The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems

Tyson Williams
(University of Wisconsin-Madison)

Joint with:
Jin-Yi Cai and Heng Guo
(University of Wisconsin-Madison)

Edge Coloring

Definition

Counting Edge Colorings

Problem: \# κ-EdgeColoring Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Counting Edge Colorings

Problem: \# κ-EdgeColoring

Input: A graph G.
Output: Number of edge colorings of G using at most κ colors.

Theorem

$\# \kappa$-EdgeColoring is \#P-hard over planar r-regular graphs for all $\kappa \geq r \geq 3$.

Trivially tractable when $\kappa \geq r \geq 3$ does not hold.
Parallel edges allowed (and necessary when $r>5$).
Proved in the framework of Holant problems in two cases:
(1) $\kappa=r$, and
(2) $\kappa>r$.

Holant Problems

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Holant Problems

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings, edge colorings, matchings, perfect matchings, Eulerian orientations, and cycle covers.

Holant Problems

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings, edge colorings, matchings, perfect matchings, Eulerian orientations, and cycle covers.

NON-examples: Hamiltonian cycles and spanning trees.
NOT local.

Abundance of Holant Problems

Equivalent to:

- counting read-twice constraint satisfaction problems,
- contraction of tensor networks, and
- partition function of graphical models (in Forney normal form).

Generalizes:

- simulating quantum circuits,
- counting graph homomorphisms,
- all manner of partition functions including
- Ising model,
- Potts model,
- edge-coloring model.

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

Place $A D_{3}$ at each vertex with incident edges x, y, z in a 3-regular graph G.

$\# \kappa$-EdgeColoring as a Holant Problem

Let $A D_{3}$ denote the local constraint function

$$
\mathrm{AD}_{3}(x, y, z)= \begin{cases}1 & \text { if } x, y, z \in[\kappa] \text { are distinct } \\ 0 & \text { otherwise }\end{cases}
$$

Place $A D_{3}$ at each vertex with incident edges x, y, z in a 3-regular graph G.

Then we evaluate the sum of product

$$
\operatorname{Holant}\left(G ; \mathrm{AD}_{3}\right)=\sum_{\sigma: E(G) \rightarrow[\kappa]} \prod_{v \in V(G)} \mathrm{AD}_{3}\left(\left.\sigma\right|_{E(v)}\right) .
$$

Clearly Holant $\left(G ; A D_{3}\right)$ computes $\# \kappa$-EdgeColoring.

Some Higher Domain Holant Problems

In general, we consider all local constraint functions

$$
f(x, y, z)=\left\{\begin{array}{lll}
a & \text { if } x=y=z & \text { (all equal) } \\
b & \text { otherwise } & \\
c & \text { if } x \neq y \neq z \neq x & \text { (all distinct). }
\end{array}\right.
$$

The Holant problem is to compute

$$
\operatorname{Holant}_{\kappa}(G ; f)=\sum_{\sigma: E(G) \rightarrow[\kappa]} \prod_{v \in V(G)} f\left(\left.\sigma\right|_{E(v)}\right) .
$$

Denote f by $\langle a, b, c\rangle$.
Thus $\mathrm{AD}_{3}=\langle 0,0,1\rangle$.

Dichotomy Theorem for Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing $\operatorname{Holant}_{\kappa}(-;\langle a, b, c\rangle)$ is in P or \#P-hard, even when the input is restricted to planar graphs.

Dichotomy Theorem for Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing Holant ${ }_{\kappa}(-;\langle a, b, c\rangle)$ is in P or \#P-hard, even when the input is restricted to planar graphs.

Recall \# κ-EdgeColoring is the special case $\langle a, b, c\rangle=\langle 0,0,1\rangle$.
Let's prove the theorem for $\kappa=3$ and $\langle a, b, c\rangle=\langle 0,0,1\rangle$.

Hardness of Holant ${ }_{3}(-; A)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

Hardness of Holant ${ }_{3}(-; A)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, b, c, d, e\rangle \text { denotes an arity-4 function } f \\
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= & \begin{cases}a & \text { if } w=x=y=z \\
b & \text { if } w=x \neq y=z \\
c & \text { if } w=y \neq x=z \\
d & \text { if } w=z \neq x=y \\
e & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hardness of Holant ${ }_{3}(-; A D)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
&\langle a, b, c, d, e\rangle \text { denotes an arity-4 function } f \\
& f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}a & \text { if } w=x=y=z \\
b & \text { if } w=x \neq y=z \\
c & \text { if } w=y \neq x=z \\
d & \text { if } w=z \neq x=y \\
e & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hardness of Holant ${ }_{3}(-; A D)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, b, c, d, e\rangle \text { denotes an arity-4 function } f \\
& f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}a & \text { if } w=x=y=z \\
b & \text { if } w=x \neq y=z \\
c & \text { if } w=y \neq x=z \\
d & \text { if } w=z \neq x=y \\
e & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hardness of Holant ${ }_{3}(-; A D)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, b, c, d, e\rangle \text { denotes an arity-4 function } f \\
& f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= \begin{cases}a & \text { if } w=x=y=z \\
b & \text { if } w=x \neq y=z \\
c & \text { if } w=y \neq x=z \\
d & \text { if } w=z \neq x=y \\
e & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hardness of Holant ${ }_{3}(-; A D)$

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, b, c, d, e\rangle \text { denotes an arity-4 function } f \\
f\left(\begin{array}{ll}
w & z \\
x & y
\end{array}\right)= & \begin{cases}a & \text { if } w=x=y=z \\
b & \text { if } w=x \neq y=z \\
c & \text { if } w=y \neq x=z \\
d & \text { if } w=z \neq x=y \\
e & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hardness of $\mathrm{Holant}_{3}(-$;

Hardness of $\operatorname{Holant}_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

- First reduction: From a \#P-hard point on the Tutte polynomial.

Hardness of Holant $_{3}$ (-;

Hardness of Holant $_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

- First reduction: From a \#P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.

Hardness of Holant $3(-; A D)$

Hardness of $\operatorname{Holant}_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

- First reduction: From a \#P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

Hardness of Holant $3(-; A D)$

Hardness of $\operatorname{Holant}_{3}\left(-; \mathrm{AD}_{3}\right)$ proved by the following reduction chain:

$$
\begin{aligned}
\# \mathrm{P} & \leq_{T} \text { Holant }_{3}(-;\langle 2,1,0,1,0\rangle) \\
& \leq_{T} \text { Holant }_{3}(-;\langle 0,1,1,0,0\rangle) \\
& \leq_{T} \text { Holant }_{3}\left(-; \mathrm{AD}_{3}\right)
\end{aligned}
$$

- First reduction: From a \#P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

Polynomial Interpolation Step: Recursive Construction

Holant $_{3}(G ;\langle 2,1,0,1,0\rangle) \leq_{T}$ Holant $_{3}\left(G_{s} ;\langle 0,1,1,0,0\rangle\right)$

Vertices are assigned $\langle 0,1,1,0,0\rangle$.

Polynomial Interpolation Step: Recursive Construction

Holant $_{3}(G ;\langle 2,1,0,1,0\rangle) \leq_{T}$ Holant $_{3}\left(G_{s} ;\langle 0,1,1,0,0\rangle\right)$

Vertices are assigned $\langle 0,1,1,0,0\rangle$.
Let f_{s} be the function corresponding to N_{s}. Then $f_{s}=M^{s} f_{0}$, where

$$
M=\left[\begin{array}{lllll}
0 & 2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad f_{0}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Obviously $f_{1}=\langle 0,1,1,0,0\rangle$.

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{ccccc}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Note $f(4)=\langle 2,1,0,1,0\rangle$.

Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition $M=P \wedge P^{-1}$, where

$$
P=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Let $x=2^{2 s}$. Then

$$
f(x)=f_{2 s}=P \Lambda^{2 s} P^{-1} f_{0}=P\left[\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] P^{-1} f_{0}=\left[\begin{array}{c}
\frac{x-1}{3}+1 \\
\frac{x-1}{3} \\
0 \\
1 \\
0
\end{array}\right] .
$$

Note $f(4)=\langle 2,1,0,1,0\rangle$.
(Side note: picking $s=1$ so that $x=4$ only works when $\kappa=3$.)

Polynomial Interpolation Step: The Interpolation

Holant $_{3}(-;\langle 2,1,0,1,0\rangle) \leq_{T}$ Holant $_{3}(-;\langle 0,1,1,0,0\rangle)$

Polynomial Interpolation Step: The Interpolation

Holant $_{3}(-;\langle 2,1,0,1,0\rangle)=\operatorname{Holant}_{3}(-; f(4))$

$$
\begin{aligned}
& \leq_{T} \operatorname{Holant}_{3}(-; f(x)) \\
& \leq_{T} \operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\operatorname{Holant}_{3}(-;\langle 2,1,0,1,0\rangle) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \operatorname{Holant}_{3}(-; f(x)) \\
& \leq_{T} \operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\operatorname{Holant}_{3}(-;\langle 2,1,0,1,0\rangle) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \operatorname{Holant}_{3}(-; f(x)) \\
& \leq_{T} \operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.
Let $G_{2 s}$ be the graph obtained by replacing every vertex in G with $N_{2 s}$. Then Holant ${ }_{3}\left(G_{2 s} ;\langle 0,1,1,0,0\rangle\right)=p\left(G, 2^{2 s}\right)$.

Polynomial Interpolation Step: The Interpolation

$$
\begin{aligned}
\operatorname{Holant}_{3}(-;\langle 2,1,0,1,0\rangle) & =\operatorname{Holant}_{3}(-; f(4)) \\
& \leq_{T} \operatorname{Holant}_{3}(-; f(x)) \\
& \leq_{T} \operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)
\end{aligned}
$$

If G has n vertices, then

$$
p(G, x)=\operatorname{Holant}_{3}(G ; f(x)) \in \mathbb{Z}[x]
$$

has degree n.
Let $G_{2 s}$ be the graph obtained by replacing every vertex in G with $N_{2 s}$. Then Holant ${ }_{3}\left(G_{2 s} ;\langle 0,1,1,0,0\rangle\right)=p\left(G, 2^{2 s}\right)$.

Using oracle for $\operatorname{Holant}_{3}(-;\langle 0,1,1,0,0\rangle)$, evaluate $p(G, x)$ at $n+1$ distinct points $x=2^{2 s}$ for $0 \leq s \leq n$.

By polynomial interpolation, efficiently compute the coefficients of $p(G, x)$. QED.

Dichotomy of $\operatorname{Holant}_{\kappa}(-;\langle a, b, c\rangle)$

Thank You

Thank You

Paper and slides available on my website:
www.cs.wisc.edu/~tdw

