Siegel's theorem, edge coloring, and a holant dichotomy

Tyson Williams (University of Wisconsin-Madison)

Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison)

Appeared at FOCS 2014

Edge Coloring

Definition

Problem: κ-EDGECOLORING
Input: A graph G
Output: "YES" if G has an edge coloring using at most κ colors and "NO" otherwise

Problem: κ-EDGECOLORING
Input: A graph G
Output: "YES" if G has an edge coloring using at most κ colors and "NO" otherwise

Obviously no edge coloring using less than Δ colors.

Theorem (Vizing [1964])

An edge coloring using at most $\Delta + 1$ colors exists.

What about $\kappa = \Delta$?

Complexity stated as an open problem in

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness Michael R. Garey / David S. Johnson

[1979]

What about $\kappa = \Delta$?

Complexity stated as an open problem in

[1979]

Theorem (Holyer [1981])

3-EDGECOLORING *is* **NP-hard** over **3**-regular graphs.

Theorem (Leven, Galil [1983])

r-EDGECOLORING is **NP-hard** over *r*-regular graphs for all $r \geq 3$.

Lemma (Parity Condition)

r-regular graph with a bridge \implies no edge coloring using r colors exists

Example

This graph has no edge coloring using 3 colors.

Lemma (Parity Condition)

r-regular graph with a bridge \implies no edge coloring using r colors exists

Example

This graph has no edge coloring using 3 colors.

Theorem (Tait [1880])

For planar 3-regular bridgeless graphs, edge coloring using 3 colors exists ↔ Four Color (Conjecture) Theorem.

Corollary

For <mark>planar 3</mark>-regular graphs,

edge coloring using 3 colors exists \iff bridgeless.

Trivial Algorithm

NP-hard

 $\kappa \neq \Delta$

 $\kappa = r$ over *r*-regular graphs

Simple Algorithm (Complex Proof)

 $\kappa = 3$ over planar 3-regular graphs

Edge Coloring–Counting Problem

Problem: $\#\kappa$ -EDGECOLORING **Input:** A graph *G* **Output:** Number of edge colorings of *G* using at most κ colors

Edge Coloring–Counting Problem

Problem: $\#\kappa$ -EDGECOLORING **Input:** A graph *G* **Output:** Number of edge colorings of *G* using at most κ colors

Theorem (Cai, Guo, W [2014])

κ -EDGECOLORING is **#P-hard** over planar r-regular graphs for all $\kappa \ge r \ge 3$.

Tractable when $\kappa \geq r \geq 3$ does not hold:

- If $\kappa < r$, then no edge colorings
- If r < 3, then only trivial graphs (paths and cycles)

Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:

 $2 \kappa > r.$

Definition

Holant problems are counting problems defined over graphs that can be specified by local constraint functions on the vertices, edges, or both.

Example (Natural Holant Problems)

independent sets, vertex covers, edge covers, cycle covers, vertex colorings, edge colorings, matchings, perfect matchings, and Eulerian orientations.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.

Equivalent to:

- counting read-twice constraint satisfaction problems,
- contraction of tensor networks, and
- partition function of graphical models (in Forney normal form).

Generalizes:

- simulating quantum circuits,
- counting graph homomorphisms,
- all manner of partition functions including
 - Ising model,
 - Potts model,
 - edge-coloring model.

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph G.

$\#\kappa$ -EdgeColoring as a Holant Problem

Let AD_3 denote the local constraint function

$$\mathsf{AD}_{3}(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are distinct} \\ 0 & \text{otherwise.} \end{cases}$$

Place AD_3 at each vertex with incident edges x, y, z in a 3-regular graph G.

Then we evaluate the sum of product

$$\mathsf{Holant}_{\kappa}(G;\mathsf{AD}_3) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{\nu \in V(G)} \mathsf{AD}_3(\sigma \mid_{E(\nu)}).$$

Clearly Holant_{κ}(-; AD₃) computes $\#\kappa$ -EDGECOLORING.

Four examples with $\kappa = 2$:

$$Holant_2(G; f) counts \begin{cases} matchings & when f = AT-MOST-ONE_r \\ perfect matchings & when f = EXACTLY-ONE_r \\ cycle covers & when f = EXACTLY-TWO_r \\ edge covers & when f = OR_r \end{cases}$$

$$\mathsf{Holant}_{\kappa}(G; \mathbf{f}) = \sum_{\sigma: E(G) \to \{0,1\}} \prod_{\nu \in V(G)} \mathbf{f} \left(\sigma \mid_{E(\nu)} \right).$$

In general, we consider all local constraint functions

$$f(x, y, z) = \langle a, b, c \rangle = \begin{cases} a & \text{if } x = y = z \\ b & \text{otherwise} \\ c & \text{if } x \neq y \neq z \neq x \end{cases} \text{ (all equal)}$$

The Holant problem is to compute

$$\mathsf{Holant}_{\kappa}(G; \mathbf{f}) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} \mathbf{f} \left(\sigma \mid_{E(v)} \right).$$

Note $AD_3 = \langle 0, 0, 1 \rangle$.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$,

the problem of computing Holant_{κ}(-; $\langle a, b, c \rangle$) is in **P** or **#P-hard**, even when the input is restricted to planar graphs.

Theorem (Main Theorem)

For any $\kappa \geq 3$ and any $a, b, c \in \mathbb{C}$, the problem of computing $\operatorname{Holant}_{\kappa}(-; \langle a, b, c \rangle)$ is in **P** or **#P-hard**, even when the input is restricted to planar graphs.

Recall $\#\kappa$ -EDGECOLORING is the special case $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

Let's prove the theorem for $\kappa = 3$ and $\langle a, b, c \rangle = \langle 0, 0, 1 \rangle$.

• On domain size $\kappa = 3$, Holant₃(-; $\langle -5, -2, 4 \rangle$) is in **P**.

• On domain size $\kappa = 3$, Holant₃(-; $\langle -5, -2, 4 \rangle$) is in **P**.

Since

$$\langle -5, -2, 4 \rangle = \left[(1, -2, -2)^{\otimes 3} + (-2, 1, -2)^{\otimes 3} + (-2, -2, 1)^{\otimes 3} \right],$$

do a holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.

• On domain size $\kappa = 3$, Holant₃(-; $\langle -5, -2, 4 \rangle$) is in **P**.

Since

$$\langle -5, -2, 4 \rangle = \left[(1, -2, -2)^{\otimes 3} + (-2, 1, -2)^{\otimes 3} + (-2, -2, 1)^{\otimes 3} \right],$$

do a holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.

2 In general, Holant_{κ}(G; $\langle \kappa^2 - 6\kappa + 4, -2(\kappa - 2), 4 \rangle$) is in **P**.

 On domain size κ = 3, Holant₃(-; (-5, -2, 4)) is in **P**.

Since

$$\langle -5, -2, 4 \rangle = \left[(1, -2, -2)^{\otimes 3} + (-2, 1, -2)^{\otimes 3} + (-2, -2, 1)^{\otimes 3} \right],$$

do a holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.

- 2 In general, Holant_{κ}(G; $\langle \kappa^2 - 6\kappa + 4, -2(\kappa - 2), 4 \rangle$) is in **P**.
- 3 On domain size $\kappa = 4$, Holant₄(*G*; $\langle -3 - 4i, 1, -1 + 2i \rangle$) is in **P**.

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle a, b, c, d, e \rangle = \begin{cases} a & \text{if } w = x = y = z \\ b & \text{if } w = x \neq y = z \\ c & \text{if } w = y \neq x = z \\ d & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases} \bigvee_{X} \bigvee_{Y}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle a, b, c, d, e \rangle = \begin{cases} a & \text{if } w = x = y = z \\ b & \text{if } w = x \neq y = z \\ c & \text{if } w = y \neq x = z \\ d & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases} \bigvee_{X} \bigvee_{Y}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle a, b, c, d, e \rangle = \begin{cases} a & \text{if } w = x = y = z \\ b & \text{if } w = x \neq y = z \\ c & \text{if } w = y \neq x = z \\ d & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases} \bigvee_{x \to y} f(x) = \begin{cases} a & \text{if } w = x = y = z \\ c & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle a, b, c, d, e \rangle = \begin{cases} a & \text{if } w = x = y = z \\ b & \text{if } w = x \neq y = z \\ c & \text{if } w = y \neq x = z \\ d & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases} \bigvee_{x \to y} f(x) = \begin{cases} a & \text{if } w = x = y = z \\ c & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle a, b, c, d, e \rangle = \begin{cases} a & \text{if } w = x = y = z \\ b & \text{if } w = x \neq y = z \\ c & \text{if } w = y \neq x = z \\ d & \text{if } w = z \neq x = y \\ e & \text{otherwise.} \end{cases} \bigvee_{x \to y} f(x) = \begin{cases} a & \text{if } w = x = y = z \\ c & \text{if } w = y \neq x = z \\ e & \text{otherwise.} \end{cases}$$

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

• First reduction: From a **#P-hard** point on the Tutte polynomial.

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

- First reduction: From a **#P-hard** point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

- First reduction: From a **#P-hard** point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

$$\begin{aligned} \# \mathbf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{aligned}$$

- First reduction: From a **#P-hard** point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

Definition

The Tutte polynomial of an undirected graph G is

$$T(G; x, y) = \begin{cases} 1 & E(G) = \emptyset, \\ xT(G \setminus e; x, y) & e \in E(G) \text{ is a bridge,} \\ yT(G \setminus e; x, y) & e \in E(G) \text{ is a loop,} \\ T(G \setminus e; x, y) + T(G/e; x, y) & \text{otherwise,} \end{cases}$$

where $G \setminus e$ is the graph obtained by deleting e and G/e is the graph obtained by contracting e.

Definition

The Tutte polynomial of an undirected graph G is

$$T(G; x, y) = \begin{cases} 1 & E(G) = \emptyset, \\ xT(G \setminus e; x, y) & e \in E(G) \text{ is a bridge,} \\ yT(G \setminus e; x, y) & e \in E(G) \text{ is a loop,} \\ T(G \setminus e; x, y) + T(G/e; x, y) & \text{otherwise,} \end{cases}$$

where $G \setminus e$ is the graph obtained by deleting e and G/e is the graph obtained by contracting e.

The chromatic polynomial is

$$\chi(G;\lambda) = (-1)^{|V|-1} \lambda \mathsf{T}(G;1-\lambda,0).$$

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

Definition

Digraph is Eulerian if "in degree" = "out degree".

Definition

- Digraph is Eulerian if "in degree" = "out degree".
- **2** Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

Definition

- Digraph is Eulerian if "in degree" = "out degree".
- **2** Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
- **(3)** Let $\pi_{\kappa}(\vec{G})$ be the set of Eulerian partitions of \vec{G} into at most κ parts.

 $\kappa \ge 2$

Definition

- Digraph is Eulerian if "in degree" = "out degree".
- 2 Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
- **(3)** Let $\pi_{\kappa}(\vec{G})$ be the set of Eulerian partitions of \vec{G} into at most κ parts.
- Let $\mu(c)$ be the number of monochromatic vertices in c.

 $\kappa \ge 2$ $\mu(c) = 1$

Theorem (Ellis-Monaghan)

For a plane graph G,

$$\kappa \operatorname{\mathsf{T}}(G;\kappa+1,\kappa+1) = \sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)}.$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z\\ 1 & \text{if } w = x \neq y = z\\ 0 & \text{if } w = y \neq x = z\\ 1 & \text{if } w = z \neq x = y\\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z\\ 1 & \text{if } w = x \neq y = z\\ 0 & \text{if } w = y \neq x = z\\ 1 & \text{if } w = z \neq x = y\\ 0 & \text{otherwise,} \end{cases}$$

Reduction From Tutte Polynomial: Upshot

Corollary

For a plane graph G,

$$\kappa T(G; \kappa + 1, \kappa + 1) = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle)$$

Reduction From Tutte Polynomial: Upshot

Corollary

For a plane graph G,

$\kappa T(G; \kappa + 1, \kappa + 1) = \operatorname{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle)$

Theorem (Vertigan)

For any $x, y \in \mathbb{C}$, the problem of evaluating the Tutte polynomial at (x, y) over planar graphs is **#P-hard** unless $(x - 1)(y - 1) \in \{1, 2\}$ or $(x, y) \in \{(\pm 1, \pm 1), (\omega, \omega^2), (\omega^2, \omega)\},\$ where $\omega = e^{2\pi i/3}$. In each of these exceptional cases, the computation can be done in polynomial time.

Hardness of $Holant_3(-; AD_3)$ proved by the following reduction chain:

$$\begin{split} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{split}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

Hardness of $Holant_3(-; AD_3)$ proved by the following reduction chain:

$$\begin{split} \#\mathsf{P} &\leq_{T} \mathsf{Holant}_{3}(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{T} \mathsf{Holant}_{3}(-; \mathsf{AD}_{3}) \end{split}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\begin{smallmatrix} w & z \\ x & y \end{smallmatrix}) = \langle 0, 1, 1, 0, 0 \rangle = \begin{cases} 0 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 1 & \text{if } w = y \neq x = z \\ 0 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise.} \end{cases}$$

Hardness of $Holant_3(-; AD_3)$ proved by the following reduction chain:

$$\begin{split} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{split}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

Hardness of $Holant_3(-; AD_3)$ proved by the following reduction chain:

$$\begin{split} \#\mathsf{P} &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \mathsf{AD}_3) \end{split}$$

- First reduction: From a #P-hard point on the Tutte polynomial.
- Second reduction: Via polynomial interpolation.
- Third reduction: Via a gadget construction.

 $\mathsf{Holant}_3(\mathbf{G}; \langle 2, 1, 0, 1, 0 \rangle) \leq_T \mathsf{Holant}_3(\mathbf{G}_{\mathsf{s}}; \langle 0, 1, 1, 0, 0 \rangle)$

Vertices are assigned $\langle 0, 1, 1, 0, 0 \rangle$.

 $\mathsf{Holant}_3(\mathsf{G}; \langle 2, 1, 0, 1, 0 \rangle) \leq_T \mathsf{Holant}_3(\mathsf{G}_{\mathsf{s}}; \langle 0, 1, 1, 0, 0 \rangle)$

Vertices are assigned $\langle 0, 1, 1, 0, 0 \rangle$.

Let f_s be the function corresponding to N_s . Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } f_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Obviously $f_1 = \langle 0, 1, 1, 0, 0 \rangle$.

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2^{s}}$. Then

$$f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} x & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{x-1}{3} + 1\\ \frac{x-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

Spectral decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2^{s}}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $x = 2^{2s}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \langle 2, 1, 0, 1, 0 \rangle$.

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\mathbf{x} = 2^{2^{s}}$. Then

$$f(\mathbf{x}) = f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{\mathbf{x}-1}{3}+1\\ \frac{\mathbf{x}-1}{3}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note $f(4) = \langle 2, 1, 0, 1, 0 \rangle$. (Side note: picking s = 1 so that x = 4 only works when $\kappa = 3$.)

Polynomial Interpolation: The Interpolation

 $\mathsf{Holant}_3(-;\langle 2,1,0,1,0\rangle) \leq_{\mathcal{T}} \mathsf{Holant}_3(-;\langle 0,1,1,0,0\rangle)$

Polynomial Interpolation: The Interpolation

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_T \mathsf{Holant}_3(-; f(x)) \\ &\leq_T \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G, x) = \text{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_{2s} be the graph obtained by replacing every vertex in G with N_{2s} . Then Holant₃ $(G_{2s}; \langle 0, 1, 1, 0, 0 \rangle) = p(G, 2^{2s})$.
$$\begin{aligned} \mathsf{Holant}_3(-; \langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Holant}_3(-; f(4)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; f(x)) \\ &\leq_{\mathcal{T}} \mathsf{Holant}_3(-; \langle 0, 1, 1, 0, 0 \rangle) \end{aligned}$$

If G has n vertices, then

$$p(G,x) = \mathsf{Holant}_3(G; f(x)) \in \mathbb{Z}[x]$$

has degree *n*.

Let G_{2s} be the graph obtained by replacing every vertex in G with N_{2s} . Then Holant₃ $(G_{2s}; \langle 0, 1, 1, 0, 0 \rangle) = p(G, 2^{2s})$.

Using oracle for Holant₃(-; (0, 1, 1, 0, 0)), evaluate p(G, x) at n + 1 distinct points $x = 2^{2s}$ for $0 \le s \le n$.

By polynomial interpolation, efficiently compute the coefficients of p(G, x). QED.

Proof Outline for Dichotomy of Holant $(-; \langle a, b, c \rangle)$

For all $a, b, c \in \mathbb{C}$, want to show that Holant $(-; \langle a, b, c \rangle)$ is in **P** or **#P-hard**. For all $a, b, c \in \mathbb{C}$, want to show that Holant $(-; \langle a, b, c \rangle)$ is in **P** or **#P-hard**.

Using $\langle a, b, c \rangle$:

- Attempt to construct a special unary constraint.
- Attempt to interpolate all binary constraints of a special form, assuming we have the special unary constraint.
- Construct a special ternary constraint that we show is **#P-hard**, assuming we have the special unary and binary constraints.

For all $a, b, c \in \mathbb{C}$, want to show that Holant $(-; \langle a, b, c \rangle)$ is in **P** or **#P-hard**.

Using $\langle a, b, c \rangle$:

- Attempt to construct a special unary constraint.
- Attempt to interpolate all binary constraints of a special form, assuming we have the special unary constraint.
- Construct a special ternary constraint that we show is **#P-hard**, assuming we have the special unary and binary constraints.

For some $a, b, c \in \mathbb{C}$, our attempts fail.

In those cases, we either

- **1** show the problem is in **P** or
- **2** prove **#P-hardness** without the help of additional signatures.

Logical Dependencies in Dichotomy of $Holant_{\kappa}(-; \langle a, b, c \rangle)$

Let
$$p_d(X) = c_0 + c_1 X + \cdots + c_d X^d \in \mathbb{Z}[X].$$

Can interpolate
$$p_d(X)$$
 from
 $p_d(x_0), p_d(x_1), \dots, p_d(x_d)$
 $p_d(x_0, x_1, \dots, x_d)$ are distinct

$$\begin{bmatrix} (x_0)^0 & (x_0)^1 & \cdots & (x_0)^d \\ (x_1)^0 & (x_1)^1 & \cdots & (x_1)^d \\ \vdots & \vdots & \ddots & \vdots \\ (x_d)^0 & (x_d)^1 & \cdots & (x_d)^d \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_d \end{bmatrix} = \begin{bmatrix} p_d(x_0) \\ p_d(x_1) \\ \vdots \\ p_d(x_d) \end{bmatrix}$$

Let
$$p_d(X) = c_0 + c_1 X + \cdots + c_d X^d \in \mathbb{Z}[X].$$

$$\forall d \in \mathbb{N}, \text{ Can interpolate } p_d(X) \text{ from} \\ p_d(x_0), p_d(x_1), \dots, p_d(x_d) \\ \\ \\ \\ x_0, x_1, \dots \qquad \text{are distinct}$$

$$\begin{bmatrix} (x_0)^0 & (x_0)^1 & \cdots & (x_0)^d \\ (x_1)^0 & (x_1)^1 & \cdots & (x_1)^d \\ \vdots & \vdots & \ddots & \vdots \\ (x_d)^0 & (x_d)^1 & \cdots & (x_d)^d \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_d \end{bmatrix} = \begin{bmatrix} p_d(x_0) \\ p_d(x_1) \\ \vdots \\ p_d(x_d) \end{bmatrix}$$

Let
$$p_d(X) = c_0 + c_1 X + \cdots + c_d X^d \in \mathbb{Z}[X].$$

$$\forall d \in \mathbb{N}, \text{ Can interpolate } p_d(X) \text{ from} \\ p_d(x^0), p_d(x^1), \dots, p_d(x^d) \\ \\ \\ x^0, x^1, \dots \qquad \text{are distinct}$$

$$\begin{bmatrix} (x^{0})^{0} & (x^{0})^{1} & \cdots & (x^{0})^{d} \\ (x^{1})^{0} & (x^{1})^{1} & \cdots & (x^{1})^{d} \\ \vdots & \vdots & \ddots & \vdots \\ (x^{d})^{0} & (x^{d})^{1} & \cdots & (x^{d})^{d} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{d} \end{bmatrix} = \begin{bmatrix} p_{d}(x^{0}) \\ p_{d}(x^{1}) \\ \vdots \\ p_{d}(x^{d}) \end{bmatrix}$$

Let
$$p_d(X) = c_0 + c_1 X + \cdots + c_d X^d \in \mathbb{Z}[X].$$

$$\begin{bmatrix} (x^{0})^{0} & (x^{0})^{1} & \cdots & (x^{0})^{d} \\ (x^{1})^{0} & (x^{1})^{1} & \cdots & (x^{1})^{d} \\ \vdots & \vdots & \ddots & \vdots \\ (x^{d})^{0} & (x^{d})^{1} & \cdots & (x^{d})^{d} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{d} \end{bmatrix} = \begin{bmatrix} p_{d}(x^{0}) \\ p_{d}(x^{1}) \\ \vdots \\ p_{d}(x^{d}) \end{bmatrix}$$

$$p_{d}(X, Y, Z) = c_{0,0,d} X^{0} Y^{0} Z^{d} + \dots + c_{d,0,0} X^{d} Y^{0} Z^{0} \in \mathbb{Z}[X, Y, Z]$$

be a homogeneous multivariate polynomial of degree d.

$$\forall d \in \mathbb{N}, \text{ Can interpolate } p_d(X, Y, Z) \text{ from} \\ p_d(x_0, y_0, z_0), p_d(x_1, y_1, z_1), \dots \\ \\ \uparrow \\ ? \end{cases}$$

$$\begin{bmatrix} (x_0)^0 (y_0)^0 (z_0)^d & \cdots & (x_0)^d (y_0)^0 (z_0)^0 \\ (x_1)^0 (y_1)^0 (z_1)^d & \cdots & (x_1)^d (y_1)^0 (z_1)^0 \\ \vdots & \vdots & \vdots & \end{bmatrix} \begin{bmatrix} c_{0,0,d} \\ \vdots \\ c_{d,0,0} \end{bmatrix} = \begin{bmatrix} p_d(x_0, y_0, z_0) \\ p_d(x_1, y_1, z_1) \\ \vdots \end{bmatrix}$$

$$p_{d}(X, Y, Z) = c_{0,0,d} X^{0} Y^{0} Z^{d} + \dots + c_{d,0,0} X^{d} Y^{0} Z^{0} \in \mathbb{Z}[X, Y, Z]$$

be a homogeneous multivariate polynomial of degree d.

$$\begin{bmatrix} (x^0)^0 (y^0)^0 (z^0)^d & \cdots & (x^0)^d (y^0)^0 (z^0)^0 \\ (x^1)^0 (y^1)^0 (z^1)^d & \cdots & (x^1)^d (y^1)^0 (z^1)^0 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} c_{0,0,d} \\ \vdots \\ c_{d,0,0} \end{bmatrix} = \begin{bmatrix} p_d(x^0, y^0, z^0) \\ p_d(x^1, y^1, z^1) \\ \vdots \end{bmatrix}$$

$$p_{d}(X, Y, Z) = c_{0,0,d} X^{0} Y^{0} Z^{d} + \dots + c_{d,0,0} X^{d} Y^{0} Z^{0} \in \mathbb{Z}[X, Y, Z]$$

be a homogeneous multivariate polynomial of degree d.

$$\begin{bmatrix} (x^{0}y^{0}z^{d})^{0} & \cdots & (x^{d}y^{0}z^{0})^{0} \\ (x^{0}y^{0}z^{d})^{1} & \cdots & (x^{d}y^{0}z^{0})^{1} \\ \vdots & \vdots & \vdots & \end{bmatrix} \begin{bmatrix} c_{0,0,d} \\ \vdots \\ c_{d,0,0} \end{bmatrix} = \begin{bmatrix} p_{d}(x^{0}, y^{0}, z^{0}) \\ p_{d}(x^{1}, y^{1}, z^{1}) \\ \vdots \end{bmatrix}$$

$$p_{d}(X, Y, Z) = c_{0,0,d} X^{0} Y^{0} Z^{d} + \dots + c_{d,0,0} X^{d} Y^{0} Z^{0} \in \mathbb{Z}[X, Y, Z]$$

be a homogeneous multivariate polynomial of degree d.

$$\forall d \in \mathbb{N}, \text{ Can interpolate } p_d(X, Y, Z) \text{ from} \\ p_d(x^0, y^0, z^0), p_d(x^1, y^1, z^1), \dots \\ \\ \uparrow \\ \text{lattice condition} \end{cases}$$

$$\begin{bmatrix} (x^{0}y^{0}z^{d})^{0} & \cdots & (x^{d}y^{0}z^{0})^{0} \\ (x^{0}y^{0}z^{d})^{1} & \cdots & (x^{d}y^{0}z^{0})^{1} \\ \vdots & \vdots & \vdots & \end{bmatrix} \begin{bmatrix} c_{0,0,d} \\ \vdots \\ c_{d,0,0} \end{bmatrix} = \begin{bmatrix} p_{d}(x^{0}, y^{0}, z^{0}) \\ p_{d}(x^{1}, y^{1}, z^{1}) \\ \vdots \end{bmatrix}$$

Lattice Condition

Definition

We say that $\lambda_1, \lambda_2, \dots, \lambda_{\ell} \in \mathbb{C} - \{0\}$ satisfy the lattice condition if $\forall x \in \mathbb{Z}^{\ell} - \{0\}$ with $\sum_{i=1}^{\ell} x_i = 0$, we have $\prod_{i=1}^{\ell} \lambda_i^{x_i} \neq 1$.

Lattice Condition

Definition

We say that $\lambda_1, \lambda_2, \ldots, \lambda_{\boldsymbol{\ell}} \in \mathbb{C} - \{0\}$ satisfy the lattice condition if

$$orall x \in \mathbb{Z}^{\ell} - \{ oldsymbol{0} \}$$
 with $\sum_{i=1}^{\ell} x_i = 0,$ $\prod_{i=1}^{\ell} \lambda_i^{x_i}
eq 1.$

we have

Example (Easy)

For any $i, j, k \in \mathbb{Z}$ such that

•
$$i + j + k = 0$$
 and

•
$$(i, j, k) \neq (0, 0, 0),$$

it follows that

$$2^{i}3^{j}5^{k} \neq 1.$$

- For any $i, j, k \in \mathbb{Z}$ such that
 - i + j + k = 0 and
 - $(i, j, k) \neq (0, 0, 0),$

it follows that

$$1^{i}\left(3+\sqrt{2}\right)^{j}\left(3-\sqrt{2}\right)^{k}\neq 1.$$

For any $i, j, k \in \mathbb{Z}$ such that

- i + j + k = 0 and
- $(i, j, k) \neq (0, 0, 0)$,

it follows that

$$1^{i} \left(3 + \sqrt{2}\right)^{j-k} 7^{k} = 1^{i} \left(3 + \sqrt{2}\right)^{j} \left(3 - \sqrt{2}\right)^{k} \neq 1.$$

For any $i, j, k \in \mathbb{Z}$ such that

- i + j + k = 0 and
- $(i, j, k) \neq (0, 0, 0),$

it follows that

$$1^{i} \left(3 + \sqrt{2}\right)^{j-k} 7^{k} = 1^{i} \left(3 + \sqrt{2}\right)^{j} \left(3 - \sqrt{2}\right)^{k} \neq 1.$$

Suppose

$$1^{i}\left(3+\sqrt{2}\right)^{j-k}7^{k}=1.$$

For any $i, j, k \in \mathbb{Z}$ such that

- i + j + k = 0 and
- $(i, j, k) \neq (0, 0, 0)$,

it follows that

$$1^{i} \left(3 + \sqrt{2}\right)^{j-k} 7^{k} = 1^{i} \left(3 + \sqrt{2}\right)^{j} \left(3 - \sqrt{2}\right)^{k} \neq 1.$$

Suppose

$$1^{i}\left(3+\sqrt{2}\right)^{j-k}7^{k}=1.$$

Then

$$j - k = 0$$
 $k = 0$ $j = 0$ $i = 0$.

Contradiction!

Want to prove:

For all integers $y \ge 4$, the roots of $p(x, y) = x^5 - (2y + 1)x^3 - (y^2 + 2)x^2 + (y - 1)yx + y^3.$

satisfy the lattice condition.

Want to prove:

For all integers $y \ge 4$, the roots of $p(x, y) = x^5 - (2y + 1)x^3 - (y^2 + 2)x^2 + (y - 1)yx + y^3.$

satisfy the lattice condition.

Lemma

Let $p(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n \ge 2$. If

• the Galois group of p over \mathbb{Q} is S_n or A_n and

2 the roots of **p** do not all have the same complex norm,

then the roots of *p* satisfy the lattice condition.

Galois group of p over \mathbb{Q} is S_n or A_n

Galois group of p over \mathbb{Q} is S_n or A_n $\downarrow \downarrow$ p is irreducible over \mathbb{Q}

```
Galois group of p over \mathbb{Q} is S_n or A_n

\downarrow \downarrow

p is irreducible over \mathbb{Q}

\uparrow (Gauss' Lemma)

p is irreducible over \mathbb{Z}
```

```
Galois group of p over \mathbb{Q} is S_n or A_n

\downarrow \downarrow

p is irreducible over \mathbb{Q}

\uparrow (Gauss' Lemma)

p is irreducible over \mathbb{Z}

\downarrow \downarrow

p has no root in \mathbb{Z}
```

```
Galois group of p over \mathbb{Q} is S_n or A_n

\downarrow \downarrow

p is irreducible over \mathbb{Q}

\uparrow (Gauss' Lemma)

p is irreducible over \mathbb{Z}

\downarrow \downarrow

p has no root in \mathbb{Z}
```

What are the known nontrivial factorizations of p(x, y)? What are the known integer roots of p(x, y)?

$$p(x,y) = \begin{cases} (x-1)(x^4 + x^3 + 2x^2 - x + 1) & y = -1 \\ x^2(x^3 - x - 2) & y = 0 \\ (x+1)(x^4 - x^3 - 2x^2 - x + 1) & y = 1 \\ (x-1)(x^2 - x - 4)(x^2 + 2x + 2) & y = 2 \\ (x-3)(x^4 + 3x^3 + 2x^2 - 5x - 9) & y = 3. \end{cases}$$

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial in $\mathbb{Z}[x, y]$ has only finitely many integer solutions.

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial in $\mathbb{Z}[x, y]$ has only finitely many integer solutions.

- p(x,y) has genus 3, satisfies hypothesis
- Bad news is that Siegel's theorem is not effective
- Several effective versions, but the best bound we found is 10^{20000}
- Integer solutions could be enormous

Pell's Equation (genus 0)

$$x^2 - 991y^2 = 1$$

Smallest solution:

(379516400906811930638014896080, 12055735790331359447442538767)

Next smallest solution:

(288065397114519999215772221121510725946342952839946398732799, 9150698914859994783783151874415159820056535806397752666720)

Conjecture

For any integer $y \ge 4$, p(x, y) is irreducible in $\mathbb{Z}[x]$.

Don't know how to prove this.
Conjecture

For any integer $y \ge 4$, p(x, y) is irreducible in $\mathbb{Z}[x]$.

Don't know how to prove this.

Lemma

Only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), (3, 3).$$

Puiseux series expansions for p(x, y) are $y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6}),$ $y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}),$ $y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}).$

Puiseux series expansions for p(x, y) are $y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6}),$ $y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}),$ $y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}).$

We pick functions $g_i(x, y)$ such that (a, b) integer solution to p(x, y) = 0 implies $g_i(a, b) \in \mathbb{Z}$ $g_i(x, y_i(x)) = o(1)$

Thus, $g_i(x, y_i(x)) \notin \mathbb{Z}$ as $x \to \infty$

Puiseux series expansions for p(x, y) are $y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6}),$ $y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}),$ $y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}).$

We pick functions $g_i(x, y)$ such that (a, b) integer solution to p(x, y) = 0 implies $g_i(a, b) \in \mathbb{Z}$ $g_i(x, y_i(x)) = o(1)$

Thus, $g_i(x, y_i(x)) \notin \mathbb{Z}$ as $x \to \infty$

Consider $g_2(x, y) = y^2 + xy - x^3 + x$

$$g_2(x, y_2(x)) = \Theta\left(\sqrt{x}\right)$$

Puiseux series expansions for p(x, y) are $y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6}),$ $y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}),$ $y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}).$

We pick functions $g_i(x, y)$ such that (a, b) integer solution to p(x, y) = 0 implies $g_i(a, b) \in \mathbb{Z}$ (a, b) $g_i(x, y_i(x)) = o(1)$

Thus, $g_i(x, y_i(x)) \notin \mathbb{Z}$ as $x \to \infty$

Consider
$$g_2(x, y) = \frac{y^2 + xy - x^3 + x}{x} = \frac{y^2}{x} + y - x^2 + 1$$

 $g_2(x, y_2(x)) = \Theta\left(\frac{1}{\sqrt{x}}\right)$

Puiseux series expansions for p(x, y) are $y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6}),$ $y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}),$ $y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2}).$

We pick functions $g_i(x, y)$ such that (a, b) integer solution to p(x, y) = 0 implies $g_i(a, b) \in \mathbb{Z}$ (a, b) $g_i(x, y_i(x)) = o(1)$

Thus, $g_i(x, y_i(x)) \notin \mathbb{Z}$ as $x \to \infty$

Consider
$$g_2(x, y) = \frac{y^2 + xy - x^3 + x}{x} = \frac{y^2}{x} + y - x^2 + 1$$

 $g_2(x, y_2(x)) = \Theta\left(\frac{1}{\sqrt{x}}\right)$

If |a| > 16, then $g_2(a, y_2(a))$ is not an integer.

Thank You

Thank You

Paper and slides available on my website: www.cs.wisc.edu/~tdw