}=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Proof.

$$
\mathcal{E}\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}2 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
0 & \text { if } w=y \neq x=z \\
1 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Denote \mathcal{E} by $\langle 2,1,0,1,0\rangle$.

Upshot

Corollary

For a plane graph G,

$$
\kappa T(G ; \kappa+1, \kappa+1)=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Upshot

Corollary

For a plane graph G,

$$
\kappa T(G ; \kappa+1, \kappa+1)=\operatorname{Holant}_{\kappa}\left(G_{m} ; \mathcal{E}\right)
$$

Theorem (Vertigan)

For any $x, y \in \mathbb{C}$, the problem of evaluating the Tutte polynomial at (x, y) over planar graphs is \#P-hard unless $(x-1)(y-1) \in\{1,2\}$ or $(x, y) \in\left\{(\pm 1, \pm 1),\left(\omega, \omega^{2}\right),\left(\omega^{2}, \omega\right)\right\}$, where $\omega=e^{2 \pi i / 3}$. In each of these exceptional cases, the computation can be done in polynomial time.

\#P-hardness of \# κ-EdgeColoring

Theorem

$\# \kappa$-EDGEColoring is \#P-hard over planar κ-regular graphs for $\kappa \geq 3$.

\#P-hardness of \#к-EdgeColoring

Theorem

$\# \kappa$-EDGEColoring is \#P-hard over planar κ-regular graphs for $\kappa \geq 3$.

Proof for $i=3$.

Reduce from $\operatorname{Holant}_{3}(-; \mathcal{E})$ to $\operatorname{Holant}_{3}\left(-; \mathrm{AD}_{3}\right)$ in two steps:

$$
\begin{array}{rlr}
\text { Holant }_{3}(-; \mathcal{E}) & \leq_{T} \operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle) & \text { (polynomial interpolation) } \\
\leq_{T} \operatorname{Holant}_{3}\left(-; \text { AD }_{3}\right) & \text { (gadget construction) }
\end{array}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Gadget Construction Step

$\operatorname{Holant}_{3}(G ;\langle 0,1,1,0,0\rangle)=\operatorname{Holant}_{3}\left(G^{\prime} ; \mathrm{AD}_{3}\right)$

$$
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)=\langle 0,1,1,0,0\rangle= \begin{cases}0 & \text { if } w=x=y=z \\
1 & \text { if } w=x \neq y=z \\
1 & \text { if } w=y \neq x=z \\
0 & \text { if } w=z \neq x=y \\
0 & \text { otherwise }\end{cases}
$$

Polynomial Interpolation Step: Recursive Construction

$\operatorname{Holant}_{3}(G ; \mathcal{E}) \leq_{T} \operatorname{Holant}_{3}\left(G_{s} ;\langle 0,1,1,0,0\rangle\right)$

Vertices are assigned $\langle 0,1,1,0,0\rangle$.

Polynomial Interpolation Step: Recursive Construction

$\operatorname{Holant}_{3}(G ; \mathcal{E}) \leq_{T} \operatorname{Holant}_{3}\left(G_{s} ;\langle 0,1,1,0,0\rangle\right)$

Vertices are assigned $\langle 0,1,1,0,0\rangle$.
Let f_{s} be the function corresponding to N_{s}. Then $f_{s}=M^{s} f_{0}$, where

$$
M=\left[\begin{array}{lllll}
0 & 2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad f_{0}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Obviously $f_{1}=\langle 0,1,1,0,0\rangle$.

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{ccccc}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right]
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Note $f(4)=\mathcal{E}=\langle 2,1,0,1,0\rangle$.

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Note $f(4)=\mathcal{E}=\langle 2,1,0,1,0\rangle$.
(Side note: picking $s=1$ so that $x=4$ only works when $\kappa=3$.)

Polynomial Interpolation Step: The Interpolation

Holant $_{3}(-; \mathcal{E}) \leq_{T}$ Holant $_{3}(-;\langle 0,1,1,0,0\rangle)$

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\operatorname{Holant}_{3}(-; \mathcal{E}) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \text { Holant }_{3}(-; f(x)) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\operatorname{Holant}_{3}(-; \mathcal{E}) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \text { Holant }_{3}(-; f(x)) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\text { Holant }_{3}(-; \mathcal{E}) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \text { Holant }_{3}(-; f(x)) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.
Let G_{s} be the graph obtained by replacing every vertex in G with N_{s}. Then Holant ${ }_{3}\left(G_{2 s} ;\langle 0,1,1,0,0\rangle\right)=p\left(G, 2^{2 s}\right)$.

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\text { Holant }_{3}(-; \mathcal{E}) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \text { Holant }_{3}(-; f(x)) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.
Let G_{s} be the graph obtained by replacing every vertex in G with N_{s}. Then Holant ${ }_{3}\left(G_{2 s} ;\langle 0,1,1,0,0\rangle\right)=p\left(G, 2^{2 s}\right)$.

Using oracle for $\operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)$, evaluate $p(G, x)$ at $n+1$ distinct points $x=2^{2 s}$ for $0 \leq s \leq n$.

By polynomial interpolation, efficiently compute the coefficients of $p(G, x)$. QED.

Dichotomy of $\operatorname{Holant}_{\kappa}(-;\langle a, b, c\rangle)$

Thank You

Thank You

Paper and slides available on my website:
www.cs.wisc.edu/~tdw

