
MIAOW - An Open Source RTL Implementation of a GPGPU∗

Raghuraman Balasubramanian Vinay Gangadhar Ziliang Guo Chen-Han Ho Cherin Joseph

Jaikrishnan Menon Mario Paulo Drumond Robin Paul Sharath Prasad Pradip Valathol

Karthikeyan Sankaralingam

University of Wisconsin-Madison

Abstract: Graphic Processing Unit (GPU) based general purpose computing is developing as a viable
alternative to CPU based computing in many domains. In this paper, we introduce MIAOW (Many-core
Integrated Accelerator Of Wisconsin), an open source RTL implementation of the AMD Southern Islands
GPGPU ISA, capable of running unmodified OpenCL-based applications. We present our design motivated
by our goals to create a realistic, flexible, OpenCL compatible GPGPU, capable of emulating a full system.
We demonstrate that MIAOW enables disruptive and transformative research and has the potential to bring
all of the benefits of open source development to GPUs in real products in the long term.

The trend for the last several years in computer architecture has been the effort to extract more per-
formance from the available silicon. One such approach has been to exploit the massive parallelism of
graphic cards and use their execution units for general purpose computation instead of simply graphics
operations. To further extend this work and unleash the benefits of open source development of GPU hard-
ware, we have developed and released an open source GPU called MIAOW which is implemented in RTL
and prototyped on an FPGA. This paper reports on the design, development, characterization, and research
utility of MIAOW (acronymized as Many-core Integrated Accelerator Of Wisconsin). MIAOW’s RTL
source code, simulation infrastructure, and benchmarks are available for download on github – https:
//github.com/VerticalResearchGroup/miaow. The source code release also includes White
Paper with many details. MIAOW is currently primarily a research vehicle, but we envision that with com-
munity development it becoming a main-stream commercial GPU available in silicon, competitive with
commercial designs.

Goals The primary driving goals for MIAOW are: i) Realism: it should be a realistic implementation
of a GPU resembling principles and implementation tradeoffs in industry GPUs; ii) Flexible: it should be
flexible to accommodate research studies of various types, the exploration of forward-looking ideas, and
form an end-to-end open source tool; iii) Software-compatible: It should use standard and widely available
software stacks like OpenCL or CUDA compilers to enable executing various applications and not be tied
to in-house compiler technologies and languages. iv) Open source: The RTL source is released open source
along with verification tool chain, synthesis scripts etc.

Design Approach Driven by these goals, we have developed MIAOW as an implementation of a subset of
AMD’s Southern Islands(SI) ISA [1]. While we pick one ISA and design style, we feel it is representative
of a GPGPU design [4] — AMD and NVIDIA’s approaches have some commonalities [5]. This delivers
on all three primary goals. It is a real ISA (machine’s internal ISA compared to PTX or AMD-IL which
are external ISAs found in products launched in 2012), is a clean-slate design so likely to remain relevant
for a few years, and has a complete ecosystem of OpenCL compilers and applications. In concrete terms,
MIAOW focuses on microarchitecture of the Compute Unit (CU) and implements them in synthesizable
Verilog RTL, and leaves the memory hierarchy and memory controllers as behavioral (emulated) models.
MIAOW takes a hybrid strategy with some components, namely L1 cache, OCN, and memory controller
implemented as behavioral C/C++ modules. This strikes a good balance between realism, flexibility and a
framework that can be released. A modified design called Neko has been synthesized on an FPGA.

Hardware architecture MIAOW implements a subset of the Southern Islands ISA which we summarize
below. The architectural state and registers defined by MIAOW’s ISA includes the program counter, exe-
cution mask, status registers, mode register, general purpose registers (scalar s0-s103 and vector v0-v255),

∗Some authors have current affiliations at Google, Qualcomm, NVIDIA, and EPFL. Work done at UW-Madison.

1

2015 IEEE COOL Chips XVIII 978-1-4673-7325-8/15/$31.00 ©2015 IEEE

Local Data Share (LDS), 32-bit memory descriptor, scalar condition codes and vector condition codes. Pro-
gram control is defined using predication and branch instructions. The instruction encoding is of variable
length having both 32-bit and 64-bit instructions. Scalar instructions are organized in 5 formats [SOPC,
SOPK, SOP1, SOP2, SOPP]. Vector instructions come in 4 formats of which three [VOP1, VOP2, VOPC]
use 32-bit instructions and one [VOP3] uses 64-bit instructions to address 3 operands. Scalar memory
reads (SMRD) are 32-bit instructions involved only in memory read operations and use 2 formats [LOAD,
BUFFER LOAD]. Vector memory instructions use 2 formats [MUBUF, MTBUF], both being 64-bits wide.
Data share operations are involved in reading and writing to LDS and global data share (GDS). Four com-
monly used instruction encodings are shown in Table 1. Two memory addressing modes are supported -
base+offset and base+register.

Of a total of over 400 instructions in SI, MIAOW’s instruction set is a carefully chosen subset of 95
instructions and the generic instruction set is summarized in Table 1. This subset was chosen based on
benchmark profiling, the type of operations in the data path that could be practically implemented in RTL
by a small design team, and elimination of graphics-related instructions. MIAOW does not support 64 bit
integer and floating operations as of now, and this is one of the limitation of MIAOW. But the AMD APP
kernels [2] do not use 64 bit operations aggressively and all of them could be run on MIAOW, thus making
MIAOW 32-bit software compatible to OpenCL applications. In short, the ISA defines a processor which
is a tightly integrated hybrid of an in-order core and a vector core all fed by a single instruction supply and
memory supply with massive multi-threading capability. The complete SI ISA judiciously merges decades
of research and advancements within each of those designs.

The MIAOW GPGPU adheres to the canonical design of a GPU and consists of a simple dispatcher, a
configurable number of compute units, memory controller, OCN, and a cached memory hierarchy. MIAOW
allows scheduling up to 40 wavefronts on each CU, which may belong to different work-groups. Figure 1
shows the high-level organization of MIAOW and corresponding area and power breakdown of the main
sub-modules. Figure 2 shows the pipeline organization. Overall the trends for MIAOW are similar to
industry products as analyzed in more detail elsewhere [3].

Results and Impact We have shown what it takes to build a GPU and shows a small academic team can
build a modern GPU. MIAOW provides transformative capability in advancing GPU research and ultimately
into an open source product. MIAOW allows physical design exploration of “traditional” research topics,
new types of research explorations, and validation/calibration of simulators. Overall MIAOW is a unique
and potentially disruptive architecture for GPUs.

References

[1] Reference guide: Southern islands series instruction set architecture, http://developer.amd.com/wordpress/
media/2012/10/AMD_Southern_Islands_Instruction_Set_Architecture.pdf, 2012.

[2] Amd app 3.0 sdk, kernels and documentation, 2013.

[3] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol,
and K. Sankaralingam. Enabling gpgpu low-level hardware explorations with miaow - an open source rtl implementation of a
gpgpu. (to appear). IEEE Transcations on Architecture and Code Optimization, 2015.

[4] M. Fried. Gpgpu architecture comparison of ati and nvidia gpus, 2012.

[5] Y. Zhang, L. Peng, B. Li, J.-K. Peir, and J. Chen. Architecture comparisons between nvidia and ati gpus: Computation
parallelism and data communications. In IISWC ’11, 2011.

2

2015 IEEE COOL Chips XVIII 978-1-4673-7325-8/15/$31.00 ©2015 IEEE

Type Instructions

Vector

ALU: {U32, I32, F32} - add, addc, sub, mad, madmk, mac, mul, max, max3, min, subrev

Bitwise: {B32} - and, or, xor, not, mov, lshrrev, lshlrev, ashlrev, ashrrev, bfe, bfi, cndmask

Compare: {U32, I32, F32} - cmp { lt, eq, le, gt, lg, ge, ne, ngt, neq }

Scalar

ALU: {U32, I32} - add, addk, sub, max, min, mul, mulk

Bitwise: {B32} - and, andn2, or, xor, not, mov, movk, lshl, lshr, ashr, saveexec

Compare: {U32, I32} - cmp { eq, lt, gt, ge, lt, le, eq, lg, gt, ge, lt, le }
Conditional: - barrier, branch, cbranch, endpgm, waitcnt

Memory

Scalar Mem – SMRD DWORD Format: {x, x2, x4} - load, buffer load

Vector Mem – Buffer Format: {x, xyzw} - tbuffer load, tbuffer store

Date Share (LDS, GDS) : {B32} - ds read, ds write

101111111 OP-7 SIMM-16

31 023 22 16 15

SOPP

1 OP-8

31 023 22 16 15

SOP2 SDST-7 SSRC1-8 SSRC0-8

8 7 0

OFFSET

7

IM
M

89

SBASE-6

1421 15

SDST-7OP-5

26 22

11000

31 27

SMRD

0

OFFSET

79

VSRC1-8

1624 1725

OP-6

30

VOP2 VDST-8

31

0

OP Operands for instruction. Each format has its own operands. SIMM 16 bit immediate value

VDST Vector destination register, can address only vector registers. SDST Scalar destination register, can address only scalar registers.

SRC0 Source 2, can address vector, scalar and special registers, also can

indicate constants.

VSRC1 Vector source 1, can address only vector registers.

SSRC1 Scalar source 1, can address only scalar registers. SBASE Scalar register that contains the size and base address.

IMM Flag that marks whether OFFSET is an immediate value or the

address of a scalar register

OFFSET Offset to the base address specified in SBASE

Table 1: Supported ISA

Vector

FPU

Q0

Fetch

Instruction Buffer

Wavepool

Decode and Schedule

PC0 PC1 PC39

Q1 Q39

PC

Instruction

SGPR

512x32

VGPR

1024x32

0-63

Scalar

ALU LSU

LDS

0-3 G
P

U
 M

e
m

o
ry

0-3

Vector

Integer

ALU

4 ALUs 4 FPUs

 (a)

6%

34%

54%

5%

1%

FQDS

FUs

RFs

LSU

Others

11%

53%

19%

10%

7%

FQDS

FUs

RFs

LSU

Others

 CU Area breakdown CU Power breakdown

 (b)

Figure 1: a) Compute Unit (CU) microarchitecture; b) Compute Unit (CU) Area and Power breakdown
[FQDS: Fetch/Queue/Decode/Schedule; FUs: Functional Units; RFs: Register Files; LSU: Load Store Unit]

(Area metric – µm2 and Power metric – mW)

MIAOW Blocks

MIAOW Pipeline

Standard Pipeline

Fetch

Fetch 0 Fetch 1 Decode Issue 0 Issue 1 Reg Read Exec : 1-32 cycles WB

Reg Read WBAddr Calc Mem

Reg Read WBExec

Buffer

Wavepool Decode

Fetch Decode Mem WB

Issue
Scoreboard Schedule

LSU

Vector ALU

Scalar ALU

Issue Exec

Figure 2: MIAOW Compute Unit Pipeline stages

3

2015 IEEE COOL Chips XVIII 978-1-4673-7325-8/15/$31.00 ©2015 IEEE

