Advances in the Computational Complexity of Holant Problems

Tyson Williams

Final Oral Defense Computer Science Department University of Wisconsin–Madison May 1, 2015

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(\mathcal{F}) over General Graphs
- Dichotomy for Holant_{κ}(f) over Planar 3-Regular Graphs

Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for $Holant(\mathcal{F})$ over General Graphs
- Dichotomy for Holant $_{\kappa}(f)$ over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Counting problem

- Input: Graph
- Output: Number

Framework of problems

Dichotomy Theorem

• Every problem in the framework is either easy or hard (i.e. computable in polynomial time or **#P-hard**).

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for $Holant(\mathcal{F})$ over General Graphs
- Dichotomy for $Holant_{\kappa}(f)$ over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

4 Summary

• *G* = (*V*, *E*)

• *G* = (*V*, *E*)

• G = (V, E)• $\sigma : V \to \{0, 1\}$

• G = (V, E)• $\sigma : V \rightarrow \{0, 1\}$

• G = (V, E)• $\sigma : V \to \{0, 1\}$

$$\prod_{(u,v)\in E} \mathsf{OR}(\sigma(u),\sigma(v)) = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

• G = (V, E)• $\sigma : V \rightarrow \{0, 1\}$

$$\prod_{(u,v)\in E} \mathsf{OR}(\sigma(u),\sigma(v)) = 1 \cdot 1 \cdot \mathbf{0} \cdot 1 \cdot 1 \cdot 1 = \mathbf{0}$$

• G = (V, E)• $\sigma : V \to \{0, 1\}$

$$\#\mathsf{VertexCover}(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}(\sigma(u), \sigma(v))$$

Example

• OR

corresponds to #VertexCover

Example

- OR corresponds to #VertexCover
- NAND corresponds to #IndependentSet

Example

- OR corresponds to #VertexCover
- NAND corresponds to #IndependentSet
- \neq corresponds to #Bipartition

Example

- OR corresponds to #VertexCover
- NAND corresponds to #IndependentSet
- \neq corresponds to #Bipartition

 $\bullet \implies$

Example

- OR corresponds to #VertexCover
- NAND corresponds to #IndependentSet
- \neq corresponds to #Bipartition

 $\bullet \implies$

Example

- OR corresponds to #VertexCover
- NAND corresponds to #IndependentSet
- \neq corresponds to #Bipartition
- \implies corresponds to #UpperSet

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}(\sigma(u), \sigma(v))$

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}(\sigma(u), \sigma(v))$

In	put	Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

$\sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$

In	put	Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

In	put	Output
р	q	f (p,q)
0	0	W
0	1	X
1	0	у
1	1	Z

where $w, x, y, z \in \mathbb{C}$

Generalize

Partition Function:

$$Z(\vec{G}; f) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

Input		Output
р	q	OR(p,q)
0	0	0
0	1	1
1	0	1
1	1	1

In	put	Output
p	q	f (p,q)
0	0	W
0	1	x
1	0	у
1	1	Z

where $w, x, y, z \in \mathbb{C}$

Theorem (Cai, Kowalczyk, W 12)

Over planar 3-regular \vec{G} ,

$$Z(\vec{G}; f) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

is either computable in polynomial time or #**P**-hard.

Theorem (Cai, Kowalczyk, W 12)

Over planar 3-regular \vec{G} ,

$$Z(\vec{G}; f) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} f(\sigma(u), \sigma(v))$$

is either computable in polynomial time or #P-hard.

Explicit form for tractable cases.

Previous work:

• f(0,1) = f(1,0) (i.e. undirected graphs)

Previous work:

f(0,1) = f(1,0) (i.e. undirected graphs)
3-regular graphs with weights in

{0,1} [Cai, Lu, Xia 08]
{0,1,-1} [Kowalczyk 09]
ℝ [Cai, Lu, Xia 09]
ℂ [Kowalczyk, Cai 10]

k-regular graphs with weights in

- ℝ [Cai, Kowalczyk 10]
- C [Cai, Kowalczyk 11]

Previous work:

f(0,1) = f(1,0) (i.e. undirected graphs)
3-regular graphs with weights in

{0,1} [Cai, Lu, Xia 08]
{0,1,-1} [Kowalczyk 09]
ℝ [Cai, Lu, Xia 09]
ℂ [Kowalczyk, Cai 10]

k-regular graphs with weights in

ℝ [Cai, Kowalczyk 10]

● ℂ [Cai, Kowalczyk 11]

Our work:

•
$$f(0,1) \neq f(1,0)$$
 (i.e. directed graphs)

• 3-regular graphs with weights in

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(*F*) over General Graphs
- Dichotomy for Holant_k(f) over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Counting Constraint Satisfaction Problems (#CSP)

A set \mathcal{F} of functions defines the counting problem $\#CSP(\mathcal{F})$.

Example

SAT	has	$\mathcal{F} = \{OR_n \mid n \ge 1\} \cup \{NOT-EQUAL_2\}$
3SAT	has	$\mathcal{F} = \{OR_3, NOT\text{-}EQUAL_2\}$
1-in-3SAT	has	$\mathcal{F} = \{EXACT-ONE_3, NOT-EQUAL_2\}$
NAE-3SAT	has	$\mathcal{F} = \{ NOT-ALL-EQUAL_3, NOT-EQUAL_2 \}$
Monotone SAT	has	$\mathcal{F} = \{OR_n \mid n \ge 1\}$
Monotone 3SAT	has	$\mathcal{F} = \{OR_3\}$
Monotone 1-in-3SAT	has	$\mathcal{F} = \{EXACT-ONE_3\}$
Monotone NAE-3SAT	has	$\mathcal{F} = \{NOT-ALL-EQUAL_3\}$

Counting Constraint Satisfaction Problems (#CSP)

A set \mathcal{F} of functions defines the counting problem $\#CSP(\mathcal{F})$.

Example

SAT	has	$\mathcal{F} = \{OR_n \mid n \ge 1\} \cup \{NOT-EQUAL_2\}$
3SAT	has	$\mathcal{F} = \{OR_3, NOT\text{-}EQUAL_2\}$
1-in-3SAT	has	$\mathcal{F} = \{EXACT-ONE_3, NOT-EQUAL_2\}$
NAE-3SAT	has	$\mathcal{F} = \{ NOT-ALL-EQUAL_3, NOT-EQUAL_2 \}$
Monotone SAT	has	$\mathcal{F} = \{OR_n \mid n \ge 1\}$
Monotone 3SAT	has	$\mathcal{F} = \{OR_3\}$
Monotone 1-in-3SAT	has	$\mathcal{F} = \{EXACT-ONE_3\}$
Monotone NAE-3SAT	has	$\mathcal{F} = \{NOT-ALL-EQUAL_3\}$

Example

Problem: $\#CSP(\mathcal{F})$ with $\mathcal{F} = \{EVEN-PARITY_3, MAJORITY_3, OR_3\}$ **Input:** $EVEN-PARITY_3(x, y, z) \land MAJORITY_3(x, y, z) \land OR_3(x, y, z)$ **Output:** 3

EVEN - $\mathsf{PARITY}_3(x, y, z) \land \mathsf{MAJORITY}_3(x, y, z) \land \mathsf{OR}_3(x, y, z)$

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_3(x, y, z)$

EVEN - $\mathsf{PARITY}_3(x, y, z) \land \mathsf{MAJORITY}_3(x, y, z) \land \mathsf{OR}_3(x, y, z)$

NOT Planar

EVEN-PARITY₃(x, y, z) \land MAJORITY₃(x, y, z) \land OR₃(x, y, z)

NOT Planar

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_2(x, y)$

EVEN-PARITY₃ $(x, y, z) \land MAJORITY_3(x, y, z) \land OR_2(x, y)$

Planar

Generalize

Problem: $\#CSP(\mathcal{F})$

Input: Hyper-graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices (i.e. constraints)
- Set *E* of hyper-edges (i.e. variables)

Output:

$$\sum_{\sigma: \boldsymbol{E} \to \{0,1\}} \prod_{v \in \boldsymbol{V}} f_v \left(\sigma \mid_{\boldsymbol{E}(v)} \right),$$

where E(v) is the set of hyper-edges containing v.

Generalize

Problem: $\#CSP(\mathcal{F})$

Input: Hyper-graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices (i.e. constraints)
- Set *E* of hyper-edges (i.e. variables)

Output:

$$\sum_{\sigma: \boldsymbol{E} \to \{0,1\}} \prod_{\boldsymbol{\nu} \in \boldsymbol{V}} f_{\boldsymbol{\nu}} \left(\sigma \mid_{\boldsymbol{E}(\boldsymbol{\nu})} \right),$$

where E(v) is the set of hyper-edges containing v.

Definition

A symmetric function is invariant under any permutation of its input.

Theorem (Guo, W 13)

Let \mathcal{F} be a set of symmetric functions with Boolean inputs and complex outputs.

Then over planar graphs, $\#CSP(\mathcal{F})$ is #P-hard unless

- $\mathcal{F} \subseteq \mathscr{P}$ (Propagation),
- **2** $\mathcal{F} \subseteq \mathscr{A}$ (reduction to computing Gauss sums), or

3 $\mathcal{F} \subseteq \mathscr{M}$ (reduction to computing weighted perfect matchings), which are computable in polynomial time.

Special cases

- real weights [Cai, Lu, Xia 10]
- single binary function [Cai, Kowalczyk 10]

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for #CSP(F) over Planar Graphs
- Dichotomy for $Holant(\mathcal{F})$ over General Graphs
- Dichotomy for Holant $_{\kappa}(f)$ over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Let \mathcal{F} be a set of functions.

Then \mathcal{F} defines the counting problem Holant(\mathcal{F}), which is equivalent to READ-TWICE $\#CSP(\mathcal{F})$.

EVEN - $\mathsf{PARITY}_3(x, y, z) \land \mathsf{MAJORITY}_3(x, y, z) \land \mathsf{OR}_3(x, y, z)$

EVEN-PARITY₃(x, y, z) \land MAJORITY₃(x, y, z) \land OR₃(x, y, z)

EVEN-PARITY₂(y, z) \land MAJORITY₂(x, z) \land OR₂(x, y)

EVEN-PARITY₂(y, z) \land MAJORITY₂(x, z) \land OR₂(x, y)

Generalize

Problem: Holant(\mathcal{F}) **Input:** Hyper Graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices
- Set *E* of *byper* edges

Output:

$$\mathsf{Holant}(\mathbf{G}; \mathcal{F}) = \sum_{\sigma: \mathbf{E} \to \{0,1\}} \prod_{v \in \mathbf{V}} f_v \left(\sigma \mid_{\mathcal{E}(v)} \right),$$

where E(v) is the set of byper edges containing v.

Generalize

Problem: Holant(\mathcal{F}) **Input:** Hyper Graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices
- Set *E* of *byper* edges

Output:

$$\mathsf{Holant}(\mathbf{G}; \mathcal{F}) = \sum_{\sigma: \mathbf{E} \to \{0,1\}} \prod_{v \in \mathbf{V}} f_v \left(\sigma \mid_{\mathbf{E}(v)} \right),$$

where E(v) is the set of type: edges containing v.

Example		
$Holant(G; \mathcal{F})$ counts		
	matchings	in G when $f_v = AT-MOST-ONE$;
	perfect matchings	in G when $f_v = \text{EXACT-ONE}$;
	cycle covers	in G when $f_v = EXACT-TWO$;
	edge covers	in G when $f_v = OR$.

 $(1 \ 0 \ 0 \ 1)_{x} (1 \ 0 \ 0 \ 1)_{y} (1 \ 0 \ 0 \ 1)_{z}$

 $(1 \ 0 \ 0 \ 1)_x$ $(1 \ 0 \ 0 \ 1)_y$ $(1 \ 0 \ 0 \ 1)_z$

 $(1 \ 0 \ 0 \ 1)_x \otimes (1 \ 0 \ 0 \ 1)_y \otimes (1 \ 0 \ 0 \ 1)_z$

 $(1\ 0\ 0\ 1)_x \otimes (1\ 0\ 0\ 1)_y \otimes (1\ 0\ 0\ 1)_z T^{\otimes 6}(T^{-1})^{\otimes 6} \int_{-1}^{0}$

 $(1 \ 0 \ 0 \ 1)_x \otimes (1 \ 0 \ 0 \ 1)_y \otimes (1 \ 0 \ 0 \ 1)_z T^{\otimes 6} (T^{-1})^{\otimes 6}$ Х 1 1 1 $OR_3(x, y, z)$ TT^{-1} 1 1 V OR₃ $NAND_3(x, y, z)$ 1 1 1 1 1 1 NAND₃

 $(1 \ 0 \ 0 \ 1)_x \otimes (1 \ 0 \ 0 \ 1)_y \otimes (1 \ 0 \ 0 \ 1)_z \left(T^{\otimes 2}\right)^{\otimes 3} (T^{-1})^{\otimes 6}$

17 / 57

 $(1\ 0\ 0\ 1)_x T^{\otimes 2} \otimes (1\ 0\ 0\ 1)_y T^{\otimes 2} \otimes (1\ 0\ 0\ 1)_z T^{\otimes 2} (T^{-1})^{\otimes 6}$ Х 1 1 TT^{-1} $OR_3(x, y, z)$ ν OR₃ $NAND_3(x, y, z)$ 1 1 NAND₃ 17 / 57

• Arity 1

- Arity 1
- Arity 2

- Arity 1
- Arity 2
- #CSP tractable cases
 - P
 - A

- Arity 1
- Arity 2
- #CSP tractable cases
 - $\mathscr{P} ext{-transformable}$
 - A-transformable

- Arity 1
- Arity 2
- #CSP tractable cases
 - *P*-transformable
 - A-transformable
- Vanishing (i.e. Holant is always 0)
- Arity 1
- Arity 2
- #CSP tractable cases
 - *P*-transformable
 - A-transformable
- Vanishing (i.e. Holant is always 0)

- Arity 1
- Arity 2
- #CSP tractable cases
 - $\mathscr{P} ext{-transformable}$
 - A-transformable
- Vanishing (i.e. Holant is always 0)

- Arity 1
- Arity 2
- #CSP tractable cases
 - *P*-transformable
 - A-transformable
- Vanishing (i.e. Holant is always 0)

$$\underbrace{1}_{(1,i)} \underbrace{1 \cdot 1 + i \cdot i}_{(1,i)}$$

- Arity 1
- Arity 2
- #CSP tractable cases
 - *P*-transformable
 - A-transformable
- Vanishing (i.e. Holant is always 0)

$$\begin{array}{ccc}
\bullet & 1 \cdot 1 + i \cdot i = 0 \\
(1, i) & (1, i)
\end{array}$$

Theorem (Cai, Guo, W 13)

Let f be a symmetric function with Boolean inputs and complex outputs.

Then Holant(f) is #**P**-hard unless

- f is unary,
- I is binary,
- ④ f is *𝔄*-transformable, or
- f is vanishing,

which are computable in polynomial time.

Theorem (Cai, Guo, W 13)

Let \mathcal{F} be a set of symmetric functions with Boolean inputs and complex outputs.

Then $Holant(\mathcal{F})$ is #P-hard unless

- **2** \mathcal{F} is \mathscr{P} -transformable,
- **3** \mathcal{F} is \mathscr{A} -transformable,
- $\mathcal{F} \subseteq \{ vanishing \} \cup \{ special binary \}, or$
- **(3)** $\mathcal{F} \subseteq \{$ "highly" vanishing $\} \cup \{$ special binary $\} \cup \{$ unary $\},$

which are computable in polynomial time.

Single signature:

- Holant(ternary) with complex weights [Cai, Huang, Lu 10]
- Holant(binary $| =_k$) with complex weights [Cai, Kowalczyk 11]

Signature set:

- $Holant^{c}(\mathcal{F})$ with complex weights [Cai, Huang, Lu 10]
- $\#CSP^{d}(\mathcal{F})$ with complex weights [Huang, Lu 12]
- $Holant(\mathcal{F})$ with real weights [Huang, Lu 12]

Outline

Introduction

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for #CSP(F) over Planar Graphs
- Dichotomy for Holant(F) over General Graphs
- Dichotomy for Holant $_{\kappa}(f)$ over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Generalize

Problem: Holant_{κ}(\mathcal{F}) **Input:** Graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices
- Set *E* of edges

Output:

$$\operatorname{Holant}_{\kappa}(G; \mathcal{F}) = \sum_{\substack{\sigma: \mathcal{F} \to \{0,1\} \\ \sigma: \mathcal{E} \to [\kappa]}} \prod_{v \in V} f_{v} \left(\sigma \mid_{E(v)}\right),$$

where E(v) is the set of edges containing v.

Generalize

Problem: Holant_{κ}(\mathcal{F}) **Input:** Graph G = (V, E) with $f_v \in \mathcal{F}$ for all $v \in V$.

- Set V of vertices
- Set *E* of edges

Output:

$$\operatorname{Holant}_{\kappa}(G; \mathcal{F}) = \sum_{\substack{\sigma: \mathcal{F} \to \{0, 1\} \\ \sigma: \mathcal{E} \to [\kappa]}} \prod_{v \in V} f_{v} \left(\sigma \mid_{E(v)} \right),$$

where E(v) is the set of edges containing v.

Example

Holant_{κ}(*G*; \mathcal{F}) counts edge colorings when $f_v = ALL-DISTINCT$.

Theorem (Cai, Guo, W 14)

Over planar 3-regular graphs, $\operatorname{Holant}_{\kappa}(f)$ is either computable in polynomial time or #P-hard, where

$$f(x, y, z) = \begin{cases} a & if \ x = y = z \\ b & otherwise \\ c & if \ x \neq y \neq z \neq x \end{cases}$$
(all equal)

with $a, b, c \in \mathbb{C}$.

Explicit form for tractable cases.

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights
- all unaries available

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights
- no unaries available

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights
- all unaries available
- $\kappa = 3$

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights
- no unaries available
- $\kappa \geq 3$

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\bullet \ \mathbb{C}$ weights
- all unaries available
- $\kappa = 3$
- do not assume domain invariance

- $\operatorname{arity}(f) = 3$
- f is symmetric
- $\mathbb C$ weights
- no unaries available
- $\kappa \geq 3$
- assume domain invariance

Outline

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(\mathcal{F}) over General Graphs
- Dichotomy for Holant_k(f) over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

The Tutte polynomial of an undirected graph G is

$$T(G; x, y) = \begin{cases} 1 & E(G) = \emptyset, \\ xT(G \setminus e; x, y) & e \in E(G) \text{ is a bridge,} \\ yT(G \setminus e; x, y) & e \in E(G) \text{ is a loop,} \\ T(G \setminus e; x, y) + T(G/e; x, y) & \text{otherwise,} \end{cases}$$

where $G \setminus e$ is the graph obtained by deleting e and G/e is the graph obtained by contracting e.

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

Digraph is Eulerian if "in degree" = "out degree".

- Digraph is Eulerian if "in degree" = "out degree".
- **2** Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.

- Digraph is Eulerian if "in degree" = "out degree".
- **2** Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
- Solution Let $\pi_{\kappa}(\vec{G})$ be the set of Eulerian partitions of \vec{G} into at most κ parts.

- Digraph is Eulerian if "in degree" = "out degree".
- **2** Eulerian partition of an Eulerian digraph \vec{G} is a partition of the edges of \vec{G} such that each part induces an Eulerian digraph.
- Solution Let $\pi_{\kappa}(\vec{G})$ be the set of Eulerian partitions of \vec{G} into at most κ parts.
- Let $\mu(c)$ be the number of monochromatic vertices in c.

 $\kappa \ge 2$ $\mu(c) = 1$

Theorem (Ellis-Monaghan)

For a plane graph G,

$$\kappa \operatorname{\mathsf{T}}(G;\kappa+1,\kappa+1) = \sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)}.$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z\\ 1 & \text{if } w = x \neq y = z\\ 0 & \text{if } w = y \neq x = z\\ 1 & \text{if } w = z \neq x = y\\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z \\ 1 & \text{if } w = x \neq y = z \\ 0 & \text{if } w = y \neq x = z \\ 1 & \text{if } w = z \neq x = y \\ 0 & \text{otherwise,} \end{cases}$$

$$\sum_{c \in \pi_{\kappa}(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$$

where

$$\mathcal{E}\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 2 & \text{if } w = x = y = z\\ 1 & \text{if } w = x \neq y = z\\ 0 & \text{if } w = y \neq x = z\\ 1 & \text{if } w = z \neq x = y\\ 0 & \text{otherwise,} \end{cases}$$

Upshot

Corollary (Cai, Guo, W 14)

For a plane graph G,

$\kappa T(G; \kappa + 1, \kappa + 1) = \text{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$

Upshot

Corollary (Cai, Guo, W 14)

For a plane graph G,

 $\kappa T(G; \kappa + 1, \kappa + 1) = \text{Holant}_{\kappa}(G_m; \langle 2, 1, 0, 1, 0 \rangle),$

and #**P**-hard over planar graphs for $\kappa \geq 2$.

Theorem (Vertigan)

For any $x, y \in \mathbb{C}$, the problem of evaluating the Tutte polynomial at (x, y) over planar graphs is #**P-hard** unless $(x - 1)(y - 1) \in \{1, 2\}$ or $(x, y) \in \{(\pm 1, \pm 1), (\omega, \omega^2)\}$, where $\omega^3 = 1$, which are computable in polynomial time.

Outline

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(\mathcal{F}) over General Graphs
- Dichotomy for Holant_k(f) over Planar 3-Regular Graphs

Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

4 Summary

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.PI-Holant₂($\langle 2, 1, 0, 1, 0 \rangle$) $\leq_{\mathcal{T}}$ $\leq_{\mathcal{T}}$ #PI-4Reg-EO

$\mathsf{PI-Holant}\,(\neq_2 \mid f)$

$\mathsf{PI-Holant}\,(\neq_2 \mid f)$

$\mathsf{PI-Holant}\,(\neq_2 \mid f)$

$\mathsf{PI-Holant}\,(\neq_2 \mid \mathbf{f})$

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$\begin{aligned} \mathsf{PI-Holant}_2(\langle 2, 1, 0, 1, 0 \rangle) \leq_{\mathcal{T}} & \vdots \\ & \leq_{\mathcal{T}} \mathsf{PI-Holant}(\neq_2 \mid \mathsf{EXACT-TWO}_4) \\ & \equiv_{\mathcal{T}} \# \mathsf{PI-4Reg-EO} \end{aligned}$

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{wxyz}$. Then we express f as the matrix

f^{0000}	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f^{0011}
f^{0100}	f ⁰¹¹⁰	f ⁰¹⁰¹	f^{0111}
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f^{1110}	f^{1101}	f ¹¹¹¹

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

f^{0000}	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f^{0011}
f^{0100}	f ⁰¹¹⁰	f ⁰¹⁰¹	f^{0111}
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f^{1110}	f^{1101}	f ¹¹¹¹

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

2	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f^{0011}	
f^{0100}	f ⁰¹¹⁰	f ⁰¹⁰¹	f^{0111}	
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹	
f^{1100}	f^{1110}	f^{1101}	2	

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

2	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f^{0011}	
f^{0100}	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹	
f^{1000}	f^{1010}	f ¹⁰⁰¹	f ¹⁰¹¹	
f ¹¹⁰⁰	f^{1110}	f^{1101}	2	

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} 2 & f^{0010} & f^{0001} & 1 \\ f^{0100} & 1 & f^{0101} & f^{0111} \\ f^{1000} & f^{1010} & 1 & f^{1011} \\ 1 & f^{1110} & f^{1101} & 2 \end{bmatrix}$$

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} 2 & f^{0010} & f^{0001} & 1 \\ f^{0100} & 1 & f^{0101} & f^{0111} \\ f^{1000} & f^{1010} & 1 & f^{1011} \\ 1 & f^{1110} & f^{1101} & 2 \end{bmatrix}$$

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} 2 & f^{0010} & f^{0001} & 1 \\ f^{0100} & 1 & 0 & f^{0111} \\ f^{1000} & 0 & 1 & f^{1011} \\ 1 & f^{1110} & f^{1101} & 2 \end{bmatrix}$$

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f^{0000}	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} 2 & f^{0010} & f^{0001} & 1 \\ f^{0100} & 1 & 0 & f^{0111} \\ f^{1000} & 0 & 1 & f^{1011} \\ 1 & f^{1110} & f^{1101} & 2 \end{bmatrix}$$

Definition

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

Over the Boolean domain, the matrix form of $f = \langle 2, 1, 0, 1, 0 \rangle$ is

$$\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

.

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f^{0001}	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

Over the Boolean domain, the matrix form of $f = \langle 2, 1, 0, 1, 0 \rangle$ is

$$\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

•

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$$PI-Holant_{2}(\langle 2, 1, 0, 1, 0 \rangle) = PI-Holant(\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix})$$
$$\leq_{\mathcal{T}} \qquad \vdots$$
$$\leq_{\mathcal{T}} PI-Holant(\neq_{2} | EXACT-TWO_{4})$$
$$\equiv_{\mathcal{T}} \#PI-4Reg-EO$$

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f^{0000}	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f^{0100}	f^{0110}	f^{0101}	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} g^{0000} & g^{0010} & g^{0001} & g^{0011} \\ g^{0100} & g^{0110} & g^{0101} & g^{0111} \\ g^{1000} & g^{1010} & g^{1001} & g^{1011} \\ g^{1100} & g^{1110} & g^{1101} & g^{1111} \end{bmatrix}$$

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} g^{0000} & g^{0010} & g^{0001} & g^{0011} \\ g^{0100} & g^{0110} & g^{0101} & g^{0111} \\ g^{1000} & g^{1010} & g^{1001} & g^{1011} \\ g^{1100} & g^{1110} & g^{1101} & g^{1111} \end{bmatrix}$$

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times y z}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} g^{0000} & g^{0010} & g^{0001} & 1 \\ g^{0100} & 1 & 1 & g^{0111} \\ g^{1000} & 1 & 1 & g^{1011} \\ 1 & g^{1110} & g^{1101} & g^{1111} \end{bmatrix}$$

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times yz}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

$$\begin{bmatrix} g^{0000} & g^{0010} & g^{0001} & 1 \\ g^{0100} & 1 & 1 & g^{0111} \\ g^{1000} & 1 & 1 & g^{1011} \\ 1 & g^{1110} & g^{1101} & g^{1111} \end{bmatrix}$$

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times y z}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f ¹¹⁰⁰	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

The matrix form of $g = \text{EXACT-TWO}_4$ is

0	0	0	1
0	1	1	0
0	1	1	0
1	0	0	0

.

Let f be a function of arity 4 over the Boolean domain with $f(w, x, y, z) = f^{w \times y z}$. Then we express f as the matrix

f ⁰⁰⁰⁰	f ⁰⁰¹⁰	f ⁰⁰⁰¹	f ⁰⁰¹¹]
f ⁰¹⁰⁰	f ⁰¹¹⁰	f ⁰¹⁰¹	f ⁰¹¹¹
f^{1000}	f^{1010}	f^{1001}	f ¹⁰¹¹
f^{1100}	f ¹¹¹⁰	f ¹¹⁰¹	f ¹¹¹¹

Example

The matrix form of $g = \text{EXACT-TWO}_4$ is

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

.

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$$\begin{aligned} \mathsf{Pl-Holant}_{2}(\langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{Pl-Holant}(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}) \\ &\leq \tau & \vdots \\ &\leq_{\mathcal{T}} \mathsf{Pl-Holant}(\neq_{2} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}) \\ &= \mathsf{Pl-Holant}(\neq_{2} \mid \mathsf{EXACT-TWC}) \end{aligned}$$

 $\equiv_{\mathcal{T}} \# \mathsf{PI-4Reg-EO}$

Under a holographic transformation by
$$Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
,

$$\begin{aligned} \mathsf{Pl-Holant}(\neq_2 \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}) &= \mathsf{Pl-Holant}(=_2 \mid \frac{1}{2} \begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{bmatrix}) \\ &\equiv_T \mathsf{Pl-Holant}(\begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{bmatrix}).\end{aligned}$$

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$$\begin{aligned} \mathsf{Pl}\mathsf{-}\mathsf{Holant}_2(\langle 2,1,0,1,0\rangle) &= & \mathsf{Pl}\mathsf{-}\mathsf{Holant}(\begin{bmatrix} 2&0&0&0\\0&0&1&0\\0&0&1&0\\1&0&0&2 \end{bmatrix}) \\ &\leq_{\mathcal{T}} & \vdots \\ &\leq_{\mathcal{T}} & \mathsf{Pl}\mathsf{-}\mathsf{Holant}(\begin{bmatrix} 3&0&0&1\\0&1&1&0\\0&1&1&0\\1&0&0&3 \end{bmatrix}) \\ &\equiv_{\mathcal{T}} & \mathsf{Pl}\mathsf{-}\mathsf{Holant}(\neq_2 \mid \begin{bmatrix} 0&0&0&0&1\\0&1&1&0\\0&1&1&0\\1&0&0&0 \end{bmatrix}) \\ &= & \mathsf{Pl}\mathsf{-}\mathsf{Holant}(\neq_2 \mid \mathsf{EXACT}\mathsf{-}\mathsf{TWO}) \\ &\equiv_{\mathcal{T}} & \#\mathsf{Pl}\mathsf{-}\mathsf{4Reg}\mathsf{-}\mathsf{EO} \end{aligned}$$

Gadget Construction

Assign the function with matrix

 $\begin{vmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 3 \end{vmatrix}$ to every vertex of this gadget...

...to get a function with matrix

$$16\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

.

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$$\begin{aligned} \mathsf{PI-Holant}_{2}(\langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{PI-Holant}\left(\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}\left(\frac{1}{2}\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 7 & 5 & 7 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}\left(\neq_{2} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}\right) \\ &= \mathsf{PI-Holant}(\neq_{2} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}(\neq_{2} \mid \mathsf{EXACT-TWO}) \\ &\equiv_{\mathcal{T}} \#\mathsf{PI-4Reg-EO} \end{aligned}$$

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

```
\leq_{\mathcal{T}} \mathsf{Pl-Holant}(\frac{1}{2} \left[ \begin{array}{ccc} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 0 & 5 & 7 & 0 \end{array} \right])
                                                       \leq_{\mathcal{T}} \mathsf{Pl-Holant}(\left[\begin{smallmatrix}3 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0\end{smallmatrix}\right])
                                                        = \mathsf{Pl-Holant}(\neq_2 | \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix})
                                                        <_{T} Pl-Holant(\neq_2 | EXACT-TWO)
                                                        \equiv_{T}  #PI-4Reg-EO
```

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
.

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
.

Then

$$\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1} \text{ and } \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}.$$

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
.

Then

$$\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1} \text{ and } \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 7 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}$$

Given a 4-regular graph G, let

$$p(G; x, y, z) = \text{Holant}(G; T \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix} T^{-1}).$$

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
.

Then

$$\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1} \text{ and } \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}$$

Given a 4-regular graph G, let

$$p(G; x, y, z) = \text{Holant}(G; T \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z \end{bmatrix} T^{-1}).$$

Then

$$p(G; 1, 1, 3) = \text{Holant}(G; T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}).$$

 N_1

Assign the function with matrix $T\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}$ to every vertex of N_s ...

Let G_s be obtained from G by replacing every vertex with N_s .

 N_2

 N_{s+1}
Interpolation

Assign the function with matrix $T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}$ to every vertex of $N_{s...}$

...to get a function with matrix
$$T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}^{5} T^{-1}$$
.

Let G_s be obtained from G by replacing every vertex with N_s .

Then

$$p(G; 1^{s}, 6^{s}, 13^{s}) = \text{Holant}(G; T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}^{s} T^{-1})$$
$$= \text{Holant}(G_{s}; T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}).$$

Let $c_{jk\ell}$ be the coefficient of $x^j y^k z^\ell$ in p(x, y, z).

Then (with n vertices in G)

$$p(G; 1^{s}, 6^{s}, 13^{s}) = \sum_{i+k+\ell=n} (6^{k} 13^{\ell})^{s} c_{ik\ell}$$

- is a full rank Vandermonde system:
 - row index s;
 - column index (j, k, ℓ) .

QED

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

$$\begin{aligned} \mathsf{PI-Holant}_{2}(\langle 2, 1, 0, 1, 0 \rangle) &= \mathsf{PI-Holant}\left(\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}\left(\frac{1}{2}\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 7 & 0 \\ 0 & 7 & 0 & 0 & 19 \end{bmatrix}\right) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}\left(\begin{bmatrix} 3 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}\right) \\ &= \mathsf{PI-Holant}(\neq_{2} \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}) \\ &\leq_{\mathcal{T}} \mathsf{PI-Holant}(\neq_{2} \mid \mathsf{EXACT-TWO}) \\ &\equiv_{\mathcal{T}} \#\mathsf{PI-4Reg-EO} \end{aligned}$$

Techniques: holographic transformation, gadget construction, interpolation

Outline

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(\mathcal{F}) over General Graphs
- Dichotomy for Holant_k(f) over Planar 3-Regular Graphs

Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Summary

Edge Coloring

Definition

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof.

$$\begin{aligned} \mathsf{PI-Holant}_{\kappa}(\langle 2,1,0,1,0\rangle) \leq_{\mathcal{T}} \\ \leq_{\mathcal{T}} \\ \leq_{\mathcal{T}} \#\mathsf{PI-}\kappa\mathsf{Reg-}\kappa\mathsf{EdgeColoring} \end{aligned}$$

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof.

$\begin{aligned} \mathsf{PI-Holant}_{\kappa}(\langle 2, 1, 0, 1, 0 \rangle) \leq_{\mathcal{T}} & \vdots \\ & \leq_{\mathcal{T}} \mathsf{PI-Holant}_{\kappa}(\mathsf{ALL-DISTINCT}_{\kappa}) \\ & = & \#\mathsf{PI-}_{\kappa}\mathsf{Reg-}_{\kappa}\mathsf{EdgeColoring} \end{aligned}$

Let $AD_3 = ALL-DISTINCT_3$.

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof.

 $\begin{aligned} \mathsf{Pl-Holant}_{\kappa}(\langle 2, 1, 0, 1, 0 \rangle) &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\mathsf{ALL-DISTINCT}_{\kappa}) \\ &= \#\mathsf{Pl-}\kappa\mathsf{Reg-}\kappa\mathsf{EdgeColoring} \end{aligned}$

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof.

 $\begin{aligned} \mathsf{Pl-Holant}_{\kappa}(\langle 2, 1, 0, 1, 0 \rangle) &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\mathsf{ALL-DISTINCT}_{\kappa}) \\ &= \#\mathsf{Pl-}\kappa\mathsf{Reg-}\kappa\mathsf{EdgeColoring} \end{aligned}$

Assign (0, 1, 1, 0, 0) to every vertex of N_s ...

...to get a function f_s .

Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & \kappa - 1 & 0 & 0 & 0 \\ 1 & \kappa - 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } f_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Let G_s be obtained from G by replacing every vertex with N_s .

.

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let

$$f(x) = P \begin{bmatrix} x & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1} f_0 = \begin{bmatrix} \frac{x-1}{\kappa} + 1 \\ \frac{x-1}{\kappa} \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

•

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let

$$f(\mathbf{x}) = P \begin{bmatrix} \mathbf{x} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1} f_0 = \begin{bmatrix} \frac{\mathbf{x} - 1}{\kappa} + 1 \\ \frac{\mathbf{x} - 1}{\kappa} \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Given a 4-regular graph G, let $p(G; x) = \text{Holant}_{\kappa}(G; f(x))$.

•

Spectral decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let

$$f(x) = P \begin{bmatrix} x & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1} f_0 = \begin{bmatrix} \frac{x-1}{\kappa} + 1 \\ \frac{x-1}{\kappa} \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Given a 4-regular graph G, let $p(G; x) = \text{Holant}_{\kappa}(G; f(x))$. Then $p(G; \kappa + 1) = \text{Holant}_{\kappa}(G; \langle 2, 1, 0, 1, 0 \rangle)$ and $p(G; (\kappa - 1)^{2s}) = \text{Holant}_{\kappa}(G; f_{2s}) = \text{Holant}_{\kappa}(G_{2s}; \langle 0, 1, 1, 0, 0 \rangle)$. If G has *n* vertices, then p(G, x) has degree *n*.

If G has *n* vertices, then p(G, x) has degree *n*.

Since $(\kappa - 1)^{2s}$ is distinct for $0 \le s \le n$, we can efficiently compute the coefficients of p(G, x).

QED

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Proof.

 $\begin{aligned} \mathsf{Pl-Holant}_{\kappa}(\langle 2, 1, 0, 1, 0 \rangle) &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\langle 0, 1, 1, 0, 0 \rangle) \\ &\leq_{\mathcal{T}} \mathsf{Pl-Holant}_{\kappa}(\mathsf{ALL-DISTINCT}_{\kappa}) \\ &= \#\mathsf{Pl-}\kappa\mathsf{Reg-}\kappa\mathsf{EdgeColoring} \end{aligned}$

Outline

Dichotomy Theorems

- Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
- Dichotomy for $\#CSP(\mathcal{F})$ over Planar Graphs
- Dichotomy for Holant(*F*) over General Graphs
- Dichotomy for Holant_k(f) over Planar 3-Regular Graphs

3 Example Proofs of Hardness

- Common Reduction
- #EulerianOrientation over Planar 4-Regular Graphs
- #3-EdgeColoring over Planar 3-Regular Graphs

Theorem (Cai, Kowalczyk, W 12)

Z(binary) over planar 3-regular directed graphs.

Theorem (Guo, W 13)

#CSP(symmetric set) over planar graphs.

Theorem (Cai, Guo, W 13)

Holant(symmetric set) over general graphs.

Theorem (Cai, Guo, W 14)

Holant_{κ}(symmetric domain invariant) over planar 3-regular graphs for $\kappa \geq 3$.

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Theorem (Cai, Guo, W 14)

Counting edge colorings with κ colors is #**P-hard** over planar *r*-regular graphs for $\kappa \ge r \ge 3$.

Thank You