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Edge Coloring

Definition
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Edge Coloring–Decision Problem

Problem: κ-EdgeColoring
Input: A graph G
Output: “YES” if G has an edge coloring using at most κ colors and

“NO” otherwise

Obviously no edge coloring using less than ∆ colors.

Theorem (Vizing [1964])

An edge coloring using at most ∆ + 1 colors exists.
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Edge Coloring–Decision Problem

What about κ = ∆?

Complexity stated as an open problem in [1979]

Theorem (Holyer [1981])

3-EdgeColoring is NP-hard over 3-regular graphs.

Theorem (Leven, Galil [1983])

r -EdgeColoring is NP-hard over r -regular graphs for all r ≥ 3.
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Edge Coloring–Decision Problem

Lemma (Parity Condition)

r -regular graph with a bridge =⇒ no edge coloring using r colors exists

Example

This graph has no edge coloring
using 3 colors.

bridge

Theorem (Tait [1880])

For planar 3-regular bridgeless graphs,

edge coloring using 3 colors exists ⇐⇒ Four Color (Conjecture) Theorem.

Corollary

For planar 3-regular graphs,

edge coloring using 3 colors exists ⇐⇒ bridgeless.
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Edge Coloring–Decision Problem

Trivial Algorithm

κ 6= ∆

NP-hard

κ = r over
r -regular graphs

Simple Algorithm
(Complex Proof)

κ = 3 over planar
3-regular graphs
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Edge Coloring–Counting Problem

Problem: #κ-EdgeColoring
Input: A graph G
Output: Number of edge colorings of G using at most κ colors

Theorem (Cai, Guo, W [2014])

#κ-EdgeColoring is #P-hard over planar r -regular graphs
for all κ ≥ r ≥ 3.

Tractable when κ ≥ r ≥ 3 does not hold:

If κ < r , then no edge colorings

If r < 3, then only trivial graphs (paths and cycles)

Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:
1 κ = r , and
2 κ > r .
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Holant Problems

Definition

Holant problems are counting problems defined over graphs that can be
specified by local constraint functions on the vertices, edges, or both.

Example (Natural Holant Problems)

independent sets, vertex covers, edge covers, cycle covers, vertex colorings,
edge colorings, matchings, perfect matchings, and Eulerian orientations.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.
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Abundance of Holant Problems

Equivalent to:

counting read-twice constraint satisfaction problems,

contraction of tensor networks, and

partition function of graphical models (in Forney normal form).

Generalizes:

simulating quantum circuits,

counting graph homomorphisms,

all manner of partition functions including

Ising model,
Potts model,
edge-coloring model.
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#κ-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

AD3(x , y , z) =

{
1 if x , y , z ∈ [κ] are distinct

0 otherwise.

Place AD3 at each vertex with
incident edges x , y , z in a
3-regular graph G . AD3

AD3

AD3 AD3

y

x z

Then we evaluate the sum of product

Holantκ(G ; AD3) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

AD3

(
σ |E(v)

)
.

Clearly Holantκ(−; AD3) computes #κ-EdgeColoring.
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More Explicit Examples

Four examples with κ = 2:

Holant2(G ; f ) counts


matchings when f = AT-MOST-ONEr

perfect matchings when f = EXACTLY-ONEr

cycle covers when f = EXACTLY-TWOr

edge covers when f = ORr

Holantκ(G ; f ) =
∑

σ:E(G)→{0,1}

∏
v∈V (G)

f
(
σ |E(v)

)
.
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Some Higher Domain Holant Problems

In general, we consider all local constraint functions

f (x , y , z) = 〈a, b, c〉 =


a if x = y = z (all equal)

b otherwise

c if x 6= y 6= z 6= x (all distinct).

The Holant problem is to compute

Holantκ(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Note AD3 = 〈0, 0, 1〉.
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Dichotomy Theorem for Holantκ(−; 〈a, b, c〉)

Theorem (Main Theorem)

For any κ ≥ 3 and any a, b, c ∈ C,
the problem of computing Holantκ(−; 〈a, b, c〉) is in P or #P-hard,
even when the input is restricted to planar graphs.

Recall #κ-EdgeColoring is the special case 〈a, b, c〉 = 〈0, 0, 1〉.

Let’s prove the theorem for κ = 3 and 〈a, b, c〉 = 〈0, 0, 1〉.
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Nontrivial Examples of Tractable Holant Problems

1 On domain size κ = 3,
Holant3(−; 〈−5,−2, 4〉) is in P.

Since

〈−5,−2, 4〉 =
[
(1,−2,−2)⊗3 + (−2, 1,−2)⊗3 + (−2,−2, 1)⊗3

]
,

do a holographic transformation by the orthogonal matrix

T = 1
3

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
.

2 In general,
Holantκ(G ; 〈κ2 − 6κ+ 4,−2(κ− 2), 4〉) is in P.

3 On domain size κ = 4,
Holant4(G ; 〈−3− 4i , 1,−1 + 2i〉) is in P.
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Hardness of Holant3(−; AD3)

Hardness of Holant3(−; AD3) proved by the following reduction chain:

#P ≤T Holant3(−; 〈2, 1, 0, 1, 0〉)
≤T Holant3(−; 〈0, 1, 1, 0, 0〉)
≤T Holant3(−; AD3)

f ( w z
x y ) = 〈a, b, c, d , e〉 =



a if w = x = y = z

b if w = x 6= y = z

c if w = y 6= x = z

d if w = z 6= x = y

e otherwise.

f

w z

x y

First reduction: From a #P-hard point on the Tutte polynomial.

Second reduction: Via polynomial interpolation.

Third reduction: Via a gadget construction.
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Reduce From Tutte Polynomial

Definition

The Tutte polynomial of an undirected graph G is

T (G ; x , y) =


1 E (G ) = ∅,
xT (G \ e; x , y) e ∈ E (G ) is a bridge,

yT (G \ e; x , y) e ∈ E (G ) is a loop,

T (G \ e; x , y) + T (G/e; x , y) otherwise,

where G \ e is the graph obtained by deleting e
and G/e is the graph obtained by contracting e.

The chromatic polynomial is

χ(G ;λ) = (−1)|V |−1λT(G ; 1− λ, 0).
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Reduction From Tutte Polynomial: Medial Graph

Definition

(a) (b) (c)

A plane graph (a), its medial graph (c), and the two graphs superimposed (b).

17 / 43



Reduction From Tutte Polynomial: Directed Medial Graph

Definition

(a) (b) (c)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).
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Reduction From Tutte Polynomial: Eulerian Graphs and Eulerian
Partitions

Definition

1 Digraph is Eulerian if “in degree” = “out degree”.

2 Eulerian partition of an Eulerian digraph ~G is a partition of the edges
of ~G such that each part induces an Eulerian digraph.

3 Let πκ(~G ) be the set of Eulerian partitions of ~G into at most κ parts.

4 Let µ(c) be the number of monochromatic vertices in c .

κ ≥ 2

µ(c) = 1
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Reduction From Tutte Polynomial: Crucial Identity

Theorem (Ellis-Monaghan)

For a plane graph G,

κT(G ;κ+ 1, κ+ 1) =
∑

c ∈ πκ(~Gm)

2µ(c).
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Reduction From Tutte Polynomial: Connection to Holant

Then ∑
c ∈ πκ(~Gm)

2µ(c) = Holantκ(Gm; 〈2, 1, 0, 1, 0〉),

where

E( w z
x y ) =



2 if w = x = y = z

1 if w = x 6= y = z

0 if w = y 6= x = z

1 if w = z 6= x = y

0 otherwise,

where E = 〈2, 1, 0, 1, 0〉.

E
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Reduction From Tutte Polynomial: Upshot

Corollary

For a plane graph G,

κT (G ;κ+ 1, κ+ 1) = Holantκ(Gm; 〈2, 1, 0, 1, 0〉)

Theorem (Vertigan)

For any x , y ∈ C, the problem of
evaluating the Tutte polynomial at
(x , y) over planar graphs is #P-hard
unless (x − 1)(y − 1) ∈ {1, 2} or
(x , y) ∈ {(±1,±1), (ω, ω2), (ω2, ω)},
where ω = e2πi/3. In each of these
exceptional cases, the computation
can be done in polynomial time.

- 2 - 1 1 2 3 4
x

- 2

- 1

1

2

3

4

y
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Hardness of Holant3(−; AD3)

Hardness of Holant3(−; AD3) proved by the following reduction chain:

#P ≤T Holant3(−; 〈2, 1, 0, 1, 0〉)
≤T Holant3(−; 〈0, 1, 1, 0, 0〉)
≤T Holant3(−; AD3)

First reduction: From a #P-hard point on the Tutte polynomial.

Second reduction: Via polynomial interpolation.

Third reduction: Via a gadget construction.
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Gadget Construction

Holant(G ; 〈0, 1, 1, 0, 0〉) ≤T Holant(G ′; AD3)

w

x

AD3

AD3

z

y

f ( w z
x y ) = 〈0, 1, 1, 0, 0〉 =



0 if w = x = y = z

1 if w = x 6= y = z

1 if w = y 6= x = z

0 if w = z 6= x = y

0 otherwise.
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Hardness of Holant3(−; AD3)

Hardness of Holant3(−; AD3) proved by the following reduction chain:

#P ≤T Holant3(−; 〈2, 1, 0, 1, 0〉)
≤T Holant3(−; 〈0, 1, 1, 0, 0〉)
≤T Holant3(−; AD3)

First reduction: From a #P-hard point on the Tutte polynomial.

Second reduction: Via polynomial interpolation.

Third reduction: Via a gadget construction.
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Polynomial Interpolation: Recursive Construction

Holant3(G ; 〈2, 1, 0, 1, 0〉) ≤T Holant3(Gs ; 〈0, 1, 1, 0, 0〉)

N1 N2

Ns

Ns+1

Vertices are assigned 〈0, 1, 1, 0, 0〉.

Let fs be the function corresponding to Ns . Then fs = Ms f0, where

M =


0 2 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 and f0 =


1
0
0
1
0

 .
Obviously f1 = 〈0, 1, 1, 0, 0〉.
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Polynomial Interpolation: Eigenvectors and Eigenvalues

Spectral decomposition M = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s . Then

f (x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1f0 =


x−1
3 + 1
x−1
3
0
1
0

 .

Note f (4) = 〈2, 1, 0, 1, 0〉.
(Side note: picking s = 1 so that x = 4 only works when κ = 3.)
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Polynomial Interpolation: The Interpolation

Holant3(−; 〈2, 1, 0, 1, 0〉) ≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

≤T Holant3(−; f (x))

≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

If G has n vertices, then

p(G , x) = Holant3(G ; f (x)) ∈ Z[x ]

has degree n.

Let G2s be the graph obtained by replacing every vertex in G with N2s .
Then Holant3(G2s ; 〈0, 1, 1, 0, 0〉) = p(G , 22s).

Using oracle for Holant3(−; 〈0, 1, 1, 0, 0〉), evaluate p(G , x) at n + 1
distinct points x = 22s for 0 ≤ s ≤ n.

By polynomial interpolation, efficiently compute the coefficients of p(G , x).
QED.
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Proof Outline for Dichotomy of Holant(−; 〈a, b, c〉)

For all a, b, c ∈ C,
want to show that Holant(−; 〈a, b, c〉) is in P or #P-hard.

Using 〈a, b, c〉:
1 Attempt to construct a special unary constraint.

2 Attempt to interpolate all binary constraints of a special form,
assuming we have the special unary constraint.

3 Construct a special ternary constraint that we show is #P-hard,
assuming we have the special unary and binary constraints.

For some a, b, c ∈ C, our attempts fail.

In those cases, we either

1 show the problem is in P or

2 prove #P-hardness without the help of additional signatures.
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Holant(�a, b, c�)

Attempts 1 and 2
Lemma 8.1

Attempt 1
Lemma 9.4

Attempt 2
Cases 1, 2, 3, 4, 5

Lemmas 9.5, 9.6, 9.7, 9.11, 9.12

Attempts 3 and 4
All Cases

Lemma B.1

Attempt 1
Lemma 7.1

Bobby Fischer Gadget
Lemma 4.18

Counting Vertex κ-Colorings
Corollary 4.19

Fail

Interpolate
all �x, y�

Corollary 9.13

Construct �1�

Construct �a, b, b�
with a �= b

Corollary 8.4

Lemma 8.2

Lemma 8.3

Construct
�3(κ−1), κ−3,−3�

Lemma 7.3

Counting
Weighted
Eulerian

Partitions
Corollary 7.13

Lemmas 7.14
and 7.15

Succeed

Succeed

Succeed

Fail

B = 0

Fail

A = 0
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Logical Dependencies in Dichotomy of Holantκ(−; 〈a, b, c〉)
edge coloring k=r

edge coloring k>r hard

major interpolate results ternary and quaternary resutls

construct unary

interpolate all binary

planar Tutte dichotomy

planar Eulerian partition hard (tau_color)

reduction to vertex coloring

directed medial graph

Tutte diagonal as state sum

Eulerian partition

state sum as Holant problem

parity condition

tau_color: f(P_0) = 0

edge coloring k=r hard planar Eulerian partition hard (tau_4)

construct <1> in two cases generalized edge coloring hard

chomatic in Tuttebinary interpolation eigenvalues

interpolate all binaries

generic generalized anti-gadget interpolation

generic binary interpolation

special binary interpolation obtain =_4

4th special case arity reduction

edge coloring k>r hard

planar pairing def

find planar pairing

Bobby Fischer gadget

ternary construction summarylocal holographic transformation

check orthogonality condition

<3(k-1),k-3,-3> hard for k>3

lattice condition (LC)

LC characterization for cubic polys LC satisfied by Sn or An Galois Gpsany arity interpolation

reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3 p(x,3) satisfies LC local holographic transformation

obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0

obtain any a+(k-3)b-(k-2)c=0

obtain <3(k-1),k-3,-3>

Triangle gadget

3R & 2C roots in x for p(x,y)

p(x,y) satisfies LC for y=>3

Puiseux series

only 5 solutions in Z for p(x,y) Dedkind's Theoremcondition for Sn Galois gp condition from same norm roots

<6,0,-3> hard

<a,b,c> dichotomy

extra special cases

1st special case2nd special case 3rd special case 5th special case

<(k-1)(k-2),2-k,2> hard

a+(k-3)b-(k-2)c=0 dichotomy

1st distinct norms2nd distinct norms

typical case

binary interpolation summary

eigenvalue shifted triple (EST)

EST distinct norms
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Polynomial Interpolation

p(x) = 2x3 − 3x2 − 17x + 10
-2 -1 1 2 3 4

-20

-10

10

20

30

Evaluate

x∈{1,2,3,4}

Interpolate

p(1) = 2 · 13 − 3 · 12 − 17 · 1 + 10 = −8

p(2) = 2 · 23 − 3 · 22 − 17 · 2 + 10 = −20

p(3) = 2 · 33 − 3 · 32 − 17 · 3 + 10 = −14

p(4) = 2 · 43 − 3 · 42 − 17 · 4 + 10 = 22
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Polynomial Interpolation

p(x) = 2x3 − 3x2 − 17x + 10
-2 -1 1 2 3 4

-20

-10

10

20

30

Evaluate

x∈{1,2,3,4}

Interpolate


13 12 11 10

23 22 21 20

33 32 31 30

43 42 41 40




2
−3
−17
10

 =


−8
−20
−14
22
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Interpolating Univariate Polynomials

Let pd(X ) = c0 + c1X + · · ·+ cdX d ∈ Z[X ].

∀d ∈ N,

Can interpolate pd(X ) from
pd(x0), pd(x1), . . . , pd(xd)

m
x0, x1, . . . , xd are distinct

m
x is not a root of unity


(x0)0 (x0)1 · · · (x0)d

(x1)0 (x1)1 · · · (x1)d

...
...

. . .
...

(xd)0 (xd)1 · · · (xd)d




c0
c1
...

cd

 =


pd(x0)
pd(x1)

...
pd(xd)


Vandermonde system
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Interpolating Multivariate Polynomials

Let

pd(X ,Y ,Z ) = c0,0,d X 0Y 0Zd + · · ·+ cd ,0,0 X dY 0Z 0 ∈ Z[X ,Y ,Z ]

be a homogeneous multivariate polynomial of degree d .

∀d ∈ N, Can interpolate pd(X ,Y ,Z ) from
pd(x0, y0, z0), pd(x1, y1, z1), . . .

m
?
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Lattice Condition

Definition

We say that λ1, λ2, . . . , λ` ∈ C− {0} satisfy the lattice condition if

∀x ∈ Z` − {0} with
∑̀
i=1

xi = 0,

we have ∏̀
i=1

λxii 6= 1.

Example (Easy)

For any i , j , k ∈ Z such that

i + j + k = 0 and

(i , j , k) 6= (0, 0, 0),

it follows that
2i3j5k 6= 1.
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Lattice Condition: Another Example

Example (Medium)

For any i , j , k ∈ Z such that

i + j + k = 0 and

(i , j , k) 6= (0, 0, 0),

it follows that

1i
(

3 +
√

2
)j−k

7k =

1i
(

3 +
√

2
)j (

3−
√

2
)k
6= 1.

Suppose

1i
(

3 +
√

2
)j−k

7k = 1.

Then
j − k = 0 k = 0 j = 0 i = 0.

Contradiction!
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“Hard” Lattice Condition Example

Want to prove:

For all integers y ≥ 4, the roots of

p(x , y) = x5 − (2y + 1)x3 − (y2 + 2)x2 + (y − 1)yx + y3.

satisfy the lattice condition.

Lemma

Let p(x) ∈ Q[x ] be a polynomial of degree n ≥ 2. If

1 the Galois group of p over Q is Sn or An and

2 the roots of p do not all have the same complex norm,

then the roots of p satisfy the lattice condition.
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Factorizations and Roots

Galois group of p over Q is Sn or An

⇓
p is irreducible over Q

m (Gauss’ Lemma)
p is irreducible over Z

⇓
p has no root in Z

What are the known nontrivial factorizations of p(x , y)?
What are the known integer roots of p(x , y)?

p(x , y) =



(x − 1)(x4 + x3 + 2x2 − x + 1) y = −1

x2(x3 − x − 2) y = 0

(x + 1)(x4 − x3 − 2x2 − x + 1) y = 1

(x − 1)(x2 − x − 4)(x2 + 2x + 2) y = 2

(x − 3)(x4 + 3x3 + 2x2 − 5x − 9) y = 3.
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Siegel’s Theorem

Theorem (Siegel’s Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial in
Z[x , y ] has only finitely many integer solutions.

p(x,y) has genus 3, satisfies hypothesis

Bad news is that Siegel’s theorem is not effective

Several effective versions, but the best bound we found is 1020000

Integer solutions could be enormous
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Diophantine Equations with Enormous Solutions

Pell’s Equation (genus 0)

x2 − 991y2 = 1

Smallest solution:

(379516400906811930638014896080,

12055735790331359447442538767)

Next smallest solution:

(288065397114519999215772221121510725946342952839946398732799,

9150698914859994783783151874415159820056535806397752666720)
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What We Believe versus What We Can Prove

Conjecture

For any integer y ≥ 4, p(x , y) is irreducible in Z[x ].

Don’t know how to prove this.

Lemma

Only integer solutions to p(x , y) = 0 are

(1,−1), (0, 0), (−1, 1), (1, 2), (3, 3).
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Proof Sketch

Puiseux series expansions for p(x , y) are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6),

y2(x) = x3/2 − 1

2
x +

1

8
x1/2 − 65

128
x−1/2 − x−1 − 1471

1024
x−3/2 − x−2 + O(x−5/2),

y3(x) = −x3/2 − 1

2
x − 1

8
x1/2 +

65

128
x−1/2 − x−1 +

1471

1024
x−3/2 − x−2 + O(x−5/2).

We pick functions gi (x , y) such that
1 (a, b) integer solution to p(x , y) = 0 implies gi (a, b) ∈ Z
2 gi (x , yi (x)) = o(1)

Thus, gi (x , yi (x)) 6∈ Z as x →∞

Consider g2(x , y) = y2 + xy − x3 + x

y2+xy−x3+x
x = y2

x + y − x2 + 1

g2 (x , y2(x)) = Θ

(

1√
x

)
If |a| > 16, then g2(a, y2(a)) is not an integer.
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Proof Sketch

Puiseux series expansions for p(x , y) are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6),

y2(x) = x3/2 − 1

2
x +

1

8
x1/2 − 65

128
x−1/2 − x−1 − 1471

1024
x−3/2 − x−2 + O(x−5/2),

y3(x) = −x3/2 − 1

2
x − 1

8
x1/2 +

65

128
x−1/2 − x−1 +

1471

1024
x−3/2 − x−2 + O(x−5/2).

We pick functions gi (x , y) such that
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2 gi (x , yi (x)) = o(1)
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x = y2

x + y − x2 + 1

g2 (x , y2(x)) = Θ

(
1√
x

)
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Thank You

Paper and slides available on my website:
www.cs.wisc.edu/~tdw
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