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Abstract
Modern file systems use ordering points to maintain con-

sistency in the face of system crashes. However, such

ordering leads to lower performance, higher complexity,

and a strong and perhaps naive dependence on lower lay-

ers to correctly enforce the ordering of writes. In this

paper, we introduce the No-Order File System (NoFS),

a simple, lightweight file system that employs a novel

technique called backpointer-based consistency to pro-

vide crash consistency without ordering writes as they go

to disk. We utilize a formal model to prove that NoFS

provides data consistency in the event of system crashes;

we show through experiments that NoFS is robust to such

crashes, and delivers excellent performance across a range

of workloads. Backpointer-based consistency thus allows

NoFS to provide crash consistency without resorting to

the heavyweight machinery of traditional approaches.

1 Introduction
One of the core problems in file systems research over the

years has been the challenge of providing consistency in

the presence of system crashes. There have been a num-

ber of solutions to tackle this problem: from the simple

file-system check [20] of the Fast File System [18] to the

complicated copy-on-write mechanism of ZFS [3]. Each

approach has a different core technique: write-ahead log-

ging [12], copy-on-write [15] or tracking dependencies

among writes to disk [10].

Although these approaches all differ vastly in their de-

tails, they share one common trait: each uses a careful

ordering of writes to implement its update protocol. Jour-

naling file systems require that metadata and data are per-

sisted before the commit record is written [2, 31, 41, 45].

Copy-on-write file systems require that the root block be

updated only after the rest of the update is safely on disk

[15, 32, 40, 48]. Soft updates is built entirely around the

careful ordering of disk writes [10].

In the event of a crash, ordering points allow the file

system to reason about which writes reached the disk and

which did not, enabling the file system to take correc-

tive measures, such as replaying the writes, to recover.

Unfortunately, ordering points are not without their own

set of problems. By their very nature, ordering points

introduce waiting into the file-system code, thus poten-

tially lowering performance. They constrain the schedul-

ing of disk writes, both at the operating system level and

at the disk driver level. They introduce complexity into

the file-system code, which leads to bugs and lower re-

liability [25, 26, 49, 50]. The use of ordering points also

forces file systems to ignore the end-to-end argument [34],

as the support of lower-level systems and disk firmware

is required to implement imperatives such as the disk

cache flush. When such imperatives are not properly im-

plemented [36], file-system consistency is compromised

[29]. In today’s cloud computing environment [1], the

operating system runs on top of a tall stack of virtual de-

vices, and only one of them needs to neglect to enforce

write ordering [47] for file-system consistency to fail.

We can thus summarize the current state of the art in

file-system crash consistency as follows. At one extreme

is a lazy, optimistic approach that writes blocks to disks in

any order (e.g., ext2 [4]); this technique does not add over-

head or induce extra delays at run-time, but requires an ex-

pensive (and often prohibitive) disk scan after a crash. At

the other extreme are eager, pessimistic approaches that

carefully order disk writes (e.g., ZFS or ext3); these tech-

niques pay a perpetual performance penalty in return for

consistency guarantees and quick recovery. We seek to

obtain the best of both worlds: the simplicity and perfor-

mance benefits of the lazy approach with the strong con-

sistency and availability of eager file systems.

We present the No-Order file system (NoFS), a simple,

optimistic, lightweight file system which maintains con-

sistency without resorting to the use of ordering. NoFS

employs a new approach to providing consistency called

backpointer-based consistency, which is built upon refer-

ences in each file-system object to the files or directories

that own it. We extend a logical framework for file sys-

tems [38] to prove that the incorporation of backpointer-

based consistency in an order-less file system guarantees a

certain level of consistency. We simplify the update proto-

col through non-persistent allocation structures, reducing

the number of blocks that need to reach disk to success-

fully complete an operation.

Through reliability experiments, we demonstrate that

NoFS is able to detect and handle a wide range of incon-

sistencies. We compare the performance of NoFS with

ext2, an order-less file system with no consistency guar-

antees, and ext3, a journaling file system with metadata

consistency. We show that NoFS has excellent perfor-

mance overall, matching or exceeding the performance of

ext2 and ext3 on various workloads. We also discuss the

limitations of our approach.



2 Background
File systems use a number of data structures to keep track

of the data on disk. These include allocation structures

such as bitmaps, and metadata such as inodes. In order to

do a single operation such as file creation, multiple data

structures have to be updated on disk. For example, in the

ext2 file system [4], in order to create an empty file, the

inode bitmap, the parent inode, the parent directory, and

the child inode all need to be updated and written to disk.

The problem of file-system consistency arises because

the system may crash at any time, resulting in some of

the updates persisting, and other updates being lost. File-

system inconsistency manifests in different ways: a miss-

ing file, a file with garbage data, or in some cases, an un-

mountable file system. File systems have different solu-

tions to this problem, with varying levels of consistency.

We first examine the different levels of consistency pro-

vided by file systems, describing the guarantees provided

by each level. We then examine the techniques used in file

systems to provide consistency and show that all of them

(except the file-system check) have at least one ordering

point in their update protocols. We discuss the disadvan-

tages of having ordering points and motivate the design of

our order-less file system.

2.1 File-system consistency
There are many levels of consistency in file systems, dif-

fering in terms of guarantees provided for data and meta-

data blocks. An inconsistency could be caused by many

things: a hardware error, memory corruption, or a system

crash. In this work, we are only concerned with inconsis-

tencies occurring due to a system crash.

Metadata consistency: The metadata structures of the

file system are entirely consistent with each other. There

are no dangling files and no duplicate pointers. The coun-

ters and bitmaps of the file system, which keep track of

resource usage, match with the actual usage of resources

on the disk. Therefore a resource is in use if and only

if the bitmaps say that it is in use. Metadata consistency

does not provide any guarantees about data.

Data consistency: Data consistency is a stronger form

of metadata consistency. Along with the guarantee about

metadata, there is the additional guarantee that all data

that is read by a file belongs to that file. In other words, a

read of file A may not return garbage data, or data belong-

ing to some file B. It is possible that the read may return

an older version of the data of file A.

Version consistency: Version consistency is a stronger

form of data consistency with the additional guarantee

that the metadata version matches the version of the re-

ferred data. For example, consider a file with a single data

block. The data block is overwritten, and a new block is

added, thereby changing the file version: the old version

had one block, and the new version has two blocks. Ver-

sion consistency guarantees that a read of the file does not

return old data from the first block and new data from the

second block (since the read would return the old version

of the data block and the new version of the file metadata).

2.2 Techniques for providing consistency
In this section, we review different approaches to provid-

ing consistency in file systems. We point out where order-

ing points are needed in each of the techniques, except for

file-system checks. An ordering point signifies that some

blocks need to be persistent on disk before other blocks.

For example, an update protocol might require that all the

file-system metadata reach the disk before all the data.

2.2.1 File-system check

The file-system check is the simplest solution to the con-

sistency problem: let the system crash and become in-

consistent, and upon reboot, fix the inconsistencies. This

technique was used in the Fast File System [18, 20] and

the ext2 file system [4]. No extra actions are required dur-

ing runtime, allowing the file system to execute without

any performance degradation. The simplicity comes with

a high cost: the entire disk needs to be scanned before in-

consistencies can be fixed in the file system. While this

was acceptable for early file systems that were megabytes

in size, scanning an entire disk (or worse, a large RAID

volume [23]) would require hours in modern systems.

Though several optimizations were developed to reduce

the running time of the file-system check [13, 19, 24], it is

still too expensive for large volumes, prompting the file-

system community to turn to other solutions.

File systems that depend upon on the file-system check

alone for consistency cannot provide data consistency,

since there is no way for the file system to differentiate

between valid data and garbage in a data block. Therefore

file reads may return garbage after a crash. The state of

every metadata structure is known after the disk scan, and

hence duplicate resource allocation and orphan resources

can be handled, ensuring metadata consistency.

2.2.2 Journaling

Journaling uses the idea of write-ahead logging [12] to

solve the consistency problem: metadata (and sometimes

data) is first logged to a separate location on disk, and

when all writes have safely reached the disk, the infor-

mation is written into its original place in the file system.

Over the years, this technique has been incorporated into

a number of file systems such as NTFS [21], JFS [2], XFS

[41], ReiserFS [31], and ext3 [45, 46].

Journaling file systems offer data or metadata consis-

tency based on whether data is journaled or not. Both

journaling modes use at least one ordering point in their

update protocols, where they wait for the journal writes

to be persisted on disk before writing the commit block.

Journaling file systems often perform worse than their



order-less peers, since information needs to be first writ-

ten to the log and then later to the correct location on disk.

Recovery of the journal is needed after a crash, but it is

usually much faster than the file-system check.

2.2.3 Soft updates

Soft updates involves tracking dependencies among in-

memory copies of metadata blocks, and carefully order-

ing the writes to disk such that the disk always sees con-

tent that is consistent with the other disk metadata. In

order to do this, it may sometimes be necessary to roll

back updates to a block at the time of write, and roll-

forward the update later. Soft updates was implemented

for FFS, and enabled FFS to achieve performance close

to that of a memory-based file system [10] . However,

it was extremely tricky to implement the ordering rules

correctly, leading to numerous bugs. Though the Feather-

stitch project [9] reduces the complexity of soft updates,

the idea has not spread beyond the BSD distributions.

Soft updates provide metadata and data consistency at

low cost. FFS with soft updates cannot tell the differ-

ence between different versions of data, and hence does

not provide version consistency. Soft updates also pro-

vide high availability since a blocking file-system check

is not required; instead, upon reboot after a crash, a snap-

shot of the file-system state is taken, and the file-system

check is run on the snapshot in the background [19].

2.2.4 Copy-on-write

The copy-on-write technique, as the name suggests, di-

rects a write to a metadata or data block to a new copy of

the block, never overwriting the block in place. Once the

write is persisted on disk, the new information is added

to the file-system tree. The ordering point is in-between

these two steps, where the file system atomically changes

between the old view of the metadata to one which in-

cludes the new information. Copy-on-write has been used

in a number of file systems [15, 32], with the most recent

being ZFS [3] and btrfs [48].

Copy-on-write file systems provide metadata, data, and

version consistency due to the use of logging and trans-

actions. Modern copy-on-write file systems like ZFS

achieve good performance, though at the cost of very high

complexity. The large size of these file systems (tens of

thousands of lines of code [35]) is partly due to the copy-

on-write technique, and partly due to advanced features

such as storage pools and snapshots.

2.3 Summary
Table 1 compares consistency techniques on complexity,

performance, availability, and consistency guarantees pro-

vided. Observe that every technique that provides consis-

tency and availability in file systems uses ordering points

in its update protocol. Ordering points lead to complexity

in the file-system code, paving the way for bugs and de-

creased reliability. File systems which use ordering points
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√
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Metadata journaling
√

× × MM H

Data journaling
√ √ √

MM H

Soft Updates
√ √

× H H H

Copy-on-write
√ √ √

H H H

BBC
√ √

× L H H

Table 1: Consistency techniques. The table compares var-
ious approaches to providing consistency in file systems. Leg-

end: L – Low, M – Medium, H – High. We observe that only

backpointer-based consistency (BBC) provides data consistency

with low complexity, high performance, and high availability.

perform worse than order-less file systems on some work-

loads. The use of ordering points is built upon lower-

level functionality such as the SATA flush command [43];

when disks do not reliably flush their cache [36], ordering

points fail to enforce consistency and more complicated

measures have to be taken [29]. Thus there is a need for a

technique which provides consistency without sacrificing

simplicity, availability, or performance. We believe that

backpointer-based consistency fulfills this need.

3 Design
We present the design of the No-Order file system (NoFS),

a lightweight, consistent file system with no ordering

points in its update protocol. NoFS provides access to

files immediately upon mounting, with no need for a file-

system check or journal recovery.

In this section, we introduce backpointer-based consis-

tency (BBC), the technique used in NoFS for maintaining

consistency. We use a logical framework to prove that

BBC provides data consistency in NoFS. We discuss how

BBC can be used to detect and recover from inconsisten-

cies, and elaborate on why allocation structures are not

persisted to disk in NoFS.

3.1 Overview
The main challenge in NoFS is maintaining consistency

without ordering points. Consistency is closely tied to

logical identity in file systems. Inconsistencies arise due

to confusion about an object’s identity; for example, two

files may each claim to own a data block. If the block’s

true owner is known, such inconsistencies could be re-

solved. Associating each object with its logical identity is

the crux of the backpointer-based consistency technique.

Employing backpointer-based consistency allows

NoFS to detect inconsistencies on-the-fly, upon user

access to corrupt files and directories. The presence of

a corrupt file does not affect access to other files in any

way. This property enables immediate access to files

upon mounting, avoiding the downtime of a file-system



check or journal recovery. A read is guaranteed to never

return garbage data, though stale data may be returned.

We intentionally avoided using complex rules and de-

pendencies in NoFS. We simplified the update protocols,

not persisting allocation structures to disk. We maintain

in-memory versions of allocation structures and discover

data and metadata allocation information in the back-

ground while the file system is running.

3.2 Backpointer-based consistency
Backpointer-based consistency is built around the logical

identity of file-system objects. The logical identity of a

data block is the file it belongs to, along with its position

inside the file. The logical identity of a file is the list of

directories that it is linked to. This information is em-

bedded inside each object in the form of a backpointer.

Upon examining the backpointer of an object, the parent

file or directory can be determined instantly. Blocks have

only one owner, while files are allowed to have multiple

parents. Figure 1 illustrates how backpointers link file-

system objects in NoFS. As each object in the file system

is examined, a consistent view of the file-system state can

be incrementally built up.

Though conceptually simple, backpointers allow detec-

tion of a wide range of inconsistencies. Consider a block

that is deleted from a file, and then assigned to another

file and overwritten. If a crash happens at any point dur-

ing these operations, some subset of the data structures on

disk may not be updated, and both files may contain point-

ers to the block. However, by examining the backpointer

of the block, the true owner of the block can be identified.

In designing NoFS, we assume that the write of a block

along with its backpointer is atomic. This assumption is

key to our design, as we infer the owner of the data block

by examining the backpointer. Current SCSI drives allow

a 520-byte atomic write to enable checksums along with

each 512-byte sector [42]; we envision that future drives

with 4-KB blocks will provide similar functionality.

Backpointers are similar to checksums in that they ver-

ify that the block pointed to by the inode actually belongs

to the inode. However, a checksum does not identify the

owner of a data block; it can only confirm that the cor-

rect block is being pointed to. Consistency and recovery

require identification of the owner.

3.2.1 Intuition

We briefly provide some intuition about the correctness of

using the backpointer-based consistency technique to en-

sure data consistency. We first consider what data consis-

tency and version consistency mean, and the file-system

structures required to ensure each level of consistency.

Data consistency provides the guarantee that all the

data accessed by a file belongs to that file; it may not

be garbage data or belong to another file. This guarantee

is obtained when a backpointer is added to a data block.

Directory 

Links 

Backpointers 

File 

Data blocks 

Backpointers 

Data block 

Backpointer 

Figure 1: Backpointers. The figure shows a conceptual view
of the backpointers present in NoFS. The file has a backpointer

to the directory that it belongs to. The data block has a back-

pointer to the file it belong to. Files and directories have many

backpointers while data blocks have a single backpointer.

Consider a file pointing to a data block. Upon reading

the data block, the backpointer is examined. If the back-

pointer matches the file, then the data block must have

belonged to the file, since the backpointer and the data

inside the block were written together. If the data block

was reallocated to another file and written, it would be re-

flected in the backpointer. Hence, no ordering is required

between writes to data and metadata since the data block’s

backpointer would disagree in the event of a crash. Note

that the data block could have belonged to the file at some

point in the past; the backpointer does not provide any in-

formation about when the data block belonged to the file.

Thus, the file might be pointing to an old version of the

data block, which is allowed under data consistency.

Version consistency is a stricter form of data consis-

tency which requires that in addition to belonging to the

correct file, all accessed data must be the correct version.

Stale data is not allowed in this model. Backpointers

are not sufficient to enforce version consistency, as they

contain no information about the version of a data block.

Hence more information needs to be added to the file sys-

tem. Each data block has a timestamp indicating when it

was last updated. This timestamp is also stored in the in-

ode containing the data block. When a block is accessed,

the timestamp in the inode and data block must match.

Since timestamps are a way to track versions, the versions

in the inode and data block can be verified to be the same,

thereby providing version consistency.

We decided against including timestamps in NoFS

backpointers because updating timestamps in backpoint-

ers and metadata reduces performance and induces a con-

siderable amount of storage overhead. Timestamps need

to be stored with every object and its parent. Every up-

date to an object involves an update to the parent object,

the parent’s parent, and so on all the way up to the root.

Furthermore, doing so works against our goal of keeping

the file system simple and lightweight; hence, NoFS pro-

vides data consistency, but not version consistency.

The full proof involves extending the logical framework

of Sivathanu et al. [38] to prove that an order-less file sys-

tem employing the backpointer-based consistency tech-

nique provides data consistency. We further prove that



if the backpointer contains an update timestamp, the file

system provides version consistency. The full proof can

be found in Appendix A.

3.2.2 Detection and Recovery

In NoFS, detection of an inconsistency happens upon ac-

cess to corrupt files or data. When a data or metadata

block is accessed, the backpointer is checked to verify that

the parent metadata block has the same information. If a

file is not accessed, its backpointer is not checked, which

is why the presence of corrupt files does not affect access

to other files: checking is performed on-demand.

This checking happens both at the file level and the data

block level. When a file is accessed, it is checked to see

whether it has a backpointer to its parent directory. This

check allows identification of deleted files where the di-

rectory did not get updated, and files which have not been

properly updated on disk.

NoFS is able to recover from inconsistencies by treating

the backpointer as the true source of information. When

a directory and a file disagree on whether the file belongs

to the directory or not, the backpointer in the file is exam-

ined. If the backpointer to the directory is not found, the

file is deleted from the directory. Issues involving blocks

belonging to files are similarly handled.

3.3 Non-persistent allocation structures
In an order-less file system, allocation structures like

bitmaps cannot be trusted after a crash, as it is not known

which updates were applied to the allocation structures on

disk at the time of the crash. Any allocation structure will

need to be verified before it can be used. In the case of

global allocation structures, all of the data and metadata

referenced by the structure will need to be examined to

verify the allocation structure.

Due to these complexities, we have simplified the up-

date protocols in NoFS, making the allocation structures

non-persistent. The allocation structures are kept entirely

in-memory. NoFS starts out with empty allocation struc-

tures and allocation information is discovered in the back-

ground, while the file system is online. NoFS can verify

whether a block is in use by checking the file that it has a

backpointer to; if the file refers to the data block, the data

block is considered to be in use. Similarly, NoFS can ver-

ify whether a file exists or not by checking the directories

in its backpointers. Thus NoFS can incrementally learn

allocation information about files and blocks.

4 Implementation
We now present the implementation of NoFS. We first de-

scribe the operating system environment, and then discuss

the implementation of the two main components of NoFS:

backpointers and non-persistent allocation structures. We

describe the backpointer operations that NoFS performs

for each file-system operation.

Action Backpointer operations

Create Write backlink into new inode

Read Translate offset

Verify block backpointer in data block

Write Translate offset

Verify block backpointer in data block

Append Translate offset

Write block backpointer into data block

Truncate No backpointer operations

Delete No backpointer operations

Link Write backlink into inode

Unlink Remove backlink from inode

mkdir Write directory entry backpointer into

directory block

rmdir No backpointer operations

Table 2: NoFS backpointer operations. The table lists
the operations on backpointers caused by common file system

operations. Note that all checks are done in memory.

4.1 Operating system environment
NoFS is implemented as a loadable kernel module in-

side Linux 2.6.27.55. We developed NoFS based on ext2

file-system code. Since NoFS involves changes to the

file-system layout, we modified the e2fsprogs tools

1.41.14 [44] used for creating the file system.

Linux file systems cache user data in a unified page

cache [6]. File reads (except direct I/O) are always sat-

isfied from the page cache. If the page is not up-to-date at

the time of read, the page is first filled with data from the

disk and then returned to the user. File writes cause pages

to become dirty, and an I/O daemon called pdflush pe-

riodically flushes dirty pages to disk. Due to this tight

integration between the page cache and the file system,

NoFS involves modifications to the Linux page cache.

4.2 Backpointers
NoFS contains three types of backpointers. We describe

each of them in turn, pointing out the objects they con-

ceptually link, and how they are implemented in NoFS.

Figure 2 illustrates how various objects are linked by dif-

ferent backpointers. Every file-system operation that in-

volves the creation or access of a file, directory, or data

block involves an operation on backpointers. These oper-

ations are listed in Table 2.

4.2.1 Block backpointers

Block backpointers are {inode number, block offset} pairs,
embedded inside each data block in the file system. The

first 8 bytes of every data block are reserved for the back-

pointer. Note that we need to embed the backpointer in-

side the data block since disks currently do not provide

the ability to store extra data along with each 4K block

atomically. The first 4 bytes denote the inode number of

the file to which the data block belongs. The second 4

bytes represent the logical block offset of the data block
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Figure 2: Implementation of backpointers. The figure
shows the different kinds of backpointers present in NoFS. foo is

a child of the root inode /. This link is represented by a backlink

from foo to /. Similarly, the data block is a part of foo, and

hence has a backpointer to foo. Directory blocks also contain

backpointers, in the form of dot entries to their owner’s inode.

within the file. Given this information, it is easy to check

whether the file contains a pointer to the data block at the

specified offset. Indirect blocks contain backpointers too,

since they belong to a particular file. However, since the

indirect block data is not logically part of a file, they are

marked with a negative number for the offset.

Our implementation depends on the read and write

system calls being used; data is modified as it is passed

from the page cache to the user buffer and back during

these calls. When these calls are by-passed (via mmap)

or the page cache itself is by-passed (via direct IO mode),

verifying each access becomes challenging and expensive.

We do not support mmap or direct IO mode in NoFS.

Insertion: The data from a write system call goes

through the page cache before being written to disk. We

modified the page cache so that when a page is requested

for a disk write, the backpointer is written into the page

first and then returned for writing. The block offset trans-

lation was modified to take the backpointer into account

when translating a logical offset into a block number.

Verification: Once a page is populated with data from

the disk, the page is checked for the correct backpointer.

If the check fails, an I/O error is returned. If this is the first

time that the data block is accessed, the inode’s attributes

(size and number of blocks) are updated. Note that the

page is not checked on every access, but only the first time

that it is read from disk. Assuming memory corruption

does not occur [51], this level of checking is sufficient.

4.2.2 Directory backpointers

The dot directory entry serves as the backpointer for di-

rectory blocks, as it points to the inode which owns the

block. However, the dot entry is only present in the first

directory block. We modified ext2 to embed the dot entry

in every directory block, thus allowing the owner of any

directory block to be identified using the dot entry.

Though the block backpointer could have been used in

directory blocks as well, we did not do so for two reasons.

First, the structured content of the directory block enables

the use of the dot entry as the backpointer, simplifying our

implementation. Second, the offset part of the block back-

pointer is unnecessary for directory blocks since directory

blocks are unordered and appending a directory block at

the end suffices for recovery.

Insertion: When a new directory entry is being added

to the inode, it is determined whether a new directory

block will be needed. If so, the dot entry in added in the

new block, followed by the original directory entry.

Verification: Whenever the directory block is ac-

cessed, such as in readdir, the dot entry is cross-

checked with the inode. If the check fails, an I/O error

is returned and the directory inode’s attributes (size and

block count) are updated.

4.2.3 Backlinks

An inode’s backlinks contain the inode numbers of all its

parent directories. Every valid inode must have at least

one parent. Hard linked inodesmay havemultiple parents.

We modified the file-system layout to add space for

backlinks inside each inode. The inode size is increased

from the default 128 bytes to 256 bytes, enabling the

addition of 32 backlinks, each of size 4 bytes. The

mke2fs tool was modified to create a backlink between

the lost+found directory and the root directory when

the file system is created.

Insertion: When a child inode is linked to a parent di-

rectory during system calls such as create or link, a

backlink to the parent is added in the child inode.

Verification: At each step of the iterative inode lookup

process, we check that the child inode contains a backlink

to the parent. A failed check stops the lookup process and

returns an I/O error. If this is the first time the inode is

accessed via this particular path, the number of links for

the inode is updated.

4.2.4 Detection

Every data block is checked for a valid backpointer when

it is read from the disk into the page cache. We as-

sume that neither memory nor on-disk corruption hap-

pens; hence, it is safe to limit checking to when a data

block is first brought into main memory. It is this property

that leads to the high performance of NoFS; because disk

I/O is several orders of magnitude slower than in-memory

operations, the backpointer check can be performed on

disk blocks with very low overhead.

Inode backlink checking occurs during directory path

resolution. The child inode’s backlink to the parent in-

ode is checked. Since both inodes are typically in mem-

ory during directory path resolution, the backlink check

is a quick in-memory check, and does not degrade perfor-

mance significantly, since a disk read is not performed to

obtain the parent or child inode.

Note that the detection of inconsistency happens at the

level of a single resource, such as an inode or a data
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Figure 3: Handling crashes with backpointers. The figure presents three failure scenarios during the rename of a file, and
the creation of a file with 1 byte of data. In each scenario, employing backpointers allows us to detect inconsistencies such as both

the old and new parents claiming the child, and the child pointing to a data block that hasn’t been updated.

block. Verifying that a data block belongs to an inode

can be done without considering any other object in the

file system. The presence of corrupt files or blocks does

not affect the reads or writes to other non-corrupt files.

As long as corrupt blocks are not accessed, their presence

can be safely ignored by the rest of the system. This fea-

ture contributes to the high availability of NoFS: a file-

system check or recovery protocol is not needed upon

mount. Files can be immediately accessed, and any ac-

cess of a corrupt file or block will return an error. This

feature also allows NoFS to handle concurrent writes and

deletes. Even if many writes and deletes were going on at

the time of a crash, NoFS can still detect inconsistencies

by considering each inode and data block pair in isolation.

Let us illustrate this with an example. Upon mount, we

run the command cat /dir1/file1, which involves

several checks in the file system. First, the directory block

for dir1 is fetched, and checked whether it has a direc-

tory backpointer to the root directory. Similarly, when the

file1 inode is retrieved from disk, it is checked to see if

it has a backlink to dir1. When the data block of file1

is retrieved, it is checked to verify that the data block has

a block backpointer to file1. If any of these checks fail,

an error is returned to the user.

Figure 3 illustrates the detection of inconsistencies dur-

ing different crash scenarios for two operations: renam-

ing a file and creating a single byte file. The state of data

structures in memory before and after the update is first

shown. In each crash scenario, a different subset of the

in-memory updates is successfully written to disk. The

state of various pointers on disk after the crash is shown,

followed by the consistent logical view that NoFS obtains

after verification using back pointers. For example, dur-

ing the rename, a crash may lead to the file being listed

in both the old and new directories. However, the logical

status shows that upon backpointer verification, the true

owner of the child inode is found using the backlink.

4.2.5 Recovery

Having backlinks and backpointers allows recovery of lost

files and blocks. Files can be lost due to a number of rea-

sons. A rename operation consists of a unlink and a link

operation. An inopportune crash could leave the inode not

linked to any directory. A crash during the create opera-

tion could also lead to a lost file. Such a lost file can be

recovered in NoFS, due to the backlinks inside each in-

ode. Each such inode is first checked for access to all its

data blocks. If all the data blocks are valid, it is a valid

subtree in the file system and can be inserted back into

the directory hierarchy (using the backlinks information)

without compromising the consistency of the file system.

When adding a directory entry for the recovered inode, it

is correct to append the directory entry at the end of the

directory, since directory entries are an unordered collec-

tion; there is no meaning attached to the exact offset inside

a directory block where a directory entry is added.

In a similar fashion, it it possible to recover data blocks

lost due to a crash before the inode is updated. A data



block, once it has been determined to belong to an inode,

cannot be embedded at an arbitrary point in the inode data.

It is for this reason that the offset of a data block is embed-

ded in the data block, along with the inode number. The

offset allows a data block to be placed exactly where it

belongs inside a file. Indirect blocks of a file do not have

the offset embedded, as they do not have a logical offset

within the file. Indirect blocks are not required to recon-

struct a file; only data blocks and their offsets are needed.

Using reconstruction of files from their blocks on disk,

files can be potentially “undeleted”, provided that the

blocks have not been reused for another file. We have not

implemented undelete in NoFS. Block allocation would

need to be tweaked to not reuse blocks for a certain

amount of time, or until a certain free-space threshold is

reached. Undelete might turn up stale data because NoFS

does not support version consistency; the data blockmight

have been part of an older version of the inode.

4.3 Non-persistent allocation structures
The allocation structures in ext2 are bitmaps and group

descriptors. These structures are not persisted to disk in

NoFS. In-memory versions of these data structures are

built using themetadata scanner and data scanner. Statis-

tics usually maintained in the group descriptors, such as

the number of free blocks and inodes, are also maintained

in their in-memory versions.

Upon file-system mount, in-memory inode and block

bitmaps are initialized to zero, signifying that every inode

and data block is free. Since every block and inode has a

backpointer, it can be determined to be in use by examin-

ing its backlink or backpointer, and cross-checking with

the inode mentioned in the backpointer. As every object

is examined, consistent file-system state is built up and

eventually complete knowledge of the system is achieved.

In the file system, a block or inode that is marked free

could mean two things: it is free, or it has not been ex-

amined yet. Since all blocks and inodes are marked free

at mount time, inodes need to be examined to check that

they are indeed free; hence blocks or inodes that have not

been examined yet cannot be allocated. In order to mark

which inodes or blocks have been examined, we added a

new bitmap each for inodes and data blocks called the va-

lidity bitmap. If a block or inode has been examined and

marked as free, it is safe to use it. Blocks not marked as

valid could actually be used blocks, and hence must not

be used for allocation. The examination of inodes and

blocks are carried out by two background threads called

the metadata scanner and data scanner. The two threads

work closely together in order to efficiently find all the

used inodes and blocks on disk.

4.3.1 Metadata Scan

Each inode needs to be examined in order to find out if it

is in use or not. The backlinks in the inode are found, and

the directory blocks of the referred inodes are searched

for a directory entry to this inode. Note that the directory

hierarchy is not used for for the scan. The disk order of

inodes is used instead, as this allows for fast sequential

reads of the inode blocks.

Once an inode is determined to be in use, its data blocks

have to verified. This information is communicated to the

data scanner by adding the data blocks of the inode to a

list of data blocks to be scanned. The inode information is

also attached to the list so that the data scanner can sim-

ply compare the backpointer value to the attached value

to determine whether the block is used. However, if the

inode has indirect blocks, the inode data blocks are ex-

plored and verified immediately. An inode with indirect

blocksmay contain thousands of data blocks, and it would

be cumbersome to add all those data blocks to the list and

process them later; hence inode data is verified immedi-

ately by the metadata scanner. Each inode is marked valid

after it has been scanned, allowing inode allocation to oc-

cur concurrently with the metadata scan.

4.3.2 Data Scan

Observe that a data block is in use only if it is pointed to by

a valid inode which is in use; hence only data blocks that

belong to a valid inode need to be checked, which reduces

the number of blocks that need to be checked drastically.

The data block scanner works off a list of data blocks

that the metadata scanner provides. Each list item also

includes information about the inode that contained the

data block. Therefore, the data scanner simply needs to

read the inode off the disk and compare the backpointer

inode to the inode information in the list item. The data

block is marked valid after the examination is complete.

Since the data scanner only looks at blocks referred

to by inodes, there may be plenty of unexamined blocks

which are not referred and potentially free. These blocks

cannot be marked as valid and free until the end of the data

scan, when all valid inodes have been examined. While

the scan is running, the file system may indicate that there

are no free blocks available, even if there are many free

blocks in the system. In order to fix this, we implemented

another scanner called the sequential block scanner which

reads data blocks in disk order and verifies them one by

one. This thread is only started if no free blocks are found,

and the data scanner is still running.

4.4 Limitations
The design of NoFS involves a number of trade-offs. We

describe the limitations that arise from our design choices.

Recovery: NoFS was designed to be as lightweight as

possible, avoiding heavy machinery for logging or copy-

on-write. As a result, file-system recovery is limited. For

example, consider a file that is truncated, and later writ-

ten with new data. After a crash in the middle of these

updates, the file may point to a block that it does not



own. This inconsistency is detected upon access to the

data block. However, the version of the file which pointed

to its old data cannot be recovered easily. By utilizing

logging, a file system like ext3 provides the ability to pre-

serve data in the event of a crash.

Transactions: NoFS does not provide atomic transac-

tions. Operations can be partially applied to different data

structures. For example, if the file system crashes in the

middle of a rename, it is possible that the file appears both

in the old and new directories, as we do not validate direc-

tory entries during a readdir. Though the user will be

able to access the file via only one directory, the ‘old-or-

new’ aspect of transactions is not provided.

Accessing unverified objects: For large disks, it is

possible that an object is accessed before the scan has

verified it. Accessing such unverified objects involves a

performance cost. The performance cost is felt during dif-

ferent system calls for inodes and data blocks.

Running the stat system call on an unverified inode

may result in invalid information, as the number of blocks

recorded in the inode may not match the actual number

of blocks that belong to the inode on disk. In order to

handle this, NoFS checks the inode status upon a stat

call, and verifies the inode immediately if required, and

then allows the system call to proceed. Since verification

involves checking every data block referred to by the in-

ode, the verification can take a lot of time. Running ls

-l on a large directory of unverified files involves a large

performance penalty arising from reading every file. For

verified inodes, the stat will always return valid data,

as the inode’s attributes are updated whenever an error is

encountered on block access. Note that NoFS does not

check directory entries for correctness.

In the case of an unverified data block, no additional I/O

is incurred during reads and partial writes since both in-

volve reading the block off the disk anyway. However, in

the case of a block overwrite, the block has to be read first

to verify that it belongs to the inode before overwriting it.

As a result, a write in ext2 is converted into a read-modify-

write in NoFS, effectively cutting throughput in half. It

should be noted that this happens only on the first over-

write of each unverified block. After the first overwrite,

the block has been verified, and hence the backpointer no

longer needs to be checked.

Thus it can be seen that accessing unverified objects

involves a large performance hit. However, these costs

are only incurred during the window between file-system

mount and scan completion.

5 Evaluation

We now evaluate NoFS in two categories: reliability and

performance. For reliability testing, we artificially prevent

writes to certain sectors from reaching the disk, and then

observe how NoFS handles the resulting inconsistency.

ext2 NoFS

System call Blocks dropped Error D
et
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?
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n
?

mkdir Cinode PBD , COB × –
√
R , CEI

mkdir Cdir CBD
√
CED

√
CED

mkdir Pdir COI , COB × –
√

R

mkdir Cinode , Cdir PBD , CBD × –
√
CEI

mkdir Cinode , Pdir COB × –
√

R

mkdir Cdir , Pdir COI × –
√

R

link Cinode CHL × –
√
CEN

link Pdir COI × –
√

R

unlink Cinode CHL × –
√
CEO

unlink Odir PBD × –
√
CEI

rename Ndir OBD × –
√
CEI

rename Odir COI × –
√

R

write Cdata CGD × –
√
CEB

write Cind CGD × –
√
CEB

write Cinode , Cdata COB × –
√

R

write Cinode , Cind COB × –
√

R

write Cdata , Cind CGD × –
√
CEB

delete-create Odir OBD × –
√
CEO

truncate-write Oinode OTP × –
√
OEB

unlink-link Odir OBD × –
√
CEO

General Key

C Child inode File inode

P Parent dir Directory block

O Old file/parent data Data block

N New file/parent ind Indirect block

Key for Error Key for Action

BD Bad dir entry R Block/inode reclaimed on scan

OB Orphan block EI Error on inode access

OI Orphan inode ED Error on data access

HL Wrong hard link count EN Error on access via new path

GD Garbage data EO Error on access via old path

TP 2 inodes refer to 1 block EB Error on block access

Table 3: Reliability testing. The table shows how NoFS

reacts to various inconsistencies that occur due to updates not

reaching the disk. The behavior of ext2 is also shown. NoFS

detects all inconsistencies and reports an error, while ext2 lets

most of the errors pass by undetected.

For performance testing, we evaluate the performance

of NoFS on a number of micro and macro-benchmarks.

We compare the performance of NoFS to ext2, an order-

less file system with no consistency, and ext3 (in ordered

mode), a journaling file systemwith metadata consistency.

5.1 Reliability

We test whether NoFS can handle inconsistencies caused

by a file-system crash. When a crash happens, any sub-

set of updates involved in a file-system operation could

be lost. We emulate different system-crash scenarios by

artificially restricting blocks from reaching the disk, and

restarting the file-system module. The restarted module

will see the results of a partially completed update on disk.

We use a pseudo-device driver to prevent writes on tar-

get blocks and inodes from reaching the disk drive. We

interpose the pseudo-device driver in-between the file sys-

tem and the physical device driver, and all writes to the

disk drive go via the pseudo-device driver. The file sys-

tem and the device driver communicate through a list of

sectors. In the file system, we calculate the on-disk sec-



tors of target blocks and inodes and add them to the black

list of sectors. All writes to these sectors are ignored by

the device driver. Thus, we are able to target inodes and

blocks in a fine grained manner.

Table 3 lists the behavior of ext2 and NoFS when 20

different inconsistencies are caused by dropping some of

the blocks involved in each file-system operation. For ex-

ample, consider the mkdir operation. It involves adding a

directory entry to the parent directory, updating the new

child inode, and creating a new directory block for the

child inode. We do not consider updates to the access

time of the parent inode. In the reliability test, we would

drop writes to different combinations of these blocks, and

observe the actions taken by the file system. For instance,

if the write to the new child inode is dropped, it creates

a bad directory entry in the parent directory, and orphans

the directory block of the new child inode. We observe

whether the file system detects this corrupt directory en-

try, and whether the orphan block is reclaimed. Both these

actions are performed successfully in NoFS, whereas ext2

allows the user to access a garbage inode, and the block

remains an orphan until the next file-system check.

The table entries which have two system calls denote

the second system call happening after the first system

call. These particular combinations were selected because

they share a common resource. For example, truncate-

write explores the case when a data block is deleted from

a file and reassigned to another file. If the write to the

truncated file inode fails, both files now point to the same

data block, leading to an inconsistency. Similarly unlink-

link and delete-create may share the same inode.

Some inconsistencies, like a corrupt directory block,

are detected by ext2. Many other inconsistencies, such as

reading garbage data, are not detected by ext2. All incon-

sistencies are detected by NoFS, and an error is returned

to the user. When blocks and inodes are orphaned due to a

crash, they are reclaimed by NoFS when the file system is

scanned for allocation information upon reboot. Some of

the inconsistencies could lead to potential security holes:

for example, linking a sensitive file for temporary access,

and removing the link later. If the directory block is not

written to disk, the file could still be accessed, providing

a way to read sensitive information. These security holes

are detected upon access in NoFS, and any operation on

them leads to an error.

5.2 Performance
To evaluate the performance of NoFS, we run a series of

micro-benchmark and macro-benchmark workloads. We

also observe the performance of NoFS at mount time,

when the scan threads are still active. We show that NoFS

has comparable performance to ext2 in most workloads,

and that the performance of NoFS is reasonable when the

scan threads are running in the background. We also mea-

sure the scan running time when the file system is popu-
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Figure 4: Micro-benchmark performance. This

figure compares file-system performance on various micro-

benchmarks. The sequential benchmarks involve reading and

writing a 1 GB file. The random benchmarks involve 10K ran-

dom reads and writes in units of 4088 bytes (4096 bytes - 8 byte

backpointer) across a 1 GB file, with a fsync after 1000 writes.

The creation and deletion benchmarks involve 100K files spread

over 100 directories, with a fsync after every create or delete.

lated with data, the rate at which NoFS scans data blocks

to find free space, and the performance cost incurredwhen

the stat system call is run on unverified inodes.

Our experiments were performed on a machine with a

AMD 1Ghz Opteron processor, and 1 GB of memory run-

ning Linux 2.6.27.55. The disk drive used in the experi-

ment was a Seagate Barracuda 160 GB, which provides 75

MB/s read throughput and 70 MB/s write throughput. All

experiments were performed on a cold file-system cache.

The experimentswere stable and repeatable. The numbers

reported are the average over 10 runs.

5.2.1 Micro-benchmarks

We run a number of micro-benchmarks, focusing on dif-

ferent operations like sequential write and random read.

Figure 4 illustrates the performance of NoFS on these

workloads. We observe that NoFS has minimal overhead

on the read and write workloads. For the sequential write

workload, the performance of ext3 is worse than ext2 and

NoFS due to the journal writes that ext3 performs.

The creation and deletion workloads involve doing a

large number of creates/deletes of small files followed by

fsync. This workload clearly brings out the performance

penalty due to ordering points. The throughput of NoFS
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Figure 5: Macro-benchmark performance. The figure shows the throughput achieved on various application workloads.
The sort benchmark is run on 500 MB of data. The varmail benchmark was run with parameters 1000 files, 100K mean dir width,

16K mean file size, 16 threads, 16K I/O size and 16K mean append size. The file and webserver benchmarks were run with the

parameters 1000 files, 20 dir width, 1 MB I/O size and 16K mean append size. The mean file size was 128K for the fileserver

benchmark and 16K for the webserver benchmark. Fileserver benchmark used 50 threads while webserver used 100 threads.

is twice that of ext3 on the file creation micro-benchmark,

and 70% higher than ext3 on the file deletion benchmark.

5.2.2 Macro-benchmarks

We run the sort and Filebench [8] macro-benchmarks to

assess the performance of NoFS on application work-

loads. Figure 5 illustrates the performance of the three

file systems on this macro-benchmark. We selected the

sort benchmark because it is CPU intensive. It sorts a

500 MB file generated by the gensort tool [22], using the

command-line sort utility. The performance of NoFS is

similar to that of ext2 and ext3, demonstrating that NoFS

has minimal CPU overhead.

We run three workloads on Filebench: fileserver, web-

server, and varmail. The fileserver workload emulates

file-server activity, performing a sequence of creates,

deletes, appends, reads, and writes. The webserver work-

load emulates a multi-threaded web host server, perform-

ing sequences of open-read-close on multiple files plus a

log file append, with 100 threads. The varmail workload

emulates a multi-threaded mail server, performing a se-

quence of create-append-sync, read-append-sync, reads,

and deletes in a single directory.

We believe these benchmarks are representative of the

different kind of I/O workloads performed on file sys-

tems. The performance of NoFS matches ext2 and ext3 on

all three workloads. NoFS outperforms ext3 by 18% on

the varmail benchmark, demonstrating the performance

degradation in ext3 due to ordering points.

5.2.3 Scan performance

We evaluate the performance of NoFS at mount time,

when the scanner is still scanning the disk for free re-

sources. The scanner is configured to run every 60 sec-

onds, and each run lasts approximately 16 seconds. In or-

der to understand the performance impact due to scanning,

we do two experiments involving 10 sequential writes of

200 MB each. The writes are spaced 30 seconds apart.

In the first experiment, we start the writes at mount

time. The scanning of the disk and the sequential write

is interleaved at 0s, 60s, 120s, and so on, leading to the

write bandwidth dropping to half. When the sequential

writes are run at 30s, 90s, 150s, and so on, the writes

achieve peak bandwidth. In the second experiment, the

writes were once again spaced 30s apart, but were started

at 20s, after the end of the first scan run. In this experi-

ment, the writes are never interleaved with the scan reads,

and hence suffer no performance degradation. Graph (a)

in Figure 6 illustrates these results.

Once the scan finishes, writes will once again achieve

peak bandwidth. Running the scan runs without a break

causes the scan to finish in around 90 seconds on an empty

file system. Of course, one can configure this trade-off as

need be; the larger the interval between scans, the smaller

the performance impact during this phase, but the longer

it takes to fully discover the free blocks of the system.

Graph (b) in Figure 6 depicts the time taken to finish

the scan (both metadata and data) when the file system

is increasingly populated with data. In this experiment,

the scan is run without a break upon file-system mount.

All the data in the file system are in units of 1 MB files.

The running time of the scan increases slowly when the

amount of data in the file system is increased, reaching

about 140s for 1 GB of data. We also performed an exper-

iment where we created a variable number of empty files

in the file systems and measured the time for the scan to

run. We found that the time taken to finish the scan re-

mained the same irrespective of the number of empty files

in the system. Since every inode in the system is read and

verified, irrespective of whether it is actively used in the

file system or not, the scan time remains constant.

During a file write, if there are no free blocks, the se-

quential block scanner is invoked in order to scan data

blocks and find free space. The write will block until free

space is found. Graph (c) illustrates the performance of

the sequential block scanner. The latency to scan 100 MB

is around 3 seconds, and 1 GB of data is scanned in around

30 seconds. The throughput is currently around 30 MB/s,

so there is opportunity for optimizing its performance.

As mentioned in Section 4.4, when stat is run on an

unverified inode, NoFS first verifies the inode by check-

ing all its data blocks. We ran an experiment to estimate

the cost of such verification. We created four identical di-

rectories, each filled with a number of 1 MB files. Every

140 seconds, ls -li was run on one directory, leading
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Figure 6: Scan performance. Figure (a) depicts the reduction in write bandwidth when sequential writes interleave with the
background scan. Figure (b) shows that the running of the scan increases slowly with the amount of data in the file system. Figure

(c) illustrates the rate at which data blocks are scanned. Figure (d) demonstrates the performance cost incurred when the stat

system call is run on unverified inodes.

to a stat on each inode in the directory. The background

scan started at file-system mount and finished at approxi-

mately 250 seconds. We varied the number of files from

128 to 512 and measured the time taken for ls -li in

each experiment. Graph (d) illustrates the results. As ex-

pected, the time taken for ls to complete increases with

the total data in the directory. After the scan completion

at 250 seconds, all the inodes are verified, and hence ls

finishes almost instantly.

6 Discussion

We have demonstrated that NoFS has better performance

than journaling file systems such as ext3, while provid-

ing better consistency guarantees. However, it should be

noted that NoFS differs from ext3 in two important as-

pects. First, it does not provide atomic transactions. Sec-

ond, NoFS has no redundancy anywhere in the system.

Part of the reason ext3 performsworse than NoFS is its ex-

tra log writes. By writing transaction updates to a log first,

ext3 provides both metadata consistency, and the ability

to preserve old data if the transaction fails before commit.

NoFS only provides the former.

Given its current design, we feel an excellent use-case

for NoFS would be as the local file system of a distributed

file system such as the Google File System [11] or the

Hadoop File System [37]. In such a distributed file sys-

tem, reliable detection of corruption is all that is required,

since redundant copies of data would be stored across the

system. If the master controller is notified that a particular

block has been corrupted in the local file system of a par-

ticular node, it can make additional copies of the data in

order to counter the corruption of the block. Furthermore,

such distributed file systems typically have large chunk

sizes. As shown in section 5, NoFS provides very good

performance on large sequential reads and writes, and is

well suited for such workloads.

It should be noted that backpointer-based consistency

could also be used to help ensure integrity in a conven-

tional file system against bugs or data corruption. The

simplicity and low overhead of backpointers makes such

an addition to an existing file system feasible.

By eliminating ordering, backpointer-based consis-

tency allows the file system to maintain consistency with-

out depending upon lower-layer primitives such as the

disk cache flush. Previous research has shown that SATA

drives do not always obey the flush command [29, 36],

which is essential for file systems to implement ordering.

IDE drives have also been known to disobey flush com-



mands [28, 39]. Using backpointer-based consistency al-

lows a file system to run on top of such misbehaving disks

and yet maintain consistency.

Potential users of NoFS should note two things. One,

any application which requires strict ordering among file

creates and writes should not use NoFS. Two, if there are

corrupt files in the system, NoFS will only detect them

upon access and not upon file-system mount. Some users

may prefer to find out about corruption at mount time

rather than when the file system is running. Such a use

case aligns better with a file system such as ext3.

7 Related Work

The idea of using information inside or near the block to

detect errors is not new. Cambridge File Server [7] used

certain bits in each cylinder (cylinder map) to store the

allocation status of blocks in that cylinder. Cedar File

System [12] used ‘labels’ inside pages to check their al-

location status. Embedding logical identity of blocks (in-

ode number + offset) has been done in RAID to recover

from lost and misdirected writes [16]. Transactional flash

[27] embeds commit records inside every page to pro-

vide transactions and recovery. However, NoFS is the first

work that we know of that clearly defines the level of con-

sistency that such information provides and uses such in-

formation alone to provide consistency.

The design of the Pilot file system [30] is very simi-

lar to that of NoFS. Pilot employs self identifying pages

and uses a scavenger to reconstruct the file system meta-

data upon crash. However, like the file-system check, the

scavenger needs to finish running before the file system

can be accessed. In NoFS, the file system is made avail-

able upon mount, and can be accessed while the scan is

running in the background.

Pangaea [33] uses backpointers for consistency in a dis-

tributed wide area file system. However, its use of back-

pointers is limited to directory entry backpointers that are

used to resolve conflicting updates on directories. Simi-

lar to NoFS, Pangaea also uses the backpointer as the true

source of information, letting the backpointers of child in-

odes dictate whether they belong to a directory or not.

btrfs [48] supports back references that allow it to ob-

tain the list of the extents that refer to a particular ex-

tent. Although back references are conceptually similar

to NoFS backpointers, the main purpose of btrfs back ref-

erences is supporting efficient data migration, rather than

providing consistency. Other mechanisms such as check-

sums are used to ensure that the data is not corrupt in btrfs.

Another key difference is that btrfs does not always store

the back reference inside the allocated extent: sometimes

the back references are stored as separate items close to

the extent allocation records.

Backlog [17] also uses explicit back references in or-

der to manage migration of data in write anywhere file

systems. The back references in Backlog are stored in a

separate database, and are designed for efficient querying

of usage information rather than consistency. Backlog’s

back references are not used for incremental file-system

checking or resolving ownership disputes.

While NoFS makes an order-less file system more

available by eliminating the need for the file-system

check, there have been other approaches to increasing

availability such as doing the file-system check while the

system is online. McKusick’s background fsck [19] could

repair simple inconsistencies such as lost resources by

running fsck on snapshots of a running system. Chunkfs

[14] is similar to our work, providing incremental, online

file-system checking. Chunkfs differs from NoFS in that

the minimal unit of checking is a chunk whereas it is a sin-

gle file or block in NoFS. Chunkfs does not offer online

repair of the file system, while it is possible in NoFS, due

to backpointers and non-persistent allocation structures.

8 Conclusion
Every modern file system uses ordering points to ensure

consistency. However, ordering points have many disad-

vantages including lower performance, higher complexity

in file-system code, and dependence on lower layers of the

storage stack to enforce ordering of writes.

In this paper, we demonstrate that it is possible to build

an order-less file system, NoFS, that provides consistency

without sacrificing simplicity, availability or performance.

NoFS allows immediate data access uponmounting, with-

out file-system checks. We show that NoFS has excellent

performance on many workloads, outperforming ext3 on

workloads that frequently flush data to disk explicitly.

Although potentially useful for the desktop, we believe

NoFS may be of special significance in cloud computing

platforms, where many virtual machines are multiplexed

onto a physical device. In such cases, the underlying host

operating system may try to batch writes together for per-

formance, potentially ignoring ordering requests from vir-

tual machines. NoFS allows virtual machines to maintain

consistency without depending on the numerous lower

layers of software and hardware. Removing such trust is

key to building more robust and reliable storage systems.

A Proof of data consistency in NoFS
Sivathanu et al. [38] provided a logical framework for

modelling file systems, and reasoning about the correct-

ness of new features that are added. We show that that

adding backpointers to data and metadata blocks in a file

system ensures data consistency. Morever, by further

adding timestamps, version consistency is achieved.

A.1 Notation
The main entities are containers, pointers and genera-

tions. A file system is simply a collection of containers,

which can be freed and reused. They are linked to each



Symbol Description

&A set of entities that point to container A

Ax the xth version or epoch of A

Ak the kth generation of A

g(Ax) the gen. of the xth epoch of container A

{Ax}M the xth version of A in memory

{Ax}D the xth version of A on disk

A 99K B A has a physical pointer to B

A L99 B B has a physical pointer to A

A → B A logically points to B

ts(A) the time that A was last updated

tsc(B, A) the timestamp for A that is stored in B

Table 4: Notation used. The table describes the symbols

and operators used.

other through pointers. The epoch of a container is incre-

mented and its timestamp is changed every time the con-

tents of a container change in memory. The generation of

a container is incremented after each reallocation.

A state of the file system in memory or disk is repre-

sented by a belief. Beliefs denoted as {}M and {}D are

memory beliefs and disk beliefs respectively. For exam-

ple, {A 99K B}D indicates a belief that containerA phys-

ically points to container B on disk.

We also use a special ordering operator called precedes.

(≺). Only a belief can appear to the left of a ≺ operator.
A ≺ B means that belief A occurs before B. Table 4 lists
these symbols and operators.

A.2 Axioms
In this subsection, we present the axioms that govern the

transition of beliefs across memory and disk.

• If a version of a container exists on disk, it must first
have existed in memory.

{Ax}M ≺ write(A) ⇒ {Ax}D (1)

• B points to A logically in memory (or disk) only if B
has a pointer to A, and A has a pointer (backpointer)

to B in memory (or disk).

{B → A}M ⇐⇒ {B 99K A}M ∧ {B L99 A}M

(2)

{B → A}D ⇐⇒ {B 99K A}D ∧ {B L99 A}D

(3)

• If A does not belong to any container in memory
(or disk), it’s backpointer does not point to any valid

container in memory (or disk).

{&A = φ}M ⇒ ∀c¬{c L99 A}M (4)

{&A = φ}D ⇒ ∀c¬{c L99 A}D (5)

• Two versions of container B are different only if their
timestamps are different.

x 6= y ⇐⇒ ts(Bx) 6= ts(By) (6)

A.3 Data Consistency

Data consistency guarantees that the data blocks of a file

will not contain garbage data or data belonging to another

file after a crash. Therefore, we need to prove if B points

to A on disk, then the generation of A that is on disk is the

same as the generation that was pointed to in memory. In

other words, the crash did not end up with B pointing to

something else other than the in-memory generation of A.

(

{Bx → Ak}M ≺ {Bx → Az}D

)

⇒ (g(Az) = k)

We assume that g(Az) 6= k and prove that this assump-

tion leads to a contradiction.

(

{Bx → Ak}M ≺ {Bx → Az}D

)

∧ (g(Az) 6= k)

Since the epoch of B ’x’ is the same on disk and mem-

ory, B has not been changed until the disk write happened.

g(Az) 6= k indicates that A has a new generation, there-

fore it has undergone reallocation. Block A must have

been freed and written to disk. After the free, it was re-

allocated to B again.

This leads to two cases where the free could have hap-

pened - before the write of B (in memory) or after the

write of B (on disk).

Case 1: Block A was freed and written to disk before

Block B was written.

⇒
(

({Bx → Ak}M ∧ (&A = φ) ∧ write(a))

≺ {Bx → Az}D

)

∧ (g(Az) 6= k)

By (2), if B logically points to A, A has a backpointer to

B.

⇒
(

({Bx
L99 Ak}M ∧ (&A = φ) ∧ write(a))

≺ {Bx → Az}D

)

∧ (g(Az) 6= k)

By (4), a free container should not point to any other



container.

⇒
(

({Bx
L99 Ak}M ∧ ¬{Bx

L99 Ak}M )

≺ {Bx → Az}D

)

∧ (g(Az) 6= k)

Combining the first two clauses, we arrive at a contradic-

tion.

⇒
(

false ≺ {Bx → Az}D

)

∧ (g(Az) 6= k)

We have arrived at a contradiction (i.e a false belief),

and hence this case cannot occur.

Case 2: Block A was freed and written to disk after

Block B was written. The steps in the proof are similar to

those in Case 1.

⇒
(

{Bx → Ak}M ≺ ({Bx → Az}D

∧(&A = φ) ∧ write(a))
)

∧ (g(Az) 6= k)

⇒ Using (2),
(

{Bx → Ak}M ≺ ({Bx
L99 Az}D

∧(&A = φ) ∧ write(a))) ∧ (g(Az) 6= k)

⇒
(

{Bx → Ak}M ≺ ({Bx
L99 Az}D

∧¬{Bx
L99 Az}D)

)

∧ (g(Az) 6= k)

( Since {&A = φ}D ⇒ ∀c¬{c L99 A}D)

⇒
(

{Bx → Ak}M ≺ false
)

∧ (g(Az) 6= k)

We have arrived at a contradiction, and hence this case

cannot occur. Thus we have shown that data consistency

holds given that the file system contains backpointers.

A.4 Version Consistency

Version consistency is a stricter version of data consis-

tency. In version consistency, each data block has a times-

tamp indicating when it was last updated. This timestamp

is also stored in the inode, with the pointer to the data

block. When a block is accessed, the timestamp in the in-

ode and the data block must match. This helps us detect

lost updates to data blocks. This is reflected in the rule:

{Bx → Ay}D ⇒ {Bx → Ay}M ≪ {Bx → Ay}D

For the L.H.S to hold on disk, writes to both B and A

need to have happened. This could have happened in two

ways, considering the two possible orderings of the writes

to A and B:

{Bx → Ay}D ⇒ ({Bx → Ab}M ≺ write(B))

∨ ({Ba → Ay}M ≺ write(A))

where a and b are arbitrary epochs of containersB andA.

The two cases are: B could have remained the same, with

a new version of A being written from memory to disk, or

A could have remained the same, with a new version of B

being written from memory disk. We explore both cases.

Consider the first case:

{Bx → Ay}D ⇒ ({Bx → Ab}M ≺ write(B))

Now, for the memory and on-disk copies of A to match,

we need to prove that b = y:

{Bx → Ab}M ⇒ tsc(B
x, A) = ts(Ab)

{Bx → Ay}D ⇒ tsc(B
x, A) = ts(Ay)

⇒ ts(Ab) = ts(Ay)
⇒ b = y

Similarly, for Case 2, we can prove that a = x. Hence,

when the file system uses back pointers with timestamps,

we have shown that version consistency holds.
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