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ABSTRACT
A wide range of transmit power control (TPC) algorithms
have been proposed in recent literature to reduce interfer-
ence and increase capacity in 802.11 wireless networks. How-
ever, few of them have made it to practice. In many cases
this gap is attributed to lack of suitable hardware support
in wireless cards to implement these algorithms. In particu-
lar, many research efforts have indicated that wireless card
vendors need to support power control mechanisms in a fine-
grained manner – both in the number of possible power levels
and the time granularity at which the controls can be ap-
plied. In this paper we claim that even if fine-grained power
control mechanisms were to be made available by wireless
card vendors, algorithms would not be able to properly lever-
age such degrees of control in typical indoor environments.
We prove this claim through rigorous empirical analysis and
then build a tunable empirical model (Model-TPC) that can
determine the granularity of power control that is actually
useful. To illustrate the importance of our solution, we con-
clude by demonstrating the impact of choice of power control
granularity on Internet applications where wireless clients
interact with servers on the Internet. We observe that the
number of feasible power was found to be between 2-4 for
most indoor environments. We believe that the results from
this study can serve as the right set of assumptions to build
practically realizable TPC algorithms in the future.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; C.2.1 [Computer Communication Networks]:
Network Architecture—Wireless Communication
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1. INTRODUCTION
Power control mechanisms in wireless networks have been

used to meet two different objectives — to reduce energy
consumption in mobile devices, so as to conserve battery life,
and to reduce interference in the shared medium, thereby al-
lowing greater re-use and concurrency of communication. In
this paper, our focus is to study power control as applica-
ble to the interference reduction objective. As an example
in this paper, we consider the impact of power control for
WLAN clients interacting with servers on the Internet. Re-
cent theoretical work has shown that ideal medium access
protocol using optimal power control can improve channel
utilization by up to a factor of

√
ρ, where ρ is the density

of nodes in the region (using fluid model approximations)
[9]. Power control mechanisms [11, 20, 18] typically try to
optimize the floor space acquired by wireless transmissions
by limiting the transmit power of control and data packets,
thereby providing opportunity for multiple flows to coexist.

A number of research efforts have studied power control
based on the theoretical abstraction of wireless signal prop-
agation in free space and consider transmit power as a con-
tinuous variable (i.e., a fine grained parameter), that can be
set per packet to yield optimal performance. Conventional
power control mechanisms have exercised fine grained con-
trol in the two dimensions as shown in Figure 1 : 1) Time
granularity at which power level is changed, 2) Magnitude
granularity by which the power level is changed. We ana-
lyze both the dimensions of fine grained power control and
provide guidelines for power control granularity in typical
indoor environments.

Prior work [8] has pointed out that lack of vendor support
for fine-grained power control mechanisms in the wireless
cards inhibit deployment of these mechanisms. In this paper
we ask the following questions: Is fine-grained power con-
trol really useful and would lead to a better design of power-
control algorithms? If not, what is the minimum granularity
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Figure 1: Two dimensions of transmit power control
taken by prior approaches. PCMA, SHUSH rely on
changing transmit power by small values ( 1dBm)
and lie on the magnitude dimension. IPMA, Sub-
barao et. al. rely on changing the transmit power
on a per packet basis and hence lie on the time di-
mension

of power control that is useful in different wireless environ-
ments, including Internet oriented wireless communication
? We answer the first question in the negative. As we dis-
cuss in detail in the paper, in practical indoor wireless LAN
(WLAN) deployments, multipath and fading effects, cou-
pled with various sources of interference in the unlicensed
bands, imply that power control algorithms cannot derive
significant benefits from very fine-grained mechanisms. We
demonstrate this through detailed experimentation in differ-
ent indoor wireless network environments. We estimate the
distributions of Received Signal Strength Indicator (RSSI)1

for various transmit power levels at the transmitter and
show that although more power at the transmitter on av-
erage translates to more power at the receiver, there is sig-
nificant overlap between the RSSI distributions for nearby
power levels, making them practically indistinguishable at
the receiver. This can be attributed to dominant multipath
and fading effects, that lead to significant signal strength
variations in indoor environments.

Our answer to the second question is that a power control
algorithm can make practical use of only a few (2-3) discrete
number of power levels. The exact number and choice of
power levels is a characteristic of the multipath and fading of
a particular wireless environment and the presence of other
interfering sources.

Our observations are true for both ad-hoc networks and
Internet oriented wireless communications (WLANs), and in
this paper we present our results from the latter setting. In
particular, through this work we build an empirical model

1Variations in RSSI typically correspond to variations in Sig-
nal to Noise Ratio (SNR) as shown by Reis et. al in their
measurement based study of delivery and interference mod-
els for static wireless networks [7]. Moreover commodity
wireless cards only report the RSSI values for each packet
and hence we base our observations on the measurement for
RSSI values. We further discuss this in detail in Section 3.

that allows us to characterize the specific set of power levels
that is useful for a given environment and could be used to
perform per packet power control.

Power control is also an important design consideration
in cellular networks, where is it primarily used to counter
fast fading. However, cellular networks primarily operate in
outdoor environment, where we show that the effect of mul-
tipath is not significant enough to hinder fine grained TPC.
We discuss more about relevance of our work in context of
cellular networks in Section 6.

Key contributions
The following are the key contributions and the main obser-
vations from this work:

• Measurement: We collect extensive traces from mul-
tiple environments such as office building and univer-
sity departments, to characterize Received Signal Strength
Indicator (RSSI) variations in different indoor settings.
Through rigorous statistical analysis of the traces us-
ing Allan’s Deviation (for characterizing the burst size
of RSSI fluctuations) and Normalized Kullback-Leibler
Divergence (NKLD) (for characterizing RSSI distri-
bution in real time), we observe that the number of
feasible power levels that can be used in a transmit
power control mechanism is few and discrete, and once
identified, could be used to perform power control at
small time scales (per packet).

• Model: Through this analysis, we propose an empir-
ical model to determine the set of useful power levels
in an online fashion, i.e., this model is computed and
adjusted dynamically as wireless data communication
is going on. Note, that the number and choice of such
power levels would depend on individual wireless en-
vironment. In all our experimental scenarios, it was
found to be less than 4 and often much less.

• Validation: Through Internet-oriented wireless ex-
periments, we demonstrate the usefulness of the our
measurement based empirical model (Model-TPC) for
improving performance of wireless clients interacting
with servers on the Internet in our indoor WLAN de-
ployment. In particular, we show that correct choice
of power levels can lead to actual throughput gains in
indoor environments.

We believe that our our experiments highlight some fun-
damental issues with transmit power control, that can help
in design of future wireless interfaces that are used in lap-
tops, PDAs and are widely used as a major Internet access
mechanism.

The remainder of the paper is organized as follows. Sec-
tion 2 motivates the infeasibility of fine grained power con-
trol in indoor WLANs and discusses various transmit power
mechanism proposed in literature, with their respective eval-
uation in context of our practical models for transmit power
control. In Section 3, we analyze the RSSI distributions
under varying indoor scenarios and propose an online mech-
anism (Online-RSSI) to characterize the distribution in real
time. We use the online mechanism to derive an empirical
model for transmit power control (Model-TPC) described
in Section 4. Section 5 highlights the impact of using our
empirical model on end user experience through Internet ori-
ented wireless experiments. We briefly discuss power control
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Figure 2: The wireless testbed, consisting of seven
802.11 a/b/g nodes (transmitters marked by T1, T2
and receivers marked by RB-1 - RB 12]). The dotted
arrows indicate the transmitter-receiver pair T1-R2
and T3-R2 for our Internet oriented experiments.

in cellular networks in section 6 and some related work in 7.
Finally we conclude in section 8.

2. MOTIVATION : POWER CONTROL
APPROACHES AND LIMITATIONS

Implementation of fine grained power control mechanisms
has been limited by the hardware support in current 802.11
wireless cards which have only limited number of discrete
power levels. As described in [8] , most of the wireless cards
support only 4 to 5 power levels at the hardware, which
is in stark contrast to the fine grained control preferred by
most power control schemes like PCMA [11], SHUSH[18]
and IPMA [20]. This being a limitation of current state
of the art hardware, can be resolved in future wireless cards
that may support fine grained power levels. However, we ar-
gue that there are fundamental constraints to power control
in indoor wireless environments, which limits the number of
feasible power levels that is useful in such mechanisms. We
substantiate our claim through indoor WLAN and outdoor
experiments in the following section, where we show that
RSSI variations are present in both outdoor and indoor en-
vironments, but are especially dominant in indoor scenarios.

2.1 Infeasibility of Fine Grained Power
Control

We present preliminary results from our detailed set of
experiments explained in Section 3 to illustrate the funda-
mental constraints of fine-grained power control.

Outdoor Scenario
This sample experiment consists of a pair of outdoor transmitter-
receiver pair (T4-R4) shown in Figure 2 operating using the
802.11a standard. At R4 we capture the packets transmit-
ted by T4 for different power levels available at T4’s Atheros
based wireless chipset. Since low RSSI is more likely to cause
a packet error, we have enabled Madwifi driver to receive
packets in error and in order to prevent the bias towards
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Figure 3: Probability Distribution of RSSI for vary-
ing power levels at the transmitter is shown in the
figure. The top figure corresponds to outdoor sce-
nario with 6 distinguishable power levels while bot-
tom figure shows the effect of increased multipath
and interference in the indoor WLAN scenario with
the number of distinct power levels reduced from 6
to 3. Band:802.11g Data Packet Size:1Kbytes

high RSSI values, we include the RSSI of erroneous packets
in our calculations for RSSI distributions. Figure 3 shows
the probability density function of RSSI distribution for var-
ious power levels at the transmitter. The power levels are
increased from 10mW to 60mW (max. transmit power), in
steps of 10mW. For the sake of clarity, these power levels
are chosen so that there is minimal overlap between their
respective RSSI distributions. For example at a power level
of 60 mW, the RSSI values vary from 35dBm to 45dBm,
with 40 percent of the packets being received at 41dBm.
The average variation in RSSI value over all power levels is
approximately 7.5 dBm.

This variation can be attributed to the multipath and fad-
ing effects, due to which the packets transmitted at the same
power level, may be received with varied signal strength at
the receiver. A difference of an order of wavelength in the
paths taken by the wireless signals from the transmitter, can
lead to the two signals being out of phase [16], resulting in
variations in the signal strength at the receiver. Even though
more power at the sender translates to more power at the
receiver, the distributions of the received signal power over-
laps significantly, thereby making them hardly distinguish-
able. As we show next, this effect is even more pronounced
in indoor environments than in outdoor environments where
there are only a few strong paths that impact the signal.

Indoor Scenario
We repeat the aforementioned experiments for an indoor
transmitter-receiver pair T2-R2 as shown in Figure 2. The
resulting distribution of RSSI values is shown in Figure 3.
As expected the RSSI variations increase, thereby increasing
the overlap between RSSI of neighboring power levels. This
observation indicates that in indoor settings, the number of
power levels having non-overlapping RSSI distributions are
further reduced, thereby making fine-grained transmit power



control much less effective. These experiments show that
fine grained transmit power control mechanism are much
more difficult to realize in indoor deployments.

It is evident from Figure 3 that in a collective fashion, the
distribution of all the six power levels cover a wide range
of RSSI values (20 - 45 dBm). Also note that for any sin-
gle power level, its RSSI distribution overlaps significantly
with that of neighboring power levels. The introduction of
fine grained power levels at the hardware will imply signifi-
cant overlap between the distribution of existing power levels
(0,10,14,15,17,18)dBm and the new power levels. A signifi-
cant overlap between the RSSI distributions of two (succes-
sive) power levels correspondingly diminishes the practical
effect of having the respective distinct power levels – they be-
come practically indistinguishable at the receiver. This can
be considered analogous to the concept of channels in 802.11
band, where there are 11 channels available but only 3 chan-
nels are non overlapping and hence useful. Similarly, fine
grained power levels cannot be distinguished easily at the
receiver due to RSSI variations and hence may not be useful
simultaneously.

We performed the same set of experiments at two different
location, at the NEC Research Labs at Princeton and at the
Computer Sciences Department at University of Wisconsin-
Madison. We observed that, although the exact shape of the
RSSI distribution may depend on the exact indoor environ-
ment and other interference effects, the general nature re-
mains similar to Figure 3. In this paper, we report our mea-
surements from the NEC Research Labs, which we believe
are representative of a typical indoor WLAN scenario.

Next we summarize prior approaches proposed in the lit-
erature that rely on fine grained power control. We show
why such approaches might face difficulty in a practical im-
plementation. We also discuss how our proposed empirical
model could act as an oracle to guide such algorithms to
change transmit power that are effective in practice.

2.2 Implications on Existing Power Control
Approaches

We categorize some of the prior power control methods
applicable to WLANs into two categories : 1) fine-grained
in magnitude of transmit power and 2) fine-grained in mag-
nitude of time (per-packet). Existing power control ap-
proaches can be categorized in the two aforementioned cat-
egories as shown in Figure 1. We explain the implications
of our observations on both categories of protocols:

Magnitude Dimension of Fine Grained Power Control
Monks et al. proposed a power controlled multiple access
wireless MAC protocol (PCMA [11]), within the collision
avoidance framework. PCMA generalizes the transmit-or-
defer ”on/off” collision avoidance models to a more flexible
”variable bounded power”collision suppression model. Using
PCMA, the transmitter-receiver pairs can be more tightly
packed into the network by adjusting the power level of the
transmitter to the minimum required for a successful trans-
mission, thereby allowing a greater number of simultaneous
transmissions (spectral reuse). In order to ensure successful
packet delivery, each receiver in PCMA first calculates the
extra noise that it can tolerate, such that the SNR for its
own packets is above the threshold for correct reception. It
then advertises this noise tolerance by sending a busy tone
on the auxiliary channel, and all the transmitters in the

vicinity measure the received signal strength of the tone to
determine the maximum power with which they can initi-
ate their own transmissions. This mechanism requires exact
calculations of received power, which mat not be predictable
under multipath and fading effects. Moreover, the authors
treat transmit power as a continuous parameter, which may
not be feasible in indoor environments due to significant
RSSI variations.

Seth et al. propose a reactive transmit power control
mechanism, called SHUSH [18], where nodes operate on the
optimum(minimum) power required for communication. On
detecting interference, SHUSH calculates the exact power re-
quired to send a RTS to the interferer and hence optimizes
the “floor space” acquired by any flow. Unlike PCMA, how-
ever SHUSH transmits at a higher power only when a flow
is interrupted by external interference. Again SHUSH as-
sumes fine grained control on power levels and ignores RSSI
variations which can make it difficult to infer the exact inter-
ference at the receiver, thereby complicating the calculation
of target transmit power required to SHUSH the interferer.
Our experimental observations suggest that such observa-
tions are too deviant from realistic scenarios. Using our em-
pirically derived power control model (Section 4), the above
mechanisms could dynamically determine an exact set of
feasible power values to be used in an environment.

Time Dimension of Fine Grained Power Control
Many researchers in the past have proposed schemes which
require change in the power level on a per packet basis.

Akella et al. [2] discuss some power control mechanisms
in their work on wireless hotspots. They propose that APs
should use the minimum transmit power required to support
the highest transmission rate. In their scheme, the receiver
sends the value of observed RSSI, averaged over some small
number of packets, as a feedback to the transmitter. The
transmitter on receiving the average RSSI value on the re-
ceiver side, decides the optimal power level suitable for use
in the current channel conditions. However they do not pro-
vide exact values for power level granularity that should be
used. As discussed earlier, a simple average of RSSI values
at the receiver may not give a correct estimate of the actual
SNR.

Subbarao [19] has proposed a dynamic power-conscious
routing mechanism that incorporates link layer and physical
layer properties in routing metrics. It routes the packet on a
path that requires least amount of total power expended and
each node transmits with the optimum (minimum) power
to ensure reliable communication. This scheme requires per
packet power control and also needs feedback from the des-
tination regarding RSSI on a per packet basis.

Similar to PCMA approach, Yeh et al. [20] proposed an
interference/power aware access control. They augment the
normal RTS/CTS mechanism of IEEE 802.11 with provi-
sion for multi level RTS, where the transmit power of the
RTS mechanism is set on the basis of the intended receiver.
Such a dynamic per packet approach becomes difficult in
the face of significant RSSI variations and become difficult
to implement on real systems.

We analyze the stationarity (coherence time) of signal
strength for various scenarios and propose a simple algo-
rithm Online-RSSI, that can be used to determine the dis-
tribution of signal strength for a given transmit power level
in any scenario. Once the set of feasible power levels (hav-



ing non overlapping signal strength distribution) is derived,
the receiver can use this model to determine the transmit
power of the transmitter for a packet received at any given
signal strength and hence provide correct feedback to the
transmitter on a per packet basis (or similar time scales).

3. CHARACTERIZING SIGNAL STRENGTH
DISTRIBUTION

Our experiments serve three main purposes: (i) to gain
an understanding of the characteristics of RSSI variations
under varying practical scenarios (in terms of user move-
ments, shadowing, multipath and external interference) (ii)
as a learning data-set to build our empirical model for iden-
tifying the set of feasible power levels (iii) as an input to
validate this model.

In this section, we characterize the distribution of RSSI
under varying magnitudes of multipath, shadowing and other
802.11 and non 802.11 interference for a real WLAN deploy-
ment shown in Figure 2. By studying the RSSI distribu-
tion across different power levels and different channel condi-
tions, we formulate mechanisms to dynamically predict and
construct such distributions in real-time. Such mechanisms
shall be used in the next section where we build a model
to predict the useful power-levels in a given environment.
We briefly describe various components of our experimental
setup.

3.1 RSSI measurements
The performance of most wireless applications depends on

the packet delivery probability. The SNR is widely used in
the literature to model packet delivery probabilities: packets
are successfully received if S/(I+N) is above a certain thresh-
old, and otherwise are not. Commodity wireless cards do
not report the information required to compute SNR. For
instance, our cards report only their version of RSSI, the
minimum feedback allowed by the 802.11 standard. Some
other cards also report an estimate of I by measuring energy
in the air when no packets are being sent, but this estimate
may be inaccurate during packet delivery. It has been shown
in a prior measurement based study by Reis et. al [7] that
RSSI is generally predictive of delivery probability in static
wireless networks and while wireless networks exhibit sub-
stantial variability, measurements of average behavior over
even relatively short time periods tend to be stable. This
phenomenon was also observed in our joint power and data
rate adaptation experiments (described as an application of
our model in Section 5), where the power levels with sig-
nificant overlap in their corresponding RSSI distribution,
perform similarly in terms of rate adaptation. Since rate
adaptation again depends on packet delivery rate, we can
infer that RSSI is a reasonable estimate for SNR and two
power levels with significant RSSI overlap at the receiver will
perform similarly for packet delivery probabilities. Hence we
base our measurements and models on RSSI values that is
readily available from the commodity wireless cards.

RSSI estimates signal energy at the receiver during packet
reception, measured during PLCP headers of arriving pack-
ets and reported on proprietary (and different) scales. Atheros
cards, for example report RSSI as 10log10(

S+I
n

), where S is
the signal strength of the incoming signal, I is the interfer-
ing energy in the same band, and n is a constant (−95dBm)
that represents the ”noise floor” inside the radio. Atheros
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Figure 4: Figure shows the setup used to determine
power drawn by wireless cards. The DAQ samples
voltage across the WiFi device and sends it to a PC
via USB. Performed at transmitter to validate the
power levels available at the hardware.

RSSI is thus dB relative to the noise floor. To give results
that are independent of card vendors, we transform RSSI
values to received signal strength (RSS) values, that give ab-
solute energy levels. That is, RSSI is defined to be S+I.
Note that these RSSI measurements are performed at the
receiver and then provided as a feedback to the transmit-
ter for constructing the empirical model for feasible power
levels.

3.2 Validating Available Hardware Power
Levels

To ascertain the available power levels in 802.11 WLAN
cards, we measure the voltage across the wireless card of the
transmitter by the setup shown in figure 4. The setup con-
stitutes of a 0.1 ohm sense resistor, R, connected in series to
the circuit of the wireless device (pcmcia card) that exposes
the voltage supplied to the device. For the pcmcia based
802.11 card, we used the Sycard 140A cardbus adapter, to
expose the voltage supplied to the card. A Data Acquisition
Card (DAQ), DS1M12 Stingray Oscilloscope, samples the
voltage through R at a rate of 1 million samples per second,
thereby giving us voltage measurements on a per packet ba-
sis. The instantaneous power consumption, Pi can therefore
be written as Pi = Vd × VR/R where Vd is the voltage pro-
vided to the WiFi device and VR is the voltage drop across R
at a given moment. These measurements are performed at
the transmitter and shows that indeed the right power levels
are implemented at the hardware circuitry of the transmit-
ter’s wireless interface. On the basis of power consumed by
the wireless interface, we validated that Cisco Aironet cards
provide 6 different power levels for 802.11g and 5 different
power levels for 802.11a respectively.

3.3 WLAN Trace Collection
In order to understand the behavior of RSSI under vary-

ing interference and multipath effects, we conduct detailed
experiments to collect RSSI traces in an office building un-
der varied indoor settings. In all our experiments, we use a
fixed data rate of 1Mbps and fixed packet size of 1KB, so
that the time intervals are directly translated into number of
packets (modulo 802.11 DCF), which is the X axis for most
of our plots. This facilitates easier packet based analysis of
RSSI traces and their implications to power control mecha-
nisms, which generally base their decisions on a per packet
basis. For our experiments, 1 sec of receiver time window
≈ 1000 packets of 1KB each (unless otherwise specified).
We repeated the same experiments with other wireless cards
and found the results were consistent with the ones reported



here. We discuss the exact set up for each of these scenarios.

Line of Sight - light interference(LOS-light)
These experiments represent a scenario where the transmitter-
receiver pair are in direct line-of-sight and have minimal to
zero external interference. Figure 2 shows the placement of
transmitter-receiver pair T2 and R2 respectively for LOS-
light experiment. The experiment used 2 IBM Thinkpad
laptops running Linux kernel 2.6. Each of the laptops housed
an Atheros chipset based 802.11a/g Linksys wireless card
and used Madwifi drivers. We used Netperf 2.2 to generate
UDP flows between the two laptops and collected MAC-level
traces for the packets received at the receiver using the pcap
standard library. We vary the power of the transmitter to
understand their corresponding effects on RSSI.

Non Line of Sight - light interference(NLOS-light)
The experiment comprises of a single transmitter T1 and 5
receivers (RB-1, RB-8, RB-10, RB-11 and RB-12) as shown
in Figure 2 placed at various locations in the building and
used netperf and pcap library to generate flows and col-
lect traces respectively. None of the receivers were in direct
line-of-sight of T1 and this setup too had minimal to zero
external interference.

Line of Sight - heavy interference(LOS-heavy)
We investigate the effect of controlled interference on RSSI.
We use our experimental testbed shown in figure 2 for line of
sight experiments to evaluate the effect of heavy interference
(like bulk data transfers) on RSSI variations. Nodes RB-
12, RB-11 and RB-2 act as separate APs and perform bulk
data transfers with their respective clients (3 IBM laptops).
Nodes T2 and R2 form a transmitter-receiver pair.

Non Line of Sight - heavy interference(NLOS-heavy)
We use our experimental testbed shown in figure 2 for non-
line of sight experiments to evaluate the effect of heavy inter-
ference (like bulk data transfers) on RSSI variations. Nodes
RB-12, RB-11 and RB-2 act as separate APs and perform
bulk data transfers with their respective clients (3 IBM lap-
tops). Nodes T1 and RB-8 form a transmitter-receiver pair.

3.4 Analyzing WLAN Traces
Figure 5 shows the smoothed moving average of RSSI

per packet for the four categories of traces described in
previous section. Although we collect many traces from
each category (namely LOS-light, NLOS-light,LOS-Heavy
and NLOS-heavy), we present only one representative trace
from each category. The representative trace is chosen such
that it manifests the basic characteristic of traces from that
particular category. All these traces are collected at 1Mbps
of data rate with packet size of 1000 bytes.

As clear from Figure 5, the variations in RSSI is minimum
for LOS-light trace and is maximum for the NLOS-heavy
trace. This behavior is expected because the factors con-
tributing to RSSI variations increase in both number and
magnitude from the topmost plot to the bottom. Figure
6 show the probability distribution of RSSI values at the
receiver for the four scenarios. Clearly, the distribution of
RSSI becomes flatter (larger variation) with the increase in
interference and multipath effects, with the distribution of
LOS-light and NLOS-light resembling a Gaussian distribu-
tion. Next we analyze these trace in detail to understand
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Figure 5: Exponentially weighted moving average of
RSSI over time for four traces collected under var-
ious practical scenarios, with varying degree of ex-
ternal interference, multipath, shadowing and fading
effects. The packets are sorted in order of received
time. The traces from topmost plot to the bottom
belong to LOS-light, NLOS-light, NLOS-heavy and
LOS-heavy. The high variation of RSSI for NLOS-
heavy can be observed.

temporal variations in RSSI and propose an algorithm to
dynamically characterize the distribution of RSSI in any en-
vironment.

Stationarity
Figure 5 shows the variation of RSSI on a per packet ba-
sis, but it would also be useful to observe the amount of
fluctuation over a set of packets (or a burst). Such an anal-
ysis would reveal any characteristic burst intervals where
RSSI values vary largely over different bursts but deviate
minimally within a burst. Also note that since our experi-
ments are conducted with the traffic sent at uniform rates
packet intervals directly correspond to time intervals (mod-
ulo 802.11 DCF effects). One way to summarize changes
at different time scale is to plot the Allan deviation [3] at
each packet interval. Allan deviation is the square root
of the two sample variance formed by the average of the
squared differences between successive values of a regularly
measured quantity taken from sampling periods of the mea-
surement interval. Allan deviation differs from standard de-
viation in that it uses differences between successive sam-
ples, rather than the difference between each sample and
long term mean. In this case, the samples are the fraction
of packets delivered in successive intervals of a particular
length. The Allan deviation is appropriate for data sets
where data has persistent fluctuations away from the mean.
The formula for the Allan deviation for N measurements of
Ti and sampling period τ0 is:

σy(τ0) =

s PN−1
i=1 (Ti+1 − Ti)2

2(N − 1)
(1)

The sampling period is varied by averaging n adjacent values
of Ti so that τ = nτ0. Now the Allan deviation for different
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Figure 6: Probability distribution of RSSI for the
four traces shown in Figure 5. The spread in RSSI
distribution is noticeable in all the traces, with the
NLOS-heavy trace having the maximum deviation.
In the NLOS-heavy scenario, the RSSI values show
persistent fluctuations about two different RSSI val-
ues (bimodal distribution).

values of n can be given by:

σy(τ) =

s PN−2n+1
i=1 [ 1

n
(
Pi+2n−1

j=i+n Tj −
Pi+n−1

j=i Tj)]2

2(N − 2n + 1)
(2)

The Allan deviation inherently provides a measure of the
behavior of the variability of a quantity as it is averaged
over different measurement time periods, which allows it to
directly quantify and distinguish between different types of
RSSI variations. The Allan deviation will be high for inter-
val lengths near the characteristic burst length. At smaller
intervals, adjacent recent samples will change slowly, and
the Allan deviation will be low. At longer intervals, each
sample will tend towards the long term average, and the
Allan deviation will again be small.

Figure 7 shows the Allan deviation of RSSI over large
scale packet intervals (thousands of packets). We can ob-
serve that although there are no prominent peaks for the
RSSI bursts for any scenario, but Allan Deviation becomes
quite stable (between 0.2 and 0.5) for LOS-light, NLOS-light
and LOS-heavy scenarios. The NLOS-heavy has relatively
higher deviation and shows significant fluctuations in the
range of (1.6-1.8). In Figure 8, we show the zoomed ver-
sion for Allan deviation for intervals less than 100 packets.
This figure shows the short term characteristic of RSSI vari-
ations. As clear from the figure, Allan deviation for LOS-
light, NLOS-light and LOS-heavy is maximum at 1 packet,
then decreases sharply because averaging over longer inter-
vals rapidly smoothes out fluctuations. This means that the
RSSI variations for the aforementioned three categories are
independent for intervals less than 100 packets. On the other
hand, NLOS-heavy shows sharp increase in Allan Deviation
from 0.6 to 1.4. This indicates that in NLOS-heavy trace,
the RSSI averaged over small sample sizes (τ in Equation
2), change quickly leading to a sharp increase in Allan De-
viation at such small scales. On further analysis, we found
that deviation for NLOS-heavy reaches 1.7 for about 400-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

987654321

A
lla

n 
D

ev
ia

tio
n

number of packets (in thousands)

LOS-light
NLOS-light

NLOS-heavy
LOS-heavy

Figure 7: Allan deviation for the four representative
traces shown in figure 5. The y axis shows the Allan
deviation (σ(τ)), while the value of n (sampling pe-
riod in Equation 2) is varied on the x axis. It shows
that there are no clear peaks for the RSSI bursts
for any scenario, however it is clear that Allan De-
viation becomes quite stable (between 0.2 and 0.5)
for LOS-light, NLOS-light and LOS-heavy scenar-
ios. The NLOS-heavy has relatively higher devia-
tion and shows significant fluctuations but remains
in the range of (1.6-1.8).

500 packets and as shown in Figure 7, fluctuates around that
value for larger packet intervals as well. We agree that there
is no clear decrease in the Allan deviation for any scenario,
so we approximate the value of burst size at the point when
the deviation becomes quite stable (or the rate of increase in
deviation becomes very low). Hence we choose ≈ 400 pack-
ets for NLOS-heavy and on the order of thousand packets
for LOS-heavy, LOS-light and NLOS-light.

We report these burst size for various LOS and NLOS sce-
narios in Table 1. The burst size information is used by our
algorithm Online-RSSI (explained in Section 3.5), that sam-
ples the packets in multiples of these burst sizes for deter-
mining the signal strength distribution for a given transmit
power level. As RSSI varies significantly across bursts, the
online mechanism needs to consider at least an increment
of burst size in its sampling process to determine if the on-
line distribution being computed has stabilized. This allows
us to quickly converge on an accurate RSSI distribution as
explained in Section 3.5.
Summary: RSSI variations are bursty for intervals of the
order of ≈ 1000 packets for LOS-light, NLOS-light and LOS-
heavy scenarios. But for NLOS-heavy traces, the Allan de-
viation increases even in the small interval of 100 packets,
depicting bursts even in short packet intervals. This can be
explained because the interference coupled with multipath
effects make the wireless channel highly variable and leads to
bursts even in very short time intervals. This behavior was
observed in all our NLOS-heavy traces (for various receivers)
and indicates high variability in wireless environment. Allan
deviation provides an estimate of burst length of a trace and
could be interpreted as an effect of temporal variations in
wireless channel. So if Allan deviation shows that a trace
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Figure 8: Zoomed version of Allan deviation for
short interval of time (≈ 100 packets). Allan
deviation decreases sharply for LOS-light, NLOS-
light and LOS-heavy traces, indicating independent
packet losses. But Allan deviation for NLOS-heavy
increases, indicating very small bursts and highly
variable wireless channel. This is a strong indica-
tion that fine grained power control becomes even
more difficult when multipath effects are coupled
with 802.11 interference.

has very small burst periods (as in the case of NLOS-heavy),
it can be used as an indication that per-packet power con-
trol will be highly unpredictable. Finally we observe that all
the scenarios show substantial non-stationarity in RSSI vari-
ations, which will further impede fine grained mechanisms
for power control.

Entropy
Through the empirical analysis presented in Section 2.1, we
observed that due to multipath, fading and other propaga-
tion effects, the RSSI values at the receiver show significant
variation (also corroborated by Figure 6). Depending on
the exact environment, RSSI distributions for close trans-
mit power levels can have substantial overlap, making them
practically indistinguishable at the receiver. For a power
control scheme to be effective, it needs to determine the set
of useful power levels i.e. power levels with minimum over-
lap. In order to estimate the number of power levels in any
setting, we need to estimate the corresponding RSSI distri-
bution for various power levels. Ideally, we can sample the
RSSI values for a very long period of time (≈ 10mins) to ob-
tain the true behavior of the RSSI distribution. But, as we
show next, sampling very large number of packets may not
be necessary (or practical, due to computation and storage
limitation on the clients) in most settings. This observation
leads us to the following question: What is the minimum
number of packets we should sample to get a “good”
approximation of RSSI distribution ?

We first describe an offline mechanism to determine the
number of samples that are required to generate a distribu-
tion close to the one computed over large number of packets,
as shown in Figure 6. On the basis of insights obtained from
the offline analysis, we then present a simple online mecha-

nism to dynamically determine the number of packets suffi-
cient to characterize RSSI distribution in any environment.

Let us define the actual probability distribution function
for RSSI (over large packets ≈ 100, 000) as p(x). The ap-
proximate distribution obtained by our mechanism is de-
noted by q(x). We now describe the statistical measure that
we use to quantify the performance of the model.

Let p(x) and q(x) be two probability distribution func-
tions defined over a common set χ. We describe a commonly
used statistical measure Kullback-Leibler Divergence (KLD)
that quantifies the ’distance’ or the relative entropy between
two probability distributions. This comprises a general mea-
sure and allows us to compare the statistics of all the orders
for the two distributions. The Kullback-Leibler Divergence
(KLD) [6] is defined as

D(p(x)||q(x)) =
X
x∈χ

p(x)

˛̨̨̨
log

p(x)

q(x)

˛̨̨̨
(3)

The KLD is zero when the two distributions are identical
and increases as the distance between two distributions in-
crease. The KLD is a measure used in information theory to
calculate the ’distance’ between two distributions p(x) and
q(x). The definition of the KLD carries a bias for random
variables with higher entropy. Hence to evaluate the rela-
tive distance accurately for our purposes, it is important to
weigh in the entropy of the original distribution which can
be large. The entropy H(p(x)) of the random variable x
with distribution p(x) is the average length of the shortest
description of the random variable given by:

H(p(x)) =
X
x∈χ

p(x) log
1

p(x)
(4)

Hence we use the normalized Kullback-Leibler divergence
NKLD [13] defined below as a measure of distance between
two distributions

NKLD(p(x)||q(x)) =
D(p(x)||q(x))

H(p(x))
(5)

However the above metric is asymmetric and we make
it symmetric by taking an average of NKLD(p(x)||q(x)) and
NKLD(q(x)||p(x)). The symmetric average distance between
two distributions is given by

NKLD(p(x), q(x)) =
1

2

“D(p(x)||q(x))

H(p(x))
+

D(q(x)||p(x))

H(q(x))

”
(6)

Ideally we could have characterized the distance between
two probability distributions by calculating the area of their
intersection on some data set X. However this will require
calculating their points of intersections and some numerical
integration techniques, which may be cumbersome depend-
ing on the exact shape of the distribution. Hence we use
NKLD as it compares the statistics of all orders for two dis-
tributions and is very simple to compute in real time. Fur-
ther NKLD works efficiently for our experimental scenarios.

We consider the long term probability distribution as p(x)
and those derived from our offline mechanism as q(x). Let
n be the length of the packet sequence that is used for com-
puting the distribution q(x). The value of n is varied and we
measure the corresponding NKLD for each q(x) (with p(x)
as the reference long term distribution).
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Figure 9: Normalized Kullback-Leibler Divergence
(NKLD) for the four representative traces. Clearly
for NLOS-heavy trace, NKLD decreases sharply
with the increase in number of packets, reaching
a value of 1 for a sample size of the order of 5000
packets. For LOS-light however, this value is around
30,000 packets.

Figure 9 shows the NKLD curve obtained for the repre-
sentative traces from the four categories discussed before.
NKLD is a decreasing function of n, although the exact
shape of the curve varies as per the environment. We assume
without the loss of generality, the tolerable error or relative
distance between actual distribution and distribution ob-
tained by sampling n packets be 10%. Figure 9 can be used
to calculate the length of packet sequence required to achieve
the error bound under varying scenarios. While LOS-light
and NLOS-light require about 20,000 packets each, LOS-
heavy and NLOS-heavy scenarios require less than 10,000
packets as shown in Table 1.
Summary: The number of packets required to determine a
close approximation for RSSI distribution is especially high
for the LOS-light scenario while for a NLOS-heavy scenario
the number is relatively lower. The accuracy of an RSSI dis-
tribution varies directly with the number of bursts captured.
Since, the NLOS-trace trace seen has short burst sizes we
can obtain large number of bursts using a smaller trace to
accurately model the RSSI distribution while the trace re-
quired for LOS-light scenario is larger owing to longer burst
sizes. This analysis shows that sampling very large number
of packets (≈ 100000) to obtain RSSI distribution is not re-
quired in majority of traces, with the notable exception of
LOS-light scenario.

3.5 Algorithm Online-RSSI
Based on the above analysis, we describe an online algo-

rithm to compute the RSSI distribution in an online fashion
by predicting the number of packets needed in order to ac-
curately characterize the distribution in any environment.
As shown in Figure 9, initially NKLD (or error) decreases
rapidly with the increase in n, but stabilizes after a threshold
T, slowly tending to zero. It implies, that beyond a certain
length of packet sequence, the decrease in NKLD(or error)
is minimal and hence there is not much gain in sampling
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Figure 10: Comparison between distributions ob-
tained from n packets (as determined by the online
algorithm) and the true distributions obtained from
long term traces. The two distributions are remark-
ably similar thereby indicating the efficacy of our
online mechanism

Online-RSSI(burst size,tolerance)

initialize n to 1
sample(n) = Sample Random Sequence(n)
q(x) = Compute RSSI Distribution(sample(n))
do
n’ = n + k * burst size
sample(n’) = sample(n) + Sample Random Sequence(k *
burst size)
q’(x) = Compute RSSI Distribution(sample(n’))
if Compute NKLD(q′(x)||q(x)) ≤ tolerance
return q(x)
update n = n’, q(x) = q’(x) and continue

Figure 11: Algorithm to find length sequence n for
which the RSSI distribution stabilizes

longer packet sequences. The online algorithm is shown in
Figure 11. The enabling observation for the above algo-
rithm is that after the NKLD curve stabilizes, increasing
the length of packet sequence does not change the distri-
bution substantially. So we compute the RSSI distribution
for n and n + burst size for varying values of n and return
the value for which both the distributions have relative dis-
tance less than the tolerance level. We use burst size as
an increment, as RSSI varies significantly across bursts and
we need to consider at least a gap of more than burst size
to conclude that the RSSI distribution has stabilized. For
our experiments we find that typically an increment of one
burst size is sufficient to yield correct results using the on-
line mechanism. Table 1 shows the values of n obtained for
the four representative traces shown in figure 5. The value of
n obtained using an online mechanism is close to the value
obtained using offline analysis of the traces. In order to
evaluate the efficacy of our online mechanism (to determine
n) we compare the distribution obtained using a packet se-
quence of length n with the distribution obtained using large



traces (≈ 100, 000). Figure 10 shows that the distribution
obtained using n as determined by the online mechanism
closely approximates the true distribution for all the traces.

Trace Burst Size Offline Online
# of pkts # of pkts NKLD # of pkts NKLD

LOS-light ≈ 1000 30,000 0.5 22,000 0.8
NLOS-light ≈ 2500 20,000 0.5 20,000 0.8
LOS-heavy ≈ 3000 16,000 0.5 9000 0.8
NLOS-heavy≈ 400 3000 0.5 5000 0.05

Table 1: Minimum packet length sequence for cap-
turing the distribution of RSSI, as calculated by of-
fline and online mechanisms. Corresponding NKLD
distance with the long term ”true” distribution is
also given. NKLD of 0.5 is chosen as the thresh-
old for determining the packet length sequence in
the offline mechanism. Burst sizes corresponding to
first noticeable peak in Allan deviation is shown.

Validating Efficiency of Online-RSSI : We validate the
efficiency of Online-RSSI by using the traces collected in our
indoor WLAN deployment as described in Section 3.1. Us-
ing those traces, we first build an accurate estimate of the
signal strength distribution for each scenario for different
power levels. These distributions are computed over large
traces (comprising of ≈ 100, 000 packets) and act as a base-
line against which we compare the distribution generated by
Online-RSSI. Figure 10 shows the accuracy of Online-RSSI
for a given power level in different scenarios. The results for
different power levels are similar in nature to the ones pre-
sented here. The base line distributions for different scenar-
ios are shown in dotted lines and the real time distribution
generated by Online-RSSI is shown in solid lines. As shown
in the figure, Online-RSSI is able to accurately estimate sig-
nal strength distribution and the errors (NKLD distance be-
tween baseline and estimated) are found to be within 5%
for LOS-light, NLOS-light and NLOS-light, while for NLOS
heavy it was found to be with 20 %. This indicates that the
algorithm has reasonable accuracy in estimating the RSSI
distribution in an online fashion for different scenarios.

4. EMPIRICAL MODEL FOR POWER
CONTROL

As discussed in Section 2.1, RSSI values of neighboring
power levels tend to overlap significantly in indoor scenar-
ios, with some indoor settings more prone to multipath ef-
fects (like cubicles) than others (like large conference halls).
Similarly the interference and other factors that determine
the extent of RSSI variations will be different for different
indoor environments. Hence, it is possible that some in-
door environments may allow more power levels to be dis-
tinguishable (where RSSI variations are low) as compared to
others (where RSSI variation is high). Based on our online
mechanism to dynamically determine the number of packets
required to characterize RSSI distribution in any environ-
ment, we present an empirical model for transmit power
control, Model-TPC, that outputs the set of feasible (non-
overlapping distribution) power levels for a given indoor set-
ting.
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Figure 12: Probability distribution function for
RSSI values received at varying power levels at the
transmitter. The plots represent the distributions at
receiver RB-10, RB-11, RB-12 and RB-8, in order
from top to bottom. The exact positions of these re-
ceivers with respect to the transmitter can be seen
in figure 2. The amount of overlap varies with the
location and only 2-3 power levels are distinguish-
able at most of the receivers.

Figure 13: Steps involved in construction of Model-
TPC. The receiver estimates the RSSI distribution
using our Online-RSSI and computes set of feasible
power levels as applicable to itself. This information
is then sent to the transmitter to be used in power
control

4.1 Model-TPC
Construction of our model proceeds through the following

important steps, also shown in Figure 13. Assume we are
operating in the context of a wireless node X.

1. Estimating RSSI distribution: The RSSI distribu-
tion for any given power level is estimated using the
Online-RSSI algorithm described in Section 11. Note
that the RSSI distribution is captured at the receiver
and communicated back to the sender as a feedback,
as shown in Figure 13. Many proposed approaches
(such as [2]) already incorporate protocol-level con-
structs to implement such functionality. Ongoing data
communication between the participating nodes can
be leveraged to gather this information. This process
is repeated for different power levels available in the
hardware. Note that for our experiments, this proce-
dure is repeated for different hardware available power
levels (6 for Cisco Aironet). In future, if the wireless
hardware supports a large number of power levels, the
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also shown in the figure

cost for this step can be limited through a combina-
tion of sampling and simple approximation techniques
to determine the RSSI distribution of power levels. We
leave such extensions as directions for future work.

2. Deciding the feasible power levels: At comple-
tion of Step 1, the wireless node X would have built
an empirically tuned model for the different power lev-
els, much like Figure 12. At this point, if the NKLD of
distributions of any two power levels is greater then a
threshold NKLDthresh, then the two power levels are
considered to be distinct and can be used simultane-
ously. In theory, dynamic programming can be used to
determine the largest set of feasible power levels sat-
isfying above condition. For simplicity, we scan from
maximum power level to lowest power level, picking all
the power levels that satisfy the NKLDthresh criteria.

Figure 12 shows the distribution of RSSI for various re-
ceivers in our indoor WLAN deployment (Figure 2), when
T1 is used as a transmitter and power level is varied at
the granularity of 10mW. The power levels are not shown
in the graph for the sake of clarity. The top most plot is
for receiver RB-10, followed by RB-11, RB-12 and RB-8 in
that particular order. We use the steps outlined above to
determine the feasible power levels for the aforementioned
receivers. The distributions corresponding to these feasible
power levels are marked in black in Figure 12. As can be
seen, the selected power levels overlap minimally (NKLD ≥
4). We also computed the error (captured by the NKLD
function) between the accurate distributions and the distri-
butions estimated by Online-RSSI. For each of these power
levels, we found the error to be within 10 % of the desired
maximum error. Clearly the amount of overlap (and hence
the number of distinguishable power levels) depends on the
location of the receiver, with RB-10 observing less overlap as
compared to RB-11, which practically observes only a single
power level. These results clearly indicate that the set of
feasible power levels is highly correlated with the location of
the receiver and motivates the case for location-based power

control, where the transmitter uses a different set of power
levels for each client depending on client’s location.

4.2 Summary
For a given a wireless environment, our proposed model

and its associated algorithms were able to accurately deter-
mine a good and useful set of power levels. The set of useful
power levels as computed by Model-TPC are valid till traffic
characteristics (other interference source) and wireless envi-
ronments (physical obstacles etc) remain similar. Using our
Online-RSSI algorithm, we already sample sufficient packets
to reflect small scale changes in the wireless environments
in our model. However the set of power levels must be re-
computed against large scale changes in the wireless wire-
less environment like transmitter mobility, introduction of
a new physical obstacle or a new interference source. We
are investigating various triggering mechanisms to refresh
the Model-TPC, although a simple strategy to refresh the
model every 10 minutes seems to work fine for our indoor
experiments.

5. EXPERIMENTAL EVALUATION OF
MODEL-TPC

To validate our model, we pick an existing algorithm [15]
that uses transmit power control for improving client through-
put and spatial re-use. The algorithm proposed increases
transmit power in steps and measures signal quality to as-
certain the optimal power setting for a given client.

At a high level, the algorithm operates as follows. It starts
with the lowest power level and performs normal data rate
adaptation using Onoe [1](a standard data rate adaptation
mechanism). Once the data rate stabilizes around a value,
the power level is increased and the rate adaptation process
is continued. This process is repeated until the transmitter
reach the maximum rate available or reaches the highest
power level.

To demonstrate the benefits of our proposed model, we
create a set of useful power levels through Model-TPC and
restrict the above algorithm to use only this set of power
levels in its adaptations. We then compare the adaptation
performance of the algorithm under two different scenarios
– (i) which uses all possible power levels as available from
the wireless interface, and does not use our model-TPC, and
(ii) which uses the power levels provided by Model-TPC.

There are two benefits of Model-TPC: First, it allows for
significantly faster convergence for the transmitters to the
best suited power level in their operating environments. Sec-
ond, by eliminating the need to explore many redundant
power levels with corresponding poor throughput perfor-
mance, the transmitters achieve higher throughput over the
entire adaptation duration. This is particularly important
for clients that are mobile in nature and hence, need to adapt
their transmission parameters, including power levels, quite
frequently. We illustrate these gains through our reference
implementation of the algorithm in [15], both with and
without Model-TPC.

5.1 Setup
For the experiment described, the setup is identical to

NLOS scenario, with the transmitter using an Atheros card
having five power levels as validated by our power level val-
idation setup in Figure 4. The mobile client continuously
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Figure 15: Joint power and data rate adaptation mechanism with/without the empirical model. Con-
vergence is much faster with the empirical model.

transmits data from itself to a departmental server located
at the position of receiver R2, shown in Figure 2. The client
roams from locations T1 to T2 to T3, which are annotated in
the Figure 2 of our indoor WLAN deployment. Initially the
client is at T1, which has 3 feasible power levels of 10mW,
20mW and 40mW, as per Model-TPC. After 12 seconds, the
client goes to location T2, which is very close (LOS) to the
server R2 and hence the client is decreases its power level
and is able to use the lowest power level of 10mW to achieve
a data rate of 54Mbps. After 2 seconds, the client again
moves to location T3, which has four feasible power levels
as per our empirical model. We show the data rate and
power adaptation process at T1 and T3 (The adaptation at
T2 is obvious, with the client simply reducing power levels
as it is very close to the server).

5.2 Results
We present the cumulative distribution function of the

instantaneous throughput (measured every 100 ms) of the
two variants of the transmit power control algorithm in Fig-
ure 14. The figure shows that using Model-TPC to restrict
power levels lead to higher instantaneous throughput for a
significant part of the experiment as shown in Figure 16. We
explain this difference by examining the adaptation mecha-
nisms in the two cases in Figure 15.

Figure 15(a) shows the adaptation behavior when all five
power levels are used by the algorithm. We can see that
over time, the algorithm attempts to identify signal qual-
ity at each different data rate and power level, spending a
significant amount of time testing parameter values which
are redundant for a give environment, thus impacting per-
formance. In contrast, Figure 15(b) shows that adaptation
with our Model-TPC. Clearly adaptation is much faster with

our model, with more pronounced gains at T1 (as difference
between hardware and feasible power levels is more) than
T3.

Note that here we only show the throughput gains arising
from quicker convergence from a small power level to the
right (greater) power level for locations T1 and T3. Model-
TPC also provides much better convergence when adapting
from a high power level to lower (right) power level as for
T2, by skipping all the redundant high power levels in be-
tween. A faster convergence reduces the energy consumed
in scanning high power levels and leads to energy savings,
which is an important consideration for mobile clients. Due
to lack of space, we do not present our energy results in this
section.

5.3 Summary
Our gains of in the above Internet-oriented wireless exper-

iments stem from faster adaptation achievable when using
the Model-TPC as an input to power control. Note that
in our experiments, we compared benefits when only five
power levels are available from the wireless interface. The
performance gains of Model-TPC will only be greater if the
wireless interface makes more power levels available to the
system software, that will clearly increase the number of
redundant channels that transmitter will scan in a typical
power control algorithm, while our model will facilitate much
faster convergence and performance.

6. DISCUSSION
While our work in this paper is targeted towards indoor

WLANs, we discuss the relevance of our work in context of
cellular networks, where power control is again an impor-
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Figure 16: Goodput of the end wireless clients in joint power and data rate adaptation mechanism
with/without the empirical model.

tant design parameter. Power control in cellular networks
is used for reducing co-channel interference, managing voice
quality, dealing with fast fading and near-far problem [10,
17]. However cellular networks primarily operate in outdoor
environments, where the effects of multipath are mush less
pronounced as shown in Figure 3. Moreover, cellular net-
works do not perform rate adaptation in the inner loop (real
time or per packet basis) of power control, whereas data rate
adaptation is an integral component of 802.11 based WLAN
systems. Thus the SNR threshold for cellular networks is
varied slowly in the outer loop of power control, whereas in
WLANs, data rate adaptation is performed on very small
time scales, thereby making RSSI variations even more crit-
ical for system performance.

7. RELATED WORK
We discussed prior work on power control mechanisms in

Section 2. In this section, we present other previous work
that deals with signal strength measurement and character-
ization for wireless networks.

• Measurement based modeling : Some recent ef-
forts have been made to use empirical observations
to improve wireless protocols. Reis et al.[7] propose
a measurement based model for delivery and inter-
ference in static wireless networks. Their work takes
RSSI values of wireless packets as an input to predict
the delivery rate and interference in the system. Di-
vert [4] attempts to reduce packet loss rates in WLAN
systems by rapidly switching between APs to tolerate
bursty losses. ExOR [5] leverages spatial loss indepen-
dence to reduce packet transmissions in multi-hop net-
works by using opportunistic packet reception. These

efforts indicate that there is much room to improve
wireless protocols by adapting them to realistic condi-
tions. Our work provides one such tool.

• RF-based location determination : RF-based lo-
cation determination mechanisms [21, 14] use signal
strength values for fingerprinting different locations in
a WLAN. Kaemarungsi et al. [12] study the prop-
erties of indoor received signal strength for location
fingerprinting. They propose an analytical model for
indoor positioning system by modeling the RSSI vari-
ations as a Gaussian distribution. While such work
in location determination had to examine RSSI (and
hence, power) variations between a transmitter and a
receiver, the focus of such RF-based localization tech-
nique did not require a careful exploration of various
power level choices, and their implications on power
control mechanisms.

• Feasibility Analysis : Abdesslem et al [8] describe
the hardware and software limitations, like limited power
levels in the wireless chipsets and lack of suitable de-
vice drivers, that hinder the implementation of trans-
mit power control mechanisms. While their work is
an important step towards determining feasibility of
power control mechanisms (due to hardware/software
limitations), they do not explore the more fundamen-
tal issues with fine grained power control that arise
due to the inherent nature of wireless medium.

8. CONCLUSIONS AND FUTURE WORK
Multipath, fading, shadowing and external interference

from wireless devices, make the implantation of power con-



trol mechanism challenging in practical settings. The focus
of this paper has been in understanding what the right set
of power control mechanisms are useful to design efficient
power control algorithms. More specifically, we show that
fine-grained power control cannot be effectively used by such
algorithms in a systematic manner. In fact, our work sug-
gests that a few 3-5 discrete power level choices is sufficient
to implement any robust power control mechanism in typ-
ical indoor WLAN environments. Through our work, we
also build an empirical model that guides these appropri-
ate number and choices of power values that is adequate.
Our model can be used as a plug-in to previously proposed
power control mechanisms, to make them implementable in
real settings. We believe our work provides an important
framework that can be used by researchers to develop ro-
bust and practical power control mechanisms.

We have used NKLD as a statistical tool to measure the
distance between two RSSI distributions. Although it works
well for our environments and is easy to compute in a real
time fashion, there are other statistical tools like moment
based estimators, that capture the spread of the two dis-
tributions better and may be more effective in distinguish-
ing between two probability distributions. Comparing the
performance of NKLD with moment based estimators is an
avenue of future work for us.

We are also investigating various triggering mechanisms to
refresh Model-TPC. Currently we refresh it periodically ev-
ery 10 minutes, which not be optimal for every scenario. The
refresh period is tightly coupled with large scale variations
in the wireless environments, like addition of an interfering
source or a new obstacle and we are performing more exper-
iments to detect such changes that can trigger the update
of Model-TPC.

Although our main objective is to evaluate the feasibil-
ity of using fine grained power control in indoor environ-
ments, the model developed in this section can be read-
ily used by access points (APs) to profile various locations
in the environment and perform location-based power con-
trol. Through collaborative measurements made by different
clients over time, the APs can create a location-dependent
model for power control which can be downloaded to clients
during association. Also the network as a whole could aggre-
gate such models to create a single model which is network
dependent but location independent that trades-off complex-
ity and accuracy for simplicity of use. We are currently look-
ing such location-specific power control approaches that can
be implemented using a centralized controller that manages
the wireless APs in enterprise WLANs. The flexibility in
estimating and building the empirical model allows for its
applicability to a wide range of power control algorithms and
might find interest outside the scope of 802.11 networks.
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