
To appear in IEEE Trans. on Software Engr., Nov. 2000. 1

POEMS: End-to-End Performance Design of
Large Parallel Adaptive Computational Systems

Vikram S. Adve, Rajive Bagrodia, James C. Browne, Ewa Deelman, Aditya Dube,
Elias Houstis, John Rice, Rizos Sakellariou, David Sundaram-Stukel,

Patricia J. Teller and Mary K. Vernon

AbstractThe POEMS project is creating an environment for end-to-end performance modeling of complex
parallel and distributed systems, spanning the domains of application software, runtime and operating system
software, and hardware architecture. Towards this end, the POEMS framework supports composition of component
models from these different domains into an end-to-end system model. This composition can be specified using a
generalized graph model of a parallel system, together with interface specifications that carry information about
component behaviors and evaluation methods. The POEMS Specification Language compiler, under development,
will generate an end-to-end system model automatically from such a specification. The components of the target
system may be modeled using different modeling paradigms (analysis, simulation, or direct measurement) and may
be modeled at various levels of detail. As a result, evaluation of a POEMS end-to-end system model may require a
variety of evaluation tools including specialized equation solvers, queuing network solvers, and discrete-event
simulators. A single application representation based on static and dynamic task graphs serves as a common
workload representation for all these modeling approaches. Sophisticated parallelizing compiler techniques allow
this representation to be generated automatically for a given parallel program. POEMS includes a library of
predefined analytical and simulation component models of the different domains, and a knowledge base that
describes performance properties of widely-used algorithms. This paper provides an overview of the POEMS
methodology and illustrates several of its key components. The methodology and modeling capabilities are
demonstrated by predicting the performance of alternative configurations of Sweep3D, a complex benchmark for
evaluating wavefront application technologies and high-performance, parallel architectures.

Index Terms Performance modeling, parallel system, message passing, analytical modeling, parallel simulation,
processor simulation, task graph, parallelizing compiler, compositional modeling, recommender system.

1 INTRODUCTION

Determining the performance of large-scale computational
systems across all stages of design enables more effective
design and development of these complex
software/hardware systems. Towards this end, the
Performance Oriented End-to-end Modeling System
(POEMS) project is creating and experimentally evaluating
a problem-solving environment for end-to-end
performance analysis of complex parallel/distributed
systems, spanning application software, operating system
(OS) and runtime system software, and hardware
architecture. The POEMS project leverages innovations in
communication models, data mediation, parallel
programming, performance modeling, software
engineering, and CAD/CAE into a comprehensive
methodology to realize this goal. This paper presents an
overview of the POEMS methodology, illustrates the
component models being developed in the POEMS project
by applying them to analyze the performance of a highly-
scalable application, and finally describes preliminary
work being performed in integrating multiple different
models for a single application using the POEMS
methodology.

The key innovation in POEMS is a methodology that

• Vikram Adve is with the Computer Science Department,
University of Illinois at Urbana-Champaign, Urbana, IL
61801. E-mail: vadve@cs.uiuc.edu.

• Rajive Bagrodia and Ewa Deelman are with the
Computer Science Department, University of California
at Los Angeles, Los Angeles, CA 90095-1596. E-mail:
{rajive,deelman}@cs.ucla.edu.

• James C. Browne and Aditya Dube are with the
Department of Computer Science, University of Texas at
Austin, Austin, TX 78712-1188. E-mail:
{browne,dube}@cs.utexas.edu

• Elias Houstis and John Rice are with the Computer
Science Department, PurdueUniversity, West Lafayette,
IN 47907-1398. E-mail: {jrr,enh}@cs.purdue.edu.

• Rizos Sakellariou is with the Computer Science
Department,. University of Manchester, Manchester M13
9PL, U.K. E-mail: rizos@cs.man.ac.uk.

• David Sunderam-Stukel and Mary Vernon are with the
Computer Science Department, University of Wisconsin-
Madison, Madison, WI 53706. E-mail:
{sunderam,vernon}@cs.wisc.edu

• Patricia Teller is with the Department of Computer
Science, The University of Texas at El Paso, El Paso, TX
79968. E-mail: pteller@cs.utep.edu.

A preliminary version of this paper appeared in the
Proceedings of the First International Workshop on Software
and Performance (WOSP) ’98, October 1998.

makes it possible to compose multi-domain, multi-
paradigm, and multi-resolution component models into a
coherent system model. Multi-domain models integrate
component models from multiple semantic domains; in the
case of POEMS, these domains are application software,
OS/runtime software, and hardware. Multi-paradigm
models allow the analyst to use multiple evaluation
paradigms—analysis, simulation, or direct measurement of
the software or hardware system itself—in a single system
model. To facilitate the integration of models from
different paradigms, the specification and implementation
of POEMS models is accomplished through formulating
component models as compositional objects with
associative interfaces [11,12]. Associative module
interfaces extend conventional interfaces to include
complete specification of component interactions. A
specification language (the POEMS Specification
Language or PSL) for specification of multi-domain, multi-
paradigm, multi-resolution performance models has been
designed and a compiler for this language is under
development.

The POEMS project is building an initial library of
component models, at multiple levels of granularity, for
analyzing both non-adaptive and adaptive applications on
highly-scalable architectures. POEMS supports analytical
models, discrete-event simulation models at multiple levels
of detail, and direct execution. The analytical models
include deterministic task graph analysis [1], the LogP[15]
family of models including LogGP [5] and LoPC [18], and
customized Approximate Mean Value Analysis (AMVA)
[37]. Simulation models include validated state-of-the-art
processor and memory hierarchy models based on
SimpleScalar [14], interconnection network models using
the PARSEC parallel simulation language [9], large-scale
parallel program simulations using the MPI-Sim simulator
[28,10], and parallel I/O system simulators [8]. A unified
application representation based on a combination of static
and dynamic task graphs has been developed that can serve
as a common workload representation for this wide range
of performance models.

Ongoing research within POEMS, is developing
techniques to integrate subsets of two or more of these
component models, as a first step towards automatic
integration of models within the POEMS framework. One
such effort is integrating a compiler-generated analytical
model based on the static task graph with the MPI-Sim
simulator. This integrated model has the potential to
increase greatly the size of problems and systems that can
be simulated in practice. In addition, it can be expanded to
include detailed processor simulation (e.g., with the
SimpleScalar simulator), ideally for a small subset of the
computational tasks. Another effort is examining the
integration of MPI-Sim, LogGP, and SimpleScalar models.
These ongoing efforts are described briefly in Section 6.

The project also is building a knowledge base of
performance data, gathered during the modeling and
evaluation process, which can be used to estimate, as a
function of architectural characteristics, the performance
properties of widely-used algorithms. The knowledge base,
along with the component models, application task graphs,
and formal task executions descriptions (called TEDs), is
stored in the POEMS database, an integral part of the
POEMS system.

POEMS development is being driven by the design
evaluations of highly-scalable applications executed on
parallel architectures. The first driver application is the
Sweep3D [22] program that is being used to evaluate
advanced and future parallel architectures at Los Alamos
National Laboratory.

Section 2 presents an overview of the Sweep3D
application, which is used to illustrate the POEMS
methodology and performance prediction capabilities.
Section 3 describes the conceptual elements of the POEMS
methodology, and illustrates it with an example. Section 4
presents the suite of initial POEMS performance tools and
the initial library of component models that are under
development for Sweep3D. Section 5 presents results of
applying these models to provide performance projections
and design results for Sweep3D. Section 6 describes
ongoing research on the development and evaluation of
integrated multi-paradigm models in POEMS. Section 7
discusses related work. Conclusions are presented in
Section 8.

2 POEMS DRIVER APPLICATION: SWEEP3D
The initial application driving the development of POEMS
is the analysis of an ASCI kernel application called
Sweep3D executed on high-performance, parallel
architectures such as the IBM SP/2, the SGI Origin 2000,

j t

mk

it

K

I

J

Figure 2.1. One Wavefront of Sweep3D on a 2×4
Processor Grid.

and future architectures. The Sweep3D application is an
important benchmark because it is representative of the
computation that occupies 50-80% of the execution time of
many simulations on the leading edge DOE production
systems [19]. Our analysis of this application has three
principal goals. One goal is to determine which of the
alternative configurations of the Sweep3D application has
the lowest total execution time on a given architecture. A
related, second goal is to provide quantitative estimates of
execution time for larger systems that are expected to be
available in the near future. The third goal is to predict the
quantitative impact of various possible architectural and/or
OS/runtime system improvements in reducing the required
execution time. This section contains a brief description of
this application; Sections 4 and 5 discuss how the POEMS
methodology is being applied to obtain the desired
performance projections for Sweep3D.

The Sweep3D kernel is a solver for the three-dimensional,
time-independent, neutron particle transport equation on an
orthogonal mesh [22]. The main part of the computation
consists of a balance loop in which particle flux out of a
cell in three Cartesian directions is updated based on the
fluxes into that cell and other quantities such as local
sources, cross section data, and geometric factors.

Figure 2.1 illustrates how the three-dimensional
computation is partitioned on a 2×4 two-dimensional
processor grid. That is, each processor performs the
calculations for a column of cells containing J/2 × I/4 × K
cells. The output fluxes are computed along a number of

directions (called angles) through the cube. The angles are
grouped into eight octants, corresponding to the eight
diagonals of the cube (i.e., there is an outer loop over
octants and an inner loop over angles within each octant).
Along any angle, the flux out of a given cell cannot be
computed until each of its upstream neighbors has been
computed, implying a wavefront structure for each octant.
The dark points in the figure illustrate one wavefront that
originates from the corner marked by the circle. The
processor containing the marked corner cell is the first to
compute output fluxes, which are forwarded to the
neighboring processors in the i and j dimensions, and so
on. In order to increase the available parallelism, the
wavefront is pipelined in the k dimension. That is, a
processor computes the output fluxes for a partial column
of cells of height mk, as shown in the figure, and then
forwards the output fluxes for the partial column to its
neighboring processors before computing the next partial
block of results. (Since the octant starts in the marked
upper corner of the cube, the next partial block of cells to
be computed is below the dark shaded partial block in each
column.) The computation is pipelined by groups of mmi
angles, not shown in the figure. The amount of
computation for each “pipelined block” is therefore
proportional to it×jt×mk×mmi, where it and jt are the
number of points mapped to a processor in the i and j
dimensions, mk is the number of points in the k dimension
per pipeline stage, and mmi is the number of angles per
pipeline stage.

Figure 3.1. Overview of the POEMS Environment

The inputs to Sweep3D include the total problem size (I, J,
K), the size of the processor grid, the k-blocking factor
(mk), and the angle-blocking factor (mmi). Two aggregate
problem sizes of particular interest for the DOE ASCI
program are one billion cells (i.e., I=1000, J=1000,
K=1000) and 20 million cells (i.e., I=255, J=255, J=255).
Key configuration questions include how many processors
should be used for these problem sizes, and what are the
optimal values of mk and mmi.

3 POEMS METHODOLOGY

Using POEMS, a performance analyst specifies the
workload, operating system, and hardware architecture for
a system under study, henceforth referred to as the target
system. In response, as depicted in Figure 3.1, the
completed POEMS system will generate and run an end-to-
end model of the specified software/hardware system. The
target system is defined via an integrated graphical/textual
specification language (the POEMS Specification
Language or PSL) for a generalized dependence graph
model of parallel computation. Section 3.1 describes the
process of component model composition and evaluation
tool interfacing. The generalized dependence graph model
of parallel computation is described in Section 3.2. The
PSL is briefly introduced and illustrated in Section 3.3.

The nodes of the dependence graph are models of system
components, i.e., instances of component models in the
application, OS/runtime, and hardware domains. In
specifying the target system, the analyst defines the
properties of each system component in the context of and
in terms of the attribute set of its semantic domain. For
example, for a hardware component, the analyst defines the
design parameters, the modeling paradigm, and the level of
detail of the component model. As discussed in Section
3.3, the component models are implemented as
compositional objects, i.e., “standard objects” encapsulated
with associative interfaces [11, 12, 16] specified in the
PSL. These component models, together with application
task graphs, and performance results, are stored in the
POEMS database, described in Section 3.6. POEMS also
includes a knowledge-based system called Performance
Recommender to assist analysts in choosing component
models. The Performance Recommender is sketched in
Section 3.5. As described in Section 3.2, the application
domain represents a parallel computation by a combination
of static and dynamic task graphs, which are specialized
forms of generalized dependence graphs. Generalized
dependence graphs can be used in the operating system
domain to model process and memory management,
interprocess communication, and parallel file systems. In
the hardware domain, the nodes of a graph are associated
with models of hardware components. Figure 3.2 is a
schematic of a generalized dependence graph model
spanning multiple domains.

When specifying the target system, the analyst selects the
components that are most appropriate for the goals of
her/his performance study. As discussed in Section 3.4,
model composition is facilitated by task execution
descriptions (TEDs), which characterize the execution of
components of the task graph on particular hardware
domain components, e.g., processors, memory hierarchies,
and interconnection networks. It also relies on the models
being implemented as compositional objects and on data
mediation methods. The performance knowledge base of
the POEMS database may provide guidance to the analyst
in the selection of components. The compiler for the
POEMS specification language will access the specified
component models from the POEMS database, when
appropriate component models are present, and will
incorporate them into the system model.

3.1 Component Model Composition and
Evaluation Tool Integration

As noted earlier, POEMS composes its system models
from component models of different types ranging from
simple analytical models such as LogGP to detailed
simulation models of instructions executing on modern
processor/cache architectures. Each component model can
be characterized as a "document" that carries an external
interface defining its properties and behavior. Successful
composition requires that this interface specifies the
properties and behavior of the component models with
which the given component model can be composed
successfully.

Evaluation of the multi-paradigm system models requires
interfacing and integration of evaluation tools for each
component model type. Each evaluation tool also can be
characterized as a processor that "understands" and acts
upon information supplied for the component model it is
evaluating. Each tool evaluates the behavior of the
component model types it “understands”. The input to each
tool must be in the types set it "understands." Interfacing

Figure 3.2. Multi-Domain Dependence Graph

and integration of tools requires that the output of one tool
be the input of another tool. Successful interfacing and
integration of tools, each of which "understands" different
type sets, requires that the output of a source tool (which
will be in the type set it “understands”) must be mapped to
the type set "understood" by its target tool. The
information necessary to support these mappings must be
defined in the external interfaces from which the tools are
invoked.

Manual composition of component models to create
system models is now accomplished on an ad hoc basis by
humans reading documentation and applying their
experience and knowledge to select component models
with properties and behaviors such that the components
can be integrated. Manual interfacing of evaluation tools
that utilize different representations of components is now
accomplished by manual specification of mappings from
outputs to inputs and hand coding of these mappings.
Design and implementation of these mappings is often a
very laborious and error-prone process, sufficiently so that
these tasks are seldom attempted. A major reason for the
difficulty of these tasks is that there is no consistent
specification language in which to describe the properties
and behaviors of either components or tools. The human
system model composer and evaluation tool integrator
must resolve the ambiguities and inconsistencies of
mappings among languages with different semantics on an
ad hoc, case-by-case basis. Automation of component
model composition and tool interfacing and integration
will require that the interfaces of component models and
evaluation tools be specified in a common representation
with semantics sufficiently precise to support automated
translations.

The POEMS Specification Language (PSL) [16] is the
representation used in POEMS to specify the information
necessary to support composition of component models
and interfacing and integration of evaluation tools. PSL is
an interface specification language. Components and tools
are treated as objects and each is encapsulated with a PSL-
specified interface. PSL-specified interfaces, called
associative interfaces, are a common language for
expressing both component model composition and
mappings across evaluation tool interfaces. An object
encapsulated with an associative interface is called a
compositional object. Associative interfaces and
compositional objects are defined and described in Section
3.3.2. An example of PSL specifications is given in Section
3.3.4.

A compiler for PSL-specified interfaces that has access to
a library of component models and evaluation tools can
automatically compose a set of component models selected
by a performance engineer into a system model and
generate the mappings among the outputs and inputs of the

evaluation tools. The compiler for PSL programs will
generate an instance of the generalized hierarchical
dependence graph defined in Section 3.2. A feasibility
demonstration prototype of a PSL compiler has been
developed [16] and a more capable version of the PSL
compiler is under development.

PSL-specified associative interfaces also facilitate manual
composition and integration processes since they provide a
systematic framework for formulation of component model
and evaluation tool interfaces. The applications of the
POEMS methodology to performance studies of Sweep3D
given in Sections 5 and 6 are manually executed examples
of the model composition and evaluation tool interfacing
methods and concepts defined and described in this section
and in Sections 4 and 5.

3.2 General Model of Parallel Computation

Given a PSL program, the PSL compiler generates an
instance of a generalized hierarchical dependence graph.
This model of parallel computation and its use in POEMS
system modeling are described in this section after
introducing some basic definitions and terminology.

3.2.1 Definitions and Terminology

Generalized Hierarchical Dependence Graph: A general
graphical model of computation in which each node
represents a component of the computation and each
edge represents a flow of information from node to
node. The graph is hierarchical in that each node can
itself be an interface to another generalized dependence
graph. Each edge in such a graph may represent either a
dataflow relationship or a precedence relationship. For
each node, an extended firing rule (that may include
local and global state variables in addition to input data
values) specifies when each node may begin execution.
For a precedence edge, the node at the head of the edge
may not begin execution until the node at the tail has
completed.

Dynamic Task Graph: An acyclic, hierarchical
dependence graph in which each node represents a
sequential task, precedence edges represent control
flow or synchronization, and dataflow edges (called
communication edges) represent explicit data transfers
between processes.

Static Task Graph: A static (symbolic) representation of
the possible dynamic task graphs of a program, in
which each node represents a set of parallel tasks and
each edge represents a set of edge instances. Unlike the
dynamic task graph, this graph includes loop and
branch nodes to capture logical control flow (and hence
the graph may contain cycles).

3.2.2 Dependence Graph Model of Parallel

Systems

The POEMS representation of a parallel system is a
hierarchical dependence graph in which the nodes are
instances of compositional objects and the edges represent
flows of information from node to node. As shown in
Figure 3.2, the nodes may be defined in different domains
and a node in one domain may invoke nodes in both its
own and implementing domains. For example, the
implementing domains for an application are the
OS/runtime system and hardware domains.

The graph model is executable, where an execution
represents a model solution for the specified application
software and system configuration. The nodes and edges
may be instantiated during execution, thus defining a
dynamic instance of the graph that captures the behavior of
the entire system during the execution being modeled. This
dynamic graph may or may not be constructed explicitly at
runtime, depending on the specified solution methods.

A node executes when the computation reaches a state in
which its associated “firing rule” evaluates to true. A
firing rule is a conditional expression over the state of the
input edges and the local state of a node. Each edge has
associated with it a data type specification, which is called
a transaction. Clock-driven execution is obtained by adding
to the data dependence relationships (and specifications of
the firing rules for the nodes) an edge between each source
sink node pair carrying the current time of each source
node. Each node executes the Lamport [23] distributed
clock algorithm to determine the current time.

3.2.3 Common Application Representation

The POEMS application representation is designed to
provide workload information at various levels of
abstraction for both analytical and simulation models.
More specifically, the representation is designed to meet
four key goals [3]. First, it should provide a common
source of workload information for the various modeling
techniques envisaged in POEMS. Second, the
representation should be computable automatically using
parallelizing compiler technology. Third, the
representation should be concise and efficient enough to
support modeling terascale applications on very large
parallel systems. Finally, the representation should be
flexible enough to support performance prediction studies
that can predict the impact of changes to the application,
such as changes to the parallelization strategy,
communication, and scheduling. The design of the
representation is described in more detail in [3], and is
summarized briefly here.

The application representation in POEMS is based on a
combination of static and dynamic task graphs. As defined

earlier, the static task graph (STG) is a compact, symbolic
graph representation of the parallel structure of the
program. The nodes represent computational tasks, CPU
components of communication, or control flow. The graph
also includes extensive symbolic information in order to
capture symbolically the structure of the parallel
computation as a function of parameters such as the
number of processors and relevant program input variables.
For example, each static task node contains a symbolic
integer set that describes the set of task instances that are
executed at runtime (e.g., the following set can be used to
denote a task node with P instances:

}10:]{[−≤≤ Pii). Each edge between parallel task

nodes contains a symbolic integer mapping that describes
the edge instances connecting task instances (e.g., the
mapping }111:]{[+=∧−≤≤→ ijPjji denotes

P-1 edge instances connecting instance i of the node at the
tail to instance i+1 of the node at the head). Finally,
control-flow nodes contain symbolic information about
loop bounds or branching conditions. Together, this
information enables the STG to capture the parallel
structure of the program while remaining independent of
program input values. In addition, each computational task
also has an associated scaling function describing how the
computational work for the task scales as a function of
relevant program variables. For example, this information
can be used to support simple extrapolation of performance
metrics as a function of input size.

The dynamic task graph, which is instantiated from the
static task graph, is a directed acyclic graph that captures
the precise parallel structure of an execution of the
application for a given input [1]. The dynamic task graph
is important for supporting detailed and precise modeling
of parallel program behavior. For many modeling
techniques, however, the dynamic task graph need not be
instantiated explicitly but the same information can be
obtained by traversing the static task graph at model
runtime. This is a key capability already available in the
graph-based runtime system on which the POEMS
implementation will be based.

3.2.4 Sweep3D Task Graph

The task graph concepts are illustrated by the static task
graph for the sweep phase of Sweep3D, shown on the left-
hand side of Figure 3.3. This task graph was generated
manually and is a simplified version of the graph that
would be generated using the task graph synthesis
techniques in the dHPF compiler, described in Section 4.1.
(The actual static task graph differs mainly in that there are
additional small computational tasks between the
communication tasks, and the k-block actually consists of
several computation and a few control-flow nodes.)

The right-hand side of Figure 3.3 shows the dynamic
communication pattern of the sweep phase that would be
realized assuming a 3×3 processor grid. This shows four of
the eight octants in each time step of Sweep3D, and the
computation and communication tasks performed by each
processor for each octant can be seen on the left. An
illustration of the dynamic task graph and a more detailed
description can be found in [3].

3.3 Modeling Using Compositional Objects

The interfaces of compositional objects carry sufficient
information to enable compiler-based integration of multi-
domain, multi-paradigm, multi-resolution component
models into a system model. Section 3.3.1 defines
compositional objects. Section 3.3.2 defines the interfaces
of compositional objects. Section 3.3.3 describes how
compositional objects are incorporated into the dependence
graph model of computation and Section 3.3.4 illustrates
compositional modeling with an example from Sweep3D.

3.3.1 Compositional Objects

The POEMS Specification Language and programming
environment enable creation of performance models as
instances of the general dependence graph model of
parallel computation. The nodes of the graph are instances
of compositional objects that represent components.
Compositional objects are defined in the context of an
application semantic domain, an OS/runtime semantic
domain, and/or a hardware semantic domain. The
properties of objects are defined in terms of the attribute
set of the appropriate semantic domain.

Each component is specified by a set of attributes. A
component model is an instantiation of a component.
There may be many instances of a given component model
each with the same set of attributes, but with different
values bound to these attributes.

Figure 3.3. Static Task Graph for Sweep3D and the Dynamic Communication Structure on a 3x3 Processor Grid.

3.3.2 Associative Interfaces

An associative interface is an extension of the associative
model of communication [11,12] used to specify complex,
dynamic interactions among object instances. An
associative interface specifies the functions it implements,
domain-specific properties of the functions it implements,
the functions it requires, and the domain-specific properties
of the functions it requires.

An associative interface has two elements: an “accepts”
interface for the services that the component model
implements and a “requests” interface that specifies the
services the component model requires. Interfaces are
specified in terms of the attributes that define the behavior
and the states of standard objects [13,31,33]. An object that
has associative interfaces is said to be a compositional
object and an object that interacts through associative
interfaces is said to have associative interactions.

An “accepts” interface consists of a profile, a transaction,
and a protocol. A profile is a set of name/value pairs over
the attributes of a domain. An object may change its profile
during execution. A transaction is a type definition for a
parameterized unit of work to be executed. A protocol
specifies a mode of interaction such as call-return or data
flow (transfer of control) and/or a sequence of elementary
interactions. A “requests” interface consists of a selector
expression, a transaction, and a protocol. A selector
expression is a conditional expression over the attributes of
a domain. The selector references attributes from the
profiles of target objects. When evaluated using the
attributes of a profile, a selector is said to match the profile
whenever it evaluates to true. A match that causes the
selector to evaluate to true selects an object as the target of
an interaction. The parameters of the transaction in the
match should either conform or the POEMS component
model library must include a routine to translate the
parameters of the transaction in the requests interface
instance to the parameters of the transaction in the matched
accepts interface and vice versa. A compositional object
may have multiple accepts and requests in its associative
interface. Multiple accepts arise when a component model
implements more than one behavior. A component model
may have a request instance for a service from an
implementing domain and a request instance for
continuation of execution in its own domain.

3.3.3 Mapping of Compositional Objects to
Dependence Graphs

POEMS compositional objects are defined by
encapsulating "standard objects" [13,31,33] with
associative interfaces and data-flow execution semantics.
Figure 3.4 shows the structure of a POEMS compositional
object. The edges of the generalized dependence graph
defined in Section 3.2 are derived by matching request

interfaces with accepts interfaces. The selector must
evaluate to true and the transaction must be conformable
for an edge to be created. Transactions are conformable if
the parameters of the transaction can be mapped to one
another. The requirement for the mapping of parameters
arises when component models in a system model either
are defined at different levels of resolution or use different
paradigms for evaluation. The POEMS compiler uses a
library of domain-aware type coercions to implement
mappings when required. The firing rule for a component
model is derived by requiring that all of the parameters in
the transaction in the interface be present on its input
edges. Requests and accepts interfaces can be matched
when a system model is compiled or at runtime.

The matching of selectors in requests to profiles in accepts
thus composes a dynamic data flow graph and controls the
traversal of the graph that models the execution behavior
of the system.

Note that a component model at the application or
OS/runtime level may have dependence arcs to and from
its own and implementing levels.

3.3.4 Illustration of Compositional Modeling for
Sweep3D

As an example of compositional modeling, the
specification of two of the component models that are
composed to create an end-to-end model of Sweep3D are
illustrated in Figures 3.5 and 3.6. The target hardware
system is an IBM SP/2, except that the memory hierarchy
of the 604e processors is modeled as being different from
that of the SP/2. (This modification is particularly relevant
because measurements have shown that Sweep3D utilizes

Figure 3.4. A Node of a Dependence Graph as a
Compositional Object.

only about 20%-25% of the available cycles on a single
processor in high-performance systems [35].)

This example assumes that the Sweep3D application being
modeled is represented by the task graph of Figure 3.3 with
"recv" nodes, "k-block" nodes, and "send" nodes. It also is
assumed that the analyst has specified that execution of the
compute operations be modeled using detailed instruction-
level simulation, including a detailed simulation of
memory access, and that the execution of communication
and synchronization operations be modeled using MPI
simulation.

This example involves the application domain, the
OS/runtime domain, and the hardware domain. (In the
interest of brevity and clarity, the syntax is a simplified
form of the actual syntax of PSL.) In the example that
follows, the PSL interfaces for a “k-block” node of the
dependence graph and the first "send" node after a “k-
block” node are specified. In the specification for the "k-
block" component model the profile element "domain =

application[Sweep3D]" specifies that this component is
from the Sweep3D application. "Evaluation mode =
simulation[SimpleScalar]" specifies that the evaluation of
this component will be done by the SimpleScalar
simulator. In this case the "k-block" is a sequence of
instructions to be executed by the SimpleScalar simulator.
The PSL compiler composes these component model
specifications into an instance of the generalized
hierarchical dependence graph defined in Section 3.2.1.

The accepts interface for the compositional object
representing the k-block node is straightforward. The k-
block node has been generated by the task graph compiler
and belongs to the application domain. The identifier "k-
block" specifies a set of instructions that are to be
executed. The requests interface for the k-block node has
two request instances, one for the implementing (hardware)
domain for the k-block and a second request instance
continuing the flow of control to the next send node in the
application domain.

The first request in the requests interface selects the
SimpleScalar simulator to execute the instructions of the k-
block node and evaluate the execution time of the code for
the k-block node. The transaction associated with the first
selector invokes an execute code block entry point defined
for SimpleScalar. The protocol for this selector is call-
return since SimpleScalar must complete its execution and
return control to the k-block node before the k-block node
can transfer the computed data to the send node and send

Accepts:
Profile = { domain = application[Sweep3D], node type =

send, evaluation mode = simulation[MPI-Sim] };
Transaction = {MPI-send(destination, message,

mode)};
Protocol = dataflow;

Body:
/* Invocation of the MPI-Sim simulator to simulate the
modified MPI send operation specified in the transaction.
*/

Requests:
Selector={ domain = runtime, node type = N/A,

evaluation mode = simulation[MPI-Sim] };
Transaction ={MPI-send(destination, message, mode) };
Protocol = call-return;

Selector = { domain = Application[Sweep3D], node type
= send, evaluation mode = simulation[MPI-Sim] };

Transaction = {MPI-send(destination, message, mode)};
Protocol = dataflow;

Figure 3.6. Specification of Compositional Objects:
an Example Using the Representation of a “send”

node of the Sweep3D Task Graph.

Accepts:
Profile = {domain = application[Sweep3D], node type =

k-block, evaluation mode =
simulation[SimpleScalar] };

Transaction = { k-block(k-block-code) };
Protocol = dataflow;

Body:
/* Invocation of the SimpleScalar simulator to
execute the instructions that comprise the
computation of this k -block. The instructions for the
k-block (and the other nodes) have been previously
loaded into SimpleScalar’s data space as the memory
contents of the processor/memory pair being
simulated. Initialization of SimpleScalar is done
using an initialization component in the POEMS
database. The parameter of the transaction is a
pointer to the base address in memory for the
instructions. */

Requests:
Selector = {domain = hardware [processor/memory],

node type = N/A, evaluation mode = simulation
[SimpleScalar]};

Transaction = {execute_code_block(k-block-code};
Protocol = call-return;}

Selector = {domain = Application[Sweep3D], node type
= send, evaluation mode = simulation[MPI-Sim]};

Transaction = {MPI-send(destination, message, mode)};
Protocol = dataflow ;

Figure 3.5. Specification of Compositional Objects:
an Example Using the Representation of a “k-block”

Node of the Sweep3D Task Graph.

node execution can be initiated. SimpleScalar has been
encapsulated in the POEMS library as a single node
dependence graph in the hardware domain.

The second selector in the requests interface selects the
send node immediately following the k-block instance in
the task graph to continue execution of the system model.
The transaction in this request invokes the MPI-Sim
simulator to evaluate the execution time of the MPI-send
function defined in MPI-Sim. The protocol is the "data-
flow" protocol for data-flow graphs; in this case, the
control follows the data along the arc that is defined by the
matching of the request and the accept interfaces. Note
that even though MPI-Sim is in the runtime domain we
have assigned the send node to the application domain.
This choice was made because the send node is constructed
as a part of the application by the task graph compiler (See
Section 4.1 for a description of the task graph compiler.)
This is the most direct translation of the task graph into a
data-flow graph. MPI-Sim is encapsulated in the POEMS
component model library as a single-node graph. MPI-Sim
is invoked from the send node of the application send node
with call-return semantics. This encapsulation of the
runtime domain MPI-Sim node in the application node
allows the send node to pass control to its successor send
node as soon as the MPI-Sim simulator has completed
execution.

For this example, the representation of the first "send"
node following the k-block node in the task graph for

Sweep3D is given in Figure 3.6. As shown, the profile in
the accepts interface of the send component model
specifies that it derives from the Sweep3D application, is a
"send" node, and is to be evaluated using MPI-Sim. The
transaction specifies an entry point of MPI-Sim.

The selector in the first request instance matches the MPI-
Sim simulator and the transaction specifies the entry point
for the MPI-send operation. The protocol is call-return
because MPI-Sim must complete execution and return
control to the application before this send node can transfer
control to the next send node. The selector of the second
request instance identifies the next node to which control
should be transferred.

The accepts and requests interfaces of each compositional
object or task graph node direct the search of the POEMS
database by the POEMS compiler to identify appropriate
component models to be used to instantiate components
and link them to generate this segment of the system
model. (The current version of the POEMS Specification
Language compiler [16] does not yet interface to the
POEMS database. It accesses component models from a
Unix file system.) This database search provides a link to
the code that implements an instance of the specified
component model. In this case, the code that implements
the k-node component model is the SimpleScalar simulator
and the code that implements the send node is MPI-Sim.
(See Section 4 for a description of SimpleScalar and MPI-
Sim.) The accepts and requests interfaces, the link to the

Figure 3.7. Overview of the POEMS Database.

code implementing the instance of a component model,
and other parameters associated with the component model
will be stored in a Task Execution Description (TED) (see
Section 3.4) in the POEMS database.

To execute the specified system model, SimpleScalar and
MPI-Sim execute as processes on a host processor.
SimpleScalar runs as the executing program for which
MPI-Sim is modeling communication. SimpleScalar takes
as input the executable file of the k-block node, which is
stored in simulated memory. At the conclusion of
executing the “k-block” node, the POEMS environment
invokes the MPI-send module of MPI-Sim. A special built-
in interface procedure that links SimpleScalar and MPI-
Sim copies the data to be transmitted from the simulated
memory of SimpleScalar into the real memory of the host,
which allows MPI-Sim to model the communication
operation.

3.4 Task Execution Descriptions (TEDs)

Considerable information is needed to characterize the
behavior and properties of each component and different
instances of each component model will have different
attribute values. For example, there may be two instances
of a component, one that is analytically evaluated and one
that is evaluated by simulation. Analytical modeling may
require parameter values that specify task execution time,
while simulation of a single task requires either an
executable representation of the task or its memory address
trace. As a result, these two instances of the same
component require different modes of integration into a
system model. The information necessary to accomplish
these integration functions must be associated with each
component instance. POEMS will use a Task Execution
Description (TED) to describe the modeled execution of a
task; a TED is associated with each node of a task graph.

In addition, a TED contains the attributes required to
define the method used to model single-task execution.
The methods that are being evaluated for simulating
individual tasks are instruction-driven, execution-driven,
and trace-driven simulation. For example, a TED would
define the input parameters for SimpleScalar that would
enable the creation a particular instantiation of the
SimpleScalar component model.

3.5 Performance Recommender

The POEMS Performance Recommender system facilitates
the selection of computational parameters for widely used
algorithms to achieve specified performance goals. For
example, in the Sweep3D context, the system is used to
obtain the parameters of the algorithm (e.g., grid size,
spacing, scattering order, angles, k-blocking factor,
convergence test), system (e.g., I/O switches), and machine
(e.g., number and configuration of processors). Capturing
the results of system measurement as well as modeling

studies (discussed in Section 5), this facility can provide
insight into how inter-relationships among variables and
problem features affect application performance. It
functions at several levels ranging from the capture of
analytical and simulation model results to those of the
measured application.

POEMS is using a kernel (IFESTOS), developed at Purdue
[29], that supports the rapid prototyping of recommender
systems. IFESTOS abstracts the architecture of a
recommender system as a layered system with clearly
defined subsystems for problem formulation, knowledge
acquisition, performance modeling, and knowledge
discovery. The designer of the recommender system first
defines a database of application classes (problems) and
computation class instances (methods). The data
acquisition subsystem generates performance data by
invoking the appropriate application (e.g., Sweep3D). The
performance data management subsystem provides
facilities for the selective editing, viewing, and
manipulation of the generated information. Performance
analysis is performed by traditional attribute-value
statistical techniques, and “mining” this information
produces useful rules that can be used to drive the actual
recommender system. This approach has been
demonstrated successfully for problem domains in
numerical quadrature and elliptic partial differential
equations [29]. Currently it is being applied to the
Sweep3D application.

3.6 POEMS Database

The volume and complexity of the data environment for
POEMS make the POEMS database a critical component
of the project. In fact, POEMS as a tool could not be built
without a database as a searchable repository for a wide
spectrum of model and performance data. The POEMS
database will be the repository for:

a) The component model definitions as compositional
objects and component model definitions as instances
of the component models.

b) Static task graphs for the applications, generated by
the extended dHPF compiler.

c) The Task Execution Descriptions, which characterize
each component model, as discussed in Section 3.3.4.

d) The knowledge base, which will guide analysts and
designers in the development of total systems.

e) Measurements of performance in several formats
included measurements and predictions of execution
time.

The POEMS Specification Language compiler will be
interfaced to the database as will the Performance
Recommender. Figure 3.7 is a schematic of the role of the

database in POEMS.

4 THE INITIAL POEMS PERFORMANCE
ANALYSIS TOOLS

Currently, several performance analysis tools are being
integrated in POEMS. These include the following tools,
which are described briefly in this section: an automatic
task graph generator [3], the LogGP [5] and LoPC [18]
analytic models, the MPI-Sim simulator [28], and the
SimpleScalar instruction-level, processor/memory
architecture simulator [14]. Each tool contains capabilities
for modeling the application, OS/runtime, and hardware
domains. Together, these tools provide the capability to
analyze, with a fairly high degree of confidence, the
performance of current and future applications and
architectures, for very large and complex system
configurations. As a pre-requisite to developing multi-
paradigm models, each of these tools has been used to
develop a single-paradigm, multi-domain model of
Sweep3D. This has allowed us to understand the unique
role that each paradigm can play in total system
performance analysis.

4.1 Automatic Task Graph Generator

A comprehensive performance modeling environment like
POEMS will be used by system designers in practice only
if model construction and solution can be largely
automated. For an existing application, one critical step
towards this goal is to automatically construct the
application representation described in Section 3.2. Data-
parallel compiler technology from the dHPF compiler
project [2] has been extended to compute the task-graph-
based application representation automatically for High
Performance Fortran (HPF) programs. In normal use, the
dHPF compiler compiles a given HPF program into an
explicitly parallel program in SPMD (Single Program
Multiple Data) form, for message-passing (MPI), shared-
memory (e.g., pthreads), or software distributed shared-
memory (TreadMarks [6]) systems. The synthesized task
graphs represent this explicitly parallel program. In the
future, the task graph synthesis will be extended to handle
existing message-passing programs as well.

There are three key innovations in the compiler support for
task graph construction:

• The use of symbolic integer sets and mappings: These
are critical for capturing the set of possible dynamic
task graphs as a concise, static task graph. Although
this is a design feature of the representation itself, the
feature depends directly on the integer set framework
technology that is a foundation of the dHPF compiler
[2]. The construction of these sets and mappings for an
STG is described in more detail in [3].

• Techniques for condensing the static task graph: The
construction of static task graphs in dHPF is a two-
phase process [3]. First, an initial static task graph
with fine-grain tasks is constructed directly from the
dHPF compiler’s internal program representation and
analysis information. Second, a pass over the STG
condenses fine-grain computational tasks (e.g., single
statements) into coarse-grain tasks (e.g., entire loop
iterations or even entire loop nests). The degree of
granularity clearly depends on the goals of the
modeling study, and can be controlled as discussed
below.

• Integer set code generation techniques for
instantiating a dynamic task graph for a given input:
Although this step is conceptually performed outside
the compiler, it can be done in a novel, highly-
efficient, manner for many programs using dHPF’s
capability of generating code to enumerate the
elements of an integer set or mapping. This also is
explained further below.

The goal of condensing the task graph is to obtain a
representation that is accurate, yet of a manageable size.
For example, it may be appropriate to assume that all
operations of a process between two communication points
constitute a single task, permitting a coarse-grain modeling
approach. In this case, in order to preserve precision, the
scaling function of the condensed task must be computed
as the symbolic sum of the scaling functions of the
component tasks, each multiplied by the symbolic number
of iterations of the surrounding loops or by the branching
probabilities for surrounding control-flow, as appropriate.
Note, however, that condensing conditional branches can
introduce fairly coarse approximations in the modeling of
task execution times. The compiler, therefore, takes a
conservative approach and does not collapse branches by
default. Instead, it is desirable to allow the modeler to
intervene and specify that portions of the task graph can be
collapsed even further (e.g., by inserting a special directive
before control flow that can be collapsed). Even in the
default case, however, the compiler can increase the
granularity of tasks further in some cases by moving loop-
invariant branches out of enclosing loops, a standard
compiler transformation. For example, this would be
possible for a key branch within the k-block of Sweep3D.

Constructing the DTG for a given program input requires
symbolic interpretation of the parallel structure and part of
the control flow of the program. This interpretation must
enumerate the loop iterations, resolve all dynamic
instances of each branch, and instantiate the actual tasks,
edges, and communication events. For many regular, non-
adaptive codes, the control flow (loop iterations and
branches) can be determined uniquely by the program
input, so that the DTG can be instantiated statically.

(Again, in some cases, a few data-dependent branches may
have to be ignored for approximate modeling, under the
control of the modeler as proposed above.) To instantiate
parallel tasks or edges, the elements of the corresponding
integer set or mapping must be enumerated. The key to
doing this is that, for a given symbolic integer set, the
dHPF compiler can synthesize code to enumerate the
elements of that set [2]. (Any mapping can be converted
into an equivalent set for code generation.) We exploit this
capability and generate a separate procedure for each set,
parameterized by the symbolic program variables that
appear in the set; typically these are process identifiers,
program input variables, and loop index variables. Then
this generated code is compiled separately and linked with
the program that performs the instantiation of the DTG.
When instantiating dynamic task instances for a given
static task, the code for that task’s symbolic set is invoked
and is provided with the current values of the symbolic
parameters at this point in the interpretation process. This
directly returns the required index values for the task
instances. Edge instances of a static edge are instantiated in
exactly the same manner, from the code for the integer set
mapping of that static edge.

In some irregular and adaptive programs, the control flow
may depend on intermediate computational results of the
program, and the DTG would have to be instantiated
dynamically using an actual or simulated program
execution. The DTG for a given input can be either

synthesized and stored offline for further modeling with
any model, or instantiated on the fly during model
execution for modeling techniques such as execution-
driven or instruction-driven simulation. Both these
approaches will be key for multi-paradigm modeling of
advanced adaptive codes.

The automatic construction of the static task graph has
been exploited directly in integrating a task-graph-based
model with MPI-Sim for improving the scalability of
simulation, as described in Section 6.1. The automatic
construction of the dynamic task graph makes it possible to
do automatic analytical modeling of program performance,
using deterministic task graph analysis [1].

4.2 LogGP/LoPC

The task graph for a given application elucidates the
principal structure of the code, including the inter-
processor communication events, from which it is
relatively easy to derive the LogGP or LoPC model
equations. The approach is illustrated by deriving the
LogGP model of the Sweep3D application that uses
blocking MPI send and receive primitives for
communication. The task graph for the sweep (or main)
phase of this application is given in Figure 3.3.

The LogGP model of the Sweep3D application is given in
Figure 4.1. The hardware domain is modeled by three
simple parameters: L, G, and Wg, which are defined below.

 Send (message length < 4KB) = o (1a)

 Send (message length ≥ 4KB) = os + L + os + os + L + ol (1b)

 Receive (message length < 4KB) = o (2a)

 Receive (message length ≥ 4KB) = os + L + ol + (message_size × Gl) + L + ol (2b)

 Total Comm (message length < 4KB) = o + (message_size × G) + L + o (3a)

 Total Comm (message length ≥ 4KB) = os + L + os + os + L + ol + (message_size × Gl) + L + ol (3b)

 Wi,j = Wg × mmi × mk × it × jt (4)

 StartPi,j = max (StartPi –1,j + Wi−1,j + Total_Comm + Receive, StartPi,j−1 + Wi,j−1 + Send + Total_Comm) (5)

 T5,6 = startP1,m+ 2[(W1,m+ SendE+ ReceiveN + (m-1)L) × #k-blocks × #angle-groups] (6)

T7,8 = startPn-1,m + 2[(Wn-1,m+ SendE+ ReceiveW+ ReceiveN+ (m–1)L+ (n-2)L) × #k-blocks × #angle-groups]

 +ReceiveW+Wn,m (7)

 T = 2 (T5,6 + T7,8) (8)

Figure 4.1. LogGP Model of MPI Communication and the Sweep3D Application.

The first six equations, (1a) through (3b), model the
runtime system components used by the Sweep3D
application. That is, these equations model the MPI
communication primitives as they are implemented on the
SP/2 that was used to validate the model. Equations (4)
through (8) model the execution time of the application as
derived from the dynamic task graph.

Equations (1a) through (3b) reflect a fairly precise, yet
simple, model of how the MPI-send and MPI-receive
primitives are implemented on the SP/2. Information about
how the primitives are implemented was obtained from the
author of the MPI software. For messages smaller than four
kilobytes, the cost of a send or receive operation is simply
the LogGP processing overhead (o) parameter. The total
communication cost for these messages (equation 3a) is the
sum of the send processing overhead, the message
transmission time (modeled as the network latency (L),
plus the message size times the gap per byte (G)
parameter), and the receive processing overhead.1 A
subscript on the processing overhead parameter denotes the
value of this parameter for messages smaller (os) or larger
(ol) than one kilobyte. When the subscript is omitted, the
appropriate value is assumed. For messages larger than
four kilobytes (equation 3b), an additional handshake is
required. The sending processor sends a short message to
the receiving processor, which is acknowledged by a short
message from the receiving processor when the receive
system call has been executed and the buffer space is
available to hold the message. After that, the message
transfer takes place. In this case, the Send cost (1b) or
Receive cost (2b) is the duration of the communication
event on the processor where the corresponding MPI
runtime system call occurs. Further details about the
accuracy of these communication models and how the
parameter values were measured are given in [36].

The equations that model the MPI communication
primitives might need to be modified for future versions of
the MPI library, or if Sweep3D is run on a different
message-passing system or is modified to use non-blocking
MPI primitives. The equations illustrate a general approach
for capturing the impact of such system modifications.

Equations (4) through (8) model the application execution
time, taking advantage of the symmetry in the Sweep3D
task graph (see Figure 3.3). For simplicity, the Sweep3D
application model presented here assumes each processor
in the m×n Sweep3D processor grid is mapped to a
different SMP node in the SP/2. In this case, network
latency, L, is the same for all (nearest-neighbor)
communication in Sweep3D. As explained in [36], the

1 The communication structure of Sweep3D is such that we can
ignore the LogGP gap (g) parameter, since the time between
consecutive message transmissions is greater than the minimum
allowed value of inter-message transmission time.

equations that model communication can be modified
easily for the case when 2x2 regions of the processor grid
are mapped to the same SMP node.

Equation (4) models the time required for a single task to
compute the values for a portion of the grid of size mmi ×
mk × it × jt. In this equation, Wg is the measured time to
compute one grid point, and mmi, mk, it, and jt are the
Sweep3D input parameters that specify the number of
angles and grid points per block per processor.

Equation (5) models the precedence constraints in the task
graph for the sweeps for octants 5 and 6, assuming the
processors are numbered according to their placement in
the two-dimensional grid, with the processor in the upper
left being numbered (1,1). Specifically, the recursive
equation computes the time that processor pi,j begins its
calculations for these sweeps, where i denotes the
horizontal position of the processor in the grid. The first
term in equation (5) corresponds to the case where the
message from the West is the last to arrive at processor pi,j.
In this case, due to the blocking nature of the MPI
primitives, the message from the North has already been
sent but cannot be received until the message from the
West is processed. The second term in equation (5) models
the case where the message from the North is the last to
arrive. Note that StartP1,1 = 0, and that the appropriate one
of the two terms in equation (5) is deleted for each of the
other processors at the east or north edges of the processor
grid.

The Sweep3D application makes sweeps across the
processors in the same direction for each octant pair. The
critical path time for the two right-downward sweeps is
computed in equation (6) of Figure 4.1. This is the time
until the lower-left corner processor p1,m has finished
communicating the results from its last block of the sweep
for octant 6. At this point, the sweeps for octants 7 and 8
(to the upper right) can start at processor p1,m and proceed
toward pn,1. The subscripts on the Send and Receive terms
in equation (6) are included only to indicate the direction
of the communication event, to make it easier to
understand why the term is included in the equation.

Since the sweeps from octants 1 and 2 (in the next
iteration) will not begin until processor pn,1 is finished, the
critical path for the sweeps for octants 7 and 8 is the time
until all processors in the grid complete their calculations
for the sweeps. Due to the symmetry in the Sweep3D
algorithm, captured in the task graph, the time for the
sweeps to the Northeast is the same as the total time for the
sweeps for octants 5 and 6, which is computed in equation
(7) of the figure. Due to the symmetry between the sweeps
for octants 1 through 4 and the sweeps for octants 5
through 8, the total execution time of one iteration is
computed as in equation (8) of Figure 4.1. Equation (6)
contains one term [(m–1)L], and the equation (7) contains

two terms [(m–1)L and (n-2)L], that account for
synchronization costs, as explained in [36].

The input parameters to the LogGP model derived above
are the L, o, G, P, and Wg parameters. The first three
parameters were derived by measuring the round-trip
communication times for three different message sizes on
the IBM SP system, and solving equations (3a) and (3b)
with the derived measures (see [36] for details). The Wi,j

parameter value was measured on a 2x2 grid of processors
so that the work done by corner, edge, and interior
processors could be measured. In fact, to obtain the
accuracy of the results in this paper, Wi,j for each per-
processor grid size was measured to account for
differences (up to 20%) that arise from cache miss and
other effects. Since the Sweep3D program contains extra
calculations (“fixups”) for five of the twelve iterations, Wi,j

values for both of these iteration types were measured.
Although this is more detailed than the creators of
LogP/LogGP may have intended, the increased accuracy is
substantial and needed for the large-scale performance
projections in Section 5. In the future, other POEMS tools
will be used to obtain these input parameters, as explained
in Section 6.3.

The LogGP model of the SP/2 MPI communication
primitives is shown to be highly accurate in [36]. Selected
validations and performance projections of the LogGP
model of Sweep3D are presented in Section 5.

4.3 MPI-Sim: Direct Execution-Driven
System Simulation

POEMS includes a modular, direct execution-driven,
parallel program simulator called MPI-Sim that has been
developed at UCLA [10, 28]. MPI-Sim can evaluate the
performance of existing MPI programs as a function of
various hardware and system software characteristics that
include the number of processors, interconnection network
characteristics, and message-passing library
implementations. The simulator also can be used to
evaluate the performance of parallel file systems and I/O
systems [8]. Supported capabilities include a number of
different disk caching algorithms, collective I/O
techniques, disk cache replacement algorithms, and I/O
device models. The parallel discrete-event simulator uses a
set of conservative synchronization protocols together with
a number of optimizations to reduce the time to execute
simulation models.

MPI-Sim models the application and the underlying
system. An application is represented by its local code
blocks and their communication requirements. The local
code block model is evaluated by direct execution. MPI
programs execute as a collection of single threaded
processes, and, in general, the host machine has fewer

processors than the target machine. (For sequential
simulation, the host machine has only one processor). This
requires that the simulator supports multithreaded
execution of MPI programs. MPI-LITE, a portable library
for multithreaded execution of MPI programs, has been
developed for this purpose.

The MPI communication layer, which is part of the
runtime domain, is simulated by MPI-Sim in detail; buffer
allocation and internal MPI synchronization messages are
taken into account. The simulator does not simulate every
MPI call, rather all collective communication functions are
first translated by the simulator in terms of point-to-point
communication functions, and all point-to-point
communication functions are implemented using a set of
core non-blocking MPI functions. Note that the translation
of collective communication functions in the simulator is
identical to how they are implemented on the target
architecture. A preprocessor replaces all MPI calls by
equivalent calls to corresponding routines in the simulator.
The physical communications between processors, which
are part of the hardware domain are modeled by simple
end-to-end latencies, similar to the communication latency
parameter in the LogP model.

For many applications, these runtime domain and hardware
domain communication models are highly accurate
[10,28]. MPI-Sim has been validated against the NAS MPI
benchmarks and has demonstrated excellent performance
improvement with parallel execution against these
benchmarks [28]. As shown in Section 5, it also is highly
accurate for the Sweep3D application, and the simulation
results (which reflect fairly detailed modeling of the
runtime domain) greatly increase confidence in the
scalability projections of the more abstract LogGP model.

4.4 Instruction-Level Simulation

As stated above, the system model provided by MPI-Sim is
based on direct execution of computational code and
simulation of MPI communication. As a result, the
processor/memory architecture of the target system to be
evaluated must be identical to that of the host system.

To provide performance evaluation of applications on
alternative (future) processor and memory subsystem
designs, the POEMS component model library includes
processor, memory, and transport component models that
are evaluated using instruction-level, discrete-event
simulation. These models are in the process of being
composed with MPI-Sim to predict the performance of
programs for proposed next-generation multiprocessor
systems. The results of the more abstract task graph,
LogGP/LoPC, and MPI-Sim analyses can be used to
identify the most important regions of the design space to
be evaluated with these, more detailed, hardware
component models. The detailed hardware models can be

used to validate the more abstract models, and can provide
parameter values for future processor/memory
architectures needed in the more abstract models.

In order to provide this kind of modeling capability, a
simulator that models instruction-level parallelism is
essential. The “sim-outorder” component of the
SimpleScalar tool set [14] meets this requirement for
simulating complex modern processor/memory
architectures. As a result, it is being integrated in the
POEMS environment. sim-outorder can be used to model
state-of-the-art superscalar processors, which support out-
of-order instruction issue and execution. The processor
attributes of these hardware processor/memory subsystem
component models include the processor fetch, issue, and
decode rates, number and types of functional units, and
defining characteristics of the branch predictor. Currently,
its integrated memory components include level-one and
level-two instruction and data caches, a translation-
lookaside buffer, and main memory. The simulator is fairly
portable and customizable with reasonable effort.

Currently, the MPI-version of Sweep3D successfully
executes on multiple instantiations of sim-outorder, each
executed by a separate MPI process. This simulation
produces estimates of the parameter value called Wi,j in the
LogGP model, thus enabling the LogGP model to predict
the performance of Sweep3D on alternative processor-
cache architectures. This simulation capability also
demonstrates a proof-of-concept for integrating the sim-
outorder and MPI-Sim modeling tools. The future
integration of MPI-Sim and sim-outorder will support
detailed simulation of both the OS/runtime domain and the
hardware domain.

5 APPLICATION OF POEMS TO
PERFORMANCE ANALYSIS OF SWEEP3D

The goal of the POEMS performance modeling system is
to enable complete end-to-end performance studies of
applications executed on specific system architectures. To
accomplish this, the system must be able to generate
information that can be used to identify and characterize
performance bottlenecks, analyze scalability, determine the
optimal mapping of the application on a given architecture,
and analyze the sensitivity of the application to
architectural changes. This section presents a
representative sample of the results obtained in modeling
Sweep3D. These results are for the IBM SP system.

5.1 Model Validations

We first demonstrate the accuracy of the performance
models described above. Both MPI-Sim and LogGP model
Sweep3D accurately for a variety of application parameters
such as the mk and mmi parameters that define the size of

a pipelined block, different total problem sizes, and
number of processors. Figures 5.1(a) and (b) present the
measured and predicted execution time of the program for
the 1503 and 503 total problem sizes respectively, as a
function of the number of processors. For these results, the
k-blocking factor (mk) is 10 and the angle-blocking factor
(mmi) is 3. Both the MPI-Sim and LogGP models show
excellent agreement with the measured values, with
discrepancies of at most 7%. The next section shows that
these two problem sizes have very different scalability, yet
Figure 5.1 shows that the LogGP and MPI-Sim estimates
are highly accurate for both problem sizes.

5.2 Scalability Analysis

It is important to application developers to determine how
well an application scales as the number of processors in
the system is increased. On today’s systems, the user could
conduct such studies by measuring the runtime of the
application as the number of processors is increased to the
maximum number of processors in the system, e.g., 128
(see Figure 5.2(a)). The figure clearly shows that the small
problem size (503) cannot efficiently exploit more than 64
processors. On the other hand, the larger problem size
shows excellent speedup up to 128 processors. However,
due to the system size limitation, no information about the
behavior of larger problem sizes on very large numbers of
processors is available to the user. Modeling tools enable
users to look beyond the available multiprocessor systems.
Figure 5.2(b) shows the projections of LogGP and MPI-
Sim to hardware configurations with as many as 2500
processors. Although the application for the 1503 problem
size shows good performance for up to 900 processors, it
would not perform well on machines with a greater number
of processors.

Figure 5.2 also demonstrates the excellent agreement
between the analytical LogGP model and the MPI-Sim
simulation model. Each model was independently
validated for a variety of application configurations on as
many as 128 processors, and the good cross-validation
between the models for up to 2500 processors increases
our confidence in both models.

Figure 5.3(a) demonstrates the projective capability of the
simulation and analytical models. This figure shows the
measured and estimated performance as a function of the
number of processors, for a fixed per-processor grid size of
14×14×255. For this per-processor grid size the total
problem size on 400 processors is approximately 20
million grid points, which is one problem size of interest to
the application developers. Obviously, measurement is
limited to the size of the physical system (128 processors).
The maximum problem size that can be measured, with the
per-processor grid size of 14×14×255 is 6.4 million cells.
MPI-Sim can extend the projections to 1,600 processors
(80 million cells) before running out of memory because

the simulator needs at least as much aggregate memory as
the application it models. (In Section 6.1, we describe
compiler-based techniques that eliminate the memory
bottleneck for simulation of regular programs such as
Sweep3D and thus greatly increase the system and problem
sizes that can be simulated.) Finally, LogGP can take the
projections to as much as 28,000 processors (i.e., for the
given application configuration parameters, a 1.4 billion
problem size).

One important issue addressed in the figure is the validity
of the model projections for very large systems. In
particular, the close agreement between measurement and
the MPI-Sim and LogGP models for up to 128 processors
and the close agreement between MPI-Sim and LogGP for
up to 1,600 processors greatly increases our confidence in
the projections of MPI-Sim and LogGP for large problem
sizes of interest to the application developers.

The mutual validation between the two different models is

one key way in which simulation and analytical modeling
complement each other. Furthermore, the two models have
complementary strengths. The key strength of MPI-Sim is
that it can be used to study program performance by users
with little or no modeling expertise, and can be used to
study the performance impact of detailed changes in the
design of Sweep3D or in the implementation of the MPI
communication primitives. The key strength of the LogGP
model is that it can project the performance of design
changes before the changes are implemented, and for the
largest problem sizes of interest.

5.3 Application Mapping

For applications such as Sweep3D, which allow varying
the degree of pipelining, it is often important to explore not
only how many resources are needed to achieve good
results, but also how best to map the application onto the
machine. Figure 5.3(b) shows how LogGP explores the
parameter space for the 20 million-cell Sweep3D problem

0

100

200

300

400

500

600

700

0 50 100 150

number of processors

MPI-SIM

measured

LogGP

0

20

40

60

80

100

120

0 50 100 150

number of processors

MPI-SIM

measured

LogGP

(a) Validation for Problem Size 150x150x150. (b) Validation for Problem Size 50x50x50.

Figure 5.1. Validation of LogGP and MPI-Sim.

0

20

40

60

80

100

120

140

0 50 100 150

number of processors

sp
ee

d
u

p

50^3-LogGP

150^3-LogGP

150^3-MPI-SIM

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

number of processors

50^3-LogGP

150^3-LogGP

150^3-MPI-SIM

(a) Speedup for up to 128 Processors. (b) Speedup for up to 2500 Processors.

Figure 5.2 Projected Sweep3D Speedup.

on up to 20,000 processors. Here the k- and angle-blocking
factors are varied, which results in various degrees of
pipelining in the algorithm. The graph shows that for a
small number of processors (less than 400) the choice of
blocking factors is not very important. However, as more
processors are used and the grid size per processor
decreases, the degree of pipelining in the k-dimension has
a significant impact, resulting in poor performance for the
smallest blocking factor (mk=1). For this blocking factor,
the performance of the application also is sensitive to the
angle-blocking factor. However, when the k-blocking
factor is properly chosen (mk=10), the impact of the mmi
parameter value is negligible. The results also indicate that
the optimal operating point for this total problem size is
perhaps one or two thousand processors; increasing the
number of processors beyond this number leads to greatly
diminished returns in terms of reducing application
execution time. This projected optimal operating point is a
key design question that was unanswered prior to the
POEMS analysis.

5.4 Communication Requirements Analysis

Another issue of interest is the application’s performance
on a system with upgraded communication capability. A
related issue is the application’s performance on high-
performance tightly-coupled multiprocessor systems
versus its performance on a network of loosely-coupled
workstations. Both simulation and analytical models can
be used to study these issues by modifying their
communication components to reflect changes in the
communication latency of the system.

As depicted in Figure 5.4, MPI-Sim was used in this way
to show the impact of latency on the performance of the 20
million-cell Sweep3D. In this experiment, the latency was
set to n times the latency of the IBM SP (denoted n×SP in
the figure), for a range of values of n. The MPI-Sim
projections shown in Figure 5.4(a) indicate that if the
communication latency is 0, not much improvement is
gained. In addition, these results show that for large
numbers of processors, 400 and over, the application may

0

50

100

150

200

250

1 10 100 1000 10000 100000
number of processors

LogGP

MPI-SIM

measured

20 million Problem

(a) Projective Capability of Analysis and Simulation (mk=10,mmi=3).

0
500

1000
1500
2000
2500
3000
3500
4000

0 5000 10000 15000 20000 25000
number of Processors

mk=1,mmi=3

mk=1,mmi=6

mk=10,mmi=3

mk=10,mmi=6

(b) Effect of Pipeline Parameters.

0
50

100
150
200
250
300
350
400
450
500

100 400 1600

number of processors

0

sp

10xsp

50xsp

100xsp

(a) Latency Variation (MPI-Sim).

0
50

100
150
200
250
300
350
400

0 10000 20000 30000

Number of Processors

T
im

e(
se

c)

total

comp

comm
synch

(b) Communication Costs (LogGP).

Figure 5.4 Effect of Communications on Sweep3D, 20
Million Cell Problem.

Figure 5.3. Projective Capabilities and Model
Projections for Sweep3D, 20 Million Cell Problem.

perform well on a network of workstations, because even if
the latency is increased to 50 times that of the SP,
performance does not suffer significantly. However, as
Figure 5.3(b) demonstrates, the performance of the 20
million-cell Sweep3D does not improve when more than
5000 processors are used. Since the grid-size per processor
diminishes, reducing the computation time, and latency
does not seem to be a factor, one would expect
performance gains to persist. The detailed communication
component in the LogGP model provides an explanation.
As can be seen in Figure 5.4(b), the computation time
decreases, but the communication time remains flat and,
more importantly, the synchronization costs resulting from
blocking sends and receives dominate the total execution
time as the number of processors grows to 20,000. This
implies that modifications to the algorithm are necessary to
effectively use large numbers of processors. In addition,
the use of non-blocking communication primitives might
be worth investigating. Again these are key design results
produced by the POEMS modeling and analysis effort.

6 RESEARCH IN PROGRESS - INTEGRATION OF
MODELING PARADIGMS

One goal of the POEMS methodology is to facilitate the
integration of different modeling paradigms. The use of
compositional objects and the task graph abstraction as a
workload representation together provide the framework
needed for this integration. Compositional objects facilitate
the use of different models for a particular system or
application component. The task graph explicitly separates
the representation of sequential computations (tasks) from
inter-process communication or synchronization. This
separation directly enables combinations of modeling
paradigms where different paradigms are used to model
various tasks as well as the parallel communication
behavior. Other combinations (e.g., combining analysis
and simulation to model the execution of a particular
sequential task) can be performed with some additional
effort, using task component models that are themselves
composed of submodels. This section presents an overview
of some of the multi-paradigm modeling approaches that
are being designed and evaluated for inclusion in the
POEMS environment.

6.1 Integrating Task Graph and Simulation
Models

When simulating communication performance with a
simulator such as MPI-Sim, the computational code of the
application is executed or simulated in detail to determine
its impact on performance. State-of-the-art simulators such
as MPI-Sim use both parallel simulation and direct-
execution simulation to reduce overall simulation time
greatly, but these simulators still consume at least as much

aggregate memory as the original application. This high
memory usage is a major bottleneck limiting the size of
problems that can be simulated today, especially if the
target system has many more processors than the host
system used to run the simulations.

In principle, only two aspects of the computations are
needed to predict communication behavior and overall
performance: (a) the elapsed time for each computational
interval and (b) those intermediate computational results
that affect the computation times and communication
behavior. We refer to the computations required for part
(b) as “essential” computations (signifying that their
results affect program performance), and the rest of the
computations as “non-essential.” Essential computations
are exactly those that affect the control-flow (and therefore
computation times) or the communication behavior of the
program. Assume for now that computation times for the
non-essential computations can be estimated analytically
using compiler-driven performance prediction. Then, if the
essential computations can be isolated, the non-essential
computations can be ignored during the detailed
simulation, and the data structures used exclusively by the
non-essential computations can be eliminated. If the
memory savings are substantial and the simplified
simulation is accurate, this technique can make it practical
to simulate much larger systems and data sets than is
currently possible even with parallel direct-execution
simulation.

We have integrated the static task graph model with the
MPI-Sim simulator (plus additional compiler analysis) in
order to implement and evaluate the technique described
above [4]. Compiler analysis is essential because
identifying and eliminating the “non-essential”
computations requires information about the
communication and control-flow in the application. The
static task graph model serves two purposes. First, it
provides an abstract representation for the compiler
analysis, in which the computation intervals (tasks) are
clearly separated from the communication structure.
Second it serves as the interface to MPI-Sim (in the form
of a simplified MPI program that captures the task graph
structure plus the “essential” computations).

Briefly, the integration works as follows. The static task
graph directly identifies the computational intervals: these
simply correspond to subgraphs containing no
communication. First, the compiler identifies the values
(i.e, the uses of variables) that affect the control-flow
within the computation intervals, and the values that affect
the communication behavior (note that this does not yet
include the values being communicated). The compiler
then uses a standard technique known as program slicing
[20] to identify the subset of the computations that affect
these variable values; these are exactly the essential

computations.

Second, the compiler computes a symbolic expression
representing the elapsed time for each non-essential
computation interval. These task time estimates are similar
to equation (4) of the LogGP model, but derived
automatically from program analysis. The Wij parameters
can be measured directly, or estimated by more detailed
analysis, or simulated using SimpleScalar as described in
Sections 5.2 or 6.2. The current implementation simply
measures these values by generating an instrumented
version of the original source code for one or more
relatively small problem sizes.

Finally, the compiler transforms the original parallel code
into a simplified MPI program that has exactly the same
parallel structure as the original task graph, but where the
non-essential computations are replaced by function calls
to a special simulator function. MPI-Sim has been
augmented to provide this special simulator function,
which takes an argument specifying a time value and
simply advances the simulation clock for the current
process by that value. The symbolic estimate derived by
the compiler is passed as an argument to the function.

Preliminary results demonstrating the scalability of the
integrated simulator can be seen in Figure 6.1. The per-
processor problem size is fixed (6×6×1000) in the figure so
that the total problem size scales linearly with the number
of processors. The original MPI-Sim could not be used to
simulate applications running on more than 400 processors
in this case (i.e., an aggregate 14.4 million problem size),
whereas the integrated task graph simulator model scaled
up to 6400 processors (i.e., a 230 million problem size).
The primary reason for the improved scalability of the
simulation is that the integrated model requires a factor of
1760× less memory than the original simulator! The total
simulation time is also improved by about a factor of 2.
Finally, the integrated model has an average error under
10% for this problem, compared with an average error of
3.6% for the original simulator. In fact, for other cases we
have looked at, the two approaches are comparable in their
accuracy [4].

The composition of models described above was
developed manually because substantial research issues
were involved. In practice, the POEMS methodology for
component model composition and evaluation tool
integration described in Section 3 can be applied to
perform this composition. The dHPF compiler would first
generate a modified static task graph that creates separate
tasks for intervals of essential and non-essential
computations. (The code for each graph node in PSL is
encapsulated in a separate function, mainly for
implementation convenience.) The evaluation tool for the
communication operations is of course the MPI-Sim
simulator. The evaluation tool for the essential task nodes,

including essential control-flow nodes, would be direct
execution within the POEMS runtime system. Last and
most important, several different evaluation tools can be
used for the non-essential task nodes: compiler-synthesized
symbolic expressions parameterized with measurements as
in our experiments above (in fact, the POEMS
environment would further simplify the measurement
process), purely analytical estimates derived by the
compiler, or the SimpleScalar processor simulator.
Furthermore, different evaluation tools could be used for
different nodes. For example, the SimpleScalar simulations
could be used for a few instances of each node in order to
model cache behavior on a hypothetical system, and these
results used as parameter values in the symbolic
expressions for modeling other instances of the node.

The specification of this integrated model in PSL is closely
analogous to the example given in Section 3.3. The
component models for the task graph nodes are MPI-Sim
for communication nodes, direct execution for the essential
computation nodes, and one of the evaluation methods
described above for each of the non-essential computation
nodes. The accepts interfaces for the component models
implemented through MPI-Sim identify the position of the
given computation or communication node in the static
task graph, and the function to be modeled or the signature
of the MPI component to be simulated. The requests
interfaces specify the evaluation tools and the successor
nodes in the task graph. The accepts interfaces of the non-
essential computation nodes specify the function being
encapsulated, the position in the static task graph of the
given computation node, and an evaluation mode. The
requests interfaces of the computation nodes specify the
evaluation tools, the next communication node in the task
graph, and the signature of the desired successor

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000

number of target processors

pr
ed

ic
te

d
ru

nt
im

e
(in

 s
ec

)

STG + MPI-SIM

MPI-SIM

Measured

Figure 6.1. Aggregate Problem and System Sizes
that can be Simulated with the Integrated Static
Task Graph + MPI-Sim Model; Per-processor

Problem Size is Fixed at 6×6×1000.

communication function. The PSL compiler would
automatically generate a single executable that invokes the
appropriate model components at runtime. An execution of
this program essentially can be envisioned as synthesizing
the dynamic task graph from the static task graph on the fly
and traversing it, alternating between execution of
computation nodes and communication nodes, where each
node is evaluated or executed by its component model.

6.2 Integration of MPI-Sim and the LogGP
Models

As discussed in Section 5, both analytical and simulation
techniques can predict the performance of large-scale
parallel applications as a function of various architectural
characteristics. Simulation can model system performance
at much greater levels of detail than analytical models, and
can evaluate application performance for architectural
modifications that would change the analytical model input
parameters in unknown ways. As a simple example, MPI-
Sim results were used to gain confidence in the very large-
scale projections of Sweep3D performance from the
LogGP model. On the other hand, because of the resource
and time constraints of simulation, analytical models can
elucidate the principal system performance parameters and
can provide performance projections for much larger
configurations than is possible with simulation models.
Because of these complementary strengths, significant
benefits can be derived from combining the two
approaches.

One key advantage to further integrating MPI-Sim and the
LogGP models is that performance of large-scale
applications with modified implementations of the MPI
communication primitives can be evaluated. For example,
the MPI runtime software implementation on the SP/2 has
not yet been optimized for communication among the
processors in the same SMP node. For the experiments
reported in Section 5, the Sweep3D processes were
mapped to different nodes in the SP/2, in order to utilize
the efficient MPI communication between nodes. To obtain
performance estimates of Sweep3D for next generation
systems, MPI-Sim component models can be used to
simulate the efficient communication that is expected to be
available in future versions of the MPI runtime library.
The measured communication costs from these simulations
can then be used in the LogGP model, appropriately
updated to reflect non-uniform intra-node/inter-node
communication costs [36], to predict application scalability
when Sweep3D uses intra-node as well as inter-node
communication in the SP/2.

The Sweep3D application that uses MPI communication
primitives is accurately modeled by the LogGP and MPI-
Sim models, which assume no significant queuing delays
at the network interfaces or in the interconnection network
switches. Other applications, including the shared-memory

version of Sweep3D, may require estimates of queuing
delays in the network, or the network interfaces, in order to
achieve accurate performance models. In many previous
studies, analytical models of contention in interconnection
networks have proven to be both very efficient to evaluate
and highly accurate. Thus, a detailed analytical component
model for the interconnection network might be composed
with (1) a more abstract model of the application running
time (as in the LoPC model [18]), and/or (2) an MPI-Sim
component model of the MPI runtime system
communication primitives.

6.3 Integration of SimpleScalar with MPI-
Sim and LogGP

Although both MPI-Sim and LogGP have flexible
communication components, the processor model in both
systems is simple and relies on measurement of the local
code blocks on an existing processor and memory system.
To allow the POEMS modeling capabilities to be expanded
to include assessment of the impact of next generation
processors and memory systems, detailed component
models based on SimpleScalar are under development.
These models interact with the MPI-Sim and LogGP
component models to project the impact of processor and
memory system architecture changes on the execution time
of large-scale Sweep3D simulations (on thousands of
processor nodes).

The modeling of specific processors by SimpleScalar still
needs to be validated. For example, the POEMS
SimpleScalar model of the Power604e is not exact because
of certain aspects of the 604e; e.g., the modeled ISA is not
identical to that of the 604e. A key question is whether the
approximate model of the ISA is sufficiently accurate for
applications such as Sweep3D. Several validation methods
are under consideration:

1) execute narrow-spectrum benchmarks on a 604e and
on SimpleScalar configured as a 604e to validate the
memory hierarchy design parameters;

2) use on-chip performance counters to validate the
microarchitecture modeling; and

3) compare measured Sweep3D task times on the SP/2
with task execution times attained by running multiple
SimpleScalar instances configured as 604es under
MPI.

One example of combined simulation and analysis, is to
use the LogGP model to obtain application scalability
projections for next-generation processor and cache
architectures, by using estimates of task execution times
for those architectures that are derived from SimpleScalar
simulations. For example, in the Sweep3D application, a
SimpleScalar component model can produce the Wi,j

values for a fixed per-processor grid size on a 2×2

processor grid, and then the LogGP component model can
be run using the estimates for various per-processor grid
sizes to project the performance scalability of the
application. This is one of the near-future goals of the
POEMS multi-paradigm modeling efforts. As another
example, instead of simulating or directly executing the
MPI communication primitives, a LogGP component
model of the MPI communication costs might be
composed with a SimpleScalar component model of the
node architecture.

7 RELATED WORK

The conceptual framework for POEMS is a synthesis from
models of naming and communication [11, 12], Computer-
Aided Design (CAD), software frameworks, parallel
computation [24], object-oriented analysis [33], data
mediation [38] and intelligent agents. In this section,
however, we focus on research projects that share our
primary goal of end-to-end performance evaluation for
parallel systems. A more extensive but still far from
comprehensive survey of related work and a list of
references can be found on the POEMS project Web page
at http://www.cs.utexas.edu/users/poems.

The most closely related projects to POEMS are probably
the Maisie/Parsec parallel discrete-event simulation
framework and its use in parallel program simulation [7, 9,
27, 28], SimOS [32], RSIM [25,26], PACE [21], and the
earlier work in program simulators, direct-execution
simulators, and parallel discrete-event simulation. In
addition, an early system that shared many of the goals of
the POEMS modeling environment, but did not incorporate
recent results from object-oriented analysis, data mediation
and intelligent agents, nor the range of modern analytic and
simulation modeling tools being incorporated in POEMS,
was the SARA system [17]. SimOS simulates the computer
hardware of both uniprocessor and multiprocessor
computer systems in enough detail to run an entire
operating system, thus, providing a simulation
environment that can investigate realistic workloads.
Different modes of operation provide a trade-off between
the speed and detail of a simulation. Thus, SimOS supports
multi-domain and multi-resolution modeling, but unlike
POEMS, it primarily uses a single evaluation paradigm,
namely, simulation. RSIM supports detailed instruction-
level and direct-execution simulation of parallel program
performance for shared memory multiprocessors with ILP
processors. PACE (Performance Analysis and
Characterisation Environment) is designed to predict and
analyze the performance of parallel systems defined by a
user, while hiding the underlying performance
characterization models and their evaluation processes
from the user.

None of the above projects supports the general integration
of multiple paradigms for model evaluation, a key goal of
POEMS. The conceptual extensions used to achieve this in
POEMS are a formal specification language for
composition of component models into a full system
model, a unified application representation that supports
multiple modeling paradigms, and automatic synthesis of
this workload representation using a parallelizing compiler.
The alternative modeling paradigms support validation and
allow different levels of analyses of existing and future
application programs within a common framework.

Finally, there are many effective commercial products for
simulation modeling of computer and communication
systems. The March 1994 IEEE Communications
Magazine presents a survey of such products.

8 CONCLUSIONS

The POEMS project is creating a problem-solving
environment for end-to-end performance models of
complex parallel and distributed systems and applying this
environment for performance prediction of application
software executed on current and future generations of
such systems. This paper has described the key
components of the POEMS framework: a generalized task
graph model for describing parallel computations,
automatic generation of the task graph by a parallelizing
compiler, a specification language for mapping the
computation on component models from the operating
system and hardware domain, compositional modeling of
multi-paradigm, multi-scale, multi-domain models,
integration of a Performance Recommender for selecting
the computational parameters for a given target
performance, and a wide set of modeling tools ranging
from analytical models to parallel discrete-event simulation
tools.

The paper illustrates the POEMS modeling methodology
and approach, by using a number of the POEMS tools for
performance prediction of the Sweep3D application kernel
selected by Los Alamos National Laboratory for evaluation
of ASCI architectures. The paper validates the performance
predicted by the analytical and simulation models against
the measured application performance. The Sweep3D
kernel used for this study is an example of a regular CPU-
bound application. Reusable versions of the analytical and
simulation models, parameterized for three-dimensional
wavefront applications, will form the initial component
model library for POEMS. Future development of POEMS
methods and tools will be largely driven by MOL [30],
which is a modular program that implements the Method
of Lines for solving partial differential equations. It is
designed to be a "simple" program (less than 1000 lines of
code) which has all the features of a "sophisticated"
dynamic code. Features that can be varied easily include
(1) work load needed to maintain quality of service, (2)

number of processors needed, (3) communication patterns,
(4) communication bandwidth needed, (5) internal data
structures, etc…

In addition to continuing efforts on the preceding topics,
several interesting research directions are being pursued in
the project. First, the POEMS modeling framework and
tools will be extended to directly support the evaluation of
parallel programs expressed using the task graph notation.
Second, in the study reported in this paper, there was
considerable synergy among the development of the
analytical and simulation models, enabling validations to
occur more rapidly than if each model had been developed
in isolation. As the next step, the project is enhancing the
multi-paradigm modeling capability in POEMS, in which
the analytical models will be used by the execution-driven
simulator, e.g., to estimate communication delays and/or
task execution times, and simulation models will be
invoked automatically to derive analytical model input
parameters. Several initial examples of such integrated
modeling approaches were described in Section 7.
Innovations in parallel discrete-event simulation
technology to reduce the execution time for the integrated
models will continue to be investigated, with and without
compiler support. The integration of compiler support
with analytical and parallel simulation models will enable
(to our knowledge) the first fully-automatic, end-to-end
performance prediction capability for large-scale parallel
applications and systems.

ACKNOWLEDGMENT

A number of people from the member institutions
represented by the POEMS team contributed to the work.
In particular, the authors acknowledge Adolfy Hoisie, Olaf
Lubeck, Yong Luo, and Harvey Wasserman of Los Alamos
National Laboratory for suggesting the Sweep3D
application, providing significant assistance in
understanding the application and the performance issues
that are of importance to the application developers, and
providing key feedback on our research results. We also
wish to thank Thomas Phan and Steven Docy for their help
with the use of MPI-Sim to predict the Sweep3D
performance on the SP/2. Thanks to the Office of
Academic Computing at UCLA and to Paul Hoffman for
help with the IBM SP/2 on which many of these
experiments were executed. Thanks also to Lawrence
Livermore Laboratory for providing extensive computer
time on the IBM SP/2.

This work was supported by DARPA/ITO under Contract
N66001-97-C-8533, “End-to-End Performance Modeling
of Large Heterogeneous Adaptive Parallel/Distributed
Computer/Communication Systems,” 10/01/97 - 09/30/00,
and by an NSF grant titled “Design of Parallel Algorithms,
Language, and Simulation Tools,” Award ASC9157610,

08/15/91 - 7/31/98. Thanks to Frederica Darema for her
support of this research.REFERENCES

[1] Adve, V. S., “Analyzing the Behavior and Performance
of Parallel Programs”, Univ. of Wisconsin-Madison,
UW CS Tech. Rep. #1201, Oct. 1993.

[2] Adve, V. S., and J. Mellor-Crummey, “Using Integer
Sets for Data-Parallel Program Analysis and
Optimization”, Proc. SIGPLAN98 Conf. on Prog.
Lang. Design and Implementation, Montreal, June
1998.

[3] Adve, V. S., and R. Sakellariou, “Application
Representations for Multi-Paradigm Performance
Modeling”, International Journal of High Performance
Computing Applications 14(4), 2000.

[4] Adve, V. S., R. Bagrodia, E. Deelman, T. Phan and R.
Sakellariou, “Compiler-Supported Simulation of
Highly Scalable Parallel Applications”, SC99: High
Performance Computing and Networking, Portland,
OR, Nov. 1999.

[5] Alexandrov, A., M. Ionescu, K. E. Schauser, and C.
Scheiman, “LogGP: Incorporating Long Messages into
the LogP Model”, Proc. 7th Ann. ACM Symp. on
Parallel Algorithms and Architectures (SPAA ’95),
Santa Barbara, CA, July 1995.

[6] Amza, C., A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Lu, and W. Zwaenepoel, “TreadMarks:
Shared Memory Computing on Networks of
Workstations”, Computer, 29(2), Feb. 1996, pp. 18-28.

[7] Bagrodia, R., and W. Liao, “Maisie: A Language for
Design of Efficient Discrete-event Simulations”, IEEE
Tran. on Software Engineering, 20(4), Apr. 1994.

[8] Bagrodia, R., S. Docy, and A. Kahn, “Parallel
Simulation of Parallel File Systems and I/O Programs”,
Proc. Supercomputing ’97, San Jose, 1997.

[9] Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park, and H. Song, “Parsec: A Parallel
Simulation Environment for Complex Systems”,
Computer, 31(10), Oct. 1998, pp. 77-85.

[10] Bagrodia, R., E. Deelman, S. Docy, and T. Phan,
“Performance Prediction of Large Parallel
Applications Using Parallel Simulations”, 7th ACM
SIGPLAN Symp. on the Principles and Practices of
Parallel Programming (PPoPP ‘99), Atlanta, May
1999.

 [11] Bayerdorffer, B., Associative Broadcast and the
Communication Semantics of Naming in Concurrent
Systems, Ph.D. Dissertation, Dept. of Computer
Sciences, Univ. of Texas at Austin, Dec. 1993.

 [12] Bayerdorffer, B., “Distributed Programming with
Associative Broadcast”, Proc. of the Twenty-eighth
Hawaii International Conf. on System Sciences, Jan.

1995, pp. 525-534.

 [13] Booch, G., J. Rumbaugh, and I. Jacobson, Unified
Modeling Language User Guide, Addison-Wesley,
Englewood Cliffs, NJ, 1997.

[14] Burger, D., and T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0”, Univ. of Wisconsin-Madison, UW
CS Tech Rpt. #1342, June 1997.

[15] Culler, D., R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T.
VonEiken, “LogP: Towards a Realistic Model of
Parallel Computation”, Proc. 4th ACM SIGPLAN
Symp. on Principles and Practices of Parallel
Programming (PPoPP ’93), San Diego, CA, May
1993, pp. 1-12.

 [16] Dube, A., “A Language for Compositional
Development of Performance Models and its
Translation”, Masters Thesis, Dept. of Computer
Science, Univ. of Texas at Austin, Aug., 1998.

[17] Estrin, G., R. Fenchel, R. Razouk, and M. K. Vernon,
“SARA: Modeling, Analysis, and Simulation Support
for Design of Concurrent Systems”, IEEE Trans. on
Software Engineering, Special Issue on Software
Design Methods, SE-12(2), Feb. 1986, pp. 293-311.

 [18] Frank, M. I., A. Agarwal, and M. K. Vernon, “LoPC:
Modeling Contention in Parallel Algorithms”, Proc.
6th ACM SIGPLAN Symp. on Principles and Practices
of Parallel Programming (PPoPP ’97), Las Vegas,
NV, June 1997, pp. 62-73.

[19] Hoisie, A., O. M. Lubeck, and H. J. Wasserman,
“Performance and Scalability Analysis of Teraflop-
Scale Parallel Architectures Using Multidimensional
Wavefront Applications”, Proc. Frontiers ‘ 99.

[20] Horwitz, S., T. Reps, and D. Binkley, “Interprocedural
Slicing Using Dependence Graphs,” ACM Trans. on
Programming Languages and Systems 12(1), Jan.
1990, pp. 26-60.

[21] Kerbyson, D. J., J. S. Harper, A. Craig, and G. R.
Nudd, “PACE: A Toolset to Investigate and Predict
Performance in Parallel Systems”, European Parallel
Tools Meeting, ONERA, Paris, Oct. 1996.

[22] Koch, K. R., R. S. Baker, and R. E. Alcouffe,
“Solution of the First-Order Form of the 3-D Discrete
Ordinates Equation on a Massively Parallel
Processor”, Trans. of the Amer. Nuc. Soc., 65(198),
1992.

[23] Lamport, L., "Time, Clocks and the Ordering of
Events in a Distributed System" Communications of
the ACM, 21(7), (July 1978) pp. 558-565.

[24] Newton, P., and J. C. Browne, “The CODE 2.0
Graphical Parallel Programming Language”, Proc.
ACM Int. Conf. on Supercomputing, July 1992, pp.
167-177.

[25] Pai, V. S., P. Ranganathan, and S. V. Adve, “RSIM
Reference Manual Version 1.0”, Dept. of Electrical
and Computer Engineering, Rice Univ., Technical
Report #9705, Aug. 1997.

[26] Pai, V. S., P. Ranganathan, and S. V. Adve. “The
Impact of Instruction Level Parallelism on
Multiprocessor Performance and Simulation
Methodology”, Proc. 3rd Int. Conf. on High
Performance Computer Architecture, San Antonio,
TX, Mar. 1997, pp. 72-83.

[27] Prakash, S. and R. Bagrodia, “Parallel Simulation of
Data Parallel Programs”, Proc. 8th Workshop on
Languages and Compilers for Parallel Computing,
Columbus, OH, August 1995.

[28] Prakash, S. and R. Bagrodia, “Using Parallel
Simulation to Evaluate MPI Programs”, Proc. Winter
Simulation Conf., Washington D.C., Dec. 1998.

[29] Ramakrishnan, N., Recommender Systems for
Problem Solving Environments, Ph.D. Dissertation,
Dept. of Computer Sciences, Purdue Univ., 1997.

[30] Rice, John., Numerical Methods, Software and
Analysis, Academic Press, 2nd Edition, New York,
1993, Chapter 10.2.E, pp.524-527

[31] Rumbaugh, J., et al. Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[32] Rosenblum, M., S. A. Herrod, E. Witchel, and A.
Gupta, “Complete Computer System Simulation:
The SimOS Approach”, IEEE Parallel and
Distributed Technology, Winter 1995, pp. 34-43.

[33] Shlaer, S., and S. Mellor, Object Lifecycles: Modeling
the World in States, Yourdon Press, NY, 1992.

[35] Sun, X.H., D. He, K. W. Cameron and Y. Luo, “A
Factorial Performance Evaluation for Hierarchical
Memory Systems”, Proc. Int’l Parallel Processing
Symposium (IPPS'99), San Juan, PR, Apr. 1999.

[36] Sundaram-Stukel, D., and M. K. Vernon, “Predictive
Analysis of a Wavefront Application Using LogGP”,
Proc. 7th ACM SIGPLAN Symp. on the Principles and
Practices of Parallel Programming (PPoPP ’99),
Atlanta, May 1999.

[37] Vernon, M. K., E. D. Lazowska, and J. Zahorjan, “An
Accurate and Efficient Performance Analysis
Technique for Multiprocessor Snooping Cache-
Consistency Protocols,” Proc. 15th Annual Int’l.
Symp. on Computer Architecture, Honolulu, May
1988, pp. 308-315,.

[38] Wiederhold, G., “Mediation in Information Systems;
in Research Directions in Software Engineering”,
ACM Computing Surveys, 27(2), June 1995, pp. 265-
267.

