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Edge Coloring—Decision Problem

Problem: x-EDGECOLORING

Input: A graph G

Output: “YES" if G has an edge coloring using at most « colors and
“NQO" otherwise



Edge Coloring—Decision Problem

Problem: x-EDGECOLORING

Input: A graph G

Output: “YES" if G has an edge coloring using at most « colors and
“NQO" otherwise

Obviously no edge coloring using less than A colors.

Theorem (Vizing [1964])

An edge coloring using at most A + 1 colors exists.
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Edge Coloring—Decision Problem

What about k = A?

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R, Ga

Complexity stated as an open problem in [1979]




Edge Coloring—Decision Problem

What about k = A?

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Complexity stated as an open problem in [1979]

Theorem (Holyer [1981])
3-EDGECOLORING is NP-hard over 3-regular graphs.

Theorem (Leven, Galil [1983])

r-EDGECOLORING is NP-hard over r-regular graphs for all r > 3.




Edge Coloring—Decision Problem

Lemma (Parity Condition)

r-regular graph with a bridge —> no edge coloring using r colors exists

This graph has no edge coloring bridge
using 3 colors.




Edge Coloring—Decision Problem

Lemma (Parity Condition)
r-regular graph with a bridge —> no edge coloring using r colors exists

This graph has no edge coloring bridge
using 3 colors.

Theorem (Tait [1880])

For planar 3-regular bridgeless graphs,
edge coloring using 3 colors exists <= Four Color (Conjecture) Theorem.

Corollary

For planar 3-regular graphs,
edge coloring using 3 colors exists <> bridgeless.

§




Edge Coloring—Decision Problem

Trivial Algorithm NP-hard Simple Algorithm
(Complex Proof)

Kk # A K = r over
r-regular graphs k = 3 over planar

3-regular graphs



Edge Coloring—Counting Problem

Problem: #x-EDGECOLORING
Input: A graph G
Output: Number of edge colorings of G using at most « colors



Edge Coloring—Counting Problem

Problem: #x-EDGECOLORING
Input: A graph G
Output: Number of edge colorings of G using at most « colors

Theorem (Cai, Guo, W [2014])

#r-EDGECOLORING is #P-hard over planar r-regular graphs
for all kK > r > 3.

Tractable when x > r > 3 does not hold:

o If k < r, then no edge colorings

@ If r < 3, then only trivial graphs (paths and cycles)
Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:
Q@ ~=r, and
Q k>r.



Holant Problems

Definition

Holant problems are counting problems defined over graphs that can be
specified by local constraint functions on the vertices, edges, or both.

Example (Natural Holant Problems)

independent sets, vertex covers, edge covers, cycle covers, vertex colorings,
edge colorings, matchings, perfect matchings, and Eulerian orientations.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.



Abundance of Holant Problems

Equivalent to:
@ counting read-twice constraint satisfaction problems,
@ contraction of tensor networks, and

@ partition function of graphical models (in Forney normal form).

Generalizes:
@ simulating quantum circuits,
@ counting graph homomorphisms,

@ all manner of partition functions including

o Ising model,
e Potts model,
o edge-coloring model.



#r-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

1 if x,y,z € [k] are distinct

0 otherwise.

ADs3(x,y,z) = {
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1 if x,y,z € [k] are distinct

ADs3(x,y,z) = {

0 otherwise.

Place AD3 at each vertex with
incident edges x,y,z in a
3-regular graph G.
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#r-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

1 if x,y,z € [k] are distinct

0 otherwise.

ADs3(x,y,z) = {

Place AD3 at each vertex with
incident edges x,y,z in a
3-regular graph G.

Then we evaluate the sum of product

Holant,(G;ADs)= > [] ADs(olgw))-

0:E(G)—[k] veV(G)

Clearly Holant,,(—; AD3) computes #~r-EDGECOLORING.
10/43



More Explicit Examples

Four examples with k = 2:

matchings when f = AT-MOST-ONE,
fect matchi hen f = EXACTLY-ONE,
Holanty(G; f) counts pertect matchings when
cycle covers when f = EXACTLY-TWO,
edge covers when f = OR,

HoIantH(G;f)— Z II folew)-

(G)—{0,1} ve V(G)
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Some Higher Domain Holant Problems

In general, we consider all local constraint functions

a ifx=y=z (all equal)
f(x,y,z) = (a,b,c) =< b otherwise
c fx#y#z#x (all distinct).

The Holant problem is to compute

Holant,(G;f) = Z H (o |E(v)

o:E(G)—[r] veV(G)

Note AD3 = (0,0, 1).

12 /43



Dichotomy Theorem for Holant,(—; (a, b, ¢))

Theorem (Main Theorem)

For any k > 3 and any a, b, c € C,

the problem of computing Holant,(—; (a, b, c)) is in P or #P-hard,
even when the input is restricted to planar graphs.
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Dichotomy Theorem for Holant,(—; (a, b, ¢))

Theorem (Main Theorem)

For any k > 3 and any a, b, c € C,
the problem of computing Holant,(—; (a, b, c)) is in P or #P-hard,
even when the input is restricted to planar graphs.

Recall #r-EDGECOLORING is the special case (a, b, c) = (0,0,1).

Let’s prove the theorem for x = 3 and (a, b, c) = (0,0, 1).

13 /43



Nontrivial Examples of Tractable Holant Problems

©@ On domain size K = 3,
Holant3(—; (—5,—2,4)) is in P.
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Nontrivial Examples of Tractable Holant Problems

©@ On domain size K = 3,
Holant3(—; (—5,—2,4)) is in P.

Since
(=5,-2,4) = [(1,-2,-2)% + (-2,1,-2)®3 + (-2, -2,1)%3] ,
do a holographic transformation by the orthogonal matrix

[ 1-2-2
ng[—z 1—2].
—2-2 1
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Nontrivial Examples of Tractable Holant Problems

©@ On domain size K = 3,
Holant3(—; (—5,—2,4)) is in P.

Since
(=5,-2,4) = [(1,-2,-2)% + (-2,1,-2)®3 + (-2, -2,1)%3] ,
do a holographic transformation by the orthogonal matrix
T=1[271%]
—2-2 1

@ In general,
Holant,.(G; (k% — 6x + 4, —2(x — 2),4)) is in P.

© On domain size k = 4,
Holants(G; (—3 —4i,1,~1+2i)) is in P.

14 /43



Hardness of Holant3(—; AD3)

Hardness of Holants(—; AD3) proved by the following reduction chain:

#P <7 Holant3(—; (2,1,0,1,0))
<7 HoIant3(f; <07 1,1,0, 0>)
<7 Holant3(—; AD3)

® Q O T O

fw=x=y=1z w z
fw=x#y=z
fw=y#x=z
fw=z#x=y

otherwise.
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Reduce From Tutte Polynomial

The Tutte polynomial of an undirected graph G is

1 E(G) =0,
- _JxT(G\ex,y) e € E(G) is a bridge,
(Gixy) = yT(G\ e;x,y) e € E(G) is a loop,

T(G\ex,y)+ T(G/e;x,y) otherwise,

where G\ e is the graph obtained by deleting e
and G/e is the graph obtained by contracting e.
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Reduce From Tutte Polynomial

The Tutte polynomial of an undirected graph G is

1 E(G) =0,
- _JxT(G\ex,y) e € E(G) is a bridge,
(Gixy) = yT(G\ e;x,y) e € E(G) is a loop,

T(G\ex,y)+ T(G/e;x,y) otherwise,

where G\ e is the graph obtained by deleting e
and G/e is the graph obtained by contracting e.

The chromatic polynomial is

X(G; ) = (—=D)VITIAT(G; 1 - A, 0).
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Reduction From Tutte Polynomial: Medial Graph

Definition

(a)
A plane graph (a), its medial graph (c), and the two graphs superimposed (b).
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Reduction From Tutte Polynomial: Directed Medial Graph

Definition

(a)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

v
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Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian
Partitions

© Digraph is Eulerian if “in degree” = “out degree”.

v
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Definition

© Digraph is Eulerian if “in degree” = “out degree”.
© Eulerian partition of an Eulerian digraph Gis a partition of the edges
of G such that each part induces an Eulerian digraph.

@ Let 7.(G) be the set of Eulerian partitions of G into at most # parts.
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Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian
Partitions

© Digraph is Eulerian if “in degree” = “out degree”.

© Eulerian partition of an Eulerian digraph Gis a partition of the edges
of G such that each part induces an Eulerian digraph.

@ Let 7.(G) be the set of Eulerian partitions of G into at most # parts.

Q Let p(c) be the number of monochromatic vertices in c.

v
19/43



Reduction From Tutte Polynomial: Crucial Identity

Theorem (Ellis-Monaghan)

For a plane graph G,

KT(Gik+1,k+1)= Z 21e)
c € m(Gm)
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Reduction From Tutte Polynomial: Connection to Holant

Then
> 29 = Holant,(Gpm; (2,1,0,1,0)),
c € mu(Gm)
where — e,
2 fw=x=y==z .:' T ¢ ‘:
1 ifw=x#y=z A ,"'
Eviy={0 ifw=y#x=z
1 fw=z#x=y A'QV .
0 otherwise, '," ‘\\ /x' \\‘
ll A Y
where £ = (2,1,0,1,0). .: VOA
‘\ ,/ ~~~~..-—‘,I
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Reduction From Tutte Polynomial: Connection to Holant

Then
> 29 = Holant,(Gpm; (2,1,0,1,0)),
c € mx(Gm)
where
2 fw=x=y=z
1 fw=x#y=z
E(¥Xy)=R0 ifw=y#x=z
1 fw=z#x=y
0 otherwise,

\

where £ = (2,1,0,1,0).
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Reduction From Tutte Polynomial: Upshot

For a plane graph G,

kT(G;k+1,k+ 1) = Holant,.(Gnm; (2,1,0,1,0))

22 /43



Reduction From Tutte Polynomial: Upshot

For a plane graph G,

kT(G;k+1,k+ 1) = Holant,(Gm; (2,1,0,1,0))

Theorem (Vertigan)

For any x,y € C, the problem of
evaluating the Tutte polynomial at
(x, y) over planar graphs is #P-hard
unless (x —1)(y — 1) € {1,2} or
(x,y) € {(£L, £1), (w,w?), (w?,w)},
where w = €*™/3_ In each of these
exceptional cases, the computation
can be done in polynomial time.




Hardness of Holants(—; )

Hardness of Holants(—; AD3) proved by the following reduction chain:

#P <7 Holant3(—; (2,1,0,1,0))
<7 HoIant3(*; <07 17 17 07 0>)
<7 Holant3(—; AD3)

@ First reduction: From a #P-hard point on the Tutte polynomial.
@ Second reduction: Via polynomial interpolation.

@ Third reduction: Via a gadget construction.
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Gadget Construction

Holant(G; (0,1,1,0,0)) <7 Holant(G’; AD3)

A
1
[}
1
1
[}
1
1
1
[}
1
1
1
1
1
1

__________

0 fw=x=y==z
1 fw=x#y=z

F(¥2)=1(0,1,1,0,00 =<1 ifw=y#x=z
0 fw=z#x=y
0

otherwise.
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Gadget Construction

Holant(G; (0,1,1,0,0)) <7 Holant(G’; AD3)

f(%3)=1(0,1,1,0,0) = fw=y#x=z

fw=z#x=y

O O = = O

otherwise.

24 /43



Hardness of Holants(—; )

Hardness of Holants(—; AD3) proved by the following reduction chain:
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@ Second reduction: Via polynomial interpolation.

@ Third reduction: Via a gadget construction.
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Polynomial Interpolation: Recursive Construction

Holant3(G; (2,1,0,1,0)) <t Holants(Gs; (0,1,1,0,0))

N1 N2 Ns+1

Vertices are assigned (0,1,1,0,0).
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Polynomial Interpolation: Recursive Construction

Holant3(G; (2,1,0,1,0)) <t Holants(Gs; (0,1,1,0,0))

N1 N2 N.s+1
Vertices are assigned (0,1,1,0,0).

Let f; be the function corresponding to Ns. Then f; = M*fy, where

02000 1
11000 0
M=1(0 0 01 0 and fo= |0
00100 1
0 0001 0

Obviously f; = (0,1,1,0,0).

26 /43



Polynomial Interpolation: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

and N=

o

Il
cocorH
O R, OO
—oooo
cococonN
o oo
cor~r oo
—_ o ooo
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Polynomial Interpolation: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

o

Il
cocorH
O R, OO
—oooo

Let x = 22°. Then

hs = PN*P1fy=P

O O O O X

and

O O O+~ O

O O+~ OO

2 0 0 0 0
0 -1 0 0 0
A=10 0 1 0 0
00 0 -10
00 0 0 1
00 =141
00 x1
0 0| P =] O
10 1
01 0
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Polynomial Interpolation: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

1 20 0 0 2 0 0 0 0
1 1.0 0 0 0 -1 0 0 0
P=10 0 1 1 0 and A=1{0 0 1 0 0
00 1 -10 0 0 0 —10
00 0 0 1 00 0 0 1

Let x = 22°. Then
x 0000 S+l
01000 x1
f(x)=fos=PN*P =P |0 0 1 0 O| P ify= 0
00010 1
00001 0

Note f(4) = (2,1,0,1,0).
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Polynomial Interpolation: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

1 20 0 0 2 0 0 0 0
1 1.0 0 0 0 -1 0 0 0
P=10 0 1 1 0 and A=10 0 1 0 0
00 1 -10 00 0 -10
0 0 0 0 1 00 0 0 1

Let x = 22°. Then
x 0000 =141
01000 x1
f(x)=fs=PN*P =P |0 0 1 0 O| P 'fo=| O
00010 1
00001 0

Note £(4) = (2,1,0,1,0).
(Side note: picking s = 1 so that x = 4 only works when x = 3.)

27 /43



Polynomial Interpolation: The Interpolation

Holants(—; (2,1,0,1,0)) <7 Holantsz(—; (0,1,1,0,0))
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Polynomial Interpolation: The Interpolation

Holant3(—; (2,1,0,1,0)) = Holants(—; f(4))
<71 Holants(—; f(x))
<r HOIant3(_v< 71717070>)
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Polynomial Interpolation: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—; f(4))
<71 Holants(—; f(x))
<7 Holant3(—;(0,1,1,0,0))
If G has n vertices, then
p(G, x) = Holant3(G; f(x)) € Z[x]

has degree n.
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Polynomial Interpolation: The Interpolation

Holant3(—; (2,1,0,1,0)) = Holant3(—; f(4))
<7 Holants3(—; f(x))
ST Holant3(—; <07 17 17 07 0>)

If G has n vertices, then
p(G, x) = Holant3(G; f(x)) € Z[x]
has degree n.

Let Gys be the graph obtained by replacing every vertex in G with Nos.
Then Holant3(Gos; (0,1,1,0,0)) = p(G,2%).
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Polynomial Interpolation: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—; 1 (4))
<7 Holant3(—; f(x))
<7 Holant3(—;(0,1,1,0,0))
If G has n vertices, then
p(G, x) = Holant3(G; f(x)) € Z[x]

has degree n.

Let Gys be the graph obtained by replacing every vertex in G with Nos.
Then Holant3(Gos; (0,1,1,0,0)) = p(G,2%).

Using oracle for Holants(—; (0,1, 1,0,0)), evaluate p(G,x) at n+ 1
distinct points x = 225 for 0 < s < n.

By polynomial interpolation, efficiently compute the coefficients of p(G, x).
QED.
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Proof Outline for Dichotomy of Holant(—; (a, b, ¢))

For all a,b,c € C,
want to show that Holant(—; (a, b, ¢)) is in P or #P-hard.
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Proof Outline for Dichotomy of Holant(—; (a, b, ¢))

For all a,b,c € C,
want to show that Holant(—; (a, b, ¢)) is in P or #P-hard.

Using (a, b, c):
@ Attempt to construct a special unary constraint.

© Attempt to interpolate all binary constraints of a special form,
assuming we have the special unary constraint.

© Construct a special ternary constraint that we show is #P-hard,
assuming we have the special unary and binary constraints.
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Proof Outline for Dichotomy of Holant(—; (a, b, ¢))

For all a,b,c € C,
want to show that Holant(—; (a, b, ¢)) is in P or #P-hard.

Using (a, b, c):
@ Attempt to construct a special unary constraint.

© Attempt to interpolate all binary constraints of a special form,
assuming we have the special unary constraint.

© Construct a special ternary constraint that we show is #P-hard,
assuming we have the special unary and binary constraints.

For some a, b, c € C, our attempts fail.

In those cases, we either
© show the problem is in P or

© prove #P-hardness without the help of additional signatures.
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Holant({a, b, ¢))

Construct (1)

Counting

Interpolate AT 2 . Weighted
Cases 1, 2,3, 4,5 Fail )

all (z,y) L 9.5 9.6.9.7 9.11. 9.12 Corollary 8.4 Eulerian

Corollary 9.13 OIIMNAS -0y 20y 90y 50 O B=0 Partitions

Corollary 7.13

Attempts 3 and 4
All Cases

Construct
(3v—1), 5-3,-3)
Lemma 7.3

Lemmas 7.14
and 7.15

Construct (a, b, b)
with  a # b

Succeed
Bobby Fischer Gadget
Lemma 4.18

{ Counting Vertex n»Colorings}

Corollary 4.19
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Logical Dependencies in Dichotomy of Holant,(—; (a, b, ¢))




Polynomial Interpolation

Evaluate

1234 .
p(x) = 2x3 — 3x2 — 17x + 10 It \//

Interpolate

p(1)=2-13-3.12 - 17-1+10= -8
)=2-23-3.22 17.24+10 = —20
3)=2-33-3.32-17.34+10=—14
4)=2-4>-3.42 - 17-4+10= 22
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Polynomial Interpolation

Evaluate

x€{1,2,3,4}

p(x) = 2x3 —3x% — 17x + 10

~_

-1 1 2 3 4
-10
~20

Interpolate

10 2 -8
200 | -3 _ |-20
300 |17 —14
40 10 22

Vandermonde system
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Polynomial Interpolation

Evaluate

x€{1,2,3,4}

p(x) = 2x3 —3x% — 17x + 10

~_

Interpolate

-1 1 2 3 4
-10
~20

13 12 1t 107 [7? -8
23 22 2 20 |7 _|-20
33 32 3t 300 |7 T | —14
43 42 41 40] |7 22

Vandermonde system
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Polynomial Interpolation

p(x) = 2x3 —3x% — 17x + 10

Evaluate

x€{1,2,3,4}

o T 2 AR
10
\/ B

Interpolate

13 12 11 1077t -8

23 22 21 20 —20
33 32 31 30 —14
43 42 41 4O 22

Vandermonde system
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Evaluate
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33 32 31 30 —14
43 42 41 4O 22
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Interpolating Univariate Polynomials

Let py(X) = co+aX + -+ cyX? € Z[X].

Can interpolate py(X) from
pd(x0), pa(x1) - -+, Pa(xa)

i
X0, X1, - - ., Xg are distinct
(x0)°  (x0)* (x0)?] [co Pa(xo)
(x1)° (xa)* (x1)?| |a _ | palxa)
(P ()t o )] e Lpatxa)

Vandermonde system
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Interpolating Univariate Polynomials

Let py(X) = co+aX + -+ cyX? € Z[X].

Vd € N, Can interpolate py(X) from
Pd(x0), Pa(x1); - - -, pa(xd)

X0, X1, - - - are distinct
(x0)° (x0)' -+ (x0)?] [ Pd(xo)
(x1)° ()t - ()| |a _ | palxa)
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Interpolating Univariate Polynomials

Let py(X) = co+aX + -+ cyX? € Z[X].

Vd € N, Can interpolate py(X) from
pa(x°), pa(xt), .., pa(x?)

x0 xt . are distinct
(x2° (Ot - (0] [eo pa(x°)
0 NS LT O Ul I P I Ve
G e ()] Lea]  [pate)

Vandermonde system

33/43



Interpolating Univariate Polynomials

Let py(X) = co+aX + -+ cyX? € Z[X].

Vd € N, Can interpolate py(X) from
pa(x°), pa(xt), .., pa(x?)

XY, x, ... are distinct

)

x is not a root of unity

(00 GO (O [a]  [pa(x)
G G [ e [pa)
P eyt ) L) Lpae)

Vandermonde system
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Interpolating Multivariate Polynomials

Let
Pa(X,Y,Z) = copa X°YOZ + -+ 4 cyo0 XYOZ0 € Z[X, Y, Z]
be a homogeneous multivariate polynomial of degree d.

Vd € N, Can interpolate py(X,Y,Z) from
Pd(X07YOa 20)7 pd(X17y1721)7 oo

i}
?
(x0)°(y0)°(z0)? -+ (x0)?(y0)°(20)°] [c00,4 pd(x0, y0, 20)

(Xl)o(yl)o(zl)d (Xl)d(}/1)0(21)0 : = Pd(Xl,yl,Zl)

Cd,0,0
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Interpolating Multivariate Polynomials

Let
Pa(X,Y,Z) = copa X°YOZ + -+ 4 cyo0 XYOZ0 € Z[X, Y, Z]
be a homogeneous multivariate polynomial of degree d.

Vd € N, Can interpolate py(X,Y,Z) from
Pd(XOJ’Oa 20)7 pd(X17y1721)7 LR

)
(x0)°(2)°(2%) - (x°)(°)°(2°)°] [0, pa(x%y°, 2%
(Xl)O(yl)O(Zl)d (Xl)d(yl)O(Zl)O _ pd(Xl,yl,Zl)

€d,0,0
Vandermonde system
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Interpolating Multivariate Polynomials

Let
Pa(X,Y,Z) = copa X°YOZ + -+ 4 cyo0 XYOZ0 € Z[X, Y, Z]
be a homogeneous multivariate polynomial of degree d.

Vd € N, Can interpolate py(X,Y,Z) from
Pd(XOJ’Oa 20)7 pd(X17y1721)7 LR

)
(x yEZZ)(l’ (X"’yozo)‘l) 0,0,d pa(x°, y°, 2%)
( ) %) :

: €d,0,0 :
Vandermonde system
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Interpolating Multivariate Polynomials

Let
Pa(X,Y,Z) = copa X°YOZ + -+ 4 cyo0 XYOZ0 € Z[X, Y, Z]
be a homogeneous multivariate polynomial of degree d.

Vd € N, Can interpolate py(X,Y,Z) from
Pd(XOJ’Oa 20)7 pd(X17y1721)7 LR

)

lattice condition

(XdyOZO)O
(xdyozo)l

.y°, 29

€0,0,d Pd(X
: vt 2

= pd(X

= o

€d,0,0
Vandermonde system
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Lattice Condition

We say that A1, A\p, ..., Ay € C — {0} satisfy the lattice condition if

J4
VxeZ'—{0} with > x=0,
i=1

¢

[Tx#1

i=1

we have
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Lattice Condition

We say that A1, A\p, ..., Ay € C — {0} satisfy the lattice condition if

J4
VxeZ'—{0} with > x=0,
i=1

¢

[Tx#1

i=1

we have

| A\,

Example (Easy)

For any i/, j, k € Z such that
@i+ j+k=0and
e (i,j,k)#(0,0,0),

it follows that

235K £ 1.
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Lattice Condition: Another Example

Example (Medium)

For any i/, j, k € Z such that
@ /+j+k=0and
o (i,j, k) # (0,0,0),

it follows that

1 (3+¢§)j (3—\/§)k £1.
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Lattice Condition: Another Example

Example (Medium)

For any i/, j, k € Z such that
@ /+j+k=0and

e (i,j,k)#(0,0,0),
it follows that

1 (3+x/§)j_k7k — 1 (3+¢§)j (3—\/§)k £1.
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Lattice Condition: Another Example

Example (Medium)

For any i/, j, k € Z such that
@ /+j+k=0and

e (i,j,k)#(0,0,0),
it follows that

1 (3+x/§)j_k7k — 1 (3+¢§)j (3—\/§)k £1.

Suppose

1 (3 + \/E)j_k 7k = 1.
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Lattice Condition: Another Example

Example (Medium)

For any i/, j, k € Z such that
@ /+j+k=0and

e (i,j,k)#(0,0,0),
it follows that

1 (3+x/§)j_k7k — 1 (3+¢§)j (3—\/§)k £1.

Suppose
: i—k
1 (3+ \/E)J 7" =1.

Then

Contradiction! )
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“Hard” Lattice Condition Example

Want to prove:

For all integers y > 4, the roots of
plx.y) = x° = (2y + 1) = (y? + 2% + (y = Dyx + y°.

satisfy the lattice condition.
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“Hard” Lattice Condition Example

Want to prove:

For all integers y > 4, the roots of
plx.y) = x° = (2y + 1) = (y? + 2% + (y = Dyx + y°.

satisfy the lattice condition.

Let p(x) € Q[x] be a polynomial of degree n > 2. If

© the Galois group of p over Q is S, or A, and
@ the roots of p do not all have the same complex norm,

then the roots of p satisfy the lattice condition.
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Factorizations and Roots

Galois group of p over Q is S, or A,
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Factorizations and Roots

Galois group of p over Q is S, or A,
\

p is irreducible over Q
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p is irreducible over Q
{ (Gauss' Lemma)
p is irreducible over Z
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p has no root in Z
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Factorizations and Roots

Galois group of p over Q is S, or A,
U

p is irreducible over Q
{ (Gauss' Lemma)
p is irreducible over Z

4

p has no root in Z

What are the known nontrivial factorizations of p(x,y)?
What are the known integer roots of p(x,y)?

((x — 1)(x* + x3 +2x2 —x +1) y=-1
x2(x3 —x —2) y=0
(x+1)(x* —x3 —2x?> —x+1) y=1
(x—1)(x®>—x—4)(x>+2x+2) y=2
(x =3)(x* +3x3+2x> —5x —9) y =3,

p(x,y) =

\
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Siegel’s Theorem

Theorem (Siegel’s Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial in
Z[x, y] has only finitely many integer solutions.
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Siegel’s Theorem

Theorem (Siegel’s Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial in
Z[x, y] has only finitely many integer solutions.

@ p(x,y) has genus 3, satisfies hypothesis
@ Bad news is that Siegel's theorem is not effective
@ Several effective versions, but the best bound we found is 1020000

@ Integer solutions could be enormous
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x2—091y? =1
Smallest solution:

(379516400906811930638014896080,
12055735790331359447442538767)

Next smallest solution:

(288065397114519999215772221121510725946342952839946398732799,
9150698914859994783783151874415159820056535806397752666720)
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What We Believe versus What We Can Prove

For any integer y > 4, p(x, y) is irreducible in Z[x].

Don’t know how to prove this.
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What We Believe versus What We Can Prove

For any integer y > 4, p(x, y) is irreducible in Z[x].

Don’t know how to prove this.

Only integer solutions to p(x,y) =0 are

(1,-1),(0,0),(-1,1),(1,2),(3,3).

41 /43



Proof Sketch

Puiseux series expansions for p(x,y) are

yi(x) =x*+2x 1+ 2x7% —6x* — 18x7° + O(x°),

1 1 65 1471
_ 32t o Lt —1/2 -1 _ —3/2 _ 2 —5/2
ya(x) X X + 5% 128 X 1022 X724+ O(x™>%),
1 65 1471
— B2t sy P22 12 -1y 2T 32 -2 —5/2
y3(x) X 5%~ gx + 128 X+ 1002~ + O(x~>/9).
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Proof Sketch

Puiseux series expansions for p(x,y) are

yi(x) =x*+2x 1+ 2x7% —6x* — 18x7° + O(x°),

1 1 65 1471
_ 32t o Lt —1/2 -1 _ —3/2 _ 2 —5/2
ya(x) X X + 5% 128 X 1022 X724+ O(x™>%),
1 65 1471
— B2t sy P22 12 -1y 2T 32 -2 —5/2
y3(x) X 5%~ gx + 128 X+ 1002~ + O(x~>/9).

We pick functions g;(x, y) such that
© (a3, b) integer solution to p(x,y) = 0 implies g;(a, b) € Z
Q@ si(x, yi(x)) = o(1)

Thus, gi(x,yi(x)) € Z as x — oo
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Puiseux series expansions for p(x,y) are

yi(x) =x*+2x 1+ 2x7% —6x* — 18x7° + O(x°),

1 1 65 1471
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1 65 1471
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y3(x) X 5%~ gx + 128 X+ 1002~ + O(x~>/9).

We pick functions g;(x, y) such that
© (a3, b) integer solution to p(x,y) = 0 implies g;(a, b) € Z
Q@ si(x, yi(x)) = o(1)

Thus, gi(x,yi(x)) € Z as x — oo

Consider go(x,y) = y? + xy — x3 + x
g2 () = © V&)
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Proof Sketch

Puiseux series expansions for p(x,y) are

yi(x) =x*+2x 1+ 2x7% —6x* — 18x7° + O(x°),

1 1 65 1471
_ 32t o Lt —1/2 -1 _ —3/2 _ 2 —5/2
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We pick functions g;(x, y) such that
© (a3, b) integer solution to p(x,y) = 0 implies g;(a, b) € Z
Q@ si(x, yi(x)) = o(1)

Thus, gi(x,yi(x)) € Z as x — oo

Consider g»(x,y) = Yy );i +y—x2+1

X

e () = )
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Proof Sketch

Puiseux series expansions for p(x,y) are
yi(x) =x*+2x 1+ 2x7% —6x* — 18x7° + O(x°),

yalx) = X% - %x lan B M s o gy,

8 128 1024
1 65 _ _ 1471 _ _ _
y3(x):—x3/2f§xf§x1/2+58 12 _ 1+ﬂx 3/2 _ 52 4 O(x~%2).

We pick functions g;(x, y) such that
© (a3, b) integer solution to p(x,y) = 0 implies g;(a, b) € Z
Q@ gi(x,yi(x)) = o(1)

Thus, gi(x,yi(x)) € Z as x — oo

Consider go(x,y) = Yoby—ddx );—2 +y—x2+1

X

1
e () = )
If |a] > 16, then g»(a, y2(a)) is not an integer.
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Thank You


www.cs.wisc.edu/~tdw

Thank You

Paper and slides available on my website:
WWw.cs.wisc.edu/~tdw
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