
Virtual Browser: a Web-Level Sandbox to Secure
Third-party JavaScript without Sacrificing Functionality

Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, and Yan Chen
Dept. of EECS, Northwestern University

Evanston, IL, USA
yinzhicao2013@u.northwestern.edu, lizc@cs.northwestern.edu,

vrastogi@u.northwestern.edu, ychen@northwestern.edu

ABSTRACT

Third-party JavaScript offers much more diversity to Web and its

applications but also introduces new threats. Those scripts cannot

be completely trusted and executed with the privileges given to host

web sites. Due to incomplete virtualization and lack of tracking all

the data flows, all the existing works in this area can secure only

a subset of third-party JavaScript. At the same time, because of

the existence of not so well documented browser quirks, attacks

may be encoded in non standard HTML/JavaScript so that they can

bypass existing approaches as these approaches will parse third-

party JavaScript twice, at both server and clint side.

In this paper, we propose Virtual Browser, a completely virtual-

ized environment within existing browsers for executing untrusted

third-party code. We secure complete JavaScript, including all the

hard-to-secure functions of JavaScript programs, such as with and

eval. Since this approach parses scripts only once, there is no pos-

sibility of attacks being executed through browser quirks. We first

completely isolate Virtual Browser from the native browser com-

ponents and then introduce communication by adding data flows

carefully examined for security.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and protection—Informa-

tion flow controls, Invasive software; D.1.0 [Programming Tech-

niques]: General

General Terms

Security, Design, Language

Keywords

Third-party JavaScript, Web Security, Virtualization

1. INTRODUCTION
Modern websites tend to use third-party JavaScript to enrich their

functionalities. Web mashups, which combine services from exist-

ing websites, has become more and more popular. For example, a

website may use Microsoft’s Bing Maps API for providing location

information, employ Google Analytics to track its visitors’ behav-

ior, include JavaScript code from targeted advisement companies

for increasing revenue, and enable third-party widgets for richer

functionalities. In each of these cases, some third-party JavaScripts,

which are not developed by the website, has privileges to execute

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

`

Figure 2: Comparison of Web Sandbox and Virtual Browser

when Executing For-loop

even from the same origin as the JavaScript from the website itself.

Although these third-party JavaScripts enrich the functionalities of

the website, malicious third-party Javascripts can potentially fully

subvert the security policy of the website, and do all kinds of at-

tacks.

A Virtual Browser is a virtualized browser built on top of a native

browser. The idea of virtual browsers is comparable to the idea of

virtual machines. A virtual browser is written in a language that a

native browser supports, such as JavaScript. It has its own HTML

parser, CSS parser and Javascript interpreter, independent from the

native browser. Third-party Javascript is only parsed once in the

virtual browser and run on the virtual JavaScript interpreter. The

third-party JavaScripts are isolated from the JavaScripts of the web-

site by design. Then, we introduce the necessary communications

between JavaScripts from the website and third-party JavaScripts.

Our virtualization technique is significantly different from the

existing proposed ones, for example, Web Sandbox [7] and Google

Caja [5]. The key difference is whether third-party JavaScripts are

directly running on a native JavaScript engine. Figure 1 clearly

shows the differences. We execute third-party JavaScripts on our

virtualized JavaScript engine; on the other hand, existing approaches

check the parameters of each third-party JavaScript expression and

then let them execute directly on the native JavaScript engine. Web

Sandbox [7] makes a big step on virtualization. It provides a vir-

tualized environment for native execution of third-party JavaScript,

but its execution is still restricted by the parameter checking model.

As shown in the left side of Figure 2, they provide a virtualized en-

vironment for for loop, but the for loop itself is still running on a

native JavaScript engine. This is also the reason why they cannot

deal with complex JavaScript functions such as eval and with. For

eval, their parameters can be unparsed JavaScript statements. For

with, without executing the scripts themselves, it is hard to know

the execution context.

654



Third-Party JavaScript

Check Engine

Native JavaScript Engine

Classical Structure

Execute

Parameter

Check

(Third-party script is running directly 

on native engine after checking. Insecure)

Native JavaScript Engine

Virtual JavaScript Engine

Third-Party JavaScript

Structure of Virtual Browser
(Third-party script is running on virtual core, 

not native engine. Secure)

Trusted JS

Execute
Execute

Trusted JS

Execute

Figure 1: Classical Structure (left) v.s. Simplified Structure of Virtual Browser (right)

1. <div id = “my_div1” style=“…”>

2. <scr

3. ipt>

4. var JSON_str = “…”;

5. eval(JSON_str);

6. setTimeout(“alert(‘hello’);”, 10);

7. ….

8. </script>

9. <div id = “my_div2>

10. <p> abcd

11. <p> cdef</p>

12. …

13. </div>

14.</div>

Figure 3: A Motivating Example

2. A MOTIVATING EXAMPLE
We begin with a motivating example in Figure 3. We discuss

two important points using this example: (a) some complex func-

tions cannot be implemented in existing sandboxing approaches,

and (b) some erroneous programs are not recognized by existing ap-

proaches. Lines 4-5 show a JSON string being executed by eval, a

complex function not protected by present approaches. Developers

however still use this method to parse JSON strings in old browsers

which do not have native JSON support. Line 6 shows us another

example about setTimeout. As shown in Figure 1, the classical

runtime approaches (such as runtime part in GateKeeper [6]) em-

ploy a parameter checking model, implying that they cannot check

the safety of some complex but useful functions, such as eval and

setTimeout, whose parameters need to be passed to the JavaScript

parser. Without incorporating execution tracing, it is very hard to

determine by plain parameter checking if these parameters are ma-

licious. Web Sandbox [7] also adopts parameter checking as men-

tioned above but additionally creates a virtualized environment for

the third party scripts in which the variables have a different names-

pace than what is visible to the native engine. However, the ar-

guments of eval when generated dynamically would bypass this

instrumentation. Since the execution is still done on the native

JavaScript engine, eval cannot be safely executed in Web Sand-

box’s approach. Static approaches have even greater problems;

they cannot even ensure if the parameters are checked at all. For

example, an eval call obfuscated as “a=eval;a.call("alert(1)");” is

not easy to detect using static approaches. There are many similar

obfuscating techniques discussed by Guarnieri et al. [6]. However,

44.4% of the websites use eval [10] and about 9.4% of widgets use

with [6]. We cannot simply ignore the existence of these complex

functions.

Lines 2-3 and Line 10 of Figure 3 give some examples of bugs

in the third-party programs. Because web-programmers are hu-

mans, mistakes are very likely during programming. This is one

reason why existing web browsers all support non-standard HTML

and JavaScript, commonly referred to as browser quirks. Browser

quirks are well studied in BluePrint [9]. Because of the prevalence

of browser quirks, server side checkers may interpret third party

Virtual 

JavaScript 

Parser

Virtual 

JavaScript 

Execution 

Engine

Virtual 

HTML 

Parser

Virtual CSS 

Parser

Third-Party 

JavaScript Code

Virtual 

DOM

Components Data

Private 

Object

AttachScript
DOM

Native 

JavaScript

Parser

Trusted 

Code

Native JavaScript Execution Engine

HTML Style Sheet

Link to

AST Tree

Access

Style Sheet

Shared 

Object

Figure 5: System Architecture

content differently from the clients. Considering the quirk in lines

2-3 of Figure 3 as an example, even if the server side checker may

pass it as an unknown tag, if the client browser consider it as a

script tag, it will cause unsupervised script running at client side.

Vulnerabilities and attacks of this kind are very common. For ex-

ample, the server side filter on the facebook server had such a vul-

nerability [8]. A string <img src="..." onload:=attackcode> is

interpreted as <img src="..." onload = attackcode> at browsers

(Firefox 2.0.0.2 or lower) but as <img src="..."> at server side fil-

ter. Also, in the notorious MySpace Samy worm [2], the server

side script checker failed to recognize JavaScript embedded in CSS

codes but browsers executed the embedded JavaScript because of

the difference in the order of the invocation of the JavaScript parser

and the CSS parser. All existing approaches, either static, such as

GateKeeper [6] (mostly static) and ADSafe [1], or runtime, such as

Web Sandbox [7] and Google Caja [5], define a particular server

side interpretation which may be very different from the browsers’

interpretation, and hence remain vulnerable to such attacks.

3. DESIGN

3.1 Architecture
The architecture of Virtual Browser is shown in Figure 5. Vir-

tual Browser is very similar to a native web browser except that it

is written in JavaScript. Virtual Browser is composed of two parts,

components of Virtual Browser and data in Virtual Browser. Com-

ponents of Virtual Browser is consisted of virtual JavaScript parser,

virtual JavaScript execution engine, virtual HTML parser, virtual

CSS parser, etc. Data in Virtual Browser is consisted of virtual

DOM, private object, etc.

The same as native web browser, virtual JavaScript/HTML/CSS

parser is used to parse JavaScript/HTML/CSS code. Virutal JavaScript

execution engine is used to execute parsed JavaScript AST tree.

Virtual JavaScript execution engine and HTML parser use virtual

DOM methods in virtual DOM to access its contents. Private data

is used to store JavaScript object in virtual browser.

655



Virtual 

JavaScript 

Parser

with exp {

body

}

Virtual 

JavaScript 

Execution 

Engine

with
exp

body

1. …

2. with – change 

scope according 

to exp

3. execute body

(a) with

Virtual 

JavaScript 

Parser

eval(str)

Virtual 

JavaScript 

Execution 

Engine

eval

(b) eval

str
str

Virtual 

JavaScript 

Parser

Virtual 

JavaScript 

Execution 

Engine

Virtual DOM

Virtual 

HTML 

Parser

document.write(str)

(c) document.write

(innerHTML is similar)

document write str

Add to

Stack

Parse 

Resuls

Virtual 

JavaScript 

Parser

v1==v2
Virtual 

JavaScript 

Execution 

Engine==
v1

v2

1. if (typeof v1==’number’ && typeof 

v2==’number’) return v1==v2;

2. …

3. if (typeof v1==’object’) {

if (typeof v2==’object’) …

if (typeof v2==’number’) {

f = getValue(v1, ‘valueOf’);

res = f.__call__(v1, null, x); //x 

is execution scope

return res==v2;

}

}

(d) implicit JavaScript operations, such as valueOf

Figure 4: Examples of Several Cases

3.2 Design of Interfaces of Components
The most important interface is the interface of JavaScript Core,

which has three parts, putValue, getValue and function call/return.

putValue is loaded every time an object is changed. Every modifi-

cation to a private (from third-party) function/variable or a native

(from trusted scripts) function/variables goes through putValue. get-

Value provides a interface for every read operation. Function calls

are used for calling shared functions from natively running code

and private functions from third-party codes. Our design of the in-

terface of the virtual JavaScript engine is similar to the one of the

native JavaScript engine. Several works [3, 4] have details about

the native JavaScript engine’s interface.

3.3 Design of Communication between Com-
ponents

We will present how third-party JavaScript codes flow inside Vir-

tual Browser. When third-party JavaScript codes come into Virtual

Browser, virtual JavaScript parser will first parse it into AST tree

and give the tree to virtual JavaScript execution engine. Virtual

JavaScript execution engine will execute the AST tree as normal

JavaScript interpreter does. When a HTML content is found, virtual

JavaScript execution engine will send it to virtual HTML parser.

Similarly, JavaScript codes and CSS style sheets will be sent to

virtual JavaScript and CSS parser. Virual HTML parser will parse

HTML and will send scripts/style sheets to virtual JavaScript/CSS

parser. All of these processes are shown in Figure 5.

3.4 Case Studies
In this section, we illustrate several examples that previous ap-

proaches cannot deal with.

with with is a notoriously hard problem in this area. All the existing

work cannot solve this problem. In our system, with becomes quite

simple because we interpret JavaScript ourself. For example, as

shown in Figure 4(a), with document in our system is just a switch

of current context.

eval eval is usually banned by existing approaches because it will

introduce additional unpredictable JavaScript. As shown in Figure

4(b), In our system, we just need to redirect contents inside eval

back to our virtual JavaScript parser. No matter how many evals

are embedded(such as eval(eval(...(alert(’1’))...)), JavaScript is still

executing inside our virtual JavaScirpt Core.

document.write/innerHTML document.write and innerHTML are

related to HTML parser. As shown in Figure 4(c), when our JavaScript

execution engine encounters functions/variables like these, we will

redirect them to HTML parser by calling methods in virtual DOM.

All the traffic is still in control of our system.

implicit JavaScript operations Some of JavaScript operations are

implicitly called. For example, when executing v1 == v2, val-

ueOf may be implicitly called, as shown in Figure 4(d).

arguments arguments is implemented inside function. Arguments

of current function is stored in current running context. When we

use arguments, we can fetch it directly.

4. REFERENCES
[1] AD safe. http://www.adsafe.org/.

[2] Myspace samy worm. http://namb.la/popular/tech.html.

[3] Webkit source codes.

http://webkit.org/building/checkout.html.

[4] BARTH, A., WEINBERGER, J., AND SONG, D. Cross-origin javascript

capability leaks: Detection, exploitation, and defense. In the 18th USENIX

Security Symposium (2009).

[5] GOOGLE. Google caja.

http://code.google.com/p/google-caja/.

[6] GUARNIERI, S., AND LIVSHITS, B. Gatekeeper: Mostly static enforcement of

security and reliability policies for javascript code. In 18th USENIX Security

Symposium (August 2009).

[7] LABS, M. L. Websandbox. http://websandbox.livelabs.com/.

[8] SOTIROV, A. Blackbox reversing of xss filters. RECON (2008).

[9] TER LOUW, M., AND VENKATAKRISHNAN, V. Blueprint: Precise

browser-neutral prevention of cross-site scripting attacks. In 30th IEEE

Symposium on Security and Privacy (May 2009).

[10] YUE, C., AND WANG, H. Characterizing insecure javascript practices on the

web. In WWW ’09: Proceedings of the 18th international conference on World

wide web (New York, NY, USA, 2009), ACM, pp. 961–970.

656


