The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems

> Tyson Williams (University of Wisconsin-Madison)

> Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison)

Edge Coloring

Definition

Problem: $\#\kappa$ -EDGECOLORING INPUT: A graph *G*. OUTPUT: Number of edge colorings of *G* using at most κ colors. Problem: $\#\kappa$ -EDGECOLORING INPUT: A graph *G*. OUTPUT: Number of edge colorings of *G* using at most κ colors.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for all $\kappa \geq r \geq 3$.

Trivially tractable when $\kappa \ge r \ge 3$ does not hold. Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:

$$\mathbf{0} \ \boldsymbol{\kappa} = \boldsymbol{r}, \text{ and }$$

$$2 \kappa > r.$$

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings, edge colorings, matchings, perfect matchings, Eulerian orientations, and cycle covers.

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings, edge colorings, matchings, perfect matchings, Eulerian orientations, and cycle covers.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.

Equivalent to:

- counting read-twice constraint satisfaction problems,
- contraction of tensor networks, and
- partition function of graphical models (in Forney normal form).

Generalizes:

- simulating quantum circuits,
- counting graph homomorphisms,
- all manner of partition functions including
 - Ising model,
 - Potts model,
 - edge-coloring model.

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x,y,z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph *G*.

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph G.

Then we evaluate the sum of product

$$\mathsf{Holant}(G;\mathsf{AD}_3) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{\nu \in V(G)} \mathsf{AD}_3(\sigma \mid_{E(\nu)}).$$

Clearly Holant(G; AD₃) computes $\#\kappa$ -EDGECOLORING.

In general, we consider all local constraint functions

$$f(x, y, z) = \begin{cases} a & \text{if } x = y = z \\ b & \text{otherwise} \\ c & \text{if } x \neq y \neq z \neq x \end{cases} \text{ (all equal)}$$

The Holant problem is to compute

$$\operatorname{Holant}_{\kappa}(G; f) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} f(\sigma \mid_{E(v)}).$$

Denote f by $\langle a, b, c \rangle$. Thus $AD_3 = \langle 0, 0, 1 \rangle$.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$,

the problem of computing $\text{Holant}_{\kappa}(-; \langle a, b, c \rangle)$ is in *P* or #P-hard, even when the input is restricted to planar graphs.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing $\text{Holant}_{\kappa}(-; \langle a, b, c \rangle)$ is in P or #P-hard, even when the input is restricted to planar graphs.

Recall $\#\kappa$ -EDGECOLORING is the special case $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

Let's prove the theorem for $\kappa = 3$ and $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

• First reduction: From a #P-hard point on the Tutte polynomial.

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

$$\begin{aligned} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{aligned}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

 $\mathsf{Holant}_3(G; \langle 2, 1, 0, 1, 0 \rangle) \leq_T \mathsf{Holant}_3(G_s; \langle 0, 1, 1, 0, 0 \rangle)$

Vertices are assigned $\langle 0, 1, 1, 0, 0 \rangle$.

 $\mathsf{Holant}_3(G; \langle 2, 1, 0, 1, 0 \rangle) \leq_T \mathsf{Holant}_3(G_s; \langle 0, 1, 1, 0, 0 \rangle)$

Vertices are assigned $\langle 0, 1, 1, 0, 0 \rangle$.

Let f_s be the function corresponding to N_s . Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } f_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Obviously $f_1 = \langle 0, 1, 1, 0, 0 \rangle$.

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} x & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{x-1}{3} + 1\\ \frac{x-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \langle 2, 1, 0, 1, 0 \rangle$.

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \langle 2, 1, 0, 1, 0 \rangle$. (Side note: picking s = 1 so that x = 4 only works when $\kappa = 3$.)

Polynomial Interpolation Step: The Interpolation

 $\mathsf{Holant}_3(-;\langle 2,1,0,1,0\rangle) \leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle)$

Polynomial Interpolation Step: The Interpolation

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_T \mathsf{Holant}_3(-; f(x)) \\ &\leq_T \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G, x) = \text{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_{2s} be the graph obtained by replacing every vertex in G with N_{2s} . Then Holant₃ $(G_{2s}; \langle 0, 1, 1, 0, 0 \rangle) = p(G, 2^{2s})$.

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_{2s} be the graph obtained by replacing every vertex in G with N_{2s} . Then Holant₃ $(G_{2s}; \langle 0, 1, 1, 0, 0 \rangle) = p(G, 2^{2s})$.

Using oracle for Holant₃(-; (0, 1, 1, 0, 0)), evaluate p(G, x) at n + 1 distinct points $x = 2^{2s}$ for $0 \le s \le n$.

By polynomial interpolation, efficiently compute the coefficients of p(G, x). QED.

Dichotomy of Holant_{κ}(-; $\overline{\langle a, b, c \rangle}$)

Thank You

Thank You

Paper and slides available on my website: www.cs.wisc.edu/~tdw