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Abstract—A corventional video file contains a single
temporally-ordered sequenceof video frames. Clients requesting
on-demand streaming of such a file receve (all or intervals of)
the same content. For popular files that receve many requests
during a file playback time, scalable streaming protocols based
on multicast or broadcast have been devised. Such protocols
require sewver and network bandwidth that grow much slower
than linearly with the file requestrate.

This paper considers“non-linear” video contentin which there
are parallel sequencesf frames. Clients dynamically selectwhich
branch of the video they wish to follow, sufficiently aheadof each
branch point so as to allow the video to be delivered without
jitter. An example might be “choose-yur-own-ending” movies.
With traditional scalable delivery architectures such as movie
theatersor TV broadcasting,suchpersonalizationof the delivered
video content is very difficult or impossible.It becomesfeasible,
in principle at least, when the video is streamedto individual
clients over a network. This paper analyzesthe minimal serer
bandwidth requirements,and proposesand evaluates practical
scalable delivery protocols, for on-demand streaming of non-
linear media.

I. INTRODUCTION

A conventional video file containsa single temporally-
orderedsequenceof video frames. Clients that requestthe
samefile receve encodingsof (all or intervals of) the same
frames.We hypothesizehere that generalizingthis structure
to that of a tree or graph,so asto allow parallel sequences
of frames among which clients dynamically select during
playback,may enablenew streamingmedia applications,as
well asenrichexisting ones An exampleis “choose-yourown-
ending” entertainmentideos,analogougo the mary choose-
your-own-endingchildren’s books.

For corventional stored video, a number of scalable
streamingprotocolsbasedn (IP or applicationlevel) multicast
or broadcasthave been developed. Such protocols require
sener and network bandwidththat grow much slower than
linearly with the file requestrate. Theseinclude immediate
serviceprotocolssuchaspatching[3], [7], [9] andhierarchical
streammeirging [5], aswell asperiodicbroadcasprotocolg[1],
[6], [8], [10]-[12], [16]. In the immediateservice protocols,
anew streamis allocatedfor eachincomingclientrequestand
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streamsserving closely spacedrequestsfor the samefile are
dynamically “merged” by having clients also listen to one
or more earlier streamsto receve and buffer datathat they
will needto play back in the future. In periodic broadcast
protocols, the video file is sggmented,and eachsegmentis
repeatedlybroadcast/multicasbn one of a numberof chan-
nels (e.g., IP multicast groups)accordingto some protocol-
dependentransmissionschedule Unlike with the immediate
serviceprotocols clientsmustwait to begin playback with the
length of the waiting period dependenbn the durationof a
transmissiorof the initial sgment.For “whole file” playback
requeststhe bestof theimmediateserviceprotocolsusesener
bandwidththatgrows logarithmicallywith thefile requestate,
while the bestof the periodic broadcasprotocolshave start-
up delay that decreasegxponentiallywith the (fixed) sener
bandwidthallottedto the file.

This paperfirst explores the potential bandwidth savings
from using scalable, multicast-basedstreaming techniques
for on-demanddelivery of non-linear stored video. As the
diversityin the dataeachclientrecevvesincreasesthe potential
benefitsof multicast delivery can be expectedto diminish.
A basic questionis whether or under what conditions, the
potential benefits become negligible in this context. This
guestionis addressedhroughthe developmentof tight lower
boundson the sener bandwidthrequiredto supporta given
file requestrateandclient start-updelay for non-linearmedia
files with varying path diversity. Our resultsindicatethat the
potentialbandwidthsasings canbe substantialevenfor videos
with high path diversity.

Scalablestreamingprotocolsachieve bandwidthreductions
by transmitting video file datato multiple clients. For the
sharedtransmissionsto be possible, at least some clients
receve dataaheadof whenit is neededor playback buffering
it in memory or on disk until its playbackpoint. With non-
linear video, however, transmitting data aheadof whenit is
neededs complicatedby uncertaintyregardingwhich branch
a client will follow at eachbranchpoint. Thereis a tradeof
betweernreceving datathat the client might not need,andthe
sener bandwidth reduction arising from receving (needed)
dataaheadof its playbackpoint, so asto be ableto sharethe
transmissiorwith other clients. We investigatevariouspoints
in this tradeof usingtight lower boundson the sener band-



width requiredfor variousclassesof protocols.Someof the
protocol classesconsideredmake use of advanceknowledge
of which brancha client will likely follow at eachbranch
point. We considerboth the useof measuredover all clients)
branchchoicefrequenciesand client-specificinformation, as
might result from pre-declaratiorof intendedclient pathsor
from client classification.

Our results showv that fairly precisea priori information
regardingclient path selectioncan dramaticallyreducesener
bandwidthrequirementsas well as the client data overhead
of receving datathat is never used.In the absenceof such
information, strat@ies that restrict what data clients will
recevvein advanceof knowing whetheror notit will beneeded,
basedon how far aheadhatdatais in the videofile ratherthan
more approximateclient path predictions,can greatly reduce
the client dataoverheadat relatively small bandwidthcost.

Finally, using insightsderived from the boundswe design
new immediateservice and periodic broadcastprotocolsfor
non-linearvideo, andevaluatethe bandwidthsavzings thatthey
provide. Within eachclassof protocols,variantsaredeveloped
thatassumehe extremesof eitherno a priori pathknowledge,
or full knowledge. In general,as with our lower bounds,
precisea priori informationregardingclient pathselectioncan
substantrely reducethe sener bandwidthrequirements.

The remainderof the paperis organizedasfollows. Section
II describeanodelsfor non-linearmedia. Tight lower bounds
on the sener bandwidthrequiredfor a given file requestrate
and client start-up delay and the correspondingclient data
overheadif no a priori client path selectioninformation is
available, are derived in Sectionlll. SectionlV deries the
sener bandwidthboundsand associatedalient dataoverheads
for various policies that restrict the datathat clients receve
aheadof when it is needed.SectionV presentsnen stream
melging and periodic broadcastprotocols, and comparatie
performanceaesults.Conclusionsare givenin SectionVI.

Il. NON-LINEAR MEDIA MODELS
A. Non-Linear Media Structures

Thesimplestinterestingstructurefor non-linearvideois that
of aheightonetreewith rootnodecorrespondingo acommon
initial portion, and child nodes correspondingto multiple
possibleending portions. In a “complete path” playback of
thevideo, the client playsthe commonportion plus one of the
ending portions. If the desiredvariant of the ending portion
is chosensufiiciently aheadof the end of the commoninitial
portion (the branchpoint), the completepath can be played
withoutjitter. In thefollowing, exceptwhenstatedotherwisejt
is assumedhat clientsmake navigationdecisionssoonenough
to avoid jitter, but sufficiently closeto the respectie branch
point that the gap can be neglectedin our analysis.

A more generalstructureis an arbitrary tree, where each
node correspondgo a portion of the video, and child nodes
correspondto variant subsequenportions. A completepath
playbackwould consistof the commonroot portion, plus all
other portions on a path up to and including a leaf node.
This structurecanbe further generalizedo a directedagyclic

graph(i.e., pathscancorvergeat sharedgoortions),or ageneral
graphstructure.In the latter case,the notion of a “complete
path” playback may have no meaning; clients simply start
playbackat someclient-selectedrideo portion and the graph
links determinethe possiblesubsequenportions.

The boundsin Sectionslll and IV are developed for
tree structures,although the analysis can be generalized.
The immediate service protocols developedin Section V.A
are applicableto non-linear media having a generalgraph
structure,while our periodic broadcastprotocolsin Section
V.B areapplicableto directedacgyclic graphsin which the path
lengthsto any videoportionwith multiple parentsareidentical,
andto generaltree structuresFor clarity, however, we present
numericalresultsonly for balancedbinary treesin which all
videoportionshave identicalplaybacktime, andassuminghat
eachclient requestis for a completepath playback.

We assumeonstanbit ratevideo. Generalizationgor vari-
ablebit rate video canbe developedusing similar approaches
asfor linear media[13], [14], [18].

B. Client Branch Selections

A key issueconcernsthe relative frequencieswith which
clientsselectamongalternative portionsof thevideoat branch
points. In the contet of balancedbinary tree structures,
we have explored several alternatve popularity models.The
model for which numericalresultswill be presentedassigns
selectionprobabilitiesto leaves accordingto a Zipf distribu-
tion, asfollows. First, the leaf thatwill bethe mostpopularis
chosenrandomly and assignedhe correspondingprobability.
Then, out of the remainingleaves, a secondmost popular
is chosenrandomly and so on. Onceall of the leaves have
beengiven selectionprobabilities, selectionprobabilities for
all interior video portions can be computedby working up
from the leaves.

Othermodelsthatwereconsideredncludeamodelin which
the leaves are assignedZipf-distributed selectionprobabilities
in order, with the leftmost leaf the most popular and the
rightmostthe leastpopular anda modelin which the selection
probabilitiesat eachbranchpoint are Zipf-distributed (specif-
ically, for a branchpoint with two branches,one branchis
selectedwith probability 2/3, and the other with probability
1/3). Although these other models would appearto differ
significantly from the chosenmodel (in particular they give
more skewed selectionprobabilitiesat the branchpoints near
theroot of the treeandlessskewed probabilitiesat thosenear
the leaves), they werefound to yield very similar results.

C. An Example

Fig. 1 shovs a samplenon-linearvideofile structure.Each
portion of thevideois denotedby a line sgment,with branch
pointsdenotedby solid black circles. As a tree structurewith
nodesrepresentingportionsof thevideo,the structurein Fig. 1
correspondso a balancedinarytreeof height3. In thefigure
eachvideo portion is labelled by its selectionprobability, as
computedby choosingeaf selectionprobabilitiesaccordingto
a Zipf distribution, andthenworking up the tree. Also showvn
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Fig. 1. Exampleof a Non-LinearMedia Structure

is the pathselectedby a particularclient, who madethe most
popularselectionat the first branchpoint (followedin 56% of
all client playbacks),and who chosea completepath that is
selectedn 4.6% of all client playbacks.

D. Server Knowledge of Client Preferences

Of interestare three cases:(1) no a priori knowledgeis
available of the likely path throughthe video that a partic-
ular client will take, (2) only the overall averageselection
probabilitiesare known, and (3) more accurateclient-specific
path prediction is possible,as when the previous behaior
of clients is measured.either individually or in aggrejate
accordingto some client classification.In the secondcase,
the systemmight predictthat the client will choosethe most
popularbranchat eachbranchpoint, in which casetheclient’s
choice is correctly predicted with probability equal to the
(conditional)selectionfrequeng of the most popularbranch.
In the third case,we considerin SectionlV.B a simplemodel
of client-specifigpathpredictionaccurag in which sufficiently
popularbranchchoicesare always successfullypredicted,and
the other unpopularbranchchoicesare never predicted.This
analytically tractablemodelhasthe key advantagefor binary
tree structures,of covering a spectrumfrom path prediction
in which only choicesof the most popular branch at each
branchpoint are successfullypredicted(i.e., the sameas if
only overall average selection probabilities are employed),
to fully accuratepredictionin which all branchchoicesare
successfully predicted, dependingon the quantification of
“sufficiently popular”. When an incorrectpredictionis made,
it is assumedhat the predictionis for eachof the pathsthat
could have beenpredictedwith probability proportionalto its
relative popularity

I1l. POTENTIAL FOR SCALABLE DELIVERY

With unicastdelivery, sener and network bandwidth re-
guirementsfor on-demandstreamingare linear in the client
requestrate. This sectionanalyzesthe extent to which sener
bandwidth requirementsmight be reducedthrough use of
multicast-basegbrotocolsin the context of non-linearmedia,
andthe associatedlient dataoverheadsSectionlll.A defines

TABLE |
NOTATION FOR TREE-STRUCTURED NON-LINEAR MEDIA

Symbol | Definition
\% numberof portionsof the video file
T completepath playbacktime
T; playbacktime of 4t portion (root numberedas portion 1)
t; it portion relative starttime (¢; = 0)
Di probability the selectedpathincludesportion ¢
a parameteiof Zipf distribution
(popularity of j'th mostpopularitem o 1/5%)
A client requestrate
i requestrate for ¢** portion (A\; = p;\)
N averagenumberof client requestduring a playbacktime
(N = A1)
N; averagenumberof client requestdor portion ¢ during
time T; (Nl = )\le)
d maximumclient start-updelay
Boin requiredsener bandwidthlower bound,in units of the
playbackdatarate

theseperformancemetricsand outlinesthe analysisapproach.
In Sectionlll.B, atight lower boundon the sener bandwidth
requirementis derived. Sectionlll.C derives the client data
overheadrequired to achieve the sener bandwidth bound
when no a priori information is available regarding client
path selection.Classesf policies that restrictthe client data
overheadare consideredn SectionlV.

A. Metrics and Analysis Approach

The primary performancemetric that is considereds the
averagesener bandwidthusedfor “completepath” playbacks
of asinglevideofile, for givenclient start-updelayandrequest
rate.Our analysiscanbe extendedto network bandwidthin a
similar fashionasfor linear media[19]. Also of interestis the
averageclient dataoverhead, definedas the averageamount
of dataa client recevesfrom video portionson differentpaths
thanthattaken by the client, andthereforenot used,expressed
in units of the amountof video dataon a completepath.

Using the notation definedin Table I, our lower bound
analysisfollows the samebasic approachas has beenused
previously for linear media[2], [5], [6], [15]. For a linear
mediafile, and an arbitrary client requestthat arrives at time
t, the file dataat eachplay position z must be deliveredno
laterthantime t+d+z. If thisdatais multicastattime t+d+z,
then (at best)thoseclients that requestthe file betweentime
t andt + d 4+ = can receve the samemulticast. Assuming
Poissorarrivals,the averagetime from ¢ + d + x until the next
requestor thefile is 1/\. Therefore the minimum frequeny
of multicastsof the dataat time offsetz is 1/(d + z + 1/),
which yields a boundon requiredsener bandwidth,in units
of the playbackdatarate, of

T
v N
Bﬁfﬁfl‘”:/ (N4,
0 d+z+ by NT +1
This boundcanbe generalizedo a broadclassof non-Poisson
arrival processesyielding a similar result with difference

boundedby a constant[5]. Boundsfor non-linearmediaare
derived below by applying similar analysis.

@)
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Fig. 2. Sener Bandwidthfor Non-LinearMedia
(balancedbinary treewith height3, a =1, d = 0)

B. Minimum Required Server Bandwidth

Sener bandwidth is minimized when a client listens to
every multicastof datathatit may needin the future. Note
that without a priori knowledgeof client path selection,this
requiresthat the client listen to any multicastof datain the
subtreebelow its currentplay point, implying possiblylarge
client dataoverheadWith perfecta priori knowledgeof client
path selection,the client listensonly to all multicastsof data
that it will actually usein the future. In either case,noting
that the file dataat a position z within a video portion i is
at (overall) play positiont; + z, the above analysisapproach
yields the tight lower bound

Z/ d+tl+m+A
Zl( d+tl+1+1>.

Fig. 2 shavs this bound as a function of the normalized
requestarrival rate V, for immediateservice(d = 0) and for
a non-linearmediafile with a balancedbinary tree structure
of height3 and Zipf-distributed leaf selectionprobabilitiesas
describedn Sectionll with Zipf distribution parameterx = 1.
(Alternative randomassignmentso leavesof the Zipf selection
probabilitiesyield very similar results.)

For comparisonpurposesthe figure also shows the bound
for linear mediafrom eq. 1, and boundsfor two approaches
in which delivery techniquedor linear mediaare appliedto
non-linearmedia. In one of these(portion), eachportion of
the non-linearmediafile is treatedas a separatdinear media
file, yielding a tight lower boundon requiredsener bandwidth

of
\%4 T,
i Nl
Z/ di)(l: (TJFI)-(?’)
i=1J0 dz+$+A_1 Nlﬁ+1
Hered; = d, andthetermsd; for ¢ > 1 admitthe possibility

that with this approach,a client selectionof video portion
i would be requiredto be madetime d; prior to the end
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of its parent portion (or, alternatvely, that there would be
interruptionin playbackof durationd;). For the resultsin the
figureit is assumedhatd; = 0 for all 4. In the otherapproach
(path), the client path selectionis requiredto be known a
priori. Video datais replicatedso that each complete path
throughthe tree structurecan be storedas a separatdile. For
eachclient request,one of thesefiles is selectedaccording
to the path selectionprobabilities,and deliveredasif it were
an ordinary linear mediafile. The correspondingight lower
boundon the requiredsener bandwidthis given by
pilN

n{——+1), @
/d+:c+A Zn(piN%-i—l ) )

€L
where £ denotesthe set of indices of the portions of the
video file that are leavesin the tree structure,and wherefor
notationalcorvenienceit is assumedhat eachcompletepath
hasthe sameplaybacktime T'.

The key obsenationsfrom Fig. 2 are that: (1) multicast-
baseddelivery techniquegor non-linearmediahave the poten-
tial to yield large reductionsin bandwidthrequirementgnote
that with unicast,the required sener bandwidthis N), and
(2) techniqueghat exploit the particularnon-linearstructure,
ratherthan treatingeachportion or path as a separatdinear
mediafile, have the greatestpotential.

The potential bandwidth reductionsfrom multicast-based
delivery are dependenton the non-linear media structure.
Fig. 3 shavs theimpactof increasinghe heightof a balanced
binary tree structure,for fixed normalizedrequestrate. As
the height increasesthe number of portions of the video
file increasesexponentially as doesthe numberof possible
pathsthat clients may selectfrom. Furthermore relative to
the total length of a path the length of eachvideo portion
decreases;e., branchpointsbecomemorecloselyspacedNot
surprisingly the potentialbenefitsof multicast-basedelivery
decrease(Similarly, thesebenefitsalso decreasewhen the
branchingfactoris increasedat eachbranchpoint, with fixed
height, owing to the resulting increasein the number of
paths.) However, even with a height of 10 and more than

Bpath

min
€L



a thousandpossiblepaths, multicast-basedlelivery still has
the potential for an orderof-magnitudereductionin sener
bandwidth,assumingimmediateserviceand the requestrate
consideredin the figure. These potential bandwidth savings
are explainedlargely by the potential for shareddelivery of
thevideo portionswith the highestselectionprobabilities(i.e.,
thosealong popularpathsor nearthe root).

C. Maximum Client Data Overhead

Without a priori knowledgethat would rule out somepath
choices,achieving the lower bound of eq. 2 requiresthat a
client listento ary multicastof datafrom a video portionthat
(at the time of the multicast) could still be on the client’s
eventual path. Since data is being multicast at minimum
frequeng, it is guaranteedhat the samedatais not multicast
multiple times during the time that a client can obtain it.
Thus,on average theamountof datarecevedfrom eachvideo
portion not on the client’s eventual pathis given by the rate
at which datafrom that portion is multicast,times the length
of the periodover which the client canobtainsuchmulticasts.
The latter quantity for a client that follows the pathto a leaf
video portion i and for a video portion j thatis not on this
path(i.e.,is not¢ or an ancestomwf i), is equalto the sum of
the start-updelay d and the playbackdurationsof all video
portionson the choserpaththatarealsoon the pathto j. This
yields an averageclient dataoverheadjn units of the amount
of video dataon a completepath, of

N;

e 1))/T,

(Zm Z (d+ Z Tk) (N i,
€L jeA(i) kE€A(i,5)

whereA(i) denoteghe setof indicesof thoseportionsthatare
not portioni or an ancestorof portion i, and.A(i, j) denotes
the setof indicesof thoseportionsthat are ancestorf both
i andj.

Fig. 4 shows the averageclient data overheadincurredto
achieve the lower bound of eq. 2 for balancedbinary tree
structuresof various heights, immediate service,and no a
priori knowledgeof client pathchoices.Note that, for a given
height tree, as the requestrate increasesthe averageclient
data overheadinitially increasesand then levels off since
the lower bound sener bandwidth for portion j has finite
asymptotefor all j > 1. Similarly, for fixed arrival rate,
asthe heightincreaseghe averageclient data overheadalso
increasesFinally, the data overheadwhen clients snoopon
all portionsthat could still be on their eventual path can be
significant, particularly when the tree height is greaterthan
four andthe normalizedrequestrate is greaterthan 100.

IV. RESTRICTED SNOOP-AHEAD

Owing to client receptionrate and/or buffer spacelimi-
tations, the client data overheadsshovn in Fig. 4 may be
infeasible.This sectionconsidersapproache@ which clients
snoop less aggressiely on multicasts from video portions
aheadof their currentplay point, thusreducingthis overhead.

Snoop-aheadan be restrictedin at leasttwo basic ways.
First, as consideredin Section IV.A, restrictions may be
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Fig. 4. Client DataOverheadfor UnrestrictedSnoop-ahead
(@ =1,d=0,noa priori knovledgeof client path selection)

basedon distancefrom the current play point. Secondas
consideredn SectionlIV.B, restrictionscan be basedon (a)
overall path selectionprobabilities,or (b) client-specificpath
prediction,accordingto the pastbehaior of thatclient, client
classification,and/oradvanceselectionby the client.

A. Distance-based Restricted Shoop-ahead

A simple approachthat restricts snoop-aheadased on
distanceis to only snoopon multicastsfrom the currentvideo
portion (but aheadof the current play point), and from all
portions following the next branch point! Thus, with this
approachglientssnoopon multicastsfrom eachvideo portion
i during playbackof that portion, and, if not the initial, root
portion (i.e., ¢ > 2), during the playback of i's parentin
the tree structure. A tight lower boundon the requiredsener
bandwidthfor any techniqueutilizing this approachis given

by
e d+z+1 To) + 2 + 3

=1In (N +1>+Zln(ﬁ+l>, (5)

where a(i) denotesthe index of the immediate ancestor
(parent)of 4. Achieving this bound would incur an average

client dataoverheadof
( a(J) + 1 1)) / T,

(Zpl a(i) Z In

JES(3)
where S(i) denotesthe set of |nd|ces of the siblings of ¢
in the tree structure.Correspondingresults can be derived
for approachedn which clients snoopon transmissiongrom
future video portionsup to k& branchpoints ahead,for some
fixedk > 1.

Ny
d +1

IFor clarity of presentation,we assumehere and for the subsequent
restrictedsnoop-aheadpproachesthat prior to beginning playback,in the
caseof d > 0, clientsonly listen to multicastsfrom the initial, root portion
of the video. The sameanalysisapproachcan be emplo/ed with alternatve
assumptions.



B. Client Path Prediction Approaches

With skewed branchselectionprobabilities,it maybe possi-
ble to substantiallyreducethe client dataoverheadwith only
a small costin increasedsener bandwidth,by snoopingon
multicasttransmissiongrom only the mostpopularportion of
the video following the next branchpoint. The corresponding
tight lower boundis given by

T

o d+x+/\ Z/ a(z)+x+)\
+Z/

popnext __
min -

x+>\

N
=ln{—1— In 7+1
<N1T +1 ) ; ( N; a(n_,_l )
+> In(N; +1), (6)
i€P

where P and P denotethe set of indices of those portions
of the video file that are the most popular or are not the
mostpopular video portionsamongtheir siblings,respectiely
(excludingthe root portion, which hasno siblings).Achieving
this boundwould incur an averageclient dataoverheadof

(Z piT, a(i) In

i€EP

S(l)

—— ——+1]|/T
Ny “<>+1

Ts(iy
where s(i) denotesthe index of the most popular sibling of
video portion .

Ratherthan just snoopingon transmissiongrom the most
popular video portion after the next branch point, clients
could snoopon transmissiongrom all video portionson the
most popular path from the current position to a leaf. The
correspondingdight lower boundis given by

Bpoppath _ /Tl /
min 0 d+-’L‘+/\ ZTJ+I+/\
JEU(D)
[
i€P

N
NZieuo T g

Ny
=ln|——+1] + In
(N 17y T +1 ) zezvr
+) In(N;i+1),
i€P

wherel/ (i) denoteghe setof indicesof ancestor®n the path
back towards the root from i (not including i itself), up to
and including the first portion that is not the most popular
amongits siblings. (If thereis no such portion on this path,
the setincludesthe indicesof all ancestoron the path back
to andincluding the root.) Achieving this boundwould incur

an averageclient dataoverheadof

+1 /T,
+1

(Zpi(ZTj) Y, I (N,.

i€P  JEU() Jj€D(a(i))

:

@)

N;j
Zreu) Tr
Tj

whereD(a(i)) denoteghe setof indicesof video portionson
the mostpopularpathdown to a leaf from (but not including)
the parentof portion .

Consider now the casein which more accurateclient-
specific path prediction is possible, and clients snoop on
multicastsfrom all video portions on their predicted(rather
thanthe overall most popular) path from the currentposition
to a leaf. Analysis of this approachrequiresa model of path
prediction accurag. Here we use a very simple model in
which branch choiceswith selectionfrequeng (conditional
on reachingthe respectie branch point) at least equal to
a parameterf are always successfullypredicted, and less
popularbranchchoicesarenever predicted. The corresponding
tight lower boundis given by

T1 dx Ti dx
Bl = / — + /—
o dtz+sx go Yo Tita+ &
JEW(3)
s [
ieEF
=1In My +Y In Ni +1
N1T +1 Pyl w+1
+) In(Ni+1), 8)
ieEF

whereF and F denotethe setof indiciesof thoseportionsof
thevideofile whoseconditionalselectionfrequeng is at least
f, or lessthan f, respectiely, and W(i) denotesthe set of
indicies of ancestorson the path back towardsthe root from
i (notincluding itself), up to andincluding the first portion
that is a memberof the set 7. (If thereis no such portion
on this path, the setincludesthe indicesof all ancestorson
the pathbackto andincluding the root.) Achieving this bound
would incur an averageclient dataoverheadof

B T i S

i€F JEW() 1eL(5(4))

pred
J min
meLS@)Pm ;e painn

)

where£(S(7)) denotesthesetof indicesof leafvideoportions
in the collection of subtreesootedat siblings of ¢ for which
the pathfrom that sibling includesonly video portionsin the
setF, D(a(i),l) denotesthe setof indicesof video portions
on the path down to leaf portion [ beginning from (but not
including) the parentof i, Bj”’;dm denoteshe bandwidthused
for multicastsof video portion j, as given by the term for
video portion j on the right-handside of eq. 8, and where
we have assumedhat an incorrectpath predictionis for each
of the pathsthat could have beenpredictedwith probability
proportionalto its relative popularity

C. Policy Comparisons

Figs.5 and6 graphthe bandwidthexpressiongiven above
as functions of the requestrate (for the samebinary tree
structureassumedor Fig. 2), and the tree height (for fixed
requestate),respectiely. Also shavn is the sener bandwidth
for theapproachnexttwo) in which clientssnoopon multicasts



50

Portion ———
Next o //X
£ 407 Nexttwo o v |
S Lower Bound
2 y
S 30 |
B X
oM
o
e
<5}
n

100

1000

(a) Distance-baseéolicies

50 Portion — S
Popnext - X
40 + Poppath =
Pred (f=0.35) ----+--- s
Lower Bound X

Server Bandwidth

100 1000

(b) Prediction-basedPolicies

Fig. 5. Performancewith RestrictedSnoop-aheadbalancedinary tree with height3, @ = 1, d = 0)

200 Portion —— x g I
175 ¢ Next -0
< Nexttwo -—-<-- / P
5 150 [Lower Bound o
£ 125 | Far
% S
S 100 g
g 75 : " 1
$ 50 1
25 1
0 — X X . . . . .
0 1 2 3 45 6 7 8 9 10
Tree Height
(a) Distance-baseéolicies
Fig. 6.

from the currentvideo portion plusfrom all portionsfollowing
thenext andnext two branchpoints,which is derivedsimilarly
to eq. 5. For comparisonpurposesthe figuresalso shav the
sener bandwidth for unrestrictedsnooping (i.e., the lower
boundof eq.2), andfor the approachn which eachportionis
treatedasa separatdinear videofile (portion). Corresponding
resultsfor the client overheadare givenin Figs. 7 and 8.

Considerfirst the resultsfor portion, next, nexttwo, and
unrestrictedsnooping With portion, clientsonly listento mul-
ticastsof datafrom the video portion currently being played.
Snoopingof multicastsof datafrom beyond the next branch
point (next) yields a large reductionin sener bandwidth.
Snooping farther ahead,as in nexttwo, yields diminishing
returns. As seenby the resultsin Fig. 6(a), for trees of
low to moderateheight nexttwo has minimal requiredsener
bandwidthfairly closeto the lower boundof eq.2. Theresults
in Figs. 5(a), 6(a), 7, and 8 shav that the next and nexttwo
approachesanoftenachieve largereductionsn averageclient
dataoverheadcomparedo the unrestrictedsnoopingapproach
at fairly modestcostin sener bandwidth.

The popnext, poppath, and pred (f=0.35) approachesisea
priori informationregardingclient pathselectionin anattempt

200
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Impactof Tree Height on RestrictedSnoop-aheadPerformancda = 1, N = 1000,d = 0)

to achieve a better tradeof betweensener bandwidth and
client overhead.Although popnext and poppath achieve low
client overheadas seenin Figs. 7 and8, they achieve poorer
sener bandwidth scalability than next and nexttwo. These
resultsshav thatvery approximateclient pathprediction,such
asoccurswith popnext and poppath at branchpointsat which
the branch selectionprobabilities are not highly skewed, is
not as effective in reducingsener bandwidthas is snooping
on all multicastsof datathat could be neededsoon, as in
next. In contrast,the more accuratepred (f=0.35) approach
achieveslower client dataoverheadthan next and comparable
sener bandwidthscaling.Finally, note that the approache
which clients snoopon multicastsfrom all video portionson
a path from the currentpositionto a leaf (poppath and pred)
becomerelatively more attractve with respectto their sener
bandwidthusageandrelatively lessattractve with respecto
client dataoverheadfor high tree heights.

Hybrid approachesmay perform even somevhat better
undersomeconditions.For example,considera branchpoint
at which one choiceis highly popularandthe otheris much
less popular Clients could snoop on multicastsfrom both
of thesevideo portions (as in next), while also predictinga
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paththat includesthe highly popularchoiceand snoopingon
multicastsfrom subsequenvideo portions (asin poppath or
pred). Preliminaryinvestigationsof a hybrid of the next and
pred approachegonfirm this intuition.

Fig. 9 shawvs the sensitvity of the above resultsto skewness
in the leaf selectionprobabilities,specificallyto the Zipf pa-
rametera. (Curvesfor nexttwo andpopnext have beenomitted
but have similar form.) For pred, the parameterf hasbeen
variedso that the percentagef video portionsin the setF is
constantequalto thatwith f = 0.35 anda = 1. Thus,for pred
(aswell asfor poppath), the numberof relatively popularvideo
portions whose selectionis successfullypredicted remains
constantasa varies.Notethatthereis relatively little variation
in the requiredsener bandwidthand client dataoverheadfor
eachapproachfor a < 1 (i.e., for no skew to moderatelyhigh
skew). As « increasedeyond one, the sener bandwidthand
client dataoverheadfor eachapproachdecreaseubstantially
A key conclusionis that the simple next approach,and the
pred approachwith correctpath predictionsfor at least75%
of the video portions,achiese an attractve trade-of between
required sener bandwidth and client data overhead,over a
wide rangeof « values.

V. SCALABLE DELIVERY PrROTOCOLS
A. Hierarchical Sream Merging

Hierarchical streammerging (HSM) protocols[5], as ap-
plied to linear media, starta new transmissionof the media
file for eachclient requestin the simplesttype of HSM, each
client also listensto the closestactive earlier stream,so that
its own streamcan terminateafter transmittingthe datathat
was missedin the earlier stream.At that point, the clients
associatedvith the two streamsare saidto be “merged” into
a single “group”, which canthen go on to memge with other
groups.

ExtendingHSM to non-linearmediarequiresa more dy-
namic notion of client group, since clients that meige while
listening to one video portion may take different paths at
the next branchpoint, thus splitting the group. Also, a more
comple policy mayberequiredfor determiningwhatstreama
client listensto, in the casewherethe closestearlier streamis
beyondthe next branchpoint. It would seemthat, in this case,
the client shouldlisten to the closestearlier streamcurrently
deliveringdatafrom the paththatthe client will select,should
sucha streamexist and should the branchchoice be known
or accuratelypredicted.
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(“S” labelis for startof media,“Bi” labelsarefor branchpoints,“Ei” labels
are for sggmentend points, dashedines indicate sggmentboundaries,
K=3,s=2,r=1)

The resultsfrom SectionlV suggesthat usingoverall path
selectionprobabilitiesto guide which earlier streama client
listensto when the closestearlier streamhas past the next
branch point may not be the best strategyy. This intuition is
confirmedby simulationresultsshaving that listening to the
closestearlier stream (on or past the samevideo portion,
regardlessof which branchit may be on if beyond a branch
point) yields slightly betterperformancehan listeningto the
closeststreamon the most popularbranch[17]. SectionV.C
presentssimulationresultsfor both this HSM-Unknown Path
(HSM-UP) protocol in which clients listen to the closest
earlierstream,andfor HSVI-Known Path (HSM-KP) in which
it is assumedthat precise client-specific path prediction is
possible, and thus clients can listen to the closestearlier
streamdelivering datafrom the paththey will select.Note that
with HSM-KP, clientsbelongingto the same“group” may be
listening to different earlier streams.With both protocols,a
group may split asthe clientswithin a group reacha branch
point, in which casethe sener will needto start additional
stream(s)so that there is one stream per path followed.
These characteristicsalso complicate merging behavior. In
the simulationsfrom which resultsare presentedhere, it is
assumedhatwhena client or groupof clientsmeigeswith an
earliergroup,all clientsin the earliergrouprestartlisteningto
earlier stream(s)asin HSM for linear media. Other options
areinvestigatedn [17].

B. Optimized Periodic Broadcast

The periodic broadcastprotocolsthat we develop herefor
non-linearmediaare basedon the optimized periodic broad-
cast(OPB) protocolsdescribedn [12]. In theseprotocols,as
appliedto linear media,the mediafile is partitionedinto K
segments,with eachsegmentbeingrepeatedlymulticaston a
separatehannelat rater. Clientsareassumedbleto simulta-
neouslylistento a maximumof s channelsThe sggmentsize
progressionis computedsuch that eachsegmentis receved
just in time for playbackif clients begin listening to the s
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Fig. 11. OPB-KP Channeldor Structureof Fig. 10
(shadedareasare listening periodsof exampleclient, K =3, s =2, r = 1)

channelsdelivering the first s segmentsimmediately begin
listening to the channelfor segmentk (k > s) immediately
after fully receving segmentk — s, and begin playbackafter
receptionof the first sgmentis complete.

For the casein which client path selectionis known a
priori, we proposea variantof OPB called OBP-Known Path
(OPB-KP).Eachcompletepath throughthe non-linearmedia
file is partitionedusing the samesegymentsize progressioras
in OBP for linear files. Sharedportions of pathssharethe
correspondingsggments.(We assumeherethat if the file has
adirectedagyclic graphstructure thenthe pathlengthsto ary
video portionwith multiple parentsareidentical.)If a segment
crosses branchpoint, the datafrom eachmediaportion after
the branchpoint is deliveredon a separatesub-channelgach
atrater. Thus,for sucha segment,the sener will repeatedly
first transmitthe datafrom before the branch point (at rate
r), and then transmit the data from after the branch point
(at total rate r timesthe numberof portionsafter the branch
point). Each client listensto the channelsand sub-channels
appropriateto its path.Fig. 11 shavs the channelausedin the
OPB-KP protocol for the example non-linearvideo structure
shawvn in Fig. 10, assumingeachpathis partitionedinto three
segments(K = 3), clientslisten to two channelsconcurrently
(s = 2), andsggmentsaretransmittedat the playbackdatarate
(r = 1). Also showvn arethe periodsduring which an example
client listensto the transmission®n eachchannel,assuming
the client requestarrives at the point indicated and that the
client takesthe pathshavn in Fig. 10. As showvn by theresults
in SectionV.C, if it is assumedhat the sener can detectif
thereareary listenerson a channel(or sub-channel)andstop
transmittingon the channelif not, this schemes efficient.

For the casein which client path selectiondecisionsare
known only when they are made at the respectie branch
points,our key insightis thatperiodicbroadcasis still feasible
aslong asary seggmentthata client beginsto download prior
to a branchpoint, andthatincludesdatafrom afterthe branch
point, includesthe respectie datafrom all of the branches.
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Fig. 12. OPB-UP SgmentPartitioning for an ExampleMedia Structure
(“S” labelis for startof media,“Ei” labelsarefor sggmentend points,
dashedines indicate sggmentboundariesK = 6,s = 2,7 = 1)

Specifically supposethat betweenwhen a client begins to

listen to the transmissionof a particular segmentk and the
beginning of playbackof that sgment,video playbackdoes
not crossa branchpoint. If segmentk itself also doesnot
crossa branchpoint, thenit mustbe part of the samevideo
portion thatwasbeingplayedbackduringits reception If, on
the other hand,segmentk doescrossa branchpoint, thenit

must include some of the video portion prior to the branch
point (as determinedby the segment starting position), plus
a fraction of each video portion after the branch point (as
determinedby the segment ending position). Note that the
playbackduration of sucha segmentwill be lessthan what
its sizein bytes(and correspondingransmissiortime) would

suggest,since the client will playbackonly the dataon its

chosenpath. Supposenow that betweenwhen a client begins
to listento the transmissiorof a sggmentandthe beginning of

playbackof that sggment,video playbackdoescrossa branch
point. In this case,the entire sggmentmultiplexes datafrom

multiple paths,as the segmentbegins after the branchpoint
andit is unknovn which brancha client will take.

Fig. 13 shavs the channelsusedin this OBP-Unknown Path
(OPB-UP)protocolfor the examplenon-linearvideo structure
shawvn in Fig. 12, assumingeachpathis partitionedinto six
segments(K = 6), clientslisten to two channelsconcurrently
(s = 2), andsggmentsaretransmittedat the playbackdatarate
(r = 1). Also showvn arethe periodsduring which an example
client listensto the transmission®n eachchannel,assuming
the client requestarrives at the point indicatedin the figure
andthat the client takesthe path shovn in Fig. 12.

Feasiblesggmentsizesfor OPB-UPcanbe computedusing
the algorithm outlined in Fig. 14. Although this algorithmis
designedor balancedinarytrees,it canbe extendedfor more
generakypesof mediastructuresHerel;, denoteshe playback
duration of segment k, u; denotesthe time when a client
beginsreceptionof the segment,measuredelative to the start
of the videofile playback.e; denoteghe latesttime by which
a client canendreceptionof the sgment,measuredelative to
the start of video playback(also equalto the playbackpoint
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Fig. 13. OPB-UPChannelsfor Structureof Fig. 12
(shadedareasare listening periodsof exampleclient, stripedareasindicate
multiplexed transmissionsK = 6, s = 2, r = 1)

correspondingo the beginning of the segment),y;, denoteghe
segmenttransmissiontime when the sggmentis of maximal
length, and w;, denotesthe playbackpoint correspondingo
the end of the sggmentin the casein which the segmentdoes
not encountera branchpoint. The outerloop attemptsto find
the start-updelay (transmissiortime of the first sgment)such
thatthe cumulative lengthof K segmentswhereK is givenas
aninput) matcheghelengthof a completepath. Thealgorithm
malesthe simplifying restrictionthat no sgmentcan have a
multiplexing level of more thantwo (i.e., include datafrom
morethantwo paths),andtheassumptiorthatthefirst segment
doesnotcrossary branchpoints.It furtherassumethatbranch
points are never sufficiently closetogetherthat a zerolength
is computedfor a segment(aswould occurin case2.2 when
the branchpoint B is at e;), althoughit could be extended
to handlethis caseby simply delayingbeginning receptionof
the sggmentuntil afterthe next branchchoicehasbeenmade.
Suchdelayscould be more generallybeneficial,as well, but
the algorithmin Fig. 14 simply assumeghat a client begins
receptionof a new segment(if ary remain)immediatelyafter
receptionof a previous segment completes.The design of
optimal periodicbroadcasprotocolsfor varioustypesof non-
linear mediastructuress left for future work.

C. Performance Comparisons

Figs. 15, 16, and 17 show the sener bandwidthusedby
the HSM and OPB protocolsfor non-linearmediastreaming,
togethemwith theanalyticlower boundfrom eq.2. HSM results
are from simulation. The results for the OPB variants are
obtainedunderthe assumptiorthat transmissioron a channel
is stoppedvhenerer no clientis listeningto thatchannel(The
probabilitythatno clientis listeningto a channelcanbe easily
computedunder the assumptionof Poissonrequestarrivals,
which arealsoassumedn the simulationof HSM.)

For HSM-KP and OPB-KR path predictionis assumedo
be perfect. For HSM, imperfect path prediction would yield
results intermediate betweenthe results for HSM-UP and
HSM-KP. For OPB-KR an error in path predictionwould be
more difficult to recover from. All datais receved prior to



Function Partition(K, s,r)
1.For (i = 0; i < M; i++)

2. d:61 -f—Z'(Tl/’I‘—El)/]\/[

3. Compute_Segsize(K,d, s,r)
4, |f(zf=11k—T‘562)

5. ReturnSuccess

6. End For

7.Return Failed
End Function

ProcedureCompute_Segsize(K,d, s, r)
8. ll =dr
9. For (k=2 k < K; k++)

10. wup=—d, k<s;
up = s'thlatestof { u; +1;/r | 1<j<k}, k>s+1
11. ep = Ef;ll lj; Yk = € — Ug
12. Casel: no branchpointin (uy, ex)
13. Wy = YpT + eg
14. Casel.1: no branchpointin [ey, wy,)
16. Casel.2: first branchpointin [ex, wy,) is at B andno
branchpointin (B, B + (yxr — (B —er)) /2)
17. transmitinterleaved dataafter branchpoint
18. lk =B —ex+ (ysr — (B —ex)) /2
19. Casel.3: first branchpointin [e,, wy) is at B, andfirst
branchpointin (B, B + (yxr — (B —eg)) /2) is at By
20. segmentendsat branchpoint B,
21. lk = Bg — €k
22. Case2: onebranchpointin (ug, ex)
23. transmitinterleaved data
24. wy, = ypr /2 + eg,
25. Case2.1: no branchpointin [ez, wy)
26. lk = ykT‘/Q
27. Case2.2: first branchpointin [eg,w;) is at B
28. segmentendsat branchpoint
29. Il =B — e
30.End For

End Procedure
Fig. 14. Algorithm for OPB-UP SegmentSizes(balancedbinary tree)

its playbacktime. A client whose path is mispredictedwill
have listenedto transmissionsof the wrong datafrom after
the mispredictedbranchpoint. Recavery would requireeither
interruption in playback (so as to allow time for the client
to receie the datathat it would have receved by this point,
had the branchchoice beencorrectly predicted),or useof a
unicaststreamthat would deliver data sequentiallyfrom the
branchpoint at rate at leastequalto the playbackdatarate.
The key obsenationsfrom thesefiguresare: (1) stopping
transmissioron a channelwhenthereare no clientslistening
allows periodicbroadcasperformancdo be competitve even
under light load, (2) precise path prediction yields a large
improvementin performance(3) OPB-KPyields performance
essentiallyas closeto the lower boundfrom eq. 2 as could
be expected,given that the former assumeghat eachclient
canonly receive dataat eachpointin time at a total aggrejate
rate of twice the streamingate (r x s = 2), whereaghe latter
placesno suchrestriction(see[5], [12] regardingthe impact
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of client receve rate limitations), and (4) the preciserelative
performancef theHSM andOPB variantsdepend®n request
arrival rate and the client start-updelay usedin OPB (note
that HSM providesimmediateservice,althoughvariantsthat
use a batchingstart-updelay have also beenproposed[4]).
The resultsfor HSM-UP and HSM-KP suggestthat it may
be fruitful to investigateHSM variantsin which clients may
snhoopon multiple earlier streamg(e.g.,onefor eachpossible
choiceat the next branchpoint, similar to next), or in which
client-specificpath predictionis employed (asin pred).

D. Prototype Implementation

A rudimentaryimplementatiorof scalablenon-linearmedia
streaminghasbeenaddedto the SWORD prototypestreaming
system[12]. The SWORD systemconsistf sener andclient
componentsbuilt usingthe opensourceApacheproxy sener
code as a base. TheseinterposebetweenWindows Media
playersand seners, and replacethe normal unicastdelivery
with multicastdelivery using hierarchicalstreammerging.

Our implementationof non-linearmedia streamingstores
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each portion of the non-linear structure as a separatefile.

Modification of headefrfields and spoofingof requestdy the
SWORD client componentallow this structureto be invisible

to theclient player, to which it appearghatonly asinglevideo
file is beingplayed(transitionsbetweerthe video portionsare
seamlessDynamicclient pathselectionis currentlysupported
throughaweb pageinterface. Thepresenimplementatioruses
built-in knowledgeof the mediafile structure;on-goingwork

concernsdescriptionof non-linearmedia structuresin meta
files. Our implementationhas demonstratedhat non-linear
media streamingcan be implementedrelatively easily even
in the context of commercialmediastreamingsystems.

VI. CONCLUSIONS

This paper has considered‘non-linear” video contentin
which clients can tailor their video streamaccordingto in-
dividual preferenceswithin the constraintsof a predefined
tree or graph structure.Tight lower boundson sener band-
width were developedthat showv the potentialfor bandwidth
reductionusingmulticastdelivery in the context of non-linear
media,as well asilluminate the advantages/disaéntagesof
various approachego client snoop-aheaénd the benefitsof
a priori path knowledge. The key insights from the bounds
analysisare (1) correctclient path predictionsfor more than
75% of the video portionsgreatly reduceshe requiredsener
bandwidthwith very modestclient dataoverhead.and (2) in
the absenceof fairly precisea priori informationaboutclient
path selections,a simple policy in which clients only listen
to transmissiondrom their currentvideo portion and those
immediatelyfollowing the next branchpoint, achieses better
sener bandwidthscalability than using overall path selection
probabilitiesto determinewhich transmissiongo listen to.

New streammeiging and periodicbroadcasprotocolswere
devised, in part using insight from our boundsanalysis,and
shavn to achieze much of the potential bandwidth sarings.
The new periodic broadcastprotocols were found to be
competitve with the new stream meming protocols at all
requestrates,assuminghatin the former protocolsthe sener

transmits on a channel only when at least one client is
listening. On-going researchis focussedon further analysis
of hybrid protocol classes,improved stream memging and
periodic broadcastprotocols, and further developmentand
experimentationwith a prototypedelivery system.
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