
Building Continuous Integration Services for Machine Learning
Bojan Karlaš1,2, Matteo Interlandi1, Cedric Renggli2, Wentao Wu1, Ce Zhang2, Deepak Mukunthu

Iyappan Babu1, Jordan Edwards1, Chris Lauren1, Andy Xu1, Markus Weimer1
1Microsoft, 2ETH Zurich

ABSTRACT
Continuous integration (CI) has been a de facto standard for build-
ing industrial-strength software. Yet, there is little attention towards
applying CI to the development of machine learning (ML) appli-
cations until the very recent effort on the theoretical side. In this
paper, we take a step forward to bring the theory into practice.

We develop the first CI system for ML, to the best of our knowl-
edge, that integrates seamlessly with existing ML development
tools. We present its design and implementation details.

ACM Reference Format:
Bojan Karlaš1,2, Matteo Interlandi1, Cedric Renggli2, Wentao Wu1, Ce
Zhang2, DeepakMukunthu Iyappan Babu1, Jordan Edwards1, Chris Lauren1,
Andy Xu1, Markus Weimer1 . 2020. Building Continuous Integration Ser-
vices for Machine Learning. In Proceedings of the 26th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’20), August 23–27,
2020, Virtual Event, CA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3394486.3403290

1 INTRODUCTION
Recent decades have witnessed an increasingly frequent usage of
machine learning for a wide range of mission critical applications.
However, one challenge in building such applications, especially
from the perspective of practitioners and domain scientists, is over-
fitting. In our experience in supporting a range of industrial and
academic users [9, 14, 22–25], it is not uncommon for users of
modern ML platforms to suffer from this problem, as illustrated
in Figure 1(a), that the gap between the estimated test/validation
accuracy and true test accuracy increases during the development
process.Canwe provide tools to help practitioners tackle this problem?

In this paper, we draw our inspiration from continuous integra-
tion (CI), which has been part of the industry standard of modern
software development [12], evidenced by the recent surge of cloud-
hosted software development services such as Azure DevOps [3]
and AWS CodePipeline [2]. CI services lift the burden of managing
the software development lifecycle from the developers by provid-
ing a variety of tools for building, testing, and deploying software
applications in an automated and iterative manner. Development
of machine learning (ML) applications is not much different in this
regard from regular software systems – it typically requires many
iterations as developers try to continuously improve the quality of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403290

Overfitting

A
cc

ur
ac

y

Commits # Commits

Estimated Test Accuracy

True Test Accuracy

Estimated Test Accuracy

True Test Accuracy
Overfitting
Tolerance

(a) w/o Our System (b) w/ Our System

0 20 40 60 0 20 40 60
0.4

0.5

0.6

0.7

0.8

 0

0.2

0.4

0.6

0.8

Figure 1: (a) The challenge of building a CI system for ML is
that, if not being careful, onemight overfit the test set when
committing multiple models during the CI process; (b) The
goal of our system is to provide rigorous guarantees on the
overfitting behavior by, intuitively,measuring the “informa-
tion leakage” from the test set during the CI process.

their ML models. Can we build continuous integration services for
ML to give users constant feedbacks and signals about overfitting?
Challenges. None of the existing CI services are sufficient when
it comes to ML applications [20]. One major issue lies in testing:
In traditional software testing, test cases can be reused infinitely
to evaluate test assertions, and simply return deterministic binary
true/false signals. In ML testing, every pass/fail signal leaks in-
formation about the test set itself and thus may lead to overfitting,
resulting in false positive/false negative outcomes (see Figure 1).
(Example) Consider the test assertion n - o > 0.01, where n
and o represent the accuracy of the new and old version of an ML
model in consecutive development iterations. The semantics of the
test assertion is clear — the test will pass only if the new model
improves accuracy by at least 0.01. To evaluate this test assertion,
however, one needs to estimate the accuracy of both models using
a test set, which is a finite set of i.i.d. samples from the underlying
data distribution. Such estimates are inherently uncertain and so is
the true/false evaluation result of the test assertion. Therefore,
one has to interpret the evaluation result from a probabilistic view:
The result holds with high probability if the test set is sufficiently
large. Ensuring such probabilistic guarantees for ML test assertions,
when the same test set is repeatedly used for evaluation, is one
major challenge that “CI for ML” services need to address.

In this paper, we develop the first “CI for ML” service. As illus-
trated in Figure 1(b), our system controls the size of test/validation
set such that the gap between the estimated accuracy and the true
test accuracy is guaranteed to be smaller than a small constant spec-
ified by the user. To the best of our knowledge, this is the first such
system that integrates seamlessly with existing ML development
tools. Our service provides a framework for testing ML models that
is based on strict theoretical bounds and enables a principled way
to avoid over-fitting the test set, which is a common problem that
is easily overlooked. Our service is also seamlessly integrable with
existing CI frameworks such as TravisCI, Microsoft Azure DevOps,

https://doi.org/10.1145/3394486.3403290
https://doi.org/10.1145/3394486.3403290
https://doi.org/10.1145/3394486.3403290

Figure 2: A macroscopic view of where a CI/CD service stands in modern ML application development lifecycle.

and GitHub Actions. We have released an open-source version on
GitHub [7] and we have ongoing efforts conducted with Microsoft
internal partners to integrate our service into Azure ML Services.
In this paper, we present the design and implementation details of
our CI service.
1.1 Production Requirements
Making a theoretical framework like ease.ml/ci into an industrial-
strength tool requires us to revisit the requirements of a real pro-
duction environment. The first step in our work is to define such
requirements from our experience in building real-world ML plat-
forms and applications.
ML Life Cycle. An ML application development lifecycle typically
involves multiple iterations. In each iteration, developers try to
come up with an ML model with the best quality (e.g., prediction
accuracy) on the training or the validation dataset. This model is
then evaluated against a holdout, test dataset that is drawn inde-
pendently from the data distribution that governs the underlying
data generation. Based on the quality of the model observed on
the test dataset, developers then perform error analysis (if possible)
and enter the next iteration. This iterative procedure ends when-
ever developers are satisfied with the model quality (over the test
dataset) or the model quality cannot be improved any more.
CI/CD for ML. A CI/CD solution for iterative ML model develop-
ment requires supporting numerous types of data sources, a variety
of training tools, a validation solution to analyze and validate mod-
els (for functionality and performance) and supporting deployment
to the infrastructure used to serve models in production. This be-
comes particularly challenging when data changes over time and
fresh models need to be produced regularly, as is the case in many
large-scale, AI infused systems. Complexity only grows as models
need to be deployed to a hybrid of the Intelligent Edge + Intelligent
Cloud. Figure 2 provides an overview of where a “CI for ML” service
stands in the whole ML application development lifecycle.
Our Ultimate Goal. Our primary goals here are to (1) standardize
the components leveraged for model lifecycle management – model

training, model validation, model storage/versioning, model and
health monitoring; (2) provide lightweight process and templates to
simplify the data scientist/app developer collaboration; (3) reduce
the time from model creation to production deployment from the
order of months to weeks to days.

1.2 Theoretical Foundation
Recent progress on adaptive analysis [13] reveals the fact that the
fidelity of the test dataset may fade away when it being accessed
again and again. The intuition behind this observation is that, de-
velopers may be able to gain insights upon seeing the test accuracy,
and then customize their next version of the ML model towards
improving the accuracy on this particular test dataset. This obvi-
ously may result in overfitting — while the prediction error over
the given test dataset seems small, the generalization error (which
can be estimated using an independently generated test dataset)
can be potentially large.

One obvious solution to this problem is to draw an independent
test dataset each time when a new version of model is developed.
However, this will result in significant overhead in terms of sample
complexity, i.e., the amount of test data being required. This poses a
problem because test data (especially labelled data) is not cheap to
obtain. Fortunately, as was shown in [11, 20], it is possible to avoid
paying that price as the sample complexity can be reduced to the
level that is feasible in practice. This lays the theoretical foundation
of developing CI systems for ML applications.

1.3 Data Management
The risk of overfitting due to adaptive analysis requires refresh-
ing the test dataset as CI proceeds, which leads to natural data
management problems in terms of effectively maintaining the test
data. In addition to standard database operations such as insertion,
update, and deletion, users of the CI service may also want to query
historical data as well as telemetry information about performance
of models that have been submitted in the past. Moreover, users
may even wish to keep track of the entire development history
and “roll back” to any point in the development trace to “restart”

Develop Build Test Release
·write model code
·tune parameters

·train model ·check model accuracy ·deploy trained model
Merge

Request?
Build

Successful?
Test

Passed?
yes

Training Data Test Data

Model Code

Developer

yes yes

Trained Model Trained Model

build outcome

test outcome

Figure 3: The development lifecycle of a machine learning model in the framework of traditional software development. The
shaded yellow line depicts the information leakage pathway that our method tries to solve.

from there. All these requirements need careful design of the data
management layer of the CI service to incorporate data versioning
and version control mechanisms.

1.4 Paper Organization
We start by presenting the design of the core component, the mltest
tool, of our “CI for ML” service in Section 2. We then present its
implementation details in Section 3. We discuss the new challenges
raised by adaptive analysis and our solutions in Section 4. In Sec-
tion 5 we further present evaluation results that showcase both the
necessity and effectiveness of our solutions. We summarize related
work in Section 6 and conclude the paper in Section 7.

2 SYSTEM DESIGN
In this section we present an overview of the CI system we have de-
veloped, including the interaction model, key design considerations,
as well as a walkthrough over the major components it contains.

2.1 An Overview of ML Development Lifecycle
Figure 3 presents an overview of the ML development lifecycle
under our CI system. Like the development of regular software, the
entire lifecycle consists of four stages (akin to a GitHub or Azure
DevOps kind of development scenario):

• Develop – the developer writes code for featurizing data, se-
lecting an appropriate algorithm with efficient implementa-
tion, as well as basic parameter tuning; the entire ML-related
software artifact produced by this stage (including the fea-
ture extraction code) is what we refer to as a model.

• Build – the developer requests merging the code into the
master branch (a.k.a., a pull request); this automatically trig-
gers the build process of the codebase, which trains the new
model over the training data.

• Test – the test phase follows if the build process succeeds; the
final model returned is evualuated against the test dataset,
after which the test accuracy is reported to the developer.

• Release – if all test cases are passed and the developer is
satisfied with the test accuracy, the model can then be pro-
moted to a release environment for upstream consumption,
potentially replacing an old model that was already released.

The key difference of our “CI for ML” system from a classic CI
system lies in the Test stage:

• Probabilistic evaluation of test conditions – unlike test con-
ditions in regular software test that have outcomes which

Trained Model Model
Testing
SystemPass/Fail

Developer

Data Curator Test Data

Manager
Test Spec

Status Info

Figure 4: Roles and their interactions with our system.
are deterministic, test conditions in our CI system are proba-
bilistic in terms of their semantics.

• Automatic refresh of test dataset – whenever the test dataset
loses its power as a representative of the underlying data
distribution due to repeated accesses, a new test dataset is
generated and an automatic swap occurs behind the scenes.

We will discuss these two respects in more detail soon. Before
that, below we give more details regarding the interaction model
between our system and the developer.

2.2 Interaction Model
In order to justify various design choices we made, it is important
to review the user-facing interface of the system. We define three
different types of users (or roles). Figure 4 presents the interactions
between different roles and our system.

Themanager role is in charge of defining test conditions. The
manager is aware of the broader architecture and all components
that make up the user’s system, only one of which may be the
ML model itself. She is also aware of all tests that have been de-
veloped, which gives her the ability to determine which quality
standards the model needs to fulfil in order for the overall system
to function correctly. Her main point of interfacing with our CI
system is the test spec. This enables her to control all aspects of
model testing, the most important of which is the test condition
that determines whether a new model that was committed will be
accepted or rejected. Moreover, the manager also has access to all
monitoring tools provided by our system. Mainly, the manager is
able to monitor the amount of available test data and the number of
test runs that the system can perform before a new test set would
need to get staged.

The data curator role is in charge of providing fresh test data to
the system. The data curator may perform various data preprocess-
ing steps before depositing the test data, which is her main point

of interfacing with our system. Depending on the original source of
data and the storage medium, the data curator might benefit from
some integration capabilities such as being able to pull data directly
from a SQL Database. To achieve this, the data curator may find it
useful to implement custom data acquisition adapters.

The developer role is in charge of building and improving ML
models. The developer may write model code, train the model, and
tune its hyperparameters, either manually or by using existing
tools and overseeing the process. Most importantly, the developer
is in charge of submitting new ML models to our system for testing
and, potentially in the end, for deployment. Each model that the
developer submits triggers a test run that determines if the model
passes the test conditions defined by the manager and is ready for
deployment. Depending on the way that our system is configured,
the developer may get informed of test outcomes in the form of a
binary pass/fail signal (with built-in probabilistic semantics that
we shall discuss later). This signal, albeit a necessary element of the
development lifecycle, is the main source of information leakage
that our system is trying to control.

2.3 Interfaces
One of the most important design goals of our system is to be easily
integrable with as many existing systems and engineering practices
as possible. We recognize three prominent interfacing methods
that would cover the needs of the vast majority of our users: (1)
interacting directly through the command line (CLI), (2) serving
Web-based requests (REST), as well as (3) integrating with custom
testing code. We implement our solution in Python with support
for all three mentioned interfacing methods.

In the following, we present individual interfaces for various
functionalities required by all three roles defined in Section 2.2.

2.3.1 Data Management. As we described earlier, the test dataset
cannot remain static over the long-term development lifecycle, so it
has to be managed as part of the test workflow. Our system achieves
this by maintaining a pool of fresh test data where new data can
be asynchronously deposited as soon as it becomes available. New
data is added by invoking the deposit command.

A subset of that test data gets staged. This is a separate pool of
data that is ready to be used for immediate test runs. Each staged
dataset has a unique stage key. Any staged dataset can be loaded
with the load command by using the stage key. If the stage key is
omitted, then the latest staged dataset is retrieved.

As our system keeps counting the number of test runs performed
over a staged pool of test data, it is able to determine when the
maximum allowed number of test runs has been reached (ref. Sec-
tion 4.1). Once this occurs, the current staged test pool has to be
set aside and a new test dataset has to be staged. This is most com-
monly done automatically, but it is also possible to stage a new test
dataset by running a stage command.

There is currently no universally accepted interface or storage
format for managing ML datasets. What ML datasets have in com-
mon is that they are a set of independent and identically distributed
(i.i.d.) data examples that can be treated individually. In the super-
vised learning setting that our system focuses on, there is also the
concept of feature as the input to an ML model and the concept of
label as its target output. In principle, these concepts are the bare

minimum that a data access interface needs to support in order to
work with our system.

Our implementation represents datasets by using the Pandas
DataFrame abstraction, a very popular choice among data scientists.
It represents data in tabular formwhere named columns hold values
of the same type. Individual data examples are represented by rows
of this table. We expect there to be a single column for target labels
and one or more columns for input features, all of which can be
specified by name.

2.3.2 Test Condition Specification. As described in Section 2.2, test
conditions are used by the manager to define a predicate that needs
to be satisfied in order for amodel to pass the test. This is a necessary
step in order to guarantee a certain quality standard of ML models.
In typical ML settings, the quality of a model is tested by invoking
a scoring function over the predictions that the model generated
by taking input features from a test dataset. Our implementation
currently only supports classification tasks and the model accuracy
as a scoring function that returns the proportion of labels that the
model predicted correctly, as judged by their equality to the true
labels that are part of the test dataset.1

The result of a scoring function is a single real number from the
[0, 1] interval that we call a score. Since any test set is randomly
sampled from a (theoretically infinite) pool of test data, the score
that we measure is a random variable. A test condition is composed
of test clauses. Test clauses are specified as inequalities defined over
the score variables. Each clause is also associated with a confidence
interval 𝜖 that enables probabilistic treatment of those clauses. The
following is an example test clause:

n - o > 0.01 +/- 0.005.

Here, the variable n represents the score of a newly submitted
model that we are currently testing, and o is the score of the last
model that got accepted by the system. On the right-hand side of
the > symbol, we have a comparison with a constant 0.01 and
a confidence interval 0.005. Our sample-size estimation method
(described in Section 4) ensures that we have enough samples to
control the variance of all random variables and correctly evaluate a
clause with (high) probability 1−𝛿 , where 0 < 𝛿 < 1 is configurable.

Test conditions represent a conjunction of one or more test
clauses. An example test condition made up of two test clauses is:

n - o > 0.01 +/- 0.005 and d < 0.01 +/- 0.005.

Here, the variable d represents the fraction of predicted labels that
are different between the newly submitted model currently being
tested and the latest model that got accepted.

2.3.3 Test Run. We define a single run command that internally
orchestrates other system components in order to run a submitted
model and evaluate it against the specified test conditions. The
command dynamically assembles other components of the system
and exposes their configuration options. All options are assigned
with sensible defaults, which can be overridden by providing a
key-value based configuration file that maps assigned values to
configuration options referenced by their keys. Among other things,
these options permit specifying user-defined test conditions as well
as invoking the predict method of the submitted model. Here is

1https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

an example of using the run command (we have named our system
the mltest tool internally):
mltest run \

--config mltest.yml \
--condition-statement \

"n - o > 0.01 +/- 0.005" \
--model-run-command \
"./predict --data-in {{input}} --data-out {{output}}"

It explicitly specifies a test condition and the command used to
generate predictions from the trained model. The {{input}} and
{{output}} placeholders are dynamically replaced at runtime by
locations of the test data and the temporary output directory, both
of which are managed internally by our system.

3 IMPLEMENTATION
The key functional elements the mltest tool offers are: (1) compute
the number of required test runs given a test condition, and (2) eval-
uate those test conditions given accuracy score estimates. However,
in order to achieve better usability of the system, as showcased
in Section 2.3.3 we extend this very narrow range of capabilities
by enabling the running of a test in a single-line command, with
everything else taken care of transparently. The broader function-
ality of the mltest tool revolves around managing access to data
and models, keeping track of all test runs, running models, and
estimating accuracy scores. We now present the implementation
details of the mltest tool.

3.1 Architecture
Figure 5 presents an architectural overview of the mltest tool. The
TestRunner class implements the run command and thus hosts
the main loop of the system. We define three other interfaces that
host major functional components: DataSource, RunLogger, and
ModelRunner. This design enables us to host states that represent
data, run logs, and models in various locations. Adding a new stor-
age endpoint (for any of these) therefore comes down to providing
a concrete implementation of the corresponding interface. Given
this separation of interfaces, we are able to mix and match various
storage endpoints. For each of these interfaces, we also provide one
default implementation that uses git as an endpoint for storing
data, models, and logs. Git is a convenient system for storing the
state because it enables the state to live and evolve together with
the main code. Each git-based endpoint stores its entire state in a
separate branch on the same git repository. Even though (at least a
portion of) this state should be inaccessible to the developer, we
assume the developers are well-behaving and will not peek into
the hidden branch. If extra security is required, the content of this
branch could also be encrypted. To increase the modularity and
adaptability of our system, we also define the (test) Condition as an
interface to enable modifying the way of processing test conditions.

3.2 Components
In this section we walk through the four main components of the
mltest tool mentioned above and discuss the most interesting
details (of the default implementations).

3.2.1 Data Source. As mentioned in Section 2.3, our assumptions
about a dataset include it being a collection of i.i.d. data examples

and that each data example contains one or more features and a
single target label. For simplicity, we restrict ourselves to tabular
data and we use Pandas DataFrame as a data interface.

We define the DataSource interface to provide an abstraction
over an arbitrary endpoint that hosts the datasets we use for testing.
This endpoint needs to provide the ability for the pool of data to
incrementally grow in size by depositing new test examples, to
prepare (or stage) a subset of that pool for testing and to load the
staged subset. Our current implementation assumes the schema of
the data remains constant over time. We expect this to be sufficient
for a lot of scenarios because it is still possible to add new features
to the model by including them in the feature extraction code. We
define the following operations in this interface:

• deposit – Feeds the test data pool by adding one incremen-
tal batch of data to it. We expect this method to be invoked
each time the data curator prepares new test data. All de-
posited data becomes available for staging.

• stage – Removes a batch of data examples from the test data
pool and produces from it a new staged dataset that can
be used for running tests. All stages have unique keys and
represent distinct sets of data examples. The stage operation
takes an optional argument size that specifies the maximal
number of data examples taken from the pool of deposited
data to form a new stage. If omitted, all available unstaged
data will be added to the new stage. A stage can be loaded
by using its unique stage key.

• load – Returns a staged dataset identified by a stage key. If
the stage key is omitted, the last staged dataset is returned.

• get_size, get_staged_size –Returns the number of avail-
able examples in the unstaged data pool, and the number of
examples in a stage identified by the stage key (or the latest
stage if the key is omitted).

• get_keys – Returns the keys of all stages ever created on a
given data source, in chronological order.

We provide a git-based implementation of the DataSource in-
terface, named GitDataSource. It assumes that all test data is stored
on an arbitrary branch of a git repository. By default this would
be a separate branch on the main repository that hosts all other
code, but this is configurable. To store large files, we can configure
it with git Large File Storage (LFS) [4]. The git data source keeps
all data under a single directory, and creates one subdirectory per
stage where the name corresponds to the stage key. The data files
are stored as JSON-serialized Pandas DataFrame instances.

3.2.2 Model Runner. Our system works with trained models that
take input features and predict corresponding target labels. They
are assumed to be able to contain additional feature extraction
components that preprocess the input features before feeding them
into an actual trainable model. These models can be hosted on an
arbitrary endpoint, which is why we use the ModelRunner interface
to abstract them away and expose a minimal interface.

A model runner exposes a collection of models, each of which
can be identified by a unique model key. In the context of CI, each
different version of a model will have a unique key. We assume
that all versions belong to the same ML task and have been trained
on datasets following the same underlying data distribution. We
define the following operations in the ModelRunner interface:

Git Data Source

SQL Data Source

File System Data Source

Data Source
·deposit(data)
·stage(size) -> key
·load(key) -> data

Git Run Logger

SQL Run Logger

Git Model Runner

Azure Model Runner

Run Logger
·log(model_key, stage_key, predictions, score)

Model Runner
·run(key, features) -> labels

Test Runner
·run(adaptivity, error_probability, error_mode) -> bool

Test Condition
·get_num_runs(num_samples, adaptivity, error_prob) -> num_runs
·evaluate(error_mode, metrics) -> test_result

Figure 5: An architectural overview of the implementation of the mltest tool.

• run – Invokes the predict function of a model identified by
the key. If the key is omitted, the latest version of the model
is targeted. We pass the features of a batch of data examples
and the targeted model returns the predicted labels.

• get_keys – Returns the keys of all (versions of) models
that are available on a given model storage endpoint, in
chronological order.

We again provide a git-based implementation of the ModelRunner
interface, named GitModelRunner. It assumes that all models are
committed to an arbitrary branch of a single git repository. The
model keys thus correspond to the hashes of all commits that con-
tain updates to the model — we want to avoid treating updates
to non-model files as new model versions. To run a model with a
specific key, the git model runner checks out the commit based on
the hash and invokes its predict command. This command is an
input parameter of the git model runner.

3.2.3 Run Logger. We use the RunLogger interface to maintain a
unified record of all test runs that took place for a given data source
and a given model runner. A test run is implemented by the Run
class which has a unique run key, as well as the corresponding
model key and stage key. It also holds all predictions generated by a
model, the accuracy score of the model, and the test outcome which
is a Boolean pass/fail indicator.

The pool of test runs can be queried by model key and/or by
stage key. The query can either return serialized run descriptors or
simply return the count of runs that satisfy a predicate. We define
the following operations in the RunLogger interface:

• log – Submits a new run to the log. This method accepts the
targeted model key and stage key, as well as the predictions,
the score, and the test outcome of the corresponding model.
Once a run is created, its run key is returned. Runs can be
queried either individually or collectively.

• get_run – Returns a run identified by its run key.
• get_runs, count_runs – Queries the whole pool of runs by
using a specific model key or stage key, or both, as a search
criterion. The get_runs operation returns the run instances,

whereas the count_runs simply counts the number of runs
satisfying the search criterion.

The most important operation is count_runs that returns the num-
ber of runs for a given stage, because it enables our system to
impose limits on test runs over a single test dataset.

Once again we provide an implementation of the RunLogger
interface with a git-based approach, named GitRunLogger. Just
like the GitDataSource implementation, it stores all runs in some
branch of a specified git repository. By default, this would be a sep-
arate branch of the git repository that hosts the model. Serialized
runs are stored as JSON files in a specified directory.

3.2.4 Test Condition. We implement the Condition class in or-
der to encapsulate the functionality required to work with test
conditions. We need to be able to parse them from a string repre-
sentation, use them to compute the number of permitted test runs
for a given number of samples, as well as use accuracy estimates
that are treated as random variables and evaluate a test condition
to compute a pass/fail outcome.

Following ease.ml/ci, we define a domain specific language
(DSL) that allows expressing test conditions in a compact way. The
DSL is simple but is able to encode a large number of test clauses
that are interesting in practice. The top-level literal of the DSL is a
condition, which is simply a conjunction of clauses:

condition := clause "and" condition | clause.

The building blocks of each condition is a clause that is a simple
inequality with an expression on the left-hand side and a constant
real value on the right-hand side, along with an error margin 𝜖 :
clause := expression (">"|"<") constant "+/-" constant.

Here, an expression is a summation of factors:
expression := factor ("+"|"-") expression | factor,

where each factor is made up of a variable multiplied by one or
more constants:

factor := constant "*" factor | variable.

Finally, a constant can be any real value, and a variable is one of:
• n – the accuracy of the new model, i.e., the newly submitted
model that we are currently testing;

• o – the accuracy of the old model, i.e., the previously sub-
mitted model that we last tested before the new one;

• d – the fractions of predictions that are different between
the new and the old model, used to control model stability.

After we parse a test condition expressed using the above DSL, we
are able to perform several useful operations on it:

• evaluate – Computes a Boolean pass/fail outcome of a
test condition given the estimated values of the variables, in
terms of an error mode that defines how to deal with type I
and type II statistical errors (details in Section 4.2).

• get_num_runs – Computes the number of test runs permitted
on the (staged) test dataset in order to protect it from overfit-
ting, given an error probability that defines the plausibility of
the test outcome (since the outcome itself is a random vari-
able), an adaptivity mode that prescribes the regime by which
information will be released to the user, and the number of
samples we have in a (staged) test set (details in Section 4.1).

• get_num_samples –Works similarly as get_num_runs, with
the only difference that it returns the number of samples
needed to support a given number of test runs instead of the
other way around.

One of our goals is to enable users to get instant feedback while
trying out different settings for their test conditions. For this pur-
pose, all functionalities of the Condition class are exposed through
all three interfacing methods defined in Section 2.3.

4 EVALUATION OF TEST CONDITIONS
We present details of the evaluation of test conditions in this section.
Specifically, we provide solutions to the following two problems:

• Test run estimation – given the size of the test dataset, esti-
mate the number of runs/submissions that it can support;

• Probabilistic semantics – what kind of probabilistic guaran-
tees we can provide for the evaluation outcomes.

We note that the theoretical foundation of the techniqueswe present
here has already been laid out by Renggli et al. [20]. We therefore
focus on their implementation in the mltest tool.

4.1 The Number of Test Runs
As shown in [20], the number of test examples required for an (𝜖, 𝛿)-
guarantee for a single test condition (e.g., that makes an assertion
of the model accuracy) is:

𝑛 (𝜈, 𝜖, 𝛿) = − ln𝛿
2𝜖2

. (1)

We use 𝜈 to represent the random variable we are estimating, e.g.,
the model accuracy. If we have the number of test examples indi-
cated by Equation 1, we can then guarantee that P (|𝜈 − 𝜈 | ≥ 𝜖) ≤
exp

(
−2𝑛𝜖2

)
≤ 𝛿 , where 𝜈 is the estimated value of 𝜈 .

To support more complex test conditions, however, we need to
deal with expressions elaborated in Section 3.2.4. The simplest one
is multiplication with a constant:

𝑛 (𝑐 · 𝜈, 𝜖, 𝛿) = 𝑛 (𝜈, 𝜖/𝑐, 𝛿) . (2)
For a summation or difference we have:

𝑛 (𝜈1 ± 𝜈2, 𝜖, 𝛿) =max{𝑛 (𝜈1, 𝜖1, 𝛿/2) , 𝑛 (𝜈2, 𝜖2, 𝛿/2)}
s.t. 𝜖 = 𝜖1 + 𝜖2 .

(3)

In both cases we need to solve an optimization problem with the
constraint 𝜖 = 𝜖1 +𝜖2. This permits us to construct arbitrary clauses
defined in Section 3.2. Finally, we want to handle a test condition
that is a conjunction over multiple clauses 𝐶1, ..., 𝐶𝑘 . The number
of samples we need for the conjunction is equal to the number of
samples to evaluate the hardest clause in the conjunction:

𝑛 (𝐶1 ∧ ... ∧𝐶𝑘 , 𝜖, 𝛿) = max
𝑖
𝑛 (𝐶𝑖 , 𝜖, 𝛿/𝑘) . (4)

4.1.1 Adaptivity Modes. So far, we have been focusing on estimat-
ing the number of samples for a single test run. If we wish to use the
same test dataset to support multiple test runs, then it may lose its
statistical power (as a representative of the true data distribution)
due to the presence of adaptivity. In our system, we provide two
adaptivity modes: the non-adaptive mode and the full-adaptive
mode. The number of test runs that can be supported depends on
the mode our system operates in.

Non-adaptive Mode. In this mode, no information is ever re-
vealed, i.e., the outcome of the test is completely hidden. This mode
is rarely useful in practice based on conversation with our partners.
Nonetheless, it serves as a special (and the unique) case where we
can safely treat all submitted models as independent, which signif-
icantly increases the number of test runs (supported by a certain
test data size). Suppose that we want to run 𝑁 independent models
over a single staged test set. By the union bound, it follows that

𝛿 =
⋃𝑁

𝑖=1 𝛿𝑖 ≤
∑𝑁

𝑖=1 exp
(
−2𝑛𝜖2

)
= 𝑁 · exp

(
−2𝑛𝜖2

)
. (5)

This means that the required test dataset size for 𝑁 models is:

𝐾 = 𝑛 (𝜈, 𝜖, 𝛿/𝑁) = − ln(𝛿/𝑁)
2𝜖2

. (6)

For a given 𝐾 it thus follows that 𝑁 = 𝛿𝑒𝐾 ·2𝜖2 .

Fully-adaptive Mode. In this mode, after every evaluation the
test outcome is released, which is typical in CI scenarios. By Figure 3,
such information leakage creates a dependency between models
submitted over the same staged test set. As a result, the union bound
and thus the test set size derived in Equation 6 do not apply.

As was shown in [20], by using an idea similar to the Ladder
mechanism [11], we can, however, apply the union bound over all
2𝑁 possible (binary) sequences that represent the whole space of
possible test outcomes from 𝑁 submitted models:

𝛿 =
⋃2𝑁

𝑖=1 𝛿𝑖 ≤
∑2𝑁

𝑖=1 exp
(
−2𝑛𝜖2

)
= 2𝑁 · exp

(
−2𝑛𝜖2

)
. (7)

As a result, the required test data size is

𝐾 = 𝑛

(
𝜈, 𝜖, 𝛿/2𝑁

)
=

− ln(𝛿/2𝑁)
2𝜖2

, (8)

which gives 𝑁 = ln𝛿+𝐾 ·2𝜖2
ln 2 .

4.2 Probabilistic Semantics
The major functionality of test conditions is to produce a reliable
pass/fail signal. In our context, all values that we pass to our
three variables n, o, and d are random variables, which implies that
the evaluation outcomes should also be treated as random vari-
ables. How do we, then, interpret the semantics (i.e., probabilistic
guarantees) of the evaluation outcomes?

Consider, for example, the test condition n > 0.6 +/- 0.05. If
we measured n to be 0.7, should this clause be evaluated as true?
The answer is yes, but only if we used at least the amount of samples
prescribed by Equation 1. That bound provides us with a statistical
guarantee that, with probability 𝛿 , our estimate of n will not be
more than 𝜖-away from the true n. Since in this case 𝜖 = 0.05, it is
safe to evaluate this clause as true.

Now, consider the case if we measured n to be 0.61. Since this
is within 𝜖-distance from 0.6, we cannot rely on our statistical
guarantees. When these situations occur, it is not possible to avoid
sometimes returning a wrong result and it is not possible to know
when the result is wrong. In such cases, the best we can do is to
consider a trade-off and choose between false positives and false-
negatives. In other words, we can choose to either be false positive
free and always treat these unknown situations by returning false,
or be false negative free and always return true. Accordingly, we
further provide two error mode settings in the mltest tool, which
can be either fp-free or fn-free.

5 EVALUATION
We try to answer two main questions in our evaluation:

(1) What is the danger of using a static test set in CI and how
can our method help?

(2) Given a test condition and our methods presented in Sec-
tion 4, how many test runs can be performed against a single
staged test set, with what guarantees and at what price?

5.1 Battle Against Overfitting
We simulate a develop-commit-test scenario in this experiment. We
set up a test system that accepts a new model only if its estimated
test score is greater than the current best model. We take a real
dataset that represents a classification task regarding the presence
of Higgs bosons in a physical process [10]. We split this dataset
into a training set (with 20𝑘 data examples), a running test set of
size 𝑁 that is used by our test system, and a large test set with one
million data examples that we use to estimate the “true test score.”
Each time the developer submits a model, we run a test procedure
and send the pass/fail outcome back to the developer.

We simulate the developer’s submission activities as a random
process that first randomly picks a model from a set of available
classifiers and then randomly picks hyperparameter values from
predefined ranges. The set of candidate classifiers includes random
forest, extra trees, decision tree, k-nearest neighbors, and linear SVM.

As a baseline approach for comparison, we simulate a scenario
where the dataset used for testing remains unchanged over the
entire duration of a development lifecycle. We use a static test set of
size 500. As depicted in Figure 6, it becomes clear that, as time goes
by, the estimated test score begins to diverge slowly from the true
test score. We thus conclude that, if we use a static test set in a “CI
for ML” system, in certain scenarios we may end up in a situation
where developers can overfit the test set even though only a single
bit of information is disclosed per test run.

In Figure 7 we examine how our approach manages to deal with
the overfitting problem. The test condition and the development
cycle remain the same. The only difference is that now we use our
stage-based method for estimating test scores. We conduct three

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

S
co

re

Estimated Test Accuracy

True Test Accuracy

Training Set Accuracy

Baseline Method

Figure 6: A scenario where the developer overfits the test set.

0 10 20 30 40 50
Iteration

0.4

0.6

0.8

1.0

S
co

re

Estimated Test Accuracy

True Test Accuracy

Overfitting Tolerance ε

Training Set Accuracy

Staged Method (ε = 0.1)

0 10 20 30 40 50
Iteration

0.6

0.8

1.0

S
co

re

Overfitting Tolerance ε

Training Set Accuracy

Estimated Test Accuracy

True Test Accuracy

Staged Method (ε = 0.05)

0 10 20 30 40 50
Iteration

0.6

0.8

1.0

S
co

re

Overfitting Tolerance ε

Training Set Accuracy

Estimated Test Accuracy

True Test Accuracy

Staged Method (ε = 0.01)

Figure 7: Our strategy ensures that the estimated test error
will be within the 𝜖-distance of the true test error.

experimental runs, each time ensuring that the estimated test score
remains within 𝜖-distance from the true test score (with probability
1 − 𝛿 = 0.99). We try out three values of 𝜖: 0.1, 0.05, and 0.01.
Since we run 10 tests for each staged test set, by Equation 8 the
staged test sets need to contain 577, 2307, and 57683 data examples
respectively, under the full-adaptive mode. It is easy to observe
that the estimates do indeed always stay within bounds of our
𝜖-margin (shown by the dotted lines).

5.2 The Cost of Running Staged Tests
We present an evaluation of our method with the goal of gaining
intuition about the cost of running staged tests. We measure how
many runs can be performed on a test set of a given size with
required quality guarantees.

We study the impact of the input parameters to the method we
use for computing the number of runs (described in 4.1). We try
out three test set sizes with 50𝑘 , 100𝑘 , and 500𝑘 data examples. We
try two representative test condition categories: One that checks if

test condition: n - o > 0.1 +/- 0.1 n > 0.5 +/- 0.1
test set
size 𝜖 𝛿 # of runs # of runs
50𝑘 0.01 0.0001 n/a 2 ($208)

0.001 n/a 5 ($83)
0.01 n/a 8 ($52)

0.025 0.0001 8 ($52) 76 ($5)
0.001 11 ($37) 80 ($5)
0.01 14 ($30) 84 ($5)

100𝑘 0.01 0.0001 n/a 16 ($46)
0.001 n/a 18 ($36)
0.01 n/a 23 ($5)

0.025 0.0001 30 ($28) 168 ($5)
0.001 34 ($24) 170 ($5)
0.01 38 ($22) 174 ($5)

500𝑘 0.01 0.0001 21 ($198) 130 ($32)
0.001 25 ($166) 134 ($31)
0.01 29 ($143) 138 ($30)

0.025 0.0001 211 ($20) 889 ($5)
0.001 215 ($19) 891 ($5)
0.01 217 ($19) 895 ($5)

Table 1: Number of runs and (in braces) a price estimate for
a single run for various test set sizes, and (𝜖, 𝛿) values. Cells
marked as n/a correspond to insufficient test set sizes.

the test score is above a certain threshold, and another that checks
if there is an improvement in the test score when comparing two
models. For each test condition, we try out different combinations
of the error margin 𝜖 (taken to be either 0.025 or 0.01) and the error
probability 𝛿 (taken to be either 1%, 0.1%, or 0.01%).

We associate each test run with a hypothetical “dollar price” as
follows. We assume a labelling effort that is conducted at the speed
of 5 seconds per label, and at the price of $6 per hour (number
taken from labellbox.com). At this rate, 720 data examples can
be labelled per hour. We do not include the price of acquiring
features, though it is not negligible. We argue that the overall price
is dominated by the labelling cost since each data example requires
human effort. With this setting, we can then compute the price of
a test set (and thus the test run). Table 1 presents the results.

6 RELATEDWORK
CI has been an industrial standard in practice and the literature on
classic CI in software engineering is overwhelming [12]. However,
so far little work has been done towards “CI for ML,” although there
have been emerging discussions in online communities regarding
such requirements [8, 17, 18, 26]. The recent effort by Renggli et
al. [20, 21] is the first work along this line, as far as we know.
It lays out theoretical foundations as well as building a proof-of-
concept system to demonstrate the feasibility of “CI for ML.” The
current paper, meanwhile, takes one step further by addressing the
design, implementation, data management, integration challenges
for developing an industrial-strength “CI for ML” service.

The “CI for ML” idea also fits well into the broader scope of
building AutoML systems and services. Users of AutoML systems
only need to provide their data and high-level specifications of

their ML tasks (e.g., loss functions to be minimized), and the sys-
tem will take over the rest of the job, such as automatic pipeline
execution, resource allocation, and performance monitoring. Typi-
cal AutoML systems include industrial offerings from major cloud
service providers such as Amazon SageMaker [1], Microsoft Azure
Machine Learning [6], and Google Cloud AutoML [5], as well as
ones from academic institutions such as the Northstar system de-
veloped at MIT [16], and the ease.ml service [15, 19, 27] by ETH
Zurich, among others. It remains interesting to see how to incorpo-
rate “CI for ML” into these existing AutoML services.

7 CONCLUSION
We have presented our efforts and experiences with building an
industrial-strength “CI for ML” service. We discussed the details
of its design, implementation, data management, and integration,
as well as evaluation over real datasets. We showcased the risk
of overfitting a static test set in the context of “CI for ML” that
motivated us to come up with the “staged test set” solution, and
demonstrated its affordable cost in practice.

REFERENCES
[1] Amazon sage maker. https://aws.amazon.com/sagemaker/.
[2] Aws codepipeline. https://aws.amazon.com/codepipeline/.
[3] Azure devops services. https://azure.microsoft.com/en-us/services/devops/.
[4] Git LFS. https://git-lfs.github.com/.
[5] Google cloud automl. https://cloud.google.com/automl/.
[6] Microsoft azure machine learning. https://azure.microsoft.com/en-us/services/

machine-learning/.
[7] mltest tool open-source repository on github. https://aka.ms/gsl-ml-test.
[8] Continuous integration for machine learning. https://medium.com/@rstojnic/

continuous-integration-for-machine-learning-6893aa867002, April 2018.
[9] S. Ackermann et al. Using transfer learning to detect galaxy mergers. MNRAS,

2018.
[10] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-

energy physics with deep learning. Nature communications, 5:4308, 2014.
[11] A. Blum and M. Hardt. The ladder: A reliable leaderboard for machine learning

competitions. In ICML, pages 1006–1014, 2015.
[12] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software

quality and reducing risk. Pearson Education, 2007.
[13] C. Dwork et al. The reusable holdout: Preserving validity in adaptive data analysis.

Science, 349(6248):636–638, 2015.
[14] I. Girardi et al. Patient risk assessment and warning symptom detection using

deep attention-based neural networks. LOUHI, 2018.
[15] B. Karlas, J. Liu, W. Wu, and C. Zhang. Ease.ml in action: Towards multi-tenant

declarative learning services. PVLDB, 11(12):2054–2057, 2018.
[16] T. Kraska. Northstar: An interactive data science system. PVLDB, 11(12):2150–

2164, 2018.
[17] A. F. Lara. Continuous integration for ml projects. https://medium.com/onfido-

tech/continuous-integration-for-ml-projects-e11bc1a4d34f, October 2017.
[18] A. F. Lara. Continuous delivery for ml models. https://medium.com/onfido-

tech/continuous-delivery-for-ml-models-c1f9283aa971, July 2018.
[19] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.ml: Towards multi-tenant

resource sharing for machine learning workloads. PVLDB, 11(5):607–620, 2018.
[20] C. Renggli et al. Continuous integration of machine learning models with

ease.ml/ci: Towards a rigorous yet practical treatment. In SysML, 2019.
[21] C. Renggli, F. A. Hubis, B. Karlas, K. Schawinski, W. Wu, and C. Zhang. Ease.ml/ci

and ease.ml/meter in action: Towards data management for statistical generaliza-
tion. PVLDB, 12(12):1962–1965, 2019.

[22] K. Schawinski et al. Generative adversarial networks recover features in astro-
physical images of galaxies beyond the deconvolution limit. MNRAS, 2017.

[23] K. Schawinski et al. Exploring galaxy evolution with generative models. Astron-
omy & Astrophysics, 2018.

[24] D. Stark et al. PSFGAN: a generative adversarial network system for separating
quasar point sources and host galaxy light. MNRAS, 2018.

[25] M. Su et al. Generative adversarial networks as a tool to recover structural
information from cryo-electron microscopy data. BioRxiv, 2018.

[26] D. Tran. Continuous integration for data science. http://engineering.pivotal.io/
post/continuous-integration-for-data-science/, February 2017.

[27] C. Zhang, W. Wu, and T. Li. An overreaction to the broken machine learning
abstraction: The ease.ml vision. In HILDA@SIGMOD 2017, pages 3:1–3:6, 2017.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/codepipeline/
https://azure.microsoft.com/en-us/services/devops/
https://git-lfs.github.com/
https://cloud.google.com/automl/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://aka.ms/gsl-ml-test
https://medium.com/@rstojnic/continuous-integration-for-machine-learning-6893aa867002
https://medium.com/@rstojnic/continuous-integration-for-machine-learning-6893aa867002
https://medium.com/onfido-tech/continuous-integration-for-ml-projects-e11bc1a4d34f
https://medium.com/onfido-tech/continuous-integration-for-ml-projects-e11bc1a4d34f
https://medium.com/onfido-tech/continuous-delivery-for-ml-models-c1f9283aa971
https://medium.com/onfido-tech/continuous-delivery-for-ml-models-c1f9283aa971
http://engineering.pivotal.io/post/continuous-integration-for-data-science/
http://engineering.pivotal.io/post/continuous-integration-for-data-science/

	Abstract
	1 Introduction
	1.1 Production Requirements
	1.2 Theoretical Foundation
	1.3 Data Management
	1.4 Paper Organization

	2 System Design
	2.1 An Overview of ML Development Lifecycle
	2.2 Interaction Model
	2.3 Interfaces

	3 Implementation
	3.1 Architecture
	3.2 Components

	4 Evaluation of Test Conditions
	4.1 The Number of Test Runs
	4.2 Probabilistic Semantics

	5 Evaluation
	5.1 Battle Against Overfitting
	5.2 The Cost of Running Staged Tests

	6 Related Work
	7 Conclusion
	References

