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Abstract
High-level languages are growing in popularity. However, decades of
C software development have produced large libraries of fast, time-
tested, meritorious code that are impractical to recreate from scratch.
Cross-language bindings can expose low-level C code to high-level
languages. Unfortunately, writing bindings by hand is tedious and
error-prone, while mainstream binding generators require extensive
manual annotation or fail to offer the language features that users of
modern languages have come to expect.

We present an improved binding-generation strategy based on
static analysis of unannotated library source code. We characterize
three high-level idioms that are not uniquely expressible in C’s low-
level type system: array parameters, resource managers, and multiple
return values. We describe a suite of interprocedural analyses that
recover this high-level information, and we show how the results
can be used in a binding generator for the Python programming
language. In experiments with four large C libraries, we find that
our approach avoids the mistakes characteristic of hand-written
bindings while offering a level of Python integration unmatched
by prior automated approaches. Among the thousands of functions
in the public interfaces of these libraries, roughly 40% exhibit the
behaviors detected by our static analyses.
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[Programming Languages]: Language Constructs and Features—
Dynamic storage management, Procedures, functions, and subrou-
tines; D.3.4 [Programming Languages]: Processors—Code genera-
tion, Memory management; E.1 [Data Structures]: Arrays; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis
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1. Introduction
In recent years, high-level languages have made inroads into areas
formerly reserved for low-level languages, such as scientific com-
puting and non-kernel systems programming. A high-level language
can speed development by offering helpful features like automatic
memory management.

However, even with increasingly-capable high-level languages,
there remains a need to access code written in low-level languages.
Some important reasons include:

Direct access: By their very nature, high-level languages attempt
to hide low-level details from programmers. Sometimes, these
details become important, either for performance in critical loops
or for interaction with hardware, and high-level languages do
not always provide means to operate “on the metal.”

Code reuse: Well-tested code has great value: its bugs are at least
known, if not fixed. Rewriting code risks introducing new and
unknown bugs. In many situations, there may not be time to
port a large code-base to a new language, even if such a port is
desirable.
Additionally, sharing a single library among several languages
promotes interoperability and frees designers from the burden
of reimplementing the same specification in every language.

Many high-level languages facilitate the reuse of low-level
libraries through foreign function interfaces, which permit high-
level languages to make calls to native code. When discussing such
calls, we refer to the high-level language as the host language and the
native code as a guest library; the low-level language that produced
the guest library is thus the guest language. We refer to a set of
host language functions which make an entire guest library available
through some form of function interface as a library binding. We
only consider C as the guest language in this paper, but the principles
can be applied to other languages.

When a small number of guest functions are needed in a host
language, it may be convenient for a developer to use foreign
function interfaces “by hand.” However, the task of building a
complete binding for a large library is nontrivial. In this paper,
we argue that this task ought to be automated, and show that existing
techniques for such automation may be greatly improved by static
analysis of a guest library’s source code.

The remainder of this paper is organized as follows. Section 2
motivates our work. Section 3 identifies desirable features for library
bindings that cannot be represented in C function declarations alone.
Section 4 describes a suite of interprocedural static program analyses
that recover this missing information from C library source code. In
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Section 5 we present a concrete example client for this information:
an automated binding generator for the Python scripting language.
We have used this generator to create bindings to four large C
libraries, and we evaluate the results in Section 6. Section 7 discusses
related research, and Section 8 concludes.

2. Motivation
Creating and maintaining library bindings can be a costly and error-
prone process, especially when the interfaces of guest libraries are
subject to change. Numerous teams of developers exist to maintain
major binding projects. Examples include gtk2-perl, PyQt, gtkmm,
and java-gnome. They represent an under-served programmer com-
munity whose work will become more critical as mixed-language
development becomes more prevalent.

For large libraries, it is impractical to hand-code host language
wrappers for all guest library functions. Tools such as SWIG [3] and
ctypeslib [18] partially automate this process by reading library
headers and generating library bindings automatically. Several
library binding teams, including PyGTK and PyQt, have created and
maintain their own code generators based upon C or C++ headers to
partially automate the binding generation process.

However, the interfaces generated by header-scanning systems
do not take advantage of higher-level features offered by host lan-
guages unless manual annotations to the guest library are provided.
This need for annotations arises because there is no one-to-one map-
ping of programmer intent to the set of C language constructs that
declare a library’s public interface. Key aspects of high-level design
are lost, and no amount of header scanning will bring them back. We
assert that these higher-level properties can be recovered, without
annotations, by moving beyond headers to deeper static analysis
of library implementation code. This, in turn, supports automated
generation of library bindings which are less prone to error and more
natural to use.

Additionally, the analysis techniques shown in this paper can
support library understanding. The analyses produce summaries
of function interfaces; the summaries can help developers verify
their understanding of these interfaces. If a summary exhibits an
unexpected feature, or lacks an expected one, a developer may
investigate the cause. Such information may be useful to both the
creators and users of a library.

The results of our analysis may also be useful for tracking API
evolution. Given function summaries from two different versions
of a library, a simple differencing tool can show changes in the
prototypes of library functions, as well as changes in their higher-
level behavior.

3. Interface Specification in C
We would like to generate library bindings for low-level code that
are both safe and natural. A safe binding introduces no more memory
unsafety than is inherent to the guest library being used. A natural
binding supports host-language programmers by integrating the
guest library into the high-level services of the host language.

Unfortunately, the C type system itself stands as an obstacle
to both of these goals. In one regard, the type system is highly
unambiguous: every parameter in C is passed by value, and pointers
are simply addresses. Considered more closely, however, several
higher-level idioms are present; programmers simply lack the syntax
to distinguish them.

3.1 Pointer Parameter Ambiguities
Modern host languages typically offer some tightly-integrated
sequence type, such as a list or dynamic array type. Programmers in
a host language will prefer these containers over containers defined
by a guest library. Thus, it would be natural to allow programmers to

pass host-language sequence types across bindings to guest libraries,
with appropriate data transformations applied automatically.

In C, the only first-class sequence type is the array. Unfortunately,
C offers no enforced syntax for declaring array-typed function
parameters: arrays are passed by address, and therefore a function
which processes an array must declare that it takes a pointer to the
array’s element type as a parameter. C’s type system simply cannot
distinguish array parameters from other pointer parameters. Any
interface generator based only on parsing C headers, then, requires
an annotation to recognize opportunities to allow users to pass host-
language sequence types in place of raw C arrays.

Pointer-typed parameters are likewise overloaded to simulate
call-by-reference, such as for multiple return values. The C language
provides at most one return value for any function, and offers no
call-by-reference parameters. A function that produces more than
one value must either return a wrapper structure or accept pointers
to locations where additional output values should be stored. To
avoid cumbersome use of custom struct types, many libraries
choose the latter approach.

For example, the standard C library function frexp takes two
parameters: a floating point number x and an integer pointer exp.

double frexp(double x, int *exp);

This function returns a value r and stores a second value e through
the pointer exp such that r=x×2e. Here, exp is used as an output
parameter, but is syntactically indistinguishable from a generic
pointer (or indeed an array).

Many host languages have better support for multiple return val-
ues. Library bindings can perform a useful service by transforming
instances of this common pattern into real multiple-return-value con-
structs in the host language. A wrapper function can automatically
allocate space for these output parameters, pass their addresses to
the underlying library function, and return the results through the
host language’s native multiple return value mechanism. Again, C
headers do not provide enough information to distinguish this con-
struction from a standard pointer parameter, and a binding generator
that relies only on headers would need annotations to detect it.

3.2 Object Ownership
One significant benefit of working in a high-level language is a
garbage collector’s assistance with memory management. Such a
facility can also help to clean up other program resources, like
file handles. Since users of most potential host languages are
accustomed to automatic resource management, it is desirable to
integrate foreign library resources with this infrastructure.

C libraries often contain a set of constructor functions that
return handles (typically pointers) to newly allocated and initialized
objects.1 A natural high-level language binding for a constructor
function would extend automatic resource management to cover
these newly-allocated objects. While registering these objects with
the host language garbage collector is important, it is equally
important to ensure that they are cleaned up, or finalized, correctly.
No one general-purpose finalizing function is appropriate for all
objects allocated in C, since the host language may not know their
composition and semantics. Properly reclaiming resources held
by complex objects, such as file handles or database connections,
requires more than simple memory deallocation.

Constructor functions are syntactically indistinguishable from
any other C function that happens to return a pointer. Likewise,
finalizers are indistinguishable from any other function that takes a
pointer-typed argument. A binding generator that relies on header

1 C has no formal object system. We use object here to describe structured
regions of memory that occupy resources when constructed and release them
when finalized.



files alone would require annotations to detect constructors and
finalizers. However, identifying these functions helps us to create
library bindings that are safe and natural. Since header files are
insufficient, we must look deeper. By detecting functions that create
and destroy resources, static analysis of library source code can help
us build the bindings we desire.

The goal of a library binding is to follow the resource manage-
ment conventions of the guest library without needlessly burden-
ing the host language programmer. Garbage collector integration
is only one broadly-applicable example of how our analysis can
help with cross-language resource management; other management
policies could be applied. Regardless of the strategy employed,
cross-language resource management is a serious issue. A search of
the GNOME Project Bugzilla database [14] reveals numerous bugs
in library bindings relating to memory management2.

4. Analyses
We have implemented a series of analyses to infer enough infor-
mation to provide higher-level interfaces. All of our analyses make
conservative assumptions because we do not have an entire program
to analyze.

Our analyses are all interprocedural, context-insensitive, and
path-insensitive. In each analysis, information propagates along the
call graph from called functions (callees) to their callers, but not
vice versa. This ensures that imprecision incurred from our lack of
path-sensitivity does not lead to false inferences about callees.

A library may rely on other libraries, and most C libraries rely
on the standard C library. In order to analyze dependent libraries
separately, our suite of analyses take a set of interface descriptions
as an additional input. The interface description for a library contains
all the facts about its functions (and their parameters) that our
analysis requires. These descriptions are stored as an immutable
base set of facts, which our analysis consults when it encounters a
call to an external function. The domain of facts provided in these
descriptions is exactly the domain of facts produced by the analysis
itself. Thus, the analysis is modular per-library: the output of the
analysis on one library can be used as an input interface description
for another library that relies upon it. To bootstrap our analysis, we
have hand-written interface descriptions for the C standard library
and the Linux kernel system call interface. These descriptions serve
as a base set for all libraries.

We have also implemented a lightweight, optional annotation
system that can improve the analysis output by putting extra infor-
mation into the base set of facts before analysis begins. We discuss
these annotations with their associated analyses. This annotation sys-
tem is separate from the source code of the library, and so requires
no modification to the library itself.

In the following discussion, we assume that the guest language is
C, and that the guest library source code has undergone the following
preparatory transformations:

1. Array operations have been replaced with equivalent pointer-
arithmetic. For example, buffer[offset] is rewritten as
*(buffer + offset).

2. Each function has a unique exit node.

3. The entire program has been placed in static single assignment
(SSA) form with global value numbering (GVN) per Alpern et al.
[1].

4. A global alias analysis has been performed.

2 A few examples are GNOME bugs 129754, 133681, 313861, 358294,
482795, and 498334. Our approach could have prevented at least five of
these.
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Figure 1: Hasse diagram of output parameter lattice. An edge a→ b
represents a≺ b in the lattice partial order.

4.1 Output Parameters
Our first analysis facilitates the multiple return value transforma-
tion discussed in Section 3.1. To perform this transformation, we
need to know which parameters to any given function are output
parameters. An output parameter is a pointer-typed parameter that
is always written through before being read from. Other pointer-
typed parameters fall into one of three remaining categories. An
input parameter is always read from but never written through. An
input/output parameter is read from and later written through. An
unused parameter is neither read from nor written through at all.

We classify pointer-typed parameters using a forward dataflow
analysis. The analysis operates over single program statements and
considers each pointer-typed parameter in isolation. The analysis for
a given formal parameter p in a function f is constructed as follows.
The state of p at each statement is an element of the bounded lattice
given in Figure 1. The initial state on entry to f is ⊥. The join
operation at any statement is the least upper bound (lattice join)
of the exit states from all predecessor statements. The transfer
function at a given statement depends on the syntactic form of that
statement:

• For statements that write through q where q must alias p, the
exit state is the least upper bound of the entry state and OUT . For
example, following *p = v, a pointer that had never previously
been used at all (⊥) will acquire the state OUT , while a pointer
that had previously been read from (IN) will acquire the state
INOUT .

• For statements that read from q where q may alias p, the exit
state is OUT if the entry state was OUT , or is the least upper
bound of the entry state and IN otherwise. Thus, following v =
*p, a pointer that was previously unused (⊥) will acquire the
state IN, while a pointer that had previously only been written
through (OUT) will retain the state OUT .

• For function calls that pass q as a parameter to function f’
where q may alias p, the writing and reading rules discussed
above apply and are determined by the states of the appropriate
parameter of f’. Calls through function pointers are treated
conservatively: if q is used as a parameter to a function pointer,
it acquires the state INOUT unless it has already been proved to
be OUT .

• For all other statements, the exit state is the same as the entry
state.

At any given statement, the least solution to these dataflow
equations associates OUT with each pointer-typed parameter that
must be written through at least once before it may be read from.
Parameters in the OUT state at a function’s unique exit node, then,
are the output parameters for that function.

The above algorithm applies only to pointers to primitive types
(including other pointers). A straightforward change is required
to extend it to handle pointers to aggregates, as follows. At the
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Figure 2: Array reconstruction example

beginning of the analysis of a function, break each input structure
down field-wise and perform the analysis as usual. At the end of the
analysis, if every field of a pointer-to-structure parameter is in the
OUT state, that parameter is an output parameter.

We analyze the functions in a library in callees-before-callers
order so that the final states of the parameters of all called functions
in the current function are known. We resolve cycles in the call
graph by iterating over the functions forming the cycle to find a
fixed point.

4.2 Arrays
The C type system does not distinguish pointers used to denote
reference parameters from those used as a pointer to the first element
of an array. (This is a fundamental aspect of C, not merely an artifact
of our preparatory replacement of array operators with pointer
arithmetic.) Our array analysis recovers this lost information by
identifying which pointer parameters are used in array contexts.
A pointer is used in an array context if it is an operand of a
pointer arithmetic expression and the result of that expression is
dereferenced (either read from or written through).

The array analysis proceeds in two phases to analyze a function
f: (1) interprocedural information propagation and (2) local array
use identification. In the first phase, the analysis examines each
callee f’ of f. Consider a value q which must alias a parameter
p of f, and which is passed as the nth parameter of f’. If the nth
parameter of f’ is known to be used as an array (either because f’
was analyzed before f or was introduced as part of the base set of
the analysis), then q and therefore p must also be arrays.

The second phase of the analysis begins by collecting all SSA val-
ues which are instances of pointer arithmetic in a given function, dis-
carding any for which the result is never used. The pointer operand
of each of these values is considered to be a one-dimensional array
and the value itself is an array element.

Considering only this set of one-dimensional arrays, the initial
array set, the analysis iteratively reconstructs array types in the
function as follows:

1. Consider a pair of values in the current array set v1 = (p +
offset) and v2 = (v1 + offset). Note that the pointer
operand of v2 is v1.

2. For each such pair v1 and v2, extend the array associated with
v1, and any arrays by which v1 is contained, by one dimension
to create the next array set.

3. Continue this process until no arrays are extended.

This process is illustrated in Figure 2. In this example, x is a
variable of type int**, really an integer matrix. Assume that x is
not passed as a parameter to any other calls. The first pass of the
analysis over all pointer arithmetic operations reveals two arrays of
one dimension each: x (which is known to be at least an array of
int*) and y (which is known to be an array of ints). The second
pass identifies y as being a member of the array pointed to by x; the

analysis concludes, therefore, that x is a two-dimensional array of
int.

This analysis is flow-insensitive. The full function is only
scanned once, to collect the initial array set which serves as a
work list. The number of iterations over the instances of pointer
arithmetic in a given function is bounded by the number of dimen-
sions of any array in the function. Note that we do not infer which
parameters correspond to the lengths of arrays. Our system could be
augmented with a separate analysis to infer array-length parameters,
such as the one proposed by Cousot and Halbwachs [6].

One important class of array parameter are not identified by the
analysis described above: parameters that are assigned to fields of a
non-local struct, but which are not used in array contexts within
the function being analyzed. To handle these case, we make an initial
pass over all the statements in the library, identifying struct fields
that are used in array contexts. Then, when a function is analyzed,
any parameter that is assigned to an array field of a struct is
marked as an array.

4.3 Resource Management
We group several analyses together under the aegis of resource man-
agement; their goal is to infer enough information about resource
management in a library to allow us to interact intelligently with,
and utilize the services of, a host-language memory management
system.

We are primarily interested in two types of functions with which
we can build a model of resource management in C:

Constructors create and return references to new objects. Two
examples from the C standard library are malloc and calloc.
Following the convention of the standard library, we allow
constructors to return NULL as a means of indicating an error.

Finalizers take references to objects returned by constructors and
release the associated resources. The example from the C stan-
dard library is free. As with constructors, we allow finalizers
to return early if they are passed NULL.

In order for foreign objects obtained from these constructors
to be of any use, they must generally be passed back from the
host language to the guest library. This means that two memory
management systems interact with foreign objects: one manual
and the other automatic. Ensuring that only one of these systems
finalizes any given object, and only does so after the other memory
management system is done with it, requires an ownership model.

We use a model much like one proposed by Heine and Lam [17],
in which

• there is exactly one owning pointer for every object allocated by
the guest library,

• ownership may be transferred from one pointer to another, and
• for each member field of a given object class (e.g., a struct

type), the member is either always owned or never owned.

Unlike Heine and Lam, we do not infer the ownership properties
of fields; rather, we assume that objects own each of their member
fields unless given explicit annotations to the contrary. Our analysis
determines which functions cause ownership transfers. Then, at run
time, the wrapper functions created by our code generator provide
this information to the host memory-management system. We use
an escape analysis to infer where these ownership transfers occur.

4.3.1 Escaping Values
Consider a value v pointed to by a pointer p in a function f. If vmay
become reachable from a new non-local scope due to f or one of its
callees, we say that v escapes from f. Furthermore, assume that v
escapes from f and that p is a parameter of f. If this f is invoked



from a host language, we consider the ownership of v (pointed to
by parameter p) to be transferred, as per our ownership model.

Our escape analysis is based on the may-alias augmented SSA
form of Cytron and Gershbein [8], extended interprocedurally as
by Harrold and Soffa [16]. This formulation is well-suited to our
problem; it allows us to analyze libraries sparsely, calculating only
the alias information for function arguments and their necessary
dependencies. If a function pointer is provided from the host
language as a callback, there is nothing to analyze at compile time
and we conservatively assume that all of its pointer parameters
escape. Functions provided by library dependencies may be similarly
unavailable at analysis time; however, the interface descriptions for
these dependencies include escape information for their functions.

We introduce an optional annotation to model weak references
in objects. The annotation is of the form:

(weak-reference struct-name field-index)

where field-index is the zero-based index of a field in a C
struct which always holds weak references. A weak reference
has no ownership over its contents, and callers from host languages
need take no special action to inform the run-time system of their
presence. If the escape analysis determines that the value pointed to
by some parameter escapes only into one of these weak references,
that parameter is recorded was weakly escaping. This information is
propagated to callers as the analysis proceeds bottom-up.

4.3.2 Constructors
The constructor analysis identifies functions which always return
a reference to a new object that can safely be deallocated by
an appropriate finalizer. Candidate functions must also relinquish
ownership of the returned value; this means that a function is not
a constructor if the return value escapes from the function by any
means other than the return value. Further, this implies that if a guest
library constructor is called from the host language, the run-time
system of the host language becomes the new owner of the returned
object. Thus, the host language’s run-time system is empowered to
manage resources given to it by guest-language constructors. Note
that this is a “must” analysis: a function which sometimes creates
new objects and sometimes reuses existing global objects is not a
constructor.

For each value-returning function, the constructor analysis con-
siders three cases:

1. If the return value is the result of calling some other function
which is already known to be a constructor, then the function
being analyzed is a constructor as well.

2. If the return value is an SSA Φ node and all incoming values can
be safely deallocated with some available finalization function,
then the function being analyzed is a constructor.

3. Otherwise, the function being analyzed is not a constructor.

Note that the preparatory GVN transformation obviates the need
for any explicit copy propagation during this stage.

Developers may steer the constructor analysis using a second
optional annotation, of the following form:

(assign-finalizer ctor-name finalizer-name)

This directs the analysis to assume that ctor-name is a con-
structor whose returned resources are reclaimed by passing them
to finalizer-name. This is useful for forcing the analysis to
ignore any caching of returned values that a constructor might per-
form by way of internal bookkeeping. Internal bookkeeping often
manifests at analysis time as an escaping return value. Our escape
analysis, described in the previous section, allows our implemen-
tation to inform the user of functions which would be constructors

void *xmalloc(int size) {
LIBENV *env = lib_link_env();
LIBMEM *desc;
int sz = align(sizeof(LIBMEM));
desc = malloc(size);

desc->next = env->mem_ptr;
env->mem_ptr = desc;

return (void *)((char *)desc + sz);
}

glp_prob *create_prob() {
glp_prob *lp = xmalloc(sizeof(glp_prob));
lp->row = xcalloc(10, sizeof(GLPROW *));
lp->col = xcalloc(10, sizeof(GLPCOL *));
return lp;

}

LPX *lpx_create_prob() {
return create_prob();

}

Listing 1: Transitive constructor example, adapted from GLPK [24]

if not for an escaping value. This feedback can provide some guid-
ance on where the assign-finalizer annotation would be
profitable.

As a base case, our implementation considers the standard C
library functions malloc and calloc to be constructors. The
free function is their finalizer, as it deallocates the results of those
functions. To facilitate error checking in finalizers, the analysis
additionally considers the NULL pointer to be an acceptable return
value from a constructor. This is both safe and prudent: safe because
calling free(NULL) is always valid in C, and prudent because
malloc and calloc return NULL on allocation failure.

Starting with this base set of constructors, the analysis transi-
tively identifies additional constructors whose return value is always
either NULL or the result of a call to an already-known constructor.
Constructor candidates are visited bottom-up, callees before callers.
We handle recursion by iterating until a fixed point is reached.

Listing 1 offers an example. The first function, xmalloc, acts
as a wrapper around the standard malloc function and performs
some additional bookkeeping. Since the escape analysis determines
that the value returned by xmalloc escapes into the global envi-
ronment, a manual annotation is required to inform the analysis
that xmalloc is really a constructor. With this annotation in place,
the analysis determines that create_prob is also a constructor
since the value it returns is itself the result of a constructor. Like-
wise, lpx_create_prob is a constructor by transitivity, since it
returns an object allocated by create_prob.

It is straightforward to extend this analysis to cover values
constructed and returned through output parameters (discussed in
Section 4.1). Our implementation forgoes this generalization as we
find that it is uncommon in practice.

4.3.3 Finalized Parameters
The finalizer analysis is closely related to the constructor analysis. It
identifies finalized function parameters, defined as those represent-
ing resources that are always deallocated on every call to the given
function. Functions that finalize parameters assume ownership of
those finalized parameters; this means that a host language run-time
system must relinquish ownership when calling such functions. As
in the constructor analysis, we allow a special exception for NULL



pointers: a parameter need not be deallocated if it is known to be
NULL.

We identify finalized parameters using a forward dataflow anal-
ysis. The analysis operates over single program statements (not
whole basic blocks) and considers each pointer-typed parameter in
isolation. The analysis for a given parameter p in a function f is
constructed as follows. The state of p at each statement is either
finalized-or-NULL or other. The initial state on entry to f is other.

The join operation for a statement s considers several cases:

• If s is the true-edge successor of a conditional of the form if
(q == NULL) and qmust alias p, then the entry state for p at s
is finalized-or-NULL. Pre-analysis normalization of conditionals
extends this to include negated and non-negated equivalents such
as if (q) and if (!q).

• Otherwise, if exit states for all predecessors of s are finalized-or-
NULL, then the entry state for s is finalized-or-NULL as well.

• For all other statements, the entry state is other.

The transfer function for a statement s considers two cases:

• If s is a call, q is an actual parameter in that call, q must alias
p, and the argument position of q corresponds to one known to
be finalized by the callee, then the exit state of s is finalized-or-
NULL.

• For all other statements, the exit state is the same as the entry
state.

At any given statement, the least solution to these dataflow
equations associates finalized-or-NULL with each pointer-typed
parameter that must be finalized or NULL at the given statement.
Parameters in the finalized-or-NULL state at a function’s unique exit
node, then, are finalized parameters for that function.

There are two annotations available to introduce a particular
parameter of a function into the base set of known finalizing
parameters. These annotations augment the interface descriptions
provided as input to the analysis. The interface description of the
standard C library provides only one finalizing parameter: the only
argument of the free function.

The first annotation, introduced in the constructor analysis
(Section 4.3.2), is a useful shorthand when the finalizer function has
exactly one parameter. The analysis raises an error if this annotation
names a destructor with no parameters or more than one parameter.
The second annotation is of the form:

(declare-finalizer function-name arg-index)

This annotation adds the argument at position arg-index in
the named function to the base set of finalizing parameters.

Like the constructor analysis, the finalized-parameter analysis
operates in callees-before-callers order. The analysis resolves cycles
in the call graph by iterating over the functions in the cycle until
reaching a fixed point; when calculating this fixed point, the analysis
is optimistic and initially assumes that all pointer parameters are
finalized.

Consider Listing 2 as an example. The xfree function passes
an alias of its only argument, ptr, to a function known to finalize its
argument, free, on line 11. The state of ptr at the end of xfree
is, then, finalized-or-NULL and it is therefore a finalized parameter.

The second function, delete_prob, builds on xfree. On
line 15 delete_prob checks if it was passed a valid pointer. At
line 16, then, we know that lp is NULL and so its state is finalized-
or-NULL. At the end of the other branch of the if statement, the
code passes lp to a known finalizer, so the state of lp after this
branch is also finalized-or-NULL. Applying the join function to
these two exit states in the unified return node allows the analysis to
conclude that lp is a finalized parameter.

1 void xfree(void *ptr) {
2 LIBENV *env = lib_link_env();
3 int sz = align(sizeof(LIBMEM));
4 LIBMEM *desc = (void *)((char *)ptr - sz);
5 if (desc->prev == NULL)
6 env->mem_ptr = desc->next;
7 else
8 desc->prev->next = desc->next;
9

10 env->mem_total -= desc->size;
11 free(desc);
12 }
13

14 void delete_prob(glp_prob *lp) {
15 if(!lp)
16 return;
17 xfree(lp->row);
18 xfree(lp->col);
19 xfree(lp);
20 }

Listing 2: Transitive finalizer example, adapted from GLPK

5. Generating Library Bindings
Using the information inferred about a library by these analyses, we
can automatically generate host language bindings. We have written
a binding generator targeting the Python programming language.

Our bindings use Python’s standard ctypes module, which
allows C functions to be described and then called at run time
using pure Python code. ctypes provides primitives for creating
and manipulating C types, as well as support for passing Python
functions to C for use as callbacks. Optionally, ctypes allows
the types of return values and function parameters to be specified,
enabling run-time type checks in Python. Our binding generator
utilizes such type declarations.

5.1 Multiple Return Values
When creating a Python wrapper for a C function that uses output
parameters, our code generator transforms the interface into a
more idiomatic Python form. This transformation removes output
parameters from the Python argument list and instead returns all
function outputs in a single Python tuple.

Specifically, for a C function fc of arity n with m output
parameters, our generated Python wrapper function fpy has n−m
parameters. Wrapper fpy is implemented as follows:

1. For each output parameter, allocate a variable of the appropriate
type. The variable’s initial value does not matter, since output
parameters are always written before being read.

2. Call the original C function fc by passing the n−m normal ar-
guments by value, and the m newly-allocated output parameters
by reference.

3. Return a Python tuple containing the return value of fc (if it
exists) followed by the values of the output parameters.

The proper ordering of parameters is tracked and maintained at
each step so that any interleaving of output and normal parameters
work as expected.

Consider the frexp example from Section 3.1. Our analysis
creates a Python function of one argument that returns a 2-tuple,
with the function interface (x, exp) = frexp(value).

This transformation benefits the user of the Python library
wrapper in two ways: (1) it brings the function interface closer to the



standard idioms of the Python language, and (2) it encapsulates the
ctypes boilerplate required to allocate and pass output parameters
by reference.

Parameters detected by our analysis to be input parameters or
input/output parameters may be interesting for other purposes, but
are not currently treated specially by our code generator.

5.2 Sequence Mapping
If a library function fc has one or more array parameters, our
generated Python wrapper fpy accepts both ctypes-managed
arrays and standard Python lists for those parameters. When called,
fpy checks the run-time types of actual parameters expected to be
arrays. If any such parameter is actually a Python list, the wrapper
function:

1. Allocates a C array of the same length as the list,

2. Performs a shallow copy of each element from the list to the
array, and

3. Passes the array to fc in lieu of the original list.

This procedure is recursively applied to nested lists, producing an
appropriately nested multidimensional array.

When fc returns, our fpy wrapper copies the contents of the array
back into the list it received as an argument. As an optimization, this
copy-back step is skipped if C array elements are const-qualified.
It would also be possible for a static analysis to detect functions that
never modify their array parameters, for which this copy-back step
would be redundant. Such an analysis would be similar to our output
parameter analysis, as well as to prior work on const qualifier
inference by Foster et al. [10].

Like the multiple-return-value transformation described in the
previous section, this change brings the wrapper function closer to
the standard idioms of Python, as it allows the programmer to use
Python’s natural list type instead of directly manipulating ctypes
objects. We choose to copy elements shallowly to minimize perfor-
mance surprises. The run-time type checks applied by ctypes will
raise an error if the contents of a passed-in list are incompatible with
the array’s expected element type.

5.3 Garbage Collector Interaction
C values are never directly exposed in Python. Rather, each C value
is encapsulated within a Python wrapper object. This wrapper object
provides all of the standard behaviors expected of any Python run-
time value, such as method dispatch and proper integration with the
Python garbage collector. Figure 3 shows the relationship between
an allocated C object and its Python-wrapped pointer. Note that
there is exactly one Python wrapper object for every C pointer
obtained from a constructor. This strong coupling offers generated
library bindings a single point of control over object lifetimes. In
particular, we can arrange for C finalization functions to be called
on constructed objects whenever the corresponding Python pointer
wrapper is garbage-collected.

We subclass the standard ctypes pointer-wrapper class to
add a private field containing a reference to the appropriate C
finalizing function. This subclass also defines a __del__ method;
the garbage collector will call this immediately before reclaiming
an unused object. Our __del__ method retrieves the stored C
finalizing function and calls it, thereby using automated Python
garbage-collection actions to drive explicit C resource management.

Three scenarios involving calls from Python to C require special
handling in wrapper functions with regard to resource management.
In each of the following cases, let fpy be a Python wrapper function
around a C function fc:

C pointer

finalizer

C object

C function

Python wrapper

Figure 3: ctypes wrapper object structure

• If fc is a constructor, fpy calls fc and temporarily stores its
return value, v. fpy then wraps v in our derived pointer wrapper,
assigning v a finalizing function, producing v’. fpy returns v’.
This process serves to register objects constructed in the guest
library with the host Python memory manager.

• If fc has any finalizing parameters, fpy disables the __del__
method for each one before passing them to fc.
Disabling the finalizers registered with the Python garbage
collector essentially transfers ownership from Python back to C.
This allows the Python memory manager to finalize objects in
the common case while still giving programmers the power to
explicitly (but safely) finalize objects.
By definition, using an object after it is finalized results in
undefined behavior. To prevent finalized objects from being
used in our generated Python bindings, we disable the Python
wrapper object before passing the pointer that it wraps to a
function which finalizes it. This step ensures that future uses
result in well-behaved Python exceptions, not the undefined
behavior that similar C code would yield.

• Analogously, if fc has any parameters that escape, fpy disables
their corresponding __del__ methods. Lifetime management
for escaped objects is the responsibility of the new owner, not
the Python garbage collector. As discussed in Section 4.3.1, the
Python wrappers take no special actions for parameters that only
escape into weak references.
The analysis can falsely detect that a given parameter escapes,
subject to the precision of the escape analysis. Disabling the
__del__ method of an object passed through such a parameter
will cause that object to leak unless it is explicitly finalized.

To see the importance of following an ownership model, consider
Listing 3. The add_property function transfers ownership of a
property object, p to the component c. Our analysis correctly infers
that p escapes. The finalizer for components, component_free,
later deallocates all properties of which it has assumed ownership. If
host language calls to add_property did not disable the finalizer
on p, it would be freed once when it went out of scope in the host
language, and again when c was deallocated. This could lead to
memory corruption or crashes.

When constructors are not explicitly paired to finalizers with the
assign-finalizer annotation, we apply a naïve but effective
matching heuristic: if the return type of a constructor exactly
matches the argument type of a single-argument function that
finalizes its only argument, then the two are considered a pair. If
two finalizers could potentially be applied to an object, the heuristic
selects neither and emits a warning. Constructed objects for which
no finalizer is provided through annotation, and for which the
matching heuristic fails, are not assigned any finalizer. The single-
argument restriction allows us to generate calls automatically: if
multiple arguments were present, our analysis could not guess what
values should be passed for the others. Finalizers that take more
than one parameter are still manually callable and can be used in
higher-level constructions, such as context managers in Python or
dynamic-wind in Scheme [9].



void add_property(component* c,
property* p) {

pvl_push(c->properties,p);
}

void component_free(component* c) {
property* p;
while((p=pvl_pop(c->properties)) != 0) {
property_free(p);

}
pvl_free(c->properties);
free(c);

}

Listing 3: Object ownership transfer, adapted from libical [5]

5.4 Alternatives
The information gathered by our analysis applies equally to any
foreign function interface system. Instead of targeting the native
high-level foreign function interface of a language, one could target
low-level extension modules (which themselves tend to be in C).

Another alternative would be to target a project that includes
multiple code generation backends already, such as SWIG. In order
to target SWIG, we could apply our inferred annotations to C headers
in the format that SWIG expects. While this would give us access to
the many code generation backends that SWIG already supports, we
chose not to do this because pure Python code is easier to evaluate
in an automated way.

6. Experimental Evaluation
We have implemented the analyses of Section 4 for C using version
2.4 of the LLVM compiler infrastructure [23] and the Clang front
end [22]. LLVM provides an SSA-based intermediate form and
preparatory transformations and analyses, such as GVN. We use
Andersen’s algorithm for alias analysis, which is flow-, field-, and
context-insensitive [2].

We evaluate our analysis and code generator by creating Python
bindings to four open-source C libraries:

• The GNU Linear Programming Kit (GLPK), a library for defin-
ing and solving certain kinds of optimization problems [24].

• The libarchive project, a library for reading and writing files of
various disk storage formats, such as tar [20].

• libical, a library for handling calendar- and schedule-related data
in a standard format [5].

• The GNU Scientific Library (GSL), a collection of mathematical
routines for scientific computing [13].

GLPK, GSL, and libical rely only on the standard C library, for
which we have written manual annotations. In contrast, libarchive
relies on four other open-source libraries: libacl [29], libattr [30],
zlib [12], and bzip2 [28]. Thus, we build up analysis results for
each of libarchive’s dependencies before analyzing the library itself.
Our analysis can operate on a library with any number of external
dependencies, provided we have source code or manual annotations
for all of them.

We seeded our analysis with two additional manual annota-
tions to GLPK. These annotations explicitly map its xmalloc
and xcalloc functions to their associated finalizer, xfree, as dis-
cussed in Section 4.3.2. No other manual annotations were necessary
in our experiments.

The running time of our analyses is reasonable. Of our exper-
iments, GLPK takes the longest to process: analyzing it took 17
minutes on a machine with 3 GHz Intel Pentium 4 processor and 1
GB of RAM running Red Hat Enterprise Linux 5. All other experi-
ments ran in 5 minutes or less on the same machine.

Our analysis exports two kinds of information to our Python code
generator: type signatures, allowing the generated Python code to
call C library functions with type checking, and inferred annotations
indicating higher-level function behavior, as detected by the analyses
described in Section 4. We validate the type bindings by comparing
them with those found by simpler analyses. Two of our four libraries,
GLPK and GSL, also have independently developed, hand-coded
ctypes bindings. In these cases, we compare the results of our
analysis with these human-generated artifacts. This allows us to
evaluate the utility of our annotations.

6.1 Correctness of Type Signatures
To validate the results of our type signatures, we use as reference
a binding generator that operates solely on header files. Such
generators can ensure type safety for parameters and return types,
but cannot detect the more detailed information given by our inferred
annotations.

Using version 0.5.4a of the ctypeslib code generator [18], we
produced bindings for each of our four target libraries, and verified
that our analysis finds equivalent types for function parameters and
returns.3 We also use these header-based results as an approximation
of the “public” interface of each library. That is, we assume that a
function declared in a library’s public header is meant to be a public
function.

The hand-coded wrapper for GLPK [25] provides Python bind-
ings to the public functions of the library without changing any of
the interfaces to be more “Pythonic” in style. Thus, it is comparable
to the output of a header-based analysis. In the course of our experi-
ments, we discovered several type bugs in the hand-coded wrapper.
We have reported these bugs to the developer, who has since released
a new version fixing them. Though finding code defects is not the
goal of our analysis, this experience argues in favor of automating
the creation of foreign function interfaces: manually declaring the
low-level type signatures of hundreds of functions is both tedious
and highly error prone.

6.2 Usefulness of Inferred Annotations
Higher-level annotations inferred by our analysis let our code
generator modify the interfaces and behavior of wrapper functions,
as discussed in Section 5. Table 1 shows the number and type
of annotations discovered for each of our target libraries. We find
that annotations are common: roughly 40% of library functions
receive some form of annotation from our analysis. This affirms
our hypothesis that richer information can be derived from library
implementation code than is visible in library headers alone. It is
important to note that inferring annotations for 40% of functions
does not mean that the problem is only 40% solved. Rather, it means
that bindings generated without this analysis would be substandard
for four functions out of ten; the remaining functions simply have
no remarkable aspects to their interfaces.

Unlike header-based analyses, our analysis covers all the source
code of a library, analyzing every function. Thus, the annotations
discovered by our analysis exist on library-internal functions as well
as functions in a library’s public interface. Table 1 results for both
public library interfaces and complete libraries.

3 In the few cases where our analysis results do not match the ctypeslib
results, we find the difference is caused by an obscure bug in ctypeslib
relating to typedefs of function pointers. We have verified the correctness of
our results by hand in these cases.



out inout array escape

Library # funcs constructors finalizers funcs params funcs params funcs params funcs params annot funcs

GLPK total 861 43 30 16 33 127 157 181 316 257 351 420
GLPK public 239 5 3 6 17 32 37 59 80 43 52 87

libarchive total 216 3 2 6 14 39 50 50 51 55 89 97
libarchive public 193 3 2 5 12 38 49 41 41 42 70 80
dependencies 183 8 1 17 25 18 27 77 98 28 50 99

ical total 1,018 117 11 7 9 16 22 318 329 177 198 513
ical public 917 107 7 3 3 12 17 281 290 168 186 461

GSL total 3,911 250 104 180 380 54 112 879 1,134 240 340 1,428
GSL public 3,863 250 104 168 364 52 110 879 1,134 240 340 1,416

Table 1: Counts of annotations inferred by our analysis. Where applicable, we show both the number of functions that have at least one
parameter with a given annotation (“funcs”), as well as the total number of parameters with that annotation (“params”). The final column gives
the total number of functions with any annotation. We have summed the numbers for libarchive’s four dependencies.

Independently, Jaroszewicz [19] has created a hand-coded
ctypes binding for the GSL library. Unlike the GLPK bind-
ing discussed above, this binding modifies function interfaces to be
more compatible with Python idioms. For example, GSL has its own
implementation of the frexp function discussed in Section 5.1;
we derive the same binding as Jaroszewicz’s hand-coded wrapper.
An equivalent function exists in the Python math library, and also
shares this interface.

As a second example, the gsl_vector_minmax function
takes a gsl_vector structure and returns its minimum and
maximum elements in two output parameters:

void gsl_vector_minmax(const gsl_vector *v,
double *min_out, double *max_out);

The hand-coded wrapper takes only one argument, a vector, and
returns the 2-tuple (minimum, maximum). Our binding generator
automatically performs the very same transformation.

In some other cases, our transformed interface is similar, but
not identical to, the hand-coded wrapper. One function in GSL has
two output parameters which it may or may not write to. The return
value of this function is the number of output parameters that were
actually written: either 0, 1, or 2. The wrapper function produced
by our code generator always returns a 3-tuple, with the first value
indicating the number of subsequent values that are valid. The hand-
coded wrapper function instead checks the number of valid values
and returns either a 0-tuple, a 1-tuple, or a 2-tuple. We have not
attempted to automate discovery of this rather atypical interface
pattern.

One potential combination of annotations deserves special con-
sideration. For a parameter marked as an array, our generated wrap-
per function can accept a Python list, passing a temporary copy
as a C array to the library function as described in Section 5.2.
However, if this parameter also escapes from the library function,
then the library may store a reference to the temporary array. To
ensure memory safety, our code generator simply disables the array
transformation for such parameters; the Python programmer must
pass a reference to an actual C array. We do not find this situation
to be widespread. In our four experimental libraries, we find 141
array parameters that appear to escape, of which all but 26 are in
GSL. Library-specific strategies for handling this combination of
annotations could be provided as plug-ins to the code generator if
the library consistently follows a convention.

6.3 Alternative Experiments
We perform two experiments that vary the details of our analysis. In
the first, we change the definition of a constructor to be more strict: a

constructor must return a constructed value, and never return NULL.
(We continue to define the standard library functions malloc and
calloc as constructors, though they do not meet this stricter
standard. We likewise carry over our manual annotations to GLPK.)
With this definition, our analysis finds very few constructors: just
38 in GLPK (4 in the public interface), 3 in libical (2 in the public
interface), 1 in zlib, and none in any other analyzed library. This
suggests that our initial definition of constructors, which allows their
return value to be NULL, is more useful than the stricter definition.

Our second analysis variant concerns function pointers. All our
analyses conservatively assume that the behavior of functions called
through pointers is unknown. In particular, our escape analysis
assumes that pointers passed as parameters to a function pointer
may escape. Since the host-language garbage collector must give up
ownership of a parameter whose owner may change (via escaping),
objects presumed to escape in calls of this form are not automatically
finalized. If neither the guest library nor the programmer finalize
such an object explicitly, it becomes a memory leak.

In practice, we find values rarely escape during calls through
function pointers; most of the escape annotations thus inferred
are false positives. To examine the impact of function pointers
on the precision of our analysis, we ran our experiments with the
conservative assumption relaxed: parameters to function pointers
are assumed not to escape. Table 2 shows the changes that result.
Function pointers are commonly used in our libraries, and this
change reduces the number of escape annotations inferred by our
analysis.

Relaxing this assumption may lead our analysis to detect more
constructor functions. Recall that we consider a function to be a
constructor when it returns a reference to a new object that could not
have escaped the function by any means other than the return value.
If we conservatively assume more function parameters are escaping,
fewer constructors may be detected. However, we find the difference
to be minimal in practice. With the conservative assumption relaxed,
our analysis detects 50 constructors in GLPK, with 8 in the public
interface (compare with the 43 total constructors, 5 public, that
are given in Table 1). No other libraries show any change in their
constructor counts.

One might use a points-to analysis to compute the set of possible
targets for each function pointer. Our analyses could be extended
with this technique, possibly yielding more accurate results. How-
ever, a library analysis can never be a whole-program analysis.
Libraries that expose a callback interface cannot make assumptions
about the behavior of callback functions provided by unknown future
library users, so conservative assumptions will still be necessary.



original relaxed

Library funcs params funcs params

GLPK total 257 351 165 205
GLPK public 43 52 3 5

libarchive total 55 89 17 23
libarchive public 42 70 5 5
dependencies 28 50 15 19

ical total 177 198 172 184
ical public 168 186 163 173

GSL total 240 340 213 255
GSL public 240 340 213 255

Table 2: Number of escape annotations inferred under our original
analysis rules and under the relaxed analysis rules described in
Section 6.3.

6.4 Analysis Limitations
Our analysis, coupled with our Python code generator, can auto-
matically produce a Python interface to a C library. The resulting
interface may not be ideal. Even with our transformations, there
may be idioms in the higher-level language that are preferable for
expressing the lower-level semantics of the library.

For example, several GSL functions store a result into an output
parameter, then return an integer error code that indicates the validity
of this parameter. The function wrapper made by our binding
generator stores the error code and the output parameter into a
return tuple. In contrast, Jaroszewicz’s hand-coded wrapper checks
the returned code and raises a Python run-time exception if an
error occurred. Automatically distinguishing integer error codes
from ordinary integers, and modifying bindings accordingly, is
beyond the scope of the present work. However, recent work in
tracking integer error codes through operating systems suggests
that this sort of inference is possible [15, 27]. Even without such
an analysis, library developers wishing to offer rich, high-level
interfaces can save considerable time and effort by building upon
our automatically-generated bindings rather than raw C interfaces.

In Section 6.3, we discussed the (potentially unhelpful) effects
of our conservative treatment of function pointers. A user of our tool
may choose to relax the conservative assumption when creating bind-
ings to a library for which she knows the assumption is overcautious.
The user may also use our optional annotations to improve the accu-
racy of the generated binding. The weak-reference annotation
(Section 4.3.1) is useful for removing needless escape annotations,
and the assign-finalizer annotation (Section 4.3.2) can be
used to recover missed constructors. We have not tried to “perfect”
our results with annotations; our focus has been on developing the
analyses themselves.

Our analysis requires either the entire source code of a target
library, or manual annotations for each function for which code
is unavailable. This is not a difficult restriction for open-source
libraries such as those we analyze; however, it may be impractical
for proprietary libraries or plug-in architectures that import code at
run time.

We do not attempt to handle certain troublesome C idioms. A
library that makes extensive use of setjmp and longjmp may
invalidate the result of our interprocedural analyses, which do not
model these functions’ behavior. Code with inline assembly also
falls beyond the scope of our analyses.

We currently do not include functions whose interfaces include
unions in our interface description output, thus producing basic
bindings which are at least correct, if not ideal. In practice, no
library we have examined uses unions in its public interface.

7. Related Work
The SWIG project [3, 4] is a widely used foreign function interface
binding generator which generates bindings for C and C++ libraries
to many different host languages. It takes C or C++ header files as
input, along with a typemap. Typemaps allow conversions between
host and guest data types, as well as some of the higher-level trans-
formations that we propose (such as converting output parameters
into multiple return values). This approach is very flexible, but re-
quires one annotation for every argument with special properties.
As previously mentioned, our analyses could be used to supply
typemaps to SWIG in order to take advantage of the large number
of host languages supported by SWIG.

We are aware of two binding generators for Python’s ctypes
system that operate directly on unannotated C headers: the Python
ctypeslib code generator [18], which we use to validate our ex-
periments, and the ctypesgen project [7]. Each offers equivalent
automation to SWIG, and is commensurately as unable to recover
or exploit interface information absent from C headers.

Reppy and Song [26] take a similar approach to foreign function
interface generation by analyzing header files and taking a set
of per-function annotations (again in the form of typemaps) as
input. They primarily focus on policy-driven interface generation,
where interfaces are tailored to the conventions of the library being
wrapped. This could, for example, allow various error return codes
to be mapped to host language exceptions. However, it also requires
some per-library specification and per-function annotations. Our
analysis could provide partial inputs to augment these typemaps.

Instead of generating bindings, Furr and Foster [11] focus on
verifying the correctness of existing bindings by performing a deep
analysis of both bindings and library source code. They primarily
check safety properties, including validating garbage collector
interactions. This work is complementary to our own: Furr and
Foster verify correctness while we offer correctness by construction.

Our analysis can be seen as a form of specification inference.
Kremenek et al. [21] take a probabilistic approach to identifying
ownership rules (including constructor and finalization functions).
This approach introduces Annotation Factor Graphs, which can in-
corporate information on functions from any number of sources,
including static analysis. Compared with our approach, Kremenek
et al. use a more robust ownership model that also characterizes
improper uses of APIs. Additionally, Kremenek et al.’s probabilis-
tic approach does not require analysis of the source code of all
dependencies of a program.

8. Conclusion
Mixed-language programming is an important practice, but program-
ming languages can differ significantly in their type systems and
resource-management models. These differences pose challenges to
creators of cross-language bindings. We have characterized several
idioms, common in C libraries, that map well to constructs typically
provided by high-level languages. Our suite of static analyses over
library source code can detect and describe these implicit patterns,
freeing programmers from the burden of writing annotations. We
use the output of our analyses in a prototype binding generator for
Python. Applying this generator to several large, complex libraries
yields bindings that integrate well with the high-level language while
preserving safety in the low-level library, all with a minimum of
programmer effort.
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