The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems

> Tyson Williams (University of Wisconsin-Madison)

> Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison)

Edge Coloring

Definition

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for all $\kappa \ge r \ge 3$.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for all $\kappa \ge r \ge 3$.

Trivially tractable when $\kappa \geq r \geq 3$ does not hold.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for all $\kappa \ge r \ge 3$.

Trivially tractable when $\kappa \ge r \ge 3$ does not hold.

Proved in two cases:

$$\mathbf{0} \ \boldsymbol{\kappa} = \boldsymbol{r}, \text{ and}$$

$$2 \kappa > r.$$

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x,y,z) = \begin{cases} 1 & \text{if } x,y,z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph G.

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph G.

Then we define the sum of product

$$\mathsf{Holant}_{\kappa}(G;\mathsf{AD}_3) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} \mathsf{AD}_3(\sigma \mid_{E(v)}).$$

Clearly computes $\#\kappa$ -EDGECOLORING.

Same as the partition function of the edge-coloring model.

In general, we consider all local constraint functions

$$f(x, y, z) = \begin{cases} a & \text{if } x = y = z \\ b & \text{otherwise} \\ c & \text{if } x \neq y \neq z \neq x \end{cases} \text{ (all distinct)}.$$

The Holant problem is to compute

$$\mathsf{Holant}_{\kappa}(G; \mathbf{f}) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} \mathbf{f} \left(\sigma \mid_{E(v)} \right).$$

Denote f by $\langle a, b, c \rangle$. Thus $AD_3 = \langle 0, 0, 1 \rangle$.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$,

the problem of computing $\text{Holant}_{\kappa}(-; \langle a, b, c \rangle)$ is in *P* or #P-hard, even when the input is restricted to planar graphs.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing $\text{Holant}_{\kappa}(-; \langle a, b, c \rangle)$ is in P or #P-hard, even when the input is restricted to planar graphs.

Recall $\#\kappa$ -EDGECOLORING is the special case $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

Let's prove the theorem for $\kappa = 3$ and $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

(Martin polynomial, [Martin '77])

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

(Martin polynomial, [Martin '77])

Definition (Medial Graph)

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

(Martin polynomial, [Martin '77])

Definition (Directed Medial Graph)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

For a plane graph G,

(Martin polynomial, [Martin '77]) (circuit partition polynomial)

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

• $xm(\vec{G}_m; x+1) = j(\vec{G}_m; x)$
• $j(\vec{G}; x) = \sum_{c \in \pi_x(\vec{G}_m)} 2^{\mu(c)}$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

• $xm(\vec{G}_m; x+1) = j(\vec{G}_m; x)$
• $j(\vec{G}; x) = \sum_{c \in \pi_x(\vec{G}_m)} 2^{\mu(c)}$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" = "out degree".

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

• $xm(\vec{G}_m; x+1) = j(\vec{G}_m; x)$
• $j(\vec{G}; x) = \sum_{c \in \pi_x(\vec{G}_m)} 2^{\mu(c)}$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" = "out degree".

Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

• $xm(\vec{G}_m; x+1) = j(\vec{G}_m; x)$
• $j(\vec{G}; x) = \sum_{c \in \pi_x(\vec{G}_m)} 2^{\mu(c)}$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" = "out degree".

Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

 $\pi_x(\vec{G})$ is the set of Eulerian partitions of \vec{G} into at most x parts.

<u>x</u> ≥ 2

For a plane graph G,

•
$$T(G; x, x) = m(\vec{G}_m; x)$$

• $xm(\vec{G}_m; x+1) = j(\vec{G}_m; x)$
• $j(\vec{G}; x) = \sum_{c \in \pi_x(\vec{G}_m)} 2^{\mu(c)}$

(Martin polynomial, [Martin '77]) (circuit partition polynomial) (state sum, [Ellis-Monaghan '04])

Digraph Eulerian if "in degree" = "out degree".

Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

 $\pi_x(\vec{G})$ is the set of Eulerian partitions of \vec{G} into at most x parts.

 $\mu(c)$ is number of monochromatic vertices in c.

x > 2 $\mu(c) = 1$

Lemma

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \mathcal{E})$$

Lemma

$$\sum_{\boldsymbol{c} \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(\boldsymbol{c})} = \mathsf{Holant}_{\kappa}(G_m; \boldsymbol{\mathcal{E}})$$

Proof.

Lemma

$$\sum_{\boldsymbol{c} \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(\boldsymbol{c})} = \mathsf{Holant}_{\kappa}(G_m; \boldsymbol{\mathcal{E}})$$

Proof.

Lemma

$$\sum_{\boldsymbol{c} \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(\boldsymbol{c})} = \mathsf{Holant}_{\kappa}(G_m; \boldsymbol{\mathcal{E}})$$

Proof.

Lemma

$$\sum_{\boldsymbol{c} \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(\boldsymbol{c})} = \mathsf{Holant}_{\kappa}(G_m; \boldsymbol{\mathcal{E}})$$

Proof.

Lemma

$$\sum_{\boldsymbol{c} \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(\boldsymbol{c})} = \mathsf{Holant}_{\kappa}(G_m; \boldsymbol{\mathcal{E}})$$

Proof.

Upshot

Corollary

For a plane graph G,

$$\kappa T(G; \kappa + 1, \kappa + 1) = \text{Holant}_{\kappa}(G_m; \mathcal{E})$$

Upshot

Corollary

For a plane graph G,

$$\kappa T(G; \kappa + 1, \kappa + 1) = \text{Holant}_{\kappa}(G_m; \mathcal{E})$$

Theorem (Vertigan)

For any $x, y \in \mathbb{C}$, the problem of evaluating the Tutte polynomial at (x, y) over planar graphs is #P-hard unless $(x - 1)(y - 1) \in \{1, 2\}$ or $(x, y) \in \{(\pm 1, \pm 1), (\omega, \omega^2), (\omega^2, \omega)\},$ where $\omega = e^{2\pi i/3}$. In each of these exceptional cases, the computation can be done in polynomial time.

Theorem

 $\#\kappa$ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Theorem

 $\#\kappa$ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof for $\kappa = 3$.

Reduce from $Holant_3(-; \mathcal{E})$ to $Holant_3(-; AD_3)$ in two steps:

 $\begin{aligned} \mathsf{Holant}_3(-;\mathcal{E}) \leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle) & (\mathsf{polynomial interpolation}) \\ \leq_{\mathcal{T}} \mathsf{Holant}_3(-;\mathsf{AD}_3) & (\mathsf{gadget construction}) \end{aligned}$

$$f\left(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}\right) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f\left(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}\right) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

Gadget Construction Step

 $\mathsf{Holant}_3(G; \langle 0, 1, 1, 0, 0 \rangle) = \mathsf{Holant}_3(G'; \mathsf{AD}_3)$

$$f\left(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}\right) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

Gadget Construction Step

 $\mathsf{Holant}_3(G; \langle 0, 1, 1, 0, 0 \rangle) = \mathsf{Holant}_3(G'; \mathsf{AD}_3)$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

Vertices are assigned $\langle 0,1,1,0,0\rangle.$

 $\mathsf{Holant}_3(\mathsf{G}; \mathcal{E}) \leq_{\mathcal{T}} \mathsf{Holant}_3(\mathsf{G}_{s}; \langle 0, 1, 1, 0, 0 \rangle)$

Vertices are assigned (0, 1, 1, 0, 0).

Let f_s be the function corresponding to N_s . Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } f_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Obviously $f_1 = \langle 0, 1, 1, 0, 0 \rangle$.

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} x & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{x-1}{3} + 1\\ \frac{x-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \mathcal{E} = \langle 2, 1, 0, 1, 0 \rangle$.

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \mathcal{E} = \langle 2, 1, 0, 1, 0 \rangle$. (Side note: picking s = 1 so that x = 4 only works when $\kappa = 3$.)

 $\mathsf{Holant}_3(-; \mathcal{E}) \leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle)$

$$\begin{aligned} \mathsf{Holant}_3(-;\mathcal{E}) &= \mathsf{Holant}_3(-;f(4)) \\ &\leq_T \mathsf{Holant}_3(-;f(x)) \\ &\leq_T \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle) \end{aligned}$$

$$\begin{aligned} \mathsf{Holant}_3(-;\mathcal{E}) &= \mathsf{Holant}_3(-;f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle) \end{aligned}$$

If G has n vertices, then

$$p(G, x) = \text{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

$$\begin{aligned} \mathsf{Holant}_3(-;\mathcal{E}) &= \mathsf{Holant}_3(-;f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_s be the graph obtained by replacing every vertex in G with N_s . Then Holant₃(G_{2s} ; (0, 1, 1, 0, 0)) = $p(G, 2^{2s})$.

$$\begin{aligned} \mathsf{Holant}_3(-;\mathcal{E}) &= \mathsf{Holant}_3(-;f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_s be the graph obtained by replacing every vertex in G with N_s . Then Holant₃(G_{2s} ; (0, 1, 1, 0, 0)) = $p(G, 2^{2s})$.

Using oracle for Holant₃(-; (0, 1, 1, 0, 0)), evaluate p(G, x) at n + 1 distinct points $x = 2^{2s}$ for $0 \le s \le n$.

By polynomial interpolation, efficiently compute the coefficients of p(G, x). QED.

Dichotomy of Holant_{κ}(-; $\langle a, b, c \rangle$)

Thank You

Thank You

Paper and slides available on my website: www.cs.wisc.edu/~tdw