Scalable On-Demand Streaming
of Non-Linear Media

Yanping Zhao, Derek L. Eager, and Mary K. Vernon

Abstract

A conventional video file contains a single temporally-ordered

sequence of video frames. Clients requesting on-demand
streaming of such a file receive (all or intervals of) the same
content. For popular files that receive many requests dur-
ing a file playback time, scalable streaming protocols based
on multicast or broadcast have been devised. Such proto-
cols require server and network bandwidth that grow much
slower than linearly with the file request rate.

This paper considers “non-linear” video content in which
there are parallel sequences of frames. Clients dynami-
cally select which branch of the video they wish to follow,
sufficiently ahead of each branch point so as to allow the
video to be delivered without jitter. An example might be
“choose-your-own-ending” movies. With traditional scal-
able delivery architectures such as movie theaters or TV
broadcasting, such personalization of the delivered video
content is very difficult or impossible. It becomes feasible,
in principle at least, when the video is streamed to indi-
vidual clients over a network. For on-demand streaming of
non-linear media, this paper analyzes the minimal server
bandwidth requirements, and proposes and evaluates prac-
tical scalable delivery protocols.

1 Introduction

A conventional video file contains a single temporally-ordered

sequence of video frames. Clients that request the same file
receive encodings of (all or intervals of) the same frames.
We hypothesize here that generalizing this structure to that
of a tree or graph, so as to allow clients to dynamically se-
lect among alternative parallel sequences of frames during
playback, may enable new streaming media applications as
well as enrich existing applications. An example is “choose-
your-own-ending” entertainment videos, analogous to the
many choose-your-own-ending children’s books.

For conventional stored video, a number of scalable stream-

ing protocols based on (IP or application level) multicast
or broadcast have been developed. Such protocols require
server and network bandwidth that grow much slower than
linearly with the file request rate. These include immediate
service protocols such as patching [3,8,10] and hierarchical

This work was partially supported by the Natural Sciences and Engi-
neering Research Council of Canada, and by the National Science Foun-
dation under grants ANI-0117810 and EIA-0127857.

stream merging [4-6], as well as periodic broadcast pro-
tocols [1,7,9,11-13,17]. In the immediate service proto-
cols, a new stream is allocated for each incoming client
request and streams serving closely spaced requests for the
same file are dynamically “merged” by having clients re-
ceive and buffer data ahead of when it is needed for play-
back. A common mechanism is for clients to listen to one
or more earlier streams in addition to their own stream,
enabling them to “catch up” to the earlier clients. In peri-
odic broadcast protocols, the video file is segmented, and
each segment is repeatedly broadcast/multicast on one of
a number of channels (or IP multicast addresses) according
to some protocol-dependent transmission schedule. As in
the immediate service protocols, clients receive and buffer
data ahead of when it is needed for playback. Unlike the
immediate service protocols, periodic broadcast protocols
require clients to wait before beginning playback. This
start-up delay is determined by the duration of the initial
segment transmission. For “whole file” requests, the best
of the immediate service protocols use server bandwidth
that grows logarithmically with the file request rate, while
the best of the periodic broadcast protocols have start-up
delay that decreases exponentially with the (fixed) server
bandwidth allotted to the file.

This paper explores scalable multicast streaming tech-
niques for on-demand delivery of non-linear stored video.
We first examine a basic question, namely to what extent
does the potential benefit of multicast delivery diminish as
the diversity in the data each client receives increases. This
question is addressed by developing tight lower bounds on
the server bandwidth required (for any protocol) as a func-
tion of file request rate and client start-up delay, for non-
linear media files with varying path diversity. The results
indicate that the potential bandwidth savings can be sub-
stantial, even for videos with high path diversity.

For non-linear videos, receiving data ahead of when it
is needed, as is required in scalable streaming protocols, is
complicated by uncertainty regarding which branch a client
will follow at each branch point. There is a key trade-
off between receiving data that the client might not need,
and the server bandwidth reduction arising from receiving
(needed) data ahead of its playback point so as to be able
to share the transmission with other clients. We investigate
this tradeoff by deriving tight lower bounds on the server
bandwidth required for various classes of protocols. Each
protocol class considered makes use of a specific type of
(partial) information about which branch a client will fol-

low at each branch point. We consider the use of measured
(over all clients) branch choice frequencies, as well as client-
specific information as might result from pre-declaration of
intended client paths or from client classification.

The server bandwidth bounds for each protocol class
show that fairly precise a priori information regarding client
path selection can dramatically reduce server bandwidth
requirements as well as the overhead of delivering and buffer-
ing data that is never used. In the absence of such informa-
tion, protocols that restrict how much data clients receive
in advance of knowing whether or not it will be needed,
based solely on how far ahead that data is in the video file,
can greatly reduce the client data overhead at relatively
small server bandwidth cost.

Using the insights derived from the bounds we design
new immediate service and periodic broadcast protocols
for non-linear video, and evaluate the bandwidth savings
that they provide. Variants of each type of protocol are
developed that make differing assumptions concerning the
availability of a priori path selection information. As with
the lower bounds, precise a priori information regarding
client path selection can substantially reduce the server
bandwidth requirements for practical scalable protocols.

We assume constant bit rate video. Generalizations for
variable bit rate video can be developed using similar ap-
proaches as for linear media [14,15,19].

The remainder of the paper is organized as follows. Sec-
tion 2 describes models of non-linear media. A tight lower
bound on the server bandwidth required for any protocol
as a function of file request rate and client start-up delay is
derived in Section 3. Achieving this lower bound without a
priori client path selection information requires that each
client listen to any multicast of data that it has not already
received, and that is from a video portion reachable from
the client’s current play point. Also derived in Section 3
is the minimum client data overhead with this approach.
Section 4 derives the server bandwidth bounds and asso-
ciated client data overheads for various approaches that
restrict the data that clients receive ahead of when it is
needed. Section 5 presents new stream merging and peri-
odic broadcast protocols for non-linear media, and compar-
ative performance results. Section 6 concludes the paper.

2 Non-Linear Media Models

2.1 Media Structures

The simplest interesting structure for non-linear video is
that of a height one tree with root node corresponding to a
common initial portion, and child nodes corresponding to
alternative possible ending portions. In a “complete path”
playback of the video, the client plays the common portion
followed by one of the ending portions. If the desired vari-
ant of the ending portion is chosen sufficiently ahead of the
branch point (i.e., the end of the common initial portion),
the complete path can be played without jitter. Unless oth-
erwise stated, we assume that clients make navigation de-
cisions soon enough to avoid jitter, but sufficiently close to

the respective branch point that the gap can be neglected
in our analysis.

A more general structure is an arbitrary tree, where each
node corresponds to a portion of the video, and child nodes
correspond to variant subsequent portions. A complete
path playback consists of the common root portion, plus all
other portions on a path from the root up to and including
a leaf node. This structure can be further generalized to a
directed acyclic graph (i.e., paths can converge at shared
portions), or even a general graph structure.

The bounds in Sections 3 and 4 are developed for tree
structures and assume that each client request is for a com-
plete path playback, although the analysis can be gener-
alized. The new immediate service protocols developed
in Section 5.1 are applicable to non-linear media having
a general graph structure, while the new periodic broad-
cast protocols in Section 5.2 are applicable to general tree
structures and to directed acyclic graphs in which the path
lengths to any video portion with multiple parents are iden-
tical. For clarity in the policy comparisons, we present nu-
merical results only for balanced binary trees in which all
video portions have identical playback time, and assuming
that each client request is for a complete path playback.

2.2 Path Popularities

A key issue concerns the relative frequencies with which
clients select among alternative portions of the video at
branch points. In the context of balanced binary tree struc-
tures and complete path playback, we have explored sev-
eral alternative popularity models. The model used for
most of the numerical results presented in the paper as-
signs Zipf-distributed selection probabilities to leaves, as
follows. First, the leaf that will be the most popular is cho-
sen randomly, and assigned the corresponding probability.
Then, out of the remaining leaves, a second most popular
is chosen randomly, and so on. Once all of the leaves have
been given selection probabilities, selection probabilities for
all interior video portions can be computed by working up
from the leaves.

Two other models that were evaluated include: (1) a
model in which the leaves are assigned Zipf-distributed se-
lection probabilities in order, with the leftmost leaf the
most popular and the rightmost the least popular, and (2)
a model in which the selection probabilities at each branch
point are Zipf-distributed (specifically, for a branch point
with two branches, one branch is selected with probability

1 1/2¢
1+4+1/2%’ 141/2
a is the parameter of the Zipf distribution). These two
models differ from the first model in that they have more
skewed selection probabilities at the branch points near
the root of the tree and less skewed probabilities at branch
points near the leaves. However, as illustrated for one of
these other models in Section 4.3, all three models were
found to yield very similar results.

and the other with probability where

2.3 An Example

Fig. 1 shows a sample non-linear video structure. Each
portion of the video is denoted by a node in the tree, and
each branch is labelled with its selection probability. The
structure in Fig. 1 corresponds to a balanced binary tree
of height 3. Branch probabilities in the figure were com-
puted by choosing Zipf-distributed leaf selection probabil-
ities with the popularity ordering randomly determined,
and then working up the tree. Also shown is the path se-
lected by a particular client, who made the most popular
selection at the first branch point (followed in 56% of all
client playbacks), and who chose a complete path that is
selected in 4.6% of all client playbacks.

0.18

Figure 1: Example of a Non-Linear Media Structure

2.4 Path Prediction

Three scenarios are of interest with respect to the system’s
ability to predict a client’s path selection: (1) no a priori
knowledge is available of the likely path through the video
that a particular client will take; (2) only the average selec-
tion probabilities are known; and (3) more accurate client-
specific path prediction is possible, as when the previous
behavior of clients is measured, either individually or in
aggregate according to some client classification.

In the second scenario, the system might predict that the
client will choose the most popular branch at each branch
point, in which case the client’s choice is correctly pre-
dicted with probability equal to the (conditional) selection
frequency of the most popular branch. For the third sce-
nario, we consider in Section 4.2 a simple model of client-
specific path prediction accuracy in which sufficiently pop-
ular branch choices are always successfully predicted, and
the other, unpopular branch choices are never predicted.
This analytically tractable model has the key advantage,
for binary tree structures, of covering a spectrum from
path prediction in which only choices of the most popu-
lar branch at each branch point are successfully predicted
(i.e., the same as if only overall average selection probabili-
ties are employed), to fully accurate prediction in which all
branch choices are successfully predicted, depending on the
quantification of “sufficiently popular”. When an incorrect
prediction is made, it is assumed that the prediction is for
each of the branches that could have been (incorrectly)
predicted with probability proportional to its relative pop-
ularity.

3 Potential for Scalable Delivery

With unicast delivery, server and network bandwidth re-
quirements for on-demand streaming are linear in the client
request rate. This section analyzes the extent to which
server bandwidth requirements might be reduced through
use of multicast-based protocols in the context of non-linear
media, and the associated client data overheads. Note that
we consider only techniques that achieve server bandwidth
savings without reducing the video quality. That is, in the
absence of packet loss, each client receives exactly the same
video data for each video portion that it receives as in a
unicast system, and thus quality measures such as PSNR
are unaffected. Packet loss recovery can be achieved us-
ing techniques such as those proposed in previous work for
multicast-based on-demand delivery of linear media [13].

All results presented in this section and in Section 4 are
analytic, based on the bounds developed in these sections.
Section 3.1 defines the server bandwidth and data overhead
performance metrics and outlines the analysis approach. In
Section 3.2, a tight lower bound on the server bandwidth
requirement is derived. Section 3.3 derives the client data
overhead required to achieve the server bandwidth bound
when no a priori information is available regarding client
path selection. Classes of policies that reduce the client
data overhead are considered in Section 4. The notation
used is defined in Table 1.

3.1 Metrics and Analysis Approach

The primary performance metric that is considered is the
average server bandwidth used for “complete path” play-
backs of a single video file, for given client start-up delay
and request rate. Our analysis can be extended to network
bandwidth in a similar fashion as for linear media [20].
Also of interest is the average client data overhead, which
is defined as the average amount of data a client receives
from video portions on different paths than that taken by
the client, and therefore not used, expressed in units of the
amount of video data on a complete path.

As noted previously, we assume constant bit rate video.
Our analysis can be extended to variable bit rate video
by modelling such video using concatenations of constant
bit rate sections, as in previous work for linear media [19].
In our assumed context of constant bit rate video, we can
express the required server bandwidth in units of the play-
back data rate. (In the context of variable bit rate video,
the required server bandwidth can be expressed in units of
the average playback data rate.)

Our lower bound analysis follows the same basic ap-
proach as has been used previously for linear media [2,6,7,
16]. For a linear media file and an arbitrary client request
that arrives at time ¢, the file data at each play position
x must be delivered no later than time ¢ + d + z. If this
data is multicast at time ¢ + d + x, then (at best) those
clients that request the file between time ¢ and ¢t + d + =
can receive the same multicast. Assuming Poisson arrivals,
the average time from ¢ + d + = until the next request for

Table 1: Notation for Tree-Structured Non-Linear Media

Symbol | Definition

4 number of portions of the video file

T complete path playback time

T; playback time of #*® portion (root numbered
as portion 1)

t; ith portion relative start time (¢; = 0)

Di probability the selected path includes
portion ¢

« parameter of Zipf distribution (popularity of

j’th most popular item o 1/5%)

A client request rate

i request rate for i*" portion (A; = p;\)

N average number of client requests during a
playback time (N = AT

average number of client requests for portion
¢ during time T; (N; = \;T;)

d maximum client start-up delay

required server bandwidth lower bound, in
units of the playback data rate

the file is 1/X. Therefore, the minimum frequency of mul-
ticasts of the data at time offset x is 1/(d+x+1/\), which
yields a bound on required server bandwidth, in units of
the playback data rate, of

n 1) |

This bound can be generalized to a broad class of non-
Poisson arrival processes, yielding a similar result with dif-
ference bounded by a constant [6]. Bounds for non-linear
media are derived below by applying similar analyses.

Blznea'r —

dx 1 N
= = In
men o d+z+ 5 N& 41

o))

3.2 Minimum Required Server Bandwidth

Server bandwidth is minimized when a client listens to
every multicast of data that it may need in the future.
Note that without a priori knowledge of client path selec-
tion, this requires that the client listen to any multicast of
data in the subtree below its current play point, implying
possibly large client data overhead. With perfect a priori
knowledge of client path selection, the client listens only
to all multicasts of data that it will actually use in the fu-
ture. In either case, noting that the file data at a position z
within a video portion i is at (overall) play position ¢; + x,
the above analysis approach yields the tight lower bound

Z/ —XV:m B
d+t+sc+A N4t '

=1

The solid curve with no symbols in Fig. 2 shows this
bound as a function of the normalized request arrival rate
N, for immediate service (d = 0) and for a non-linear media
file with a balanced binary tree structure of height 3 and
Zipf-distributed leaf selection probabilities with . = 1. The
figure shows results for one particular randomly determined
popularity ordering of the leaves. Alternative popularity
orderings yield very similar results.

For comparison purposes, the figure also shows the bound
for linear media from eq. 1, and bounds for two approaches
in which delivery techniques for linear media are applied
to non-linear media. In one of these (portion), there is no

Bnon— linear
min

~

50

PolgtioR ————— e

I ath-—x

£ 40 I\ ower Bound Non-Linear A

= Lower Bound Linear------ w
X

g 30| S x

< X e

o

o

c

(]

n

100
Normalized Request Arrival Rate (N)

Figure 2: Server Bandwidth for Non-Linear Media (balanced binary
tree with height 3, « = 1, d = 0)

1000

a priori knowledge of client path selection. In this case, a
simple approach is to treat each portion ¢ of the non-linear
media file as a separate linear media file that is requested
d; time units before it is needed, with dy = d and d;, i > 1,
less than or equal to d plus the sum of the playback time
for all portions played prior to i. This yields a tight lower
bound on required server bandwidth that is the sum of the
lower bounds for delivering each linear portion, as follows:

\4 T, \4

i d N;
§/ — =Y | ——+1].
=170 dl‘f‘SC“rTZ i— Nlﬁ—l—l

For the results shown in Fig. 2, it is assumed that d; = 0
for all ¢, which corresponds to immediate service and no
early client path selection.

In the other approach (path), each client path selection
is required to be known a priori, before the client receives
the first video segment. In that case, one straightforward
approach is to replicate the video data so that each com-
plete path through the tree structure is stored as a separate
file. For each client request, one of these files is selected
with probability equal to the path selection probability,
and delivered as if it were an ordinary linear media file.
The corresponding tight lower bound on the required server

bandwidth is given by
% +1),
piNf +1

=/

€L
where £ denotes the set of indices of the portions of the
video file that are leaves in the tree structure, and where
for notational convenience it is assumed that each complete
path has the same playback time T

The key observations from Fig. 2 are that: (1) multicast-
based delivery techniques for non-linear media have the
potential to yield large reductions in bandwidth require-
ments (note that with unicast, the required server band-
width is V), and (2) fully exploiting this potential requires
techniques that exploit the particular non-linear structure,
rather than treating each portion or path as a separate
linear media file.

The potential bandwidth reductions from multicast-based
delivery are dependent on the non-linear media structure.
Fig. 3(a) shows the impact of increasing the height of a bal-
anced binary tree structure, for fixed normalized request
rate (N = 1000) and immediate service (d = 0). As the

portion __
Bmzn

path
mzn

Zln

d+x+>\ €L

200

Portion ——— A

1757 Path - /7
150 Lower Bound /A
125 | -
100

75 ¢
50 r
25 ¢

Server Bandwidth

4 5 6 7 8 9 10
Tree Height
(a) Impact of Tree Height (balanced binary tree)

200 —
175 | e
150 |
125 |
100 |
75 |
50 |
25 ¢
oL

Portion x|
Path
§ Lower Bound 1

Server Bandwidth

1 2 3 4 5 6 7 8 9 10
Tree Branching Factor
(b) Impact of Branching Factor (a tree height of 3)

Figure 3: Impact of the Non-Linear Media Structure (o = 1,
N = 1000, d = 0).

height increases, the number of portions of the video file in-
creases exponentially, as does the number of possible paths.
Furthermore, branch points become relatively more closely
spaced, i.e., the length of each video portion decreases rel-
ative to the total length of a path. Not surprisingly, the
potential bandwidth savings of multicast-based delivery de-
crease. However, the potential savings are still substantial
even for trees of height ten. Note that the gap between
the bandwidth requirements for portion and path, and the
lower bound, increases with the tree height.

Fig. 3(b) shows the impact of increasing the branching
factor at each branch point, for fixed tree height and re-
quest rate. The potential benefits of multicast-based deliv-
ery decrease somewhat as the branching factor increases,
owing to the resulting increase in the number of paths.
Note also that path becomes less efficient than portion. As
the branching factor increases, the potential for sharing
multicasts of data from the path files used in path de-
creases, but the potential for sharing multicasts from the
file used in portion for the root of the tree, which all clients
receive, is unaffected.

A key conclusion from these results is that even with
more than a thousand possible paths (i.e., a tree height
of 10 in Fig. 3(a) or a branching factor of 10 in Fig. 3(b)),
multicast-based delivery still has the potential for an order-
of-magnitude reduction in server bandwidth, assuming im-
mediate service and normalized request rate greater than
or equal to 1000. These potential bandwidth savings are
largely due to the potential for shared delivery of the video

10 :
—— Height=20

® gl —— Heightzlo
Qo —— Height=8
5 —— Height=6
> 6 | —— Height=4
(@) —— Height=2
o
g 4
5
o 2

0 1 1

1 10 100 1000

N

Figure 4: Client Data Overhead for Unrestricted Snoop-ahead (bal-
anced binary tree, a = 1, d = 0, no a priori knowledge of client path
selection)

portions with the highest selection probabilities (i.e., those
along popular paths or near or at the root).

3.3 Client Data Overhead for Unrestricted
Snoop-ahead

Without a prior: knowledge that would rule out some path
choices, achieving the lower bound of eq. 2 requires that
a client listen to any multicast of data from a video por-
tion that (at the time of the multicast) could still be on
the client’s eventual path. We call this approach unre-
stricted snoop-ahead. Since data is multicast at minimum
frequency to achieve the bound, it is guaranteed that the
same data is not multicast more than once during the time
that a client can obtain it. Thus, the average amount of
data received from each video portion not on the client’s
eventual path is given by the rate at which data from that
portion is multicast, times the length of the period over
which the client listens to such multicasts. The latter quan-
tity for a client that follows the path to a leaf video portion
i and for a video portion j that is not on this path (i.e., is
not ¢ or an ancestor of 1), is equal to the sum of the start-up
delay d and the playback durations of all video portions on
the chosen path that are also on the path to j. This yields
an average client data overhead, in units of the amount of
video data on a complete path, of

Nj
(Zpi > <d+ > Tk) 1n<NdT+1)>/T,
€L jEA(D) kEA(i,f) it

where A(7) denotes the set of indices of those portions that
are not portion ¢ or an ancestor of portion ¢, and A(%, j) de-
notes the set of indices of those portions that are ancestors
of both ¢ and j. Note that this is the minimum client data
overhead that would be incurred with unrestricted snoop-
ahead, since it assumes the minimum possible frequency of
multicasts of data from each portion.

Fig. 4 shows the average client data overhead incurred
to achieve the lower bound of eq. 2 for balanced binary tree
structures of various heights, immediate service, and no «a
priori knowledge of client path choices, as computed using
the above expression. Note that the average data overhead
can be substantial. For example, in Fig. 4 it is greater than

one (i.e., exceeds the amount of data on a complete path)
when the tree height is at least 4 and N is at least 20.
For a given height tree, as the request rate increases the
average client data overhead initially increases and then
levels off since the lower bound server bandwidth for por-
tion j has finite asymptote for all 5 > 1. For fixed request
rate, as the height increases the average client data over-
head also initially increases but will level off and for d =0
eventually decrease. The eventual decrease is due to the
increase in the number of possible paths, which results in
a small proportion of the multicasts that are of data from
below a client’s current play point in the media tree.
Similar observations can be drawn from experiments in
which the branching factor at each branch point is var-
ied, with fixed tree height. The data overhead initially
increases with an increase in the request rate (for fixed av-
erage branching factor), or an increase of the branching
factor (for fixed request rate), but eventually levels off.

4 Restricted Snoop-ahead

Due to client reception rate and /or buffer space limitations,
the client data overhead shown in Fig. 4 may be infeasible.
This section considers approaches in which clients snoop
less aggressively on multicasts from video portions ahead
of their current play point, thus reducing the overhead.

Snoop-ahead can be restricted in at least two basic ways.
First, as considered in Section 4.1, restrictions may be
based on distance from the current play point. Second,
as considered in Section 4.2, restrictions can be based on
(a) overall path selection probabilities, or (b) client-specific
path prediction, according to the past behavior of that
client, client classification, and/or advance selection by the
client. Performance comparisons presented in Section 4.3
motivate a hybrid approach that combines both types of
restrictions, which is described in Section 4.4.

4.1 Distance-based Restricted
Snoop-ahead

A simple approach that restricts snoop-ahead based on dis-
tance is to only listen to multicasts from the current video
portion (but ahead of the current play point), and from
all portions following the next branch point.! Thus, with
this approach (termed allnext), clients listen to multicasts
from each video portion ¢ during playback of that portion,
and, if not the initial, root portion (i.e., i > 2), during the
playback of i’s parent in the tree structure. A tight lower
bound on the required server bandwidth for any technique
utilizing this approach is given by

LFor clarity of presentation, we assume here and for the subsequent
restricted snoop-ahead approaches, that prior to beginning playback in
the case of d > 0, clients only listen to multicasts from the initial, root
portion of the video. The same analysis approach can be employed with
alternative assumptions.

allnext
Bmzn

Z/ T(UJ’_IJ’_A

T
/O d+x+>\ i=2

N1
=In +1 +Zln 7+1 ,
NlT +1 . a(1)+1

where a(i) denotes the index of the immediate ancestor
(parent) of 4. Achieving this bound would incur an average
client data overhead of

sz a(d) Z In L

]ES(l) '1(1) +1

+1| |/

where S(i) denotes the set of indices of the siblings of 4
in the tree structure. Corresponding results can be derived
for approaches in which clients listen to transmissions from
portions at most k& branch points ahead, for fixed k > 1.

4.2 Client Path Prediction Approaches

With skewed branch selection probabilities, it may be pos-
sible to substantially reduce the client data overhead, with
a relatively modest cost in increased server bandwidth, by
listening to multicast transmissions from only the most
popular portion of the video following the next branch
point. The corresponding tight lower bound for this ap-
proach (termed popnext) is given by

propnest _ T Z/ Z/Tz dx
min 0 d-l,-;c-l,-)\ ier T(Z)-i-:c—i-/\ o=l 0o x4+ 1
=1In Nl 1 1 1 In (N; + 1
=n| o+ +) In TJr +> In(N;+1),

1T i€P N; +1 icP

where P and P denote the set of indices of those portions
of the video file that are the most popular, or not the most
popular, among their siblings, respectively (excluding the
root portion, which has no siblings). Achieving this bound
would incur an average client data overhead of

ieP N7 o T

+1 /T,

where s(i) denotes the index of the most popular sibling of
video portion 1.

Instead of only listening to transmissions from the most
popular video portion after the next branch point, clients
could listen to transmissions from all video portions on the
most popular path from the current position to a leaf. The
corresponding tight lower bound for this approach (termed

poppath) is given by
2

i€EP

poppath __

[el
nin -
" 0 d"'w"'x ieP ZTJ'HU'",\
JEU(D)
Ny N;
=1In d +1 +Zln -
Ny —|—1 JEU() +

i€P icP

where U(i) denotes the set of indices of ancestors on the
path back towards the root from i (not including 4 itself),
up to and including the first portion that is not the most

+1> +3 In(N; + 1),
1

dx

T+ 5=

50

Portion ——x—
Allnext ---o--- Ve
£ 40 | Nexttwo - 7
k=l Lower Bound
=
T 30 ¢ e
I X
m
@
c
Q
(%}

100

1000
N
(a) Distance-based Policies
50 Portion — e
Popnext - Vo
< 40 ¢ Poppath =
B Pred (f=0.35) ----&--- ya
H Lower Bound Ve
T 30 AT
8 P L
5 20 | A
c A
& ,E!E' =

100

1000

(b) Prediction-based Policies

Figure 5: Performance with Restricted Snoop-ahead (balanced binary
tree with height 3, « = 1, d = 0)

popular among its siblings. (If there is no such portion on
this path, the set includes the indices of all ancestors on
the path back to and including the root.) Achieving this
bound would incur an average client data overhead of

S 1) Y m|

> T,
ieP e jebla) \ NS 41

/ T7

where D(a(i)) denotes the set of indices of video portions
on the most popular path down to a leaf from (but not
including) the parent of portion i.

Consider now the case in which more accurate client-
specific path prediction is possible, and clients listen to
multicasts from all video portions on their predicted (rather
than the overall most popular) path from the current po-
sition to a leaf. Analysis of this approach, termed pred,
requires a model of path prediction accuracy. Here we
use a very simple model in which branch choices with se-
lection frequency (conditional on reaching the respective
branch point) at least equal to a parameter f (0 < f <1)
are always successfully predicted, and less popular branch
choices are never predicted. Note that perfect prediction
is achieved for f = 0. As f increases, prediction accuracy
decreases. For f = 1, no paths are ever predicted, and the
approach has the same server bandwidth as portion. In the
case of a binary tree structure, the approach is identical to
poppath for f = 0.5 (assuming no two siblings with identi-
cal popularities). The tight lower bound on required server
bandwidth for this approach is given by

p'r.cd:/ L
e Jo d+:c+/\

/ E:TJFQHA Z/

JEW(4)

Ny N;
=In| ——+1| + n|————+—+1] + In(N; +1),
(i) S (o 1) s Emece
i T +

= i€F
where F and F denote the set of indices of those portions
of the video file (excluding the root portion) whose condi-
tional selection frequency is at least f, or less than f, re-
spectively, and W(i) denotes the set of indices of ancestors
on the path back towards the root from 4 (not including 4
itself), up to and including the first portion in the set F.
(If there is no such portion on this path, the set includes
the indices of all ancestors on the path back to and includ-
ing the root.) If an incorrect path prediction is for each
of the paths that could have been predicted with proba-
bility proportional to its relative popularity, achieving this
bound would incur an average client data overhead of

Z il Z 7)) Z %

ieF JeW() leL(S(i) ZmEeLSEN P jepa(i,

T

pred
Bj min

Here £(S(7)) denotes the set of indices of video portions
that are leaves in the collection of pruned subtrees rooted
at siblings of ¢, where the pruning has removed all video
portions not in the set F and their descendents, D(a(i),!)
denotes the set of indices of video portions on the path
down to portion [beginning from (but not including) the
parent of ¢, and Bfrﬁgn denotes the bandwidth used for
multicasts of portion j, as given by the term for portion j

in the server bandwidth expression given above.

4.3 Performance Comparisons

Fig. 5 and Fig. 6 graph the bandwidth expressions derived
in Sections 4.1 and 4.2 as functions of the request rate (for
the balanced binary tree structure assumed for Fig. 2), and
the tree height (for fixed request rate N = 1000), respec-
tively. Also shown is the server bandwidth for the approach
(nezttwo) in which clients snoop on multicasts from the
current video portion plus from all portions following the
next two branch points, which is derived similarly to that
for allnext. For comparison purposes, the figures also show
the server bandwidth for unrestricted snoop-ahead (i.e., the
lower bound of eq. 2), and for the approach in which each
portion is treated as a separate linear video file (portion).
Corresponding results for the client overhead are given in
Fig. 7 and Fig. 8.

Consider first the results for the distance-based approaches,
allnext and nexttwo. In the portion approach, clients only
listen to multicasts of data from the video portion cur-
rently being played. Snooping of multicasts of data from
beyond the next branch point (allnext) yields a large re-
duction in server bandwidth. Snooping farther ahead, as in
nexttwo, yields diminishing returns. As seen by the results
in Fig. 6(a), for trees of low to moderate height nexttwo
has minimum required server bandwidth fairly close to the

200

Portion -~ 7/ &
175 NAllnext o ’
< exttwo o / .
B 150 rLower Bound PO
2 125 | ’
8
8 100 t
g 757
8 50
25 ¢
0 ! 1 1 1 1 1 1 1 1
0 1 2 3 45 6 7 8 9 10
Tree Height
(a) Distance-based Policies
200 Portion ——x—— 7 ¥
175 gopnexﬁ e S g A
< oppat s ;
B 150 [Pred (f=0.35) =~ A
2 125! Lower Bound Prs
S . /'(
8 100 t /
g 757
8 50
25 ¢
0 1 1 1 1 1 1 1
0 1 2 3 45 6 7 8 910

Tree Height
(b) Prediction-based Policies

Figure 6: Impact of Tree Height on Restricted Snoop-ahead Perfor-
mance (o = 1, N = 1000, d = 0)

2 Unrestricted Snoop-ahead
3 ——<o—— Nexttwo
2 ---o-- Allnext
£ 16 5 Al
3 e next
g 12| o Pred(03%)
“_B' O Qo ©
D P
IS
5 @O O
6 B G B B BB
' 10 100 1000

N

Figure 7: Client Overhead with Restricted Snoop-ahead (balanced
binary tree with height 3, « = 1, d = 0)

lower bound of eq. 2. The results in Figs. 5(a), 6(a), 7,
and 8 show that the allnert and nexttwo approaches can
often achieve large reductions in average client data over-
head compared to the unrestricted snooping approach, at
fairly modest cost in server bandwidth.

The popnext, poppath, and pred (f=0.35) approaches use
a priori information regarding client path selection in an
attempt to achieve a better tradeoff between server band-
width and client overhead. Although popnext and poppath
achieve low client overhead, as seen in Fig. 7 and Fig. §,
they achieve poorer server bandwidth scalability than all-
next and nexttwo. These results show that very approx-
imate client path prediction, such as occurs with popnext
and poppath at branch points at which the branch selection
probabilities are not highly skewed, is not as effective in re-

. " Unrestric dSnooRIah‘ead‘
5 exttwo o
8 Allnext ---o--
£ 16+t Poppath =
g Pfopnext e
& 12! iredo(.—0.35) fffffff |
8 L BRI
2 o .
o 08+t
5
o 0.4 | /- I e A
O Lol L L L L L L
01 2 3 45 6 7 8 9 10
Tree Height
Figure 8: Impact of Tree Height on Overhead (o = 1, N = 1000,
d=0)
60 S
—————— oo Eortlon o
L8 oppa
< 50 o Pred (79%|n set F) .
ke} ---o-- Allnext .
= 40 Lower Bound X\
g BB 0B B Beg.. g a \xi
& 30 ®q i X;X\
S 2! e \
% Q—G—Qt%‘\ﬁ‘ﬂ
10 ¢ RO
0 L
0.1 1 10
Parameter of Zipf Distribution
(a) Server Bandwidth
- 2t Unrestricted Snoop-ahead
s o éllnexth
| s oppath
g 161 . Pred (79% in set F)
>
O 12t
8
5
o 08+t
€
2 booOgo Oy,
O 04 DDEDDDDD O\Sag
0 ”A,A,,Af&,A,,A,A,,A»Ana_&;érDrD’ - o
0.1 1 10

Parameter of Zipf Distribution
(b) Client Overhead

Figure 9: Sensitivity to Skewness in Selection Probabilities (balanced
binary tree with height 3, N = 1000, d = 0)

ducing server bandwidth as is snooping on all multicasts of
data that could be needed soon, as in allnext. In contrast,
the more accurate pred (f=0.35) approach achieves lower
client data overhead than allnext and comparable server
bandwidth scaling.

Fig. 9 shows the sensitivity of the above results to the
skew in the leaf selection probabilities, or more specifically
to the value of the Zipf parameter o. Results for nexttwo
and popnext are omitted for readability but have similar
form. For pred, the parameter f varies with alpha such that
the percentage of portions in the set F is constant, equal to
that with f = 0.35 and o = 1. Thus, for pred (as well as for
poppath), the number of relatively popular video portions
whose selection is successfully predicted remains constant
as « varies. Note that there is relatively little variation

in the required server bandwidth and client data overhead
for each approach for a« < 1 (i.e., for no skew to moder-
ately high skew). As « increases beyond one, the server
bandwidth and client data overhead for each approach de-
crease substantially. A key conclusion is that the simple
allnext approach, and the pred approach with correct path
predictions for at least 75% of the video portions, achieve
an attractive trade-off between required server bandwidth
and client data overhead, over a wide range of a values.
Fig. 10 shows the performance of several of the delivery
approaches under an alternative path popularity model,
described in Section 2.2, in which the selection frequencies
at each branch point are Zipf-distributed. (For a binary
tree, the selection probabilities at each branch point are
1 1/2¢
and
1+1/2e 1+1/2¢
since with this popularity model and the pred model of
path prediction accuracy, it is possible to achieve only three
points on the prediction accuracy spectrum (all branch
choices successfully predicted, no branch choices success-
fully predicted, and 50% successfully predicted). Although
this model yields a significantly different pattern of path
popularities than the popularity model used for the previ-
ous results, the performance comparisons are very similar
as can be seen by comparing Fig. 9 to Fig. 10.

.) Results for pred are not shown

4.4 Hybrid Approach

The pred approach incurs a high bandwidth cost when a
client takes a path that is not sufficiently popular to be
successfully predicted. Motivated by the results in the pre-
vious section, this cost might be substantially reduced at
relatively low cost in client data overhead by utilizing the
allnext approach for such paths. Thus, we consider a hy-
brid approach (hybrid) that is similar to pred, except that
all clients also listen to multicasts from all non-predictable
video portions (i.e., those with conditional selection fre-
quency less than the parameter f) immediately following
the next branch point. Note that for f = 1, the hybrid
approach becomes identical to allnext. The corresponding
tight lower bound on the required server bandwidth for this
approach is given by

Ty
Bhybnd _/ /
min o d+:c+/\ = Z T_q_;lc_|_A
JEW(4)
A
Z Tau) +tot s

N N;

=1In <) Z n| ————+—+1
N2 Ty +1 icr JE\%(%) +1

+ In 7-1-1
I)

i€F

Achieving this bound would incur an average client data
overhead of

o D> 1)

i€EF JEW(4)

pred
Bj min

Z Pi

1€L(5 (1)) 2imec(s(y) Pm FE€D(ali),l)
T

60 R
PPortloH —————— e
50 t oppat ° h
8 Allnext ---o---- X*x
S 40 | Lower Bound %
ke L = I %
3 T “x
o 307 O “x,
$ 201
% 000 g g
10 r %@;@
0 1
0.1 1 10
Parameter of Zipf Distribution
(a) Server Bandwidth
- 2 Unrestrlcted Snoop-ahead
IS ~—o-— Allnext
g 1.6 | —=— Poppath
(3]
>
o 12}
8
5
O 08+
€
g 1 = -676-0770'9
) 0.4 DDDDDDDDDD o
0 L Brgogo.g
0.1 1 10

Parameter of Zipf Distribution
(b) Client Overhead

Figure 10: Performance with Alternative Popularity Model (balanced
binary tree with height 3, N = 1000, d = 0)

\4 N;
dorTeny 2L |1
L= jes@nz \Ni—g— +1

T

Fig. 11(a) and (b) show respectively the server band-
width requirement and the client data overhead of the hy-
brid approach, as a function of f. In the region of most
interest (f < 0.5), hybrid achieves a better trade-off be-
tween the required server bandwidth and the client data
overhead than allnext and pred.

5 Scalable Delivery Protocols

5.1 Hierarchical Stream Merging

Hierarchical stream merging (HSM) protocols [4-6], as ap-
plied to linear media, start a new transmission of the media
file for each client request. In the simplest type of HSM,
each client also listens to the closest active earlier stream,
so that its own stream can terminate after transmitting
the data that was missed in the earlier stream. At that
point, the clients associated with the two streams are said
to be “merged” into a single group, which can then go on
to merge with other groups.

Extending HSM to non-linear media requires a more dy-
namic notion of client group, since clients that have been
merged may subsequently take different paths at a branch
point, thus splitting the group. In that case, the server
will need to start additional stream(s) so that there is one
stream per path followed. Also, a more complex policy may

60 ‘ ‘ .
L next —-—-
= 07 Hybrd e
=] .
S 40 #
=] .
8
8 30 e
g 20+ e
& P
10 a5
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
f
(a) Server Bandwidth
o [7 Allnext
o o Hybri
S -~ Pfed
£ 16t
5}
>
O 127}
©
T
o 08¢
= o
2 :
5 0.4 | s a
0 e it
0 0.2 0.4 0.6 0.8 1

(b) Client Overhead

Figure 11: Performance of the Hybrid Approach (balanced binary
tree with height 3, « = 1, N = 1000, d = 0)

be required for determining what earlier stream a client
listens to, in the case where the closest earlier stream is
beyond the next branch point. Moreover, when a client or
group of clients merges with an earlier group, the clients in
the earlier group may restart listening to earlier stream(s)
(as in HSM for linear media), or can alternatively con-
tinue snooping on the previous stream(s). In the latter
case, clients in a single group listening to the same earlier
stream may accomplish merges at different times.
Depending on how the above issues are handled, and
on the availability of a priori path selection information,
a number of non-linear media HSM variants can be de-
fined. The two variants HSM-Unknown Path (HSM-UP)
and HSM-Popular Path (HSM-POP) do not attempt client-
specific path prediction. In HSM-UP, clients always listen
to the closest earlier stream (on or past the same video
portion, regardless of which branch it may be on if be-
yond a branch point). In HSM-POP, clients listen to the
closest stream on the most popular branch if the closest
earlier stream is beyond the next branch point. HSM-
Known Next (HSM-KN) assumes that partial knowledge
of client path selection, specifically the branch a client will
select at the next branch point (but not yet the subsequent
branch choices), can be known in advance. HSM-Known
Path (HSM-KP) assumes that precise client-specific path
prediction is possible. In both HSM-KN and HSM-KP,
clients listen to the closest earlier stream delivering data
from the known (partial) path they will select. Note that

10

with these two protocols, clients belonging to the same
group may be listening to different earlier streams.

An HSM protocol simulator was developed to assess the
performance of the non-linear media HSM variants described
above [18]. The simulator simulates the random arrival of
client requests, the stream initiation that occurs at each
client arrival, the merging and splitting of client groups ac-
cording to the HSM protocol being simulated, the stream
initiations that occur owing to the splitting of client groups
at branch points, and the stream terminations when clients
merge or when a stream reaches the end of the video. The
input to the simulator is the client request rate, and the
output is the server bandwidth used. Client reception and
playback is not simulated, as this does not affect the re-
quired server bandwidth measure, assuming the client has
sufficient buffer capacity. Previous work on HSM delivery
of linear media has shown that client buffer sizes on the or-
der of 10% of the file size are sufficient to achieve much of
the performance gains of HSM delivery in this context [4].
The impact of limited client buffer capacity on required
server bandwidth for the non-linear media delivery tech-
niques is left for future work.

In the non-linear HSM simulations whose results are pre-
sented here, when a client or group of clients merges with
an earlier group, all clients in the earlier group restart lis-
tening to earlier streams. It is also assumed that when a
group splits at a branch point, the initiation of a stream
for each new group is delayed until the playback position of
the earliest client in that group reaches the branch point.
Other options are investigated in [18].

Fig. 12 presents simulation results for the HSM-UP, HSM-
POP, HSM-KN, and HSM-KP HSM variants described above,
assuming Poisson request arrivals. HSM-UP has essentially
the same required server bandwidth as HSM-POP, which is
consistent with the result from Section 4 that using overall
path selection probabilities to determine which multicast
transmissions to receive may not be a fruitful strategy. On
the other hand, precise advance knowledge of client path
selection enables better choices of which earlier stream to
listen to in HSM-KN and HSM-KP, thus substantially re-
ducing their server bandwidth usage.

Required Server Bandwidth

100

10

1000
N

Figure 12: Server Bandwidth Requirements of Non-Linear HSM Vari-
ants (balanced binary tree with height 3, o = 1)

E6

E4 E5 E7

Figure 13: OPB-KP Segment Partitioning for an Example Media
Structure (“S” label is for start of media, “Bi” labels are for branch
points, “Ei” labels are for segment end points, dashed lines indicate
segment boundaries, K =3, s=2,r=1)

5.2 Optimized Periodic Broadcast

The periodic broadcast protocols that we develop here for
non-linear media are based on the optimized periodic broad-
cast (OPB) protocols described in [13]. In these protocols,
as applied to linear media, the media file is partitioned into
K segments, with each segment being repeatedly multicast
on a separate channel at rate r. Clients are assumed able to
simultaneously listen to s channels. The segment size pro-
gression is such that each segment is received just in time
for playback if clients begin listening to the s channels de-
livering the first s segments immediately, begin listening to
the channel for segment k (k > s) immediately after fully
receiving segment k — s, and begin playback after reception
of the first segment is complete.

For the case in which client path selection is known a
priori, we propose a variant of OPB called OPB-Known
Path (OPB-KP). Each complete path through the non-
linear media file is partitioned using the same segment size
progression as in OPB for linear files. Shared portions of
paths share the corresponding segments. (We assume here
that if the file has a directed acyclic graph structure, then
the path lengths to any video portion with multiple par-
ents are identical.) If a segment crosses a branch point, the
data from each media portion after the branch point is de-
livered on a separate sub-channel at rate r. Thus, for such
a segment, the server will repeatedly first transmit the data
from before the branch point (at rate r), and then transmit
the data from after the branch point (at total rate r times
the number of portions after the branch point). Each client
listens to the channels and sub-channels appropriate to its
path. Fig. 14 shows the channels used in the OPB-KP pro-
tocol for the example non-linear video structure shown in
Fig. 13, assuming each path is partitioned into three seg-
ments (K = 3), clients listen to two channels concurrently
(s = 2), and segments are transmitted at the playback data
rate (r = 1). Note that in Fig. 13, each video portion is
modeled by a segment in the tree rather than by a node,
so that the partitioning of the video into broadcast seg-
ments can be shown. Fig. 14 also shows the periods during
which an example client listens to the transmissions on
each channel, assuming the client begins reception at the
point indicated by the arrow and that the client takes the
path shown in Fig. 13. As will be seen in Section 5.3, if the

11

S
Channel 1 [

E1 []

Channel 2 [Js1 —i1 1 .
[] 1
E3
E:
0 [[1
Channel 3a[ez /s .
[] [1
E5
E6
E3 — 1 1
Channel 3b[e3 —
[] [1
E7

Figure 14: OPB-KP Channels for Structure of Fig. 13 (shaded areas
are listening periods of example client, K = 3, s =2, r = 1)

server can detect if there are any listeners on a channel (or
sub-channel), and stop transmitting on the channel if not,
this protocol is efficient.

For the case in which client path selection decisions are
known only when they are made at the respective branch
points, our key insight is that periodic broadcast is still fea-
sible as long as any segment that a client begins to down-
load prior to a branch point, and that includes data from
after the branch point, includes the respective data from all
of the branches. Specifically, suppose that between when
a client begins to listen to the transmission of a particular
segment k and the beginning of playback of that segment,
video playback does not cross a branch point. If segment
k itself also does not cross a branch point, then it must
be part of the same video portion that was being played
back during its reception. If, on the other hand, segment
k does cross a branch point, then it must include some of
the video portion prior to the branch point (as determined
by the segment starting position), plus a fraction of each
video portion after the branch point (as determined by the
segment ending position). Note that the playback dura-
tion of such a segment will be less than suggested by its
size in bytes (and corresponding transmission time), since
the client will play only the data on its chosen path. Sup-
pose now that between when a client begins to listen to the
transmission of a segment and the beginning of playback
of that segment, video playback does cross a branch point.
In this case, the entire segment multiplexes data from mul-
tiple paths, as the segment begins after the branch point
and it is unknown which branch a client will take.

Fig. 16 shows the channels used in this OPB-Unknown
Path (OPB-UP) protocol for the example non-linear video
structure shown in Fig. 15, assuming each path is parti-
tioned into six segments (K = 6), clients listen to two chan-
nels concurrently (s = 2), and segments are transmitted at
the playback data rate (r = 1). Also shown are the periods
during which an example client listens to the transmissions
on each channel, assuming the client request arrives at the
point indicated in the figure and that the client takes the
path shown in Fig. 15.

Feasible segment sizes for OPB-UP can be computed us-
ing the algorithm outlined in Fig. 17. Although this algo-
rithm is designed for balanced binary trees, it can be ex-
tended for more general types of media structures. Here [j
denotes the playback duration of segment k, ux denotes the

Figure 15: OPB-UP Segment Partitioning for an Example Media
Structure (“S” label is for start of media, “Ei” labels are for segment
end points, dashed lines indicate segment boundaries, K = 6, s = 2,
r=1)

time when a client begins reception of the segment, mea-
sured from the start of the video file playback, e denotes
the latest time by which a client can end reception of the
segment, measured from the start of video playback (also
equal to the playback point corresponding to the beginning
of the segment), yi denotes the segment transmission time
when the segment is of maximal length, and wjy denotes
the playback point corresponding to the end of the seg-
ment in the case in which the segment does not encounter
a branch point. The outer loop attempts to find the start-
up delay (transmission time of the first segment) such that
the cumulative length of K segments (where K is given as
an input) matches the length of a complete path. The al-
gorithm makes the simplifying restriction that no segment
can have a multiplexing level of more than two (i.e., include
data from more than two paths), and the assumption that
the first segment does not cross any branch points. It fur-
ther assumes that branch points are never sufficiently close
together that a zero length is computed for a segment (as
would occur in case 2.2 when the branch point B is at eg),
although it could be extended to handle this case by sim-
ply delaying beginning reception of the segment until after
the next branch choice has been made. Such delays could
be more generally beneficial, as well, but the algorithm in
Fig. 17 simply assumes that a client begins reception of a
new segment (if any remain) immediately after reception of
a previous segment completes. The design of optimal pe-
riodic broadcast protocols for various types of non-linear
media structures is left for future work.

For OPB, partial (but perfectly accurate) path predic-
tion could be exploited using a hybrid of the OPB-KP and
OPB-UP protocols. Errors in path prediction, however,
would be difficult to recover from. A client whose path
is mispredicted will have listened to transmissions of the
wrong data from after the mispredicted branch point. Re-
covery would require either interruption in playback (so
as to allow time for the client to receive the data that it
would have received by this point, had the branch choice
been correctly predicted), or use of a unicast stream that
would deliver data sequentially from the branch point at
rate at least equal to the playback data rate.

12

S El
Channel 1 [I I I I | I I]
E1 E2/3
Channel 2 [E|
E2/3 E4/5
Channel 3 | I I] ..
E4/5 E6/7
Channel 4 [T

1
E8/9

E6
Channel 5af=

T
1

E10/11
T

E7
Channel 5bf
E8/9
Channel 6af=
E10/11
Channel 6bf I 1 1.
Figure 16: OPB-UP Channels for Structure of Fig. 15 (shaded areas
are listening periods of example client, striped areas indicate multi-
plexed transmissions, K = 6, s = 2, r = 1)

E12/E13
T

E14/15
T

Procedure Partition(K,s,r)

1. For (i = 0; i < M; i++)

d=e1+i(T1/r —e1)/M

Compute_Segsize(K,d, s,r)

1 (S b~ T| <)
Return Success

6. End For

7. Return Failed
End Procedure

A

Procedure Compute_Segsize(K,d, s,)
8. Iy =dr
9. For (k=2; k< K; k++)

10. wup = —d, k<s;
up = s'th latest of { w; +1;/r |[1<j<k}, kE>s+1
11. ey = E;:ll lj; yp = ex — ug
12. Case 1: no branch point in (ug,ey)
13. wE = YT + ek
14. Case 1.1: no branch point in [eg, wy)
15. lk = YT
16. Case 1.2: first branch point in [eg, wy) is at B and no
branch point in (B, B+ (yxr — (B —ex)) /2)
17. transmit interleaved data after branch point
18. lp =B — e+ (ypr — (B —ex)) /2
19. Case 1.3: first branch point in [eg, wy) is at B, and first
branch point in (B, B+ (yxr — (B —eg)) /2) is at Ba
20. segment ends at branch point Bg
21. lk = B2 — €L
22. Case 2: one branch point in (ug, ex)
23. transmit interleaved data
24. wr = yrr/2 + e
25. Case 2.1: no branch point in [eg, wy)
27. Case 2.2: first branch point in [eg, wy) is at B
28. segment ends at branch point
29. lk =B — €L
30. End For

End Procedure

Figure 17: Algorithm for OPB-UP Segment Sizes (balanced binary
tree)

5.3 Performance Comparisons

Figs. 18, 19, and 20 show the server bandwidth used by
the HSM and OPB protocols for non-linear media stream-
ing, together with the analytic lower bound from eq. 2.
The results for the OPB variants are computed analyti-
cally based on the channels used (determined as described
in Section 5.2 by the parameters K, s, and r, and the media
structure), and assuming that transmission on a channel is
stopped whenever no client is listening to that channel.
The fraction of time that no client is listening to a channel
can be easily derived given Poisson request arrivals (also

50

HoLUR ——
£ 401 ASMKP x- e
= OPB-KP -0
S 30 | Lower Bound X
Il <"
0
5 20 ¢ e
> g X I
E fa) X * * P
" 10 t+ e

100

10

1000
N

Figure 18: Performance of Scalable Delivery Protocols (balanced bi-
nary tree with height 3, « = 1, d = 0.01 for OPB and lower bound,
r=0.255=8)

200 . ! ,
1 HSM-UP)
175 OPB-UP = x
150 | HSM-KP e '
OPBKP o/
125 ¢ Lower Bound yy
100 <

Server Bandwidth

Tree Height

Figure 19: Performance with Varying Height (o« = 1, N = 1000,
d = 0.01 for OPB and lower bound, r = 0.25, s = 8)

assumed in the simulations of the HSM protocols).

For HSM-KP and OPB-KP, path prediction is assumed
to be perfect. For HSM, imperfect or partial path predic-
tion (as exploited in HSM-KN) yields results intermediate
to those for HSM-UP and HSM-KP, as shown in Fig. 12.

The key observations from these figures are: (1) stop-
ping transmission on a channel when there are no clients
listening allows periodic broadcast performance to be com-
petitive even under light load, (2) precise path prediction
yields a large improvement in performance, (3) OPB-KP
outperforms HSM-KP and yields performance as close to
the lower bound from eq. 2 as could be expected, given that
with r x s = 2 each OPB-KP client receives data at a max-
imum aggregate rate of twice the streaming rate, whereas
the lower bound places no such restriction (see [6,13] re-
garding the impact of client receive rate limitations), and
(4) the precise relative performance of the HSM and OPB
variants that have incomplete knowledge of client predic-
tion depends on the request arrival rate and the client start-
up delay used in OPB (note that HSM provides immediate
service, although variants that use a batching start-up de-
lay have also been proposed [5]). The results for HSM
suggest that it may be fruitful to investigate HSM variants
in which clients can snoop on multiple earlier streams (e.g.,
one for each possible choice at the next branch point, sim-
ilar to allnext), for use in contexts where accurate client
specific path prediction is not possible.

13

50
HSM-UP ——-—
< 40| OPB-UP =
8 HSM-KP -
S OPB-KP ---o---
T 30 Lower Bound
S a o 8 o =) a
5 20 ;
E Rt - U O mmme G mmmmg
5 O O
" 10 e
o ‘
0.0001 0.001 0.01

Client Start-up Delay (d)

Figure 20: Impact of OPB Start-up Delay (balanced binary tree with
height 3, « = 1, N = 1000, » = 0.25, s = 8)

5.4 Prototype Implementation

A rudimentary implementation of scalable non-linear me-
dia streaming has been added to the SWORD prototype
streaming system [13]. The SWORD system consists of
server and client components, each built using the open
source Apache proxy server code as a basis. These in-
terpose between Windows Media servers and players, and
replace the normal unicast delivery with multicast delivery
using hierarchical stream merging. Selective termination of
streams by the server component and reconstruction of the
data received on multiple multicast streams at the client
component allow the use of hierarchical stream merging to
be transparent to the client player.

Our implementation of non-linear media streaming stores
each portion of the non-linear structure as a separate file.
Modification of the header fields and spoofing of requests
by the SWORD client component allow this non-linear
structure to be transparent to the client player, to which it
appears that only a single video file is being played (tran-
sitions between the video portions are seamless). These
changes are implemented using approximately 500 lines of
CT* code. For the SWORD server component, the main
modification is the addition of code implementing the pos-
sible change in merge target (the earlier stream a client
is listening to) when a client reaches a branch point and
makes a selection. This addition is realized using about
200 lines of C*1 code. Dynamic client path selection is
currently supported through a web page interface. The
present implementation uses built-in knowledge of the me-
dia file structure; on-going work concerns description of
non-linear media structures in meta files. Our implemen-
tation has demonstrated that non-linear media streaming
can be implemented relatively easily, even in the context
of commercial media streaming systems.

6 Conclusions

This paper has considered “non-linear” video content in
which clients can tailor their video stream according to
individual preferences, within the constraints of a prede-
fined tree or graph structure. Tight lower bounds on server
bandwidth were developed that show significant potential

for bandwidth reduction using multicast delivery in this
context. The bounds also illuminate the advantages and
disadvantages of various approaches to client snoop-ahead
and the benefits of a priori path knowledge.

The key insights from the bounds analysis are (1) correct
client path predictions for more than 75% of the video por-
tions greatly reduces the required server bandwidth with
modest client data overhead, and (2) in the absence of fairly
precise a priori information about client path selections, a
simple policy in which clients only listen to transmissions
from their current video portion and those immediately fol-
lowing the next branch point, achieves better server band-
width scalability than using overall path selection proba-
bilities to determine which transmissions to listen to.

New stream merging and periodic broadcast protocols
were devised, in part using insight from our bounds analy-
sis. The new protocols achieve much of the potential band-
width savings. Furthermore, the new periodic broadcast
protocols were found to be competitive with the new stream
merging protocols at all request rates, assuming that in the
former protocols the server transmits on a channel only
when at least one client is listening.

On-going research is focussed on improved stream merg-
ing and periodic broadcast protocols, and further devel-
opment and experimentation with the SWORD prototype
delivery system.

Acknowledgements

We thank David Sundaram-Stukel and Jeremy Parker for their work
on the SWORD prototype, Peter O’Donovan for his work on im-
plementing seamless playback of non-linear media, Brian Gallaway
for his assistance with the prototype software and hardware, and
Wenguang Wang and the anonymous referees for their constructive
feedback on the paper.

References
[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based

pyramid broadcasting scheme for video-on-demand systems,” in

Proc. IEEE ICMCS’96, Hiroshima, Japan, June 1996.

Y. Birk and R. Mondri, “Tailored transmissions for efficient

near-video-on-demand service,” in Proc. IEEE ICMCS’99, Flo-

rence, Italy, June 1999.

S. W. Carter and D. D. E. Long, “Improving video-on-demand

server efficiency through stream tapping,” in Proc. IEEE IC-
CCN’97, Las Vegas, NV, Sept. 1997.

D. L. Eager, M. K. Vernon, and J. Zahorjan, “Optimal and effi-

cient merging schedules for video-on-demand servers,” in Proc.

ACM MULTIMEDIA’99, Orlando, FL, Nov. 1999.

“Bandwidth skimming: A technique for cost-effective

video-on-demand,” in Proc. IS&T/SPIE MMCN’00, San Jose,

CA, Jan. 2000.

, “Minimizing bandwidth requirements for on-demand data

delivery,” IEEE Trans. On Knowledge and Data Engineering,

vol. 13, no. 5, pp. 742-757, Sept./Oct. 2001.

L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broad-

casting popular videos,” in Proc. NOSSDAV’98, Cambridge,

UK, July 1998.

L. Gao and D. Towsley, “Supplying instantaneous video-

on-demand services using controlled multicast,” in Proc.

ICMCS’99, Florence, Italy, June 1999.

A. Hu, “Video-on-demand broadcasting protocols: A compre-

hensive study,” in Proc. IEEE INFOCOM’01, Anchorage, AL,

Apr. 2001.

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

14

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast tech-
nique for true video-on-demand services,” in Proc. ACM MUL-
TIMEDIA 98, Bristol, U.K., Sept. 1998.

K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broad-
casting scheme for metropolitan video-on-demand systems,” in
Proc. ACM SIGCOMM’97, Cannes, France, Sept. 1997.

L. Juhn and L. Tseng, “Harmonic broadcasting for video-on-
demand service,” IEEE Trans. on Broadcasting, vol. 43, no. 3,
pp. 268-271, Sept. 1997.

A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-
Stukel, “Scalable on-demand media streaming with packet loss
recovery,” IEEE/ACM Trans. on Networking, vol. 11, no. 2, pp.
195-209, Apr. 2003.

I. Nikolaidis, F. Li, and A. Hu, “An inherently loss-less and
bandwidth-efficient periodic broadcast scheme for VBR video,”
in Proc. ACM SIGMETRICS’00, Santa Clara, CA, June 2000.
J.-F. Paris, “A broadcasting protocol for compressed video,” in
Proc. EUROMEDIA’99, Munich, Germany, Apr. 1999.

S. Sen, L. Gao, and D. Towsley, “Frame-based periodic broad-
cast and fundamental resource tradeoffs,” Comp. Sci. Dept., U.
Mass-Ambherst, Tech. Rep. 99-78, 1999.

S. Viswanathan and T. Imielinski, “Metropolitan area video-on-
demand service using pyramid broadcasting,” ACM Multimedia
Systems J., vol. 4, no. 3, pp. 197-208, Aug. 1996.

Y. Zhao, “Scalable streaming of stored complex multimedia,”
Ph.D. Dissertation, University of Saskatchewan, July 2004.

Y. Zhao, D. L. Eager, and M. K. Vernon, “Efficient delivery
techniques for variable bit rate multimedia,” in Proc. MM CN’02,
San Jose, CA, Jan. 2002.

, “Network bandwidth requirements for scalable on-demand
streaming,” in Proc. IEEE INFOCOM’02, New York, NY, June
2002.

