
Uncertainty Aware Query Execution Time Prediction

Wentao Wu† Xi Wu† Hakan Hacıgümüş‡ Jeffrey F. Naughton†
†Department of Computer Sciences, University of Wisconsin-Madison

‡NEC Laboratories America
{wentaowu, xiwu, naughton}@cs.wisc.edu, hakan@nec-labs.com

ABSTRACT
Predicting query execution time is a fundamental issue underly-
ing many database management tasks. Existing predictors rely on
information such as cardinality estimates and system performance
constants that are difficult to know exactly. As a result, accurate
prediction still remains elusive for many queries. However, exist-
ing predictors provide a single, point estimate of the true execution
time, but fail to characterize the uncertainty in the prediction. In
this paper, we take a first step towards providing uncertainty infor-
mation along with query execution time predictions. We use the
query optimizer’s cost model to represent the query execution time
as a function of the selectivities of operators in the query plan as
well as the constants that describe the cost of CPU and I/O opera-
tions in the system. By treating these quantities as random variables
rather than constants, we show that with low overhead we can infer
the distribution of likely prediction errors. We further show that the
estimated prediction errors by our proposed techniques are strongly
correlated with the actual prediction errors.

1. INTRODUCTION
The problem of predicting query execution time has received

a great deal of recent research attention (e.g., [4, 5, 16, 17, 38,
39]). Knowledge about query execution time is essential to many
important database management issues, including query optimiza-
tion, admission control [40], query scheduling [11], and system
sizing [36]. Existing predictors rely on information such as cardi-
nality estimates and system performance constants that are difficult
to know exactly. As a result, accurate prediction remains elusive
for many queries. However, existing predictors provide a single,
point estimate of the true execution time, but fail to characterize
the uncertainty in the prediction.

It is a general principle that if there is uncertainty in the estimate
of a quantity, systems or individuals using the estimate can benefit
from information about this uncertainty. (As a simple but ubiqui-
tous example, opinion polls cannot be reliably interpreted without
considering the uncertainty bounds on their results.) In view of this,
it is somewhat surprising that something as foundational as query

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

running time estimation typically does not provide any information
about the uncertainty embedded in the estimates.

There is already some early work indicating that providing this
uncertainty information could be useful. For example, in approxi-
mate query answering [22, 24], approximate query results are ac-
companied by error bars to indicate the confidence in the estimates.
It stands to reason that other user-facing running time estimation
tasks, for example, query progress indicators [10, 27], could also
benefit from similar mechanisms regarding uncertainty. Other ex-
amples include robust query processing and optimization techniques
(e.g., [7, 18, 29, 35]) and distribution-based query schedulers [11].
We suspect that if uncertainty information were widely available
many more applications would emerge.

In this paper, we take a first step towards providing uncertainty
information along with query execution time predictions. In par-
ticular, rather than just reporting a point estimate, we provide a
distribution of likely running times. There is a subtlety in seman-
tics involved here — the issue is not “if we run this query 100 times
what do we think the distribution of running times will be?” Rather,
we are reporting “what are the likelihoods that the actual running
time of this query would fall into certain confidence intervals?” As
a concrete example, the distribution conveys information such as “I
believe, with probability 70%, the running time of this query should
be between 10s and 20s.”

Building on top of our previous work [39], we use query optimiz-
ers’ cost models to represent the query execution time as a function
of selectivities of operators in the query plan as well as basic sys-
tem performance parameters such as the unit cost of a single CPU
or I/O operation. However, our approach here is different from that
in [39] — we treat these quantities as random variables rather than
fixed constants. We then use sampling based approaches to esti-
mate the distributions of these random variables. Based on that,
we further develop analytic techniques to infer the distribution of
likely running times.

In more detail, for specificity consider the cost model used by
the query optimizer of PostgreSQL:

EXAMPLE 1 (POSTGRESQL’S COST MODEL). PostgreSQL
estimates the execution runtime overhead tO of an operatorO (e.g.,
scan, sort, join, etc.) as follows:

tO = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (1)

Here the c’s are cost units described in Table 1. Accordingly, the
n’s are then the number of pages sequentially scanned, the number
of pages randomly accessed, and so on, during the execution of O.
The total estimated overhead tq of a query q is simply the sum of
the costs of the individual operators in its query plan. Moreover, as
illustrated in [39], the n’s are actually functions of the input/output
cardinalities (or equivalently, selectivities) of the operators. As a

c Description
cs The I/O cost to sequentially access a page
cr The I/O cost to randomly access a page
ct The CPU cost to process a tuple
ci The CPU cost to process a tuple via index access
co The CPU cost to perform an operation (e.g., hash)

Table 1: Cost units in PostgreSQL’s cost model

result, we can further represent tq as a function of the cost units c
and the selectivities X, namely,

tq =
∑

O∈Plan(q)

tO = g(c,X). (2)

Perfect predictions therefore rely on three assumptions: (i) the
c’s are accurate; (ii) the X’s are accurate; and (iii) g is itself accu-
rate. Unfortunately, none of these holds in practice. First, the c’s
are inherently random. For example, the value of cr may vary for
different disk pages accessed by a query, depending on where the
pages are located on disk. Second, accurate selectivity estimation
is often challenging, though significant progress has been made.
Third, the equations and functions modeling query execution make
approximations and simplifications so they could make errors. For
instance, Equation (1) does not consider the possible interleaving
of CPU and I/O operations during runtime.

To quantify the uncertainty in the prediction, we therefore need
to consider potential errors in all three parts of the running time
estimation formula. It turns out that the errors in the c’s, the X’s,
and g are inherently different. The errors in the c’s result from
fluctuations in the system state and/or variances in the way the sys-
tem performs for different parts of different queries. (That is, for
example, the cost of a random I/O may differ substantially from op-
erator to operator and from query to query.) We therefore model the
c’s as random variables and extend our previous calibration frame-
work [39] to obtain their distributions. The errors in the X’s arise
from selectivity estimation errors. We therefore also model these as
random variables and consider sampling-based approaches to esti-
mate their variance. The errors in g, however, result from simplifi-
cations or errors made by the designer of the cost model and are out
of the scope of this work. We show in our experiments that even im-
perfect cost model functions are useful for estimating uncertainty
in predictions.

Based on the idea of treating the c’s and the X’s as random vari-
ables rather than constants, the predicted execution time tq is then
also a random variable so that we can estimate its distribution. A
couple of challenges arise immediately. First, unlike the case of
providing a point estimate of tq , knowing that tq is “some” func-
tion of the c’s and the X’s is insufficient if we want to infer the
distribution of tq — we need to know the explicit form of g. By
Equation (2), g relies on cost functions that map the X’s to the n’s.
As a result, for concreteness we have to choose some specific cost
model. Here, for simplicity and generality, we leverage the notion
of logical cost functions [15] rather than the cost functions of any
specific optimizer. The observation is that the costs of an operator
can be specified according to its logical execution. For instance, the
number of CPU operations of the in-memory sort operator could
be specified as no = aN logN , where N is the input cardinality.
Second, while we can show that the distribution of tq is asymp-
totically normal based on our current ways of modeling the c’s and
theX’s, determining the parameters of the normal distribution (i.e.,
the mean and variance) is difficult for non-trivial queries with deep
query trees. The challenge arises from correlations between se-
lectivity estimates derived by using shared samples. We present a

detailed analysis of the correlations and develop techniques to ei-
ther directly compute or provide upper bounds for the covariances
with respect to the presence of correlations. Finally, providing esti-
mates to distributions of likely running times is desirable only if it
can be achieved with low overhead. We show that it is the case for
our proposed techniques — the overhead is almost the same as that
of the predictor in [39] which only provides point estimates.

Since our approach makes a number of approximations when
computing the distribution of running time estimates, an important
question is how accurate the estimated distribution is. An intu-
itively appealing experiment is the following: run the query mul-
tiple times, measure the distribution of its running times, and see
if this matches the estimated distribution. But this is not a rea-
sonable approach due to the subtlety we mentioned earlier. The
estimated distribution we calculate is not the expected distribution
of the actual query running time, it is the distribution of running
times our estimator expects due to uncertainties in its estimation
process. To see this another way, note that cardinality estimation
error is a major source of running time estimation error. But when
the query is actually run, it does not appear at all — the query exe-
cution of course observes the true cardinalities, which are identical
every time it is run.

Speaking informally, what our predicted running time distribu-
tion captures is the “self-awareness” of our estimator. Suppose that
embedded in the estimate is a dependence on what our estimator
knows is a very inaccurate estimate. Then the estimator knows that
while it gives a specific point estimate for the running time (the
mean of a distribution), it is likely that the true running time will
be far away from the estimate, and it captures this by indicating a
distribution with a large variance.

So our task in evaluating our approach is to answer the following
question: how closely does the variance of our estimated distribu-
tion of running times correspond to the observed errors in our es-
timates (when compared with true running times)? To answer this
question, we estimate the running times for and run a large number
of different queries and test the agreement between the observed er-
rors and the predicted distribution of running times, where “agree-
ment” means that larger variations correspond to more inaccurate
estimates.

In more detail, we report two metrics over a large number of
queries: (M1) the correlation between the standard deviations of the
estimated distributions and the actual prediction errors; and (M2)
the proximity between the inferred and observed distributions of
prediction errors. We show that (R1) the correlation is strong; and
(R2) the two distributions are close. Intuitively, (R1) is qualita-
tive; it suggests that one can judge if the prediction errors will be
small or large based on the standard deviations of the estimated
distributions. (R2) is more quantitative; it further suggests that the
likelihoods of prediction errors are specified by the distributions as
well. We therefore conclude that the estimated distributions do a
reasonable job as indicators of prediction errors.

We start by presenting terminology and notation used through-
out the paper in Section 2. We then present the details of how to
estimate the distributions of the c’s and the X’s (Section 3), the ex-
plicit form of g (Section 4), and the distribution of tq (Section 5).
We further present experimental evaluation results in Section 6, dis-
cuss related work in Section 7, and conclude the paper in Section 8.

2. PRELIMINARIES
In most current DBMS implementations, the operators are ei-

ther unary or binary. Therefore, we can model a query plan with a
rooted binary tree. Consider an operator O in the query plan. We
use Ol and Or to represent its left and right child operator, and use

Join

Join

Scan Scan

Scan

R1 R2

R3

N1l (=|R1|) N2l (=|R2|)

N3l (=|R3|)N4r (=M2)

N5l (=M4) N5r (=M3)

N4l (=M1)

O1 O2

O4 O3

O5

M5

Figure 1: Example query plan

Notation Description
O An operator in the query plan
Ol (Or) The left (right) child operator of O
Nl (Nr) The left (right) input cardinality of O
M The output cardinality of O
R The leaf tables of O
X The selectivity of O
T The subtree rooted at O
Desc(O) The descendant operators of O in T

Table 2: Terminology and notation

Nl and Nr to denote its left and right input cardinality. If O is
unary, then Or does not exist and thus Nr = 0. We further use M
to denote O’s output cardinality.

Let T be the subtree rooted at the operator O, and let R be the
(multi)set of relations accessed by the leaf nodes of T . Note that
the leaf nodes in a query plan must be scan operators that access
the underlying tables.1 We call R the leaf tables of O. Let |R| =∏
R∈R |R|. We define the selectivity X of O to be:

X =
M

|R| =
M∏

R∈R |R|
. (3)

EXAMPLE 2 (SELECTIVITY). Consider the query plan in Fig-
ure 1. O1, O2, and O3 are scan operators that access three under-
lying tables R1, R2, and R3, and O4 and O5 are join operators.
The selectivity of O1, for instance, is X1 = M1

|R1|
, whereas the se-

lectivity of O4 is X4 = M4
|R1|·|R2|

.

We summarize the above notation in Table 2 for convenience
of reference. Since the n’s in Equation (1) are functions of in-
put/output cardinalities of the operators (we discuss different types
of cost functions in Section 4.1), it is clear that the n’s are also
functions of the selectivities (i.e., the X’s) defined here. Based on
Equation (2), tq is therefore a function of the c’s and the X’s. We
next discuss how to measure the uncertainties in these parameters.

3. INPUT DISTRIBUTIONS
To learn the distribution of tq , we first need to know the distribu-

tions of the c’s and theX’s. We do this by extending the framework
in our previous work [39].

1We use “relation” and “table” interchangeably in this paper since
our discussion does not depend on the set/bag semantics.

3.1 Distributions of the c’s
In [39], we designed dedicated calibration queries for each c.

Consider the following example:

EXAMPLE 3 (CALIBRATION QUERY). Suppose that we want
to know the value of ct, namely, the CPU cost of processing one tu-
ple. We can use the calibration query SELECT * FROM R, where
R is some table whose size is known and is loaded into memory.
Since this query only involves ct, its execution time τ can be ex-
pressed as τ = |R| · ct. We can then run the query, record τ , and
compute ct from this equation.

Note that we can use different R’s here, and different R’s may
give us different ct’s. We can think of these observed values as
i.i.d. samples from the distribution of ct, and in [39] we used the
sample mean as our estimate of ct. To quantify the uncertainty in
ct, it would make more sense to treat ct as a random variable rather
than a constant. We assume that the distribution of ct is normal
(i.e., Gaussian), for intuitively the CPU speed is likely to be stable
and centered around its mean value. Now let ct ∼ N (µt, σ

2
t).

It is then a common practice to use the mean and variance of the
observed ct’s as estimates for µt and σ2

t .
In general, we can apply similar arguments to all the five cost

units. Due to space limitations, readers are referred to [39] for
more details on the calibration procedure. In [39] we only calcu-
lated the mean, not the variance, but the extension to the variance
is straightforward.

3.2 Distributions of the X’s
The uncertainties in the X’s are quite different from those in the

c’s. The uncertainties in the c’s are due to unavoidable fluctuations
in hardware execution speeds. In other words, the c’s are inherently
random. However, the X’s are actually fixed numbers — if we run
the query we should always obtain the same ground truths for the
X’s. The uncertainties in the X’s really come from the fact that so
far we do not have a perfect selectivity estimator. How to quantify
the uncertainties in the X’s therefore depends on the nature of the
selectivity estimator used. Here we extend the sampling-based ap-
proach used in [39], which was first proposed by Haas et al. [21].
It provides a mathematically rigorous way to quantify potential er-
rors in selectivity estimates. It remains interesting future work to
investigate the possibility of extending other alternative estimators
such as those based on histograms.

3.2.1 A Sampling-Based Selectivity Estimator
Suppose that we have a database consisting of K relations R1,

..., RK , where Rk is partitioned into mk blocks each with size
Nk, namely, |Rk| = mkNk. Without loss of generality, let q be a
selection-join query over R1, ..., RK , and let B(k, j) be the j-th
block of relation k (1 ≤ j ≤ mk, and 1 ≤ k ≤ K). Define

B(L1,i1 , ..., LK,iK) = B(1, L1,i1)× · · · ×B(K,LK,iK),

whereB(k, Lk,ik) is the block (with indexLk,ik) randomly picked
from the relation Rk in the ik-th sampling step. After n steps,
we can obtain nK such samples (notice that these samples are not
independent), and the estimator is defined as

ρn =
1

nK

n∑
i1=1

· · ·
n∑

iK=1

ρB(L1,i1
,··· ,LK,iK

). (4)

Here ρn is the estimated selectivity of q (after n sampling steps),
and ρB is the observed selectivity of q over the sample B. This

estimator is shown to be both unbiased and strongly consistent for
the actual selectivity ρ of q [21, 39].2

By applying the Central Limit Theorem, we can show that

√
n

σ

(
ρn − ρ

) d−→N(0, 1).

That is, the distribution of ρn is approximately normal after a large
number of sampling steps [21]: ρn ∼ N (ρ, σ2

n), where σ2
n =

σ2/n and σ2 = limn→∞ nVar[ρn].
However, here σ2

n is unknown since σ2 is unknown. In [21], the
authors further proposed the following estimator for σ2:

S2
n =

K∑
k=1

(
1

n− 1

n∑
j=1

(Qk,j,n/n
K−1 − ρn)2

)
, (5)

for n ≥ 2 (we set S2
1 = 0). Here

Qk,j,n =
∑

(i1,...,iK)∈Ω
(n)
k

(j)

ρB(L1,i1
,...,LK,iK

), (6)

where Ω
(n)
k (j) = {(i1, ..., iK) ∈ {1, ..., n}K : ik = j}. It can be

shown that limn→∞ S
2
n = σ2 a.s. As a result, it is reasonable to

approximate σ2 with S2
n when n is large. So σ2

n ≈ S2
n/n.

3.2.2 Efficient Computation of S2
n

Efficiency is crucial for a predictor to be practically useful. We
have discussed efficient implementation of ρn in [39]. Taking sam-
ples at runtime might not be acceptable since it will result in too
many random disk I/O’s. Therefore, we instead take samples off-
line and store them as materialized views (i.e., sample tables). In
the following presentation, we use Rs to denote the sample table
of a relation R. In [39], we further showed that, given a selection-
join query, we can estimate the selectivities of all the selections
and joins by running the original query plan over the sample tables
once. The trick is that, since the block size is not specified when
partitioning the relations, it could be arbitrary. We can then let a
block be a single tuple so that the cross-product of sample blocks
is reduced to the cross-product of sample tuples.

EXAMPLE 4 (IMPLEMENTATION OF ρn). Let us consider the
query plan in Figure 1 again. Based on the tuple-level partitioning
scheme, by Equation (4) we can simply estimate X4 and X5 as

X̂4 =
|Rs1 ./ Rs2|
|Rs1| · |Rs2|

and X̂5 =
|Rs1 ./ Rs2 ./ Rs3|
|Rs1| · |Rs2| · |Rs3|

.

Also note that we can compute the two numerators by running the
query plan over the sample relations Rs1, Rs2, and Rs3 once. That
is, to compute Rs1 ./ Rs2 ./ Rs3, we reuse the join results from
Rs1 ./ R

s
2 that has been computed when estimating X4.

We now extend the above framework to further compute S2
n. For

this sake we need to know how to compute the Qk,j,n’s in Equa-
tion (5). Let us consider the cases when an operator represents a
selection (i.e., a scan), a two-way join, or a multi-way join query.

2Strong consistency is also called almost sure convergence in prob-
ability theory (denoted as “a.s.”). It means that the more samples
we take, the closer ρn is to ρ.

Selection. In this case, K = 1 and by Equation (6) Qk,j,n is
reduced to Q1,j,n = ρB(L1,j). Therefore, S2

n can be simplified as

S2
n =

1

n− 1

n∑
j=1

(ρB(L1,j)− ρn)2.

Since a block here is just a tuple, ρB(L1,j) = 0 or ρB(L1,j) = 1.
We thus have

S2
n =

1

n− 1

(∑
ρB(L1,j)=0

ρ2
n +

∑
ρB(L1,j)=1

(1− ρn)2)
=

1

n− 1

(
(n−M)ρ2

n +M(1− ρn)2),
where M is the number of output tuples from the selection. When
n is large, n ≈ n− 1, so we have

S2
n ≈ (1− M

n
)ρ2
n +

M

n
(1− ρn)2 = ρn(1− ρn),

by noticing that ρn = M
n

. Hence S2
n is directly computable for a

scan operator once we know its estimated selectivity ρn.

Two-way Join. Consider a join R1 ./ R2. In this case, Qk,j,n
(k = 1, 2) can be reduced to

Q1,j,n =

n∑
i2=1

ρB(L1,j , L2,i2) and Q2,j,n =

n∑
i1=1

ρB(L1,i1 , L2,j).

Again, since a block here is just a tuple, ρB is either 0 or 1. It is
then equivalent to computing the following two quantities:

• Q1,j,n = |{t1j} ./ Rs2|, where t1j is the jth tuple of Rs1;

• Q2,j,n = |Rs1 ./ {t2j}|, where t2j is the jth tuple of Rs2.

That is, to compute Qk,j,n (k = 1, 2), conceptually we need to
join each sample tuple of one relation with all the sample tuples
of the other relation. However, directly performing this is quite
expensive, for we need to do 2n joins here.

We seek a more efficient solution. Recall that we need to joinRs1
andRs2 to compute ρn. LetRs = Rs1 ./ R

s
2. Consider any t ∈ Rs.

t must satisfy t = t1i ./ t2j , where t1i ∈ Rs1 and t2j ∈ Rs2.
Then t contributes 1 to Q1,i,n and 1 to Q2,j,n. On the other hand,
any t in Rs1 × Rs2 but not in Rs will contribute nothing to the Q’s.
Based on this observation, we only need to scan the tuples in Rs

and increment the corresponding Q’s. The remaining problem is
how to know the indexes i and j as in t = t1i ./ t2j . For this
purpose, we assign an identifier to each tuple in the sample tables
when taking the samples. This is akin to the idea in data provenance
research where tuples are annotated to help tracking the lineages of
the query results [19].

Multi-way Joins. The approach of processing two-way joins
can be easily generalized to handle multi-way joins. Now we have

Qk,j,n = |Rs1 ./ · · · ./ {tkj} ./ · · · ./ RsK |.

As a result, if we let Rs = Rs1 ./ · · · ./ RsK , then any t ∈ Rs

satisfies t = t1i1 ./ · · · ./ tKiK . t ∈ Rs1 × · · · × RsK will
contribute 1 to each Qk,ik,n (1 ≤ k ≤ K) if and only if t ∈ Rs.
Therefore, as before, we can just simply scanRs and increment the
corresponding Q’s when processing each tuple.

Putting It Together. Algorithm 1 summarizes the procedure of
computing ρn and S2

n for a single operator O. It is straightforward
to incorporate it into the previous framework where the selectivi-
ties of the operators are refined in a bottom-up fashion (see [39]
and [1]). We discuss some implementation details in the following.

Algorithm 1: Computation of ρn and S2
n

Input: O, an operator;Rs = {Rs1, ..., RsK}, the sample
tables; Agg, if some O′ ∈ Desc(O) is an aggregate

Output: ρn, estimated selectivity of O; S2
n, sample variance

1 Rs ← RunOperator(O,Rs);
2 if Agg then
3 M ← CardinalityByOptimizer(O);
4 ρn ← M∏K

k=1
|Rk|

;

5 S2
n ← 0;

6 else if O is a scan then
7 ρn ← |Rs|

|Rs
1|

;

8 S2
n ← ρn(1− ρn);

9 else if O is a join then
10 ρn ← |Rs|∏K

k=1
|Rs

k
| ;

11 foreach t = t1i1 ./ · · · ./ tKiK ∈ R
s do

12 Qk,ik,n ← Qk,ik,n + 1, for 1 ≤ k ≤ K;
13 end

14 S2
n ←

∑K
k=1

(
1

n−1

∑n
j=1(Qk,j,n/n

K−1 − ρn)2

)
;

15 else
16 ρn ← µ̂l, S2

n ← σ̂2
l ; // Let Xl ∼ N (µ̂l, σ̂

2
l).

17 end
18 return ρn and S2

n;

First, the selectivity estimator cannot work for operators such as
aggregates. Our current strategy is to use the original cardinality
estimates from the optimizer to compute ρn, and we simply set S2

n

to be 0 for these operators (lines 3 to 5). This may cause inaccuracy
in the prediction as well as our estimate of its uncertainty, if the op-
timizer does a poor job in estimating the cardinalities. However, we
find that it works reasonably well in our experiments. Nonetheless,
we are working to incorporate sampling-based estimators for ag-
gregates (e.g., the GEE estimator [8]) into our current framework.

Second, to compute the Qk,ik,n’s, we maintain a hash map Hk
for each k with ik’s the keys and Qk,ik,n’s the values. The size of
Hk is upper bounded by |Rsk| and usually is much smaller.

Third, for simplicity of exposition, in Algorithm 1 we first com-
pute the whole Rs and then scan it. In practice we actually do not
need to do this. Typical join operators, such as merge join, hash
join, and nested-loop join, usually compute join results on the fly.
Once a join tuple is computed, we can immediately postprocess
it by increasing the corresponding Qk,ik,n’s. Therefore, we can
avoid the additional memory overhead of caching intermediate join
results, which might be large even if the sample tables are small.

4. COST FUNCTIONS
By Equation (2), to infer the distribution of tq for a query q,

we also need to know the explicit form of g. According to Equa-
tion (1), g relies on the cost functions of operators that map the
selectivities to the n’s. As mentioned in the introduction, we use
logical cost functions in our work. While different DBMS may dif-
fer in their implementations of a particular operator, e.g., nested-
loop join, they follow the same execution logic and therefore have

the same logical cost function. In the following, we first present a
detailed study of representative cost functions. We then formulate
the computation of cost functions as an optimization problem that
seeks the best fit for the unknown coefficients, and we use standard
quadratic programming techniques to solve this problem.

4.1 Types of Functions
We consider the following types of cost functions in this paper:

(C1) f = a0: The cost function is a constant. For instance, since
a sequential scan has no random disk reads, nr = 0.

(C2) f = a0M+a1: The cost function is linear with respect to the
output cardinality. For example, the number of random reads
of an index-based table scan falls into this category, which is
proportional to the number of qualified tuples that pass the
selection predicate.

(C3) f = a0Nl + a1: The cost function is linear with respect to
the input cardinality. This happens for unary operators that
process each input tuple once. For example, materialization
is such an operator that creates a buffer to cache the interme-
diate results.

(C4) f = a0N
2
l + a1Nl + a2: The cost function is nonlinear with

respect to the input cardinality. For instance, the number of
CPU operations (i.e., co) performed by a sort operator is pro-
portional to Nl logNl. While different nonlinear unary oper-
ators may have specific cost functions, we choose to only use
quadratic polynomials based on the following observations:

• It is quite general to approximate the nonlinear cost func-
tions used by current relational operators. First, as long
as a function is smooth (i.e., it has continuous deriva-
tives up to some desired order), it can be approximated
by using the well-known Taylor series, which is basi-
cally a polynomial of the input variable. Second, for
efficiency reasons, the overhead of an operator usually
does not go beyond quadratic of its input cardinality —
we are not aware of any operator implementation whose
time complexity is ω(N2). Similar observations have
been made in [13].

• Compared with functions such as logarithmic ones, poly-
nomials are mathematically much easier to manipulate.
Since we need to further infer the distribution of the pre-
dicted query execution time based on the cost functions,
this greatly simplifies the derivations.

(C5) f = a0Nl + a1Nr + a2: This cost function is linear with
respect to the input cardinalities when the operator is binary.
An interesting observation here is that the cost functions in
the case of binary operators are not necessarily nonlinear. For
example, the number of I/O’s involved in a hash join is only
proportional to the number of input tuples.

(C6) f = a0NlNr + a1Nl + a2Nr + a3: The cost function here
also involves the product of the left and right input cardinali-
ties of a binary operator. This happens typically in a nested-
loop join, which iterates over the inner (i.e., the right) input
table multiple times with respect to the number of rows in the
outer (i.e., the left) input table.

It is straightforward to translate these cost functions in terms of
selectivities. Specifically, we have Nl = |Rl|Xl, Nr = |Rr|Xr ,
and M = |R|X . The above six cost functions can be rewritten as

(C1’) f = b0, where b0 = a0.

(C2’) f = b0X + b1, where b0 = a0|R| and b1 = a1.

(C3’) f = b0Xl + b1, where b0 = a0|Rl| and b1 = a1.

(C4’) f = b0X
2
l + b1Xl + b2, where b0 = a0|Rl|2, b1 = a1|Rl|,

and b2 = a2.

(C5’) f = b0Xl + b1Xr + b2, where b0 = a0|Rl|, b1 = a1|Rr|,
and b2 = a2.

(C6’) f = b0XlXr+b1Xl+b2Xr+b3, where b0 = a0|Rl|·|Rr|,
b1 = a1|Rl|, b2 = a2|Rr|, and b3 = a3.

4.2 Computation of Cost Functions
To compute the cost functions, we use an approach that is similar

to the one proposed in [13]. Regarding the types of cost functions
we considered, the only unknowns given the selectivity estimates
are the coefficients in the functions (i.e., the b’s). Moreover, notice
that f is a linear function of the b’s once the selectivities are given.
We can then collect a number of f values by feeding in the cost
model with different X’s and find the best fit for the b’s.

As an example, consider (C4’). Suppose that we invoke the cost
model m times and obtain m points:

{(Xl1, f1), ..., (Xlm, fm)}.

Let y = (f1, ..., fm), b = (b0, b1, b2), and

A =

 X2
l1 Xl1 1
...

...
...

X2
lm Xlm 1

 .

The optimization problem we are concerned with is:

minimize
b

‖Ab− y‖

subject to bi ≥ 0, i = 0, 1.

Note that we require b0 and b1 be nonnegative since they have the
natural semantics in the cost functions as the amount of work with
respect to the corresponding terms. For example, b1Xl = a1Nl is
the amount of work that is proportional to the input cardinality. To
solve this quadratic programming problem, we use the qpsolve
function of Scilab [34]. Other equivalent solvers could also be used.

The remaining problem is how to pick these (X, f)’s. In theory,
one could arbitrarily pick the X’s from [0, 1] to obtain the corre-
sponding f ’s as long as we have more points than unknowns. Al-
though more points usually mean we can have better fittings, in
practice we cannot afford too many points due to the efficiency re-
quirements when making the prediction. On the other hand, given
that the X’s here follow normal distributions and the variances are
usually small when the sample size is large, the likely selectivity
estimates are usually concentrated in a much shorter interval than
[0, 1]. Intuitively, we should take more points within this interval,
for we can then have a more accurate view of the shape of the cost
function restricted to this interval. Therefore, in our current imple-
mentation, we adopt the following strategy.

Let X ∼ N (µ, σ2). Consider the interval I = [µ − 3σ, µ +
3σ]. It is well known that Pr(X ∈ I) ≈ 0.997, which means the
probability thatX falls out of I is less than 0.3%. We then proceed
by partitioning I into W subintervals of equal width, and pick the
W + 1 boundary X’s to invoke the cost model. Generalizing this
idea to binary cost functions is straightforward. Suppose Xl ∼
N (µl, σ

2
l) and Xr ∼ N (µr, σ

2
r). Let Il = [µl − 3σl, µl + 3σl]

and Ir = [µr − 3σr, µr + 3σr]. We then partition Il × Ir into a
W ×W grid and obtain (W + 1) × (W + 1) points (Xl, Xr) to
invoke the cost model.

5. DISTRIBUTION OF RUNNING TIMES
We have discussed how to estimate the distributions of input pa-

rameters (i.e., the c’s and the X’s) and how to estimate the cost
functions of each operator. In this section, we discuss how to com-
bine these two to further infer the distribution of tq for a query q.

Since tq = g(c,X), the distribution of tq relies on the joint dis-
tribution of (c,X).3 We therefore first present a detailed analysis
of the correlations between the c’s and the X’s. Based on that, we
then show that the distribution of tq is asymptotically normal and
thus reduce the problem to estimating the two parameters of normal
distributions, i.e., the mean and variance of tq . We further address
the nontrivial problem of computing Var[tq] due to correlations be-
tween selectivity estimates.

5.1 Correlations of Input Variables
In our current setting, it is reasonable to assume that the c’s and

the X’s are independent. In the following, we analyze the correla-
tions within the c’s and the X’s.

5.1.1 Correlations Between Cost Units
Since the randomness within the c’s comes from the variations

in hardware execution speeds, we have no way to observe the true
values of the c’s and thus it is impossible to obtain the exact joint
distribution of the c’s. Nonetheless, it might be reasonable to as-
sume the independence of the c’s. First, since the CPU and I/O cost
units measure the speeds of different hardware devices, their values
do not depend on each other. Second, within each group (i.e., CPU
or I/O cost units), we used independent calibration queries for each
individual cost unit.

ASSUMPTION 1. The c’s are independent of each other.

5.1.2 Correlations Between Selectivity Estimates
The X’s are clearly not independent, because the same samples

are used to estimate the selectivities of different operators. We next
study the correlations between the X’s in detail.

Let O and O′ be two operators, and R and R′ be the corre-
sponding leaf tables. Consider the two corresponding selectivity
estimates ρn and ρ′n as defined by Equation (4). Since the samples
from each table are drawn independently, we first have:

LEMMA 1. IfR∩R′ = ∅, then ρn⊥ρ′n.4

For binary operators, it follows from Lemma 1 immediately that:

LEMMA 2. Let O be binary. IfRl ∩Rr = ∅, then Xl⊥Xr .

That is,Xl andXr will only be correlated ifRl andRr share com-
mon relations. However, in practice, we can maintain more than
one sample table for each relation. When the database is large, this
is affordable since the number of samples is very small compared
to the database size [39]. Since the samples from each relation are
drawn independently, Xl and Xr are still independent if we use a
different sample table for each appearance of a shared relation. We
thus assume Xl⊥Xr in the rest of the paper.

3Note that the distributions of the c’s and X’s that we obtained in
Section 3 are marginal rather than joint.
4We use Y⊥Z to denote that Y and Z are independent.

More generally, X and X ′ are independent as long as neither
O ∈ Desc(O′) nor O′ ∈ Desc(O). However, the above discus-
sion cannot be applied if O ∈ Desc(O′) (or vice versa). This is
because we pass the join results from downstream joins to upstream
joins when estimating the selectivities (recall Example 4). So R
and R′ are naturally not disjoint. In fact, R ⊆ R′. To make ρn
and ρ′n independent, we need to replace each of the sample tables
used in computing ρ′n with another sample table from the same re-
lation, which basically is the same as run the query plan again on a
different set of sample tables. The number of runs is then in propor-
tion to the number of selective operators (i.e., selections and joins)
in the query plan, and the runtime overhead might be prohibitive in
practice. We summarize this observation as follows:

LEMMA 3. Given that multiple sample tables of the same re-
lation can be used, ρn and ρ′n are correlated if and only if either
O ∈ Desc(O′) or vice versa.

5.2 Asymptotic Distributions
Now for specificity suppose that the query plan of q contains m

operators O1, ..., Om. Since tq is the sum of the predicted exe-
cution time spent on each operator, it can be expressed as tq =∑m
k=1 tk, where tk is the predicted execution time of Ok and is

itself a random variable.
We next show that tk is asymptotically normal, and then by us-

ing very similar arguments, we can show that tq is asymptotically
normal as well. Since tk can be further expressed in terms of Equa-
tion (1), to learn its distribution we need to know the distributions
of cost functions that map the selectivities to the n’s. We therefore
start by discussing the distributions of the typical cost functions as
presented in Section 4.1.

5.2.1 Asymptotic Distributions of Cost Functions
In the following discussion, we assume that X ∼ N (µ, σ2),

Xl ∼ N (µl, σ
2
l), and Xr ∼ N (µr, σ

2
r). The distributions of the

six types of cost functions previously discussed are as follows:

(C1’) f = b0: f ∼ N (b0, 0).

(C2’) f = b0X + b1: f ∼ N (b0µ+ b1, b
2
0σ

2).

(C3’) f = b0Xl + b1: f ∼ N (b0µl + b1, b
2
0σ

2
l).

(C4’) f = b0X
2
l + b1Xl + b2: In this case Pr(f) is not normal.

Although it is possible to derive the exact distribution of f
based on the distribution ofXl, the derivation would be very
messy. Instead, we consider fN ∼ N (E[f],Var[f]) and
use this to approximate Pr(f). We present the formula of
Var[f] in Lemma 4. Obviously, fN and f have the same ex-
pected value and variance. Moreover, we can actually show
that fN and f (and therefore their corresponding distribu-
tions) are very close to each other when the number of sam-
ples is large (see Theorem 1).

(C5’) f = b0Xl + b1Xr + b2: Since Xl⊥Xr by Lemma 2, f ∼
N (b0µl + b1µr + b2, b

2
0σ

2
l + b21σ

2
r).

(C6’) f = b0XlXr + b1Xl + b2Xr + b3: Again, Pr(f) is not
normal. Since Xl⊥Xr , XlXr follows the so called normal
product distribution [6], whose exact form is again compli-
cated. We thus use the same strategy as in (C4’) (see [1]).

LEMMA 4. If Xl ∼ N (µl, σ
2
l) and f = b0X

2
l + b1Xl + b2,

then

Var[f] = σ2
l [(b1 + 2b0µl)

2 + 2b20σ
2
l].

THEOREM 1. Suppose that Xl ∼ N (µl, σ
2
l) and f = b0X

2
l +

b1Xl + b2. Let fN ∼ N (E[f],Var[f]), where Var[f] is shown in
Lemma 4. Then fN

p−→ f .5

5.2.2 Asymptotic Distribution of tk
Based on the previous analysis, the cost functions (or equiva-

lently, the n’s in Equation (1)) are asymptotically normal. Since
the c’s are normal and independent of theX’s (and hence the n’s as
well), by Equation (1) again tk is asymptotically the sum of prod-
ucts of two independent normal random variables. Specifically, let
C = {cs, cr, ct, ci, co}, and for c ∈ C, let fkc be the cost function
indexed by c. Defining tkc = fNkcc, we have

tk ≈
∑
c∈C

tkc =
∑
c∈C

fNkcc,

Again, each tkc is not normal. But we can apply techniques sim-
ilar to that in Theorem 1 here by using the normal random variable

tNkc ∼ N (E[fNkcc],Var[fNkcc]) = N (E[fkcc],Var[fkcc])

as an approximation of tkc. Defining Z = E[fkc]c, we have

THEOREM 2. tkc
d−→Z, and tNkc

d−→Z.

Theorem 2 implies that tkc and tNkc tend to follow the same distri-
bution as the sample size grows. Since c is normal, Z is normal
as well. Furthermore, the independence of the c’s also implies the
independence of the Z’s. So tk is approximately the sum of the
independent normal random variables tNkc, which means tk is itself
approximately normal when the sample size is large.

5.2.3 Asymptotic Distribution of tq
Finally, let us consider the distribution of tq . Since tq is merely

the sum of the tk’s, we have exactly the same situation as when we
analyze each tk. Specifically, we can express tq as

tq =

m∑
k=1

tk ≈
∑
c∈C

gcc,

where gc =
∑m
k=1 f

N
kc is the sum of the cost functions of the op-

erators with respect to the particular c. However, since the fNkc ’s
are not independent, gc is not normal. We can again use the normal
random variable

gNc ∼ N (E[gc],Var[gc])

as an approximation of gc. We can show that gNc
p−→ gc (see [1]).

With exactly the same argument used in Section 5.2.2 we can then
see that tq is approximately normal when the sample size is large.

5.2.4 Discussion
The analysis that tq is asymptotically normal relies on three facts:

(1) the selectivity estimates are unbiased and strongly consistent;
(2) the cost model is additive; and (3) the cost units are indepen-
dently normally distributed. While the first fact is a property of the
sampling-based selectivity estimator and thus always holds, the lat-
ter two are specific merits of the cost model of PostgreSQL, though
we believe that cost models of other database systems share more
or less similar features. Therefore, we need new techniques when
either (2) or (3) does not hold. For instance, if the cost model is
still additive and the c’s are independent but cannot be modeled as
normal variables, then by the analysis in Section 5.2.3 we can still
see that tq is asymptotically a linear combination of the c’s and thus
5fN

p−→ f means fN converges in probability to f .

the distribution of tq can be expressed in terms of the convolution
of the distributions of the c’s. We may then find this distribution
by using generating functions or characteristic functions [33]. We
leave the investigation of other types of cost models as future work.

5.3 Computing Distribution Parameters
As discussed, we can approximate the distribution of tq with a

normal distribution N (E[tq],Var[tq]). We are then left with the
problem of estimating the two parameters E[tq] and Var[tq]. While
E[tq] is trivial to compute — it is merely the original prediction
from our predictor, estimating Var[tq] is a challenging problem due
to the correlations presented in selectivity estimates.

In more detail, so far we have observed the additive nature of tq ,
that is, tq =

∑m
k=1 tk and tk =

∑
c∈C tkc (Section 5.2.2). Recall

the fact that for sum of random variables Y =
∑

1≤i≤m Yi,

Var[Y] =
∑

1≤i,j≤m
Cov(Yi, Yj).

Applying this to tq , our task is then to compute each Cov(ti, tj).
Note that Cov(ti, ti) = Var[ti] which is easy to compute, so it is
left to compute Cov(ti, tj) for i 6= j. By linearity of covariance,

Cov(ti, tj) = Cov
(∑
c∈C

tic,
∑
c∈C

tjc
)

=
∑
c,c′∈C

Cov(tic, tjc′).

In the following, we first specify the cases where direct computa-
tion of Cov(tic, tjc′) can be done. We then develop upper bounds
for those covariances that cannot be directly computed.

5.3.1 Direct Computation of Covariances
Any Cov(tic, tjc′) can fall into the following two cases:

• i = j, then it is the covariance between different cost func-
tions from the same operator.

• i 6= j, then it is the covariance between cost functions from
different operators.

Consider the case i = j first. If the operator is unary, regarding
the cost functions we are concerned with, we only need to con-
sider Cov(X,X), Cov(X,X2), and Cov(X2, X2), where X ∼
N (µ, σ2). Since X is normal, the non-central moments of X can
be expressed in terms of µ and σ2. Hence it is straightforward
to compute these covariances [37]. If the operator is binary, then
we need to consider Cov(Xl, Xl), Cov(Xr, Xr), Cov(Xl, Xr),
Cov(XlXr, Xl), Cov(XlXr, Xr), and Cov(XlXr, XlXr). By
Lemma 2, Xl⊥Xr . So we are able to directly compute these co-
variances as well.

When i 6= j, while the types of covariances that we need to
consider are similar as before, it is more complicated since the se-
lectivities are no longer independent. Without loss of generality,
we consider two operators O and O′ such that O ∈ Desc(O′).
By Lemma 3, this is the only case where the covariances might
not be zero. Based on the cost functions considered in this pa-
per, we need to consider the covariances Cov(Z,Z′), where Z ∈
{Xl, X2

l , Xr, XlXr} and Z′ ∈ {X ′l , (X ′l)2, X ′r, X
′
lX
′
r}. Some

of them can be directly computed by applying Lemma 3, while the
others can only be bounded as discussed in the next section.

EXAMPLE 5 (COVARIANCES BETWEEN SELECTIVITIES). To
illustrate, consider the two join operators O4 and O5 in Figure 1.
Assume that the cost functions of O4 and O5 are all linear, i.e.,
they are of type (C5’). Based on Lemma 2, Cov(X1, X2) = 0 and
Cov(X4, X3) = 0. Also, based on Lemma 3, Cov(X1, X3) =
0 and Cov(X2, X3) = 0. However, we are not able to com-
pute Cov(X1, X4) and Cov(X2, X4). Instead, we provide upper
bounds for them.

5.3.2 Upper Bounds of Covariances
Based on the fact that the covariance between two random vari-

ables is bounded by the geometric mean of their variances [33], we
can establish an upper bound for Z and Z′ in the previous section:

|Cov(Z,Z′)| ≤
√

Var[Z] Var[Z′].

Note that the variances are directly computable based on the inde-
pendence assumptions (Lemma 2 and 3).

By analyzing the correlation of the samples used in selectivity
estimation, we can develop tighter bounds. Due to space limita-
tions, we defer the details to the full version of this paper [1]. The
key observation here is that the correlations are caused by the sam-
ples from the shared relations. Consider two operators O and O′

such that O ∈ Desc(O′). Suppose that |R ∩ R′| = m (m ≥ 1),
namely, O and O′ share m common leaf tables. Let the estimators
forO andO′ be ρn and ρ′n, where n is the number of sample steps.
We define S2

ρ(m,n) to be the variance of samples restricted to the
m common relations. This is actually a generalization of Var[ρn].
To see this, letR′ = R. Then ρn = ρ′n and hence

Var[ρn] = Cov(ρn, ρn) = Cov(ρn, ρ
′
n) = S2

ρ(K,n),

where K = |R|. We can show that S2
ρ(m,n) is a monotonically

increasing function of m [1]. As a result, S2
ρ(m,n) ≤ Var[ρn]

given that m ≤ K. Hence, we have the following refined upper
bound for Cov(ρn, ρ

′
n):

|Cov(ρn, ρ
′
n)| ≤

√
S2
ρ(m,n)S2

ρ′(m,n) ≤
√

Var[ρn] Var[ρ′n].

To compute S2
ρ(m,n), we use an estimator akin to the estimator

σ2
n = S2

n/n that we used to estimate Var[ρn]. Specifically, define

S2
n,m =

m∑
r=1

(
1

n− 1

n∑
j=1

(Qr,j,n/n
m−1 − ρn)2

)
,

for n ≥ 2 (we set S2
1,m = 0). Very similarly, we can show that

limn→∞ S
2
n,m = nS2

ρ(m,n). As a result, it is reasonable to ap-
proximate S2

ρ(m,n) with S2
ρ(m,n) ≈ S2

n,m/n. Moreover, by
comparing the expressions of S2

n,m and S2
n (ref. Equation (5)), we

can see that S2
n = S2

n,K . Therefore it is straightforward to adapt
the implementation framework in Section 3.2.2 to compute S2

n,m.

6. EXPERIMENTAL EVALUATION
We present experimental evaluation results in this section. There

are two key respects that could impact the utility of a predictor:
its prediction accuracy and runtime overhead. However, for the
particular purpose of this paper, we do not care much about the
absolute accuracy of the prediction. Rather, we care if the distri-
bution of likely running times reflects the uncertainty in the predic-
tion. Specifically, we measure if the estimated prediction errors are
correlated with the actual errors. To measure the accuracy of the
predicted distribution, we also compare the estimated likelihoods
that the actual running times will fall into certain confidence inter-
vals with the actual likelihoods. On the other hand, we measure
the runtime overhead of the sampling-based approach in terms of
its relative overhead with respect to the original query running time
without sampling. We start by presenting the experimental settings
and the benchmark queries we used.

6.1 Experimental Settings
We implemented our proposed framework in PostgreSQL 9.0.4.

We ran PostgreSQL under Linux 3.2.0-26, and we evaluated our
approaches with both the TPC-H 1GB and 10 GB databases. Since

the original TPC-H database generator uses uniform distributions,
to test the effectiveness of the approach under different data distri-
butions, we used a skewed TPC-H database generator [2]. It pro-
duces TPC-H databases with a Zipf distribution and uses a param-
eter z to control the degree of skewness. z = 0 generates a uniform
distribution, and the data becomes more skewed as z increases. We
created skewed databases using z = 1. All experiments were con-
ducted on two machines with the following configurations:

• PC1: Dual Intel 1.86 GHz CPU and 4GB of memory;

• PC2: 8-core 2.40GHz Intel CPU and 16GB of memory.

6.2 Benchmark Queries
We created three benchmarks MICRO, SELJOIN, and TPCH:

• MICRO consists of pure selection queries (i.e., scans) and
two-way join queries. It is a micro-benchmark with the pur-
pose of exploring the strength and weakness of our proposed
approach at different points in the selectivity space. We gen-
erated the queries with the similar ideas used in the Picasso
database query optimizer visualizer [32]. Since the queries
have either one (for scans) or two predicates (for joins), the
selectivity space is either one or two dimensional. We gen-
erated SQL queries that were evenly across the selectivity
space, by using the statistics information (e.g., histograms)
stored in the database catalogs to compute the selectivities.

• SELJOIN consists of selection-join queries with multi-way
joins. We generated the queries in the following way. We an-
alyzed each TPC-H query template, and identified the “max-
imal” sub-query without aggregates. We then randomly gen-
erated instance queries from these reduced templates. The
purpose is to test the particular type of queries to which our
proposed approach is tailored — the selection-join queries.

• TPCH consists of instance queries from the TPC-H tem-
plates. These queries also contain aggregates, and our current
strategy is simply ignoring the uncertainty there (recall Sec-
tion 3.2.2). The purpose of this benchmark is to see how this
simple work-around works in practice. We used 14 TPC-H
templates: 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, and 19. We
did not use the other templates since their query plans contain
structures that cannot be handled by our current framework
(e.g., sub-query plans or views).

We ran each query 5 times and took the average as the actual
running time of a query. We cleared both the filesystem cache and
the database buffer pool between each run of each query.

6.3 Usefulness of Predicted Distributions
Since our goal is to quantify the uncertainty in the prediction

and our output is a distribution of likely running times, the ques-
tion is then how we can know that we have something useful. A
reasonable metric here could be the correlation between the stan-
dard deviation of the predicted (normal) distribution and the actual
prediction error. Intuitively, the standard deviation indicates the
confidence of the prediction. A larger standard deviation indicates
lower confidence and hence larger potential prediction error. With
this in mind, if our approach is effective, we would expect to see
positive correlations between the standard deviations and the real
prediction errors when a large number of queries are tested.

A common metric used to measure the correlation between two
random variables is the Pearson correlation coefficient rp. Suppose
that we have n queries q1, ..., qn. Let σi be the standard deviation of

the distribution predicted for qi, µi and ti be the predicted (mean)
and actual running time of qi, and ei = |µi − ti| be the prediction
error. rp is then defined as

rp =

∑n
i=1(σi − σ̄)(ei − ē)√∑n

i=1(σi − σ̄)2
√∑n

i=1(ei − ē)2
, (7)

where σ̄ = 1
n

∑n
i=1 σi and ē = 1

n

∑n
i=1 ei.

Basically, rp measures the linear correlation between the σ’s and
the e’s. The closer rp is to 1, the better the correlation is. How-
ever, there are two issues here. First, even if the σ’s and the e’s
are positively correlated, the correlation may not be linear. Sec-
ond, rp is not robust and its value can be misleading if outliers are
present [14]. Therefore, we also measure the correlations by using
another well known metric called the Spearman’s rank correlation
coefficient rs [30]. The formula of rs is the same as Equation (7)
except for that the σ’s and e’s are replaced with their ranks in the
ascending order of the values. For instance, given three σ’s σ1 = 4,
σ2 = 7, and σ3 = 5, their ranks are 1, 3, and 2 respectively. In-
tuitively, rs indicates the linear correlation between the ranks of
the values, which is more robust than rp since the mapping from
the values to their ranks can be thought of as some normalization
procedure that reduces the impact of outliers. In fact, rs assesses
how well the correlation can be characterized by using a monotonic
function and rs = 1 means the correlation is perfect.

In Figure 2, we report the rs’s (and the corresponding rp’s) for
the benchmark queries over different hardware and database set-
tings. Due to space limitations, we refer the readers to [1] for the
complete results. Here, sampling ratio (SR) stands for the fraction
of the sample size with respect to the database size. For instance,
SR = 0.01 means that 1% of the data is taken as samples. We have
several observations.

First, for most of the cases we tested, both rs and rp are above
0.7 (in fact above 0.9), which implies strong positive (linear) cor-
relation between the standard deviations of the predicted distribu-
tions and the actual prediction errors.6 Second, in [39] we showed
that as expected, prediction errors can be reduced by using larger
number of samples. Interestingly, it is not necessarily the case that
more samples improves the correlation between the predicted and
actual errors. This is because taking more samples simultaneously
reduces the errors in selectivity estimates and the uncertainty in the
predicted running times. So it might improve the estimate but not
the correlation with the true errors. Third, reporting both rs and
rp is necessary since they sometimes disagree with each other. For
instance, consider the following two cases in Figure 2(a) and 2(b):

(1) On PC2, the MICRO queries over the uniform TPC-H 1GB
database give rs = 0.9400 but rp = 0.5691 when SR = 0.01;

(2) On PC1, the SELJOIN queries over the uniform TPC-H 1GB
database give rs = 0.6958 but rp = 0.8414 when SR = 0.05.

In Figure 3(a) and 3(c), we present the scatter plots of these two
cases. Figure 3(b) further shows the scatter plot after the rightmost
point is removed from Figure 3(a). We find that now rs = 0.9386
but rp = 0.8868. So rp is much more sensitive to outliers in the pop-
ulation. Since in our context there is no good criterion to remove
outliers, rs is thus more trustworthy. On the other hand, although
the rp of (2) is better than that of (1), by comparing Figure 3(b)
with Figure 3(c) we would instead conclude that the correlation of
(2) seems to be worse. This is again implied by the worse rs of (2).

Nonetheless, the strong positive correlations between the esti-
mated standard deviations and the actual prediction errors may not
6It is generally believed that two variables are strongly correlated
if their correlation coefficient is above 0.7.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(a) MICRO, Uniform 1GB, PC2

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(b) SELJOIN, Uniform 1GB, PC1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(c) TPCH, Skewed 10GB, PC1

Figure 2: rs and rp of the benchmark queries over different hardware and database settings

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(a) Case (1)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(b) Case (1) after one outlier is removed

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(c) Case (2)

Figure 3: Robustness of rs and rp with respect to outliers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(a) MICRO

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(b) SELJOIN

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(c) TPCH

Figure 4: Dn of the benchmark queries over uniform TPC-H 10GB databases

be sufficient to conclude that the distributions of likely running
times are useful. For our purpose of informing the consumer of the
running time estimates of the potential prediction errors, it might
be worth to further consider what information regarding the errors
the predicted distributions really carry. Formally, consider the n
queries q1, ..., qn as before. Since the estimated distributions are
normal, with the previous notation the distribution for the likely
running times Ti of qi is Ti ∼ N (µi, σ

2
i). As a result, assuming

α > 0, without loss of generality the estimated prediction error
Ei = |Ti − µi| follows the distribution

Pr(Ei ≤ ασi) = Pr(−α ≤ Ti − µi
σi

≤ α) = 2Φ(α)− 1,

where Φ is the cumulative distribution function of the standard
normal distribution N (0, 1). Therefore, if we define the statistic
E′i = Ei

σi
= |Ti−µi

σi
|, then Pr(E′i ≤ α) = Pr(Ei ≤ ασi). Note

that Pr(E′i ≤ α) is determined by α but not i. We thus simply use
Pr(α) to denote Pr(E′i ≤ α). On the other hand, we can estimate
the actual likelihood of E′i ≤ α by using

Prn(α) =
1

n

n∑
i=1

I(e′i ≤ α), where e′i =
ei
σi

= | ti − µi
σi

|.

Here I is the indicator function. To measure the proximity of
Prn(α) and Pr(α), we define

Dn(α) = |Prn(α)− Pr(α)|.

Clearly, a smaller Dn(α) means Pr(α) is closer to Prn(α), which
implies better quality of the distributions. We further generated
α’s from the interval (0, 6) which is sufficiently wide for normal
distributions and computed the average of theDn(α)’s (denoted as
Dn). Figure 4 reports the results for the benchmark queries over
uniform TPC-H 10GB databases (see [1] for the complete results).

We observe that in most cases the Dn’s are below 0.3 with the
majority below 0.2, which suggests that the estimated Pr(α)’s are
reasonably close to the observed Prn(α)’s. To shed some light on
what is going on here, in Figure 5 we further plot the Pr(α) and
Prn(α) for the (1) MICRO, (2) SELJOIN, and (3) TPCH queries
over the uniform TPC-H 10GB database on PC2 when SR = 0.05,
which giveDn = 0.2532, 0.1098, and 0.0535 respectively (see Fig-
ure 4). We can see that we overestimated the Pr(α)’s for small α’s.
In other words, we underestimated the prediction errors by present-
ing smaller than actual variances in the distributions. Moreover, we
find that overestimate is more significant for the MICRO queries
(Figure 5(a)). One possible reason is that since these queries are

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(a) Case (1), Dn = 0.2532

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(b) Case (2), Dn = 0.1098

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(c) Case (3), Dn = 0.0535

Figure 5: The proximity of Prn(α) and Pr(α) with respect to different Dn’s

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.01 0.05 0.1

R
el

at
iv

e
O

ve
rh

ea
d

of
 S

am
pl

in
g

Sampling Ratio

TPCH-1G
TPCH-1G-Skew
TPCH-10G
TPCH-10G-Skew

Figure 6: Relative overhead of TPCH queries on PC1

really simple the predictor tends to be over-confident by underes-
timating the variances even more. When handling SELJOIN and
TPCH queries, the confidence of the predictor drops and underes-
timate tends to be alleviated (Figure 5(b) and 5(c)).

6.4 Runtime Overhead of Sampling
We also measured the relative overhead of running the queries

over the sample tables compared with that of running them over the
original tables. Figure 6 presents the results of the TPCH queries
on PC1. Since the other results are very similar, the readers are re-
ferred to [1] for the complete details. We observe that the relative
overhead is comparable to that reported in [39]. For instance, for
the TPC-H 10GB database, the relative overhead is around 0.04 to
0.06 when the sampling ratio is 0.05. Note that, here we computed
the estimated selectivities as well as their variances by only increas-
ing the relative overhead a little. Also note that, here we measured
the relative overhead based on disk-resident samples. The relative
overhead can be dramatically reduced by using the common prac-
tice of caching the samples in memory [31].

6.5 Applications
We discuss some potential applications that could take advantage

of the distributional information of query running times. The list
of applications here is by no means exhaustive, and it is our hope
that our study in this paper could stimulate further research in this
direction and more applications could emerge in the future.

6.5.1 Query Optimization
Although significant progress has been made in the past several

decades, query optimization remains challenging for many queries
due to the difficulty in accurately estimating query running times.
Rather than betting on the optimality of the plan generated based

on (perhaps erroneous) point estimates for parameters such as se-
lectivities and cost units, it makes sense to also consider the uncer-
tainties of these parameters. In fact, there has been some theoretical
work investigating optimization based on least expected cost (LEC)
based upon distributions of the parameters of the cost model [12].
However, that work did not address the problem of how to obtain
the distributions. It would be interesting future work to see the
effectiveness of LEC plans by incorporating our techniques into
query optimizers.

6.5.2 Query Progress Monitoring
State-of-the-art query progress indicators [10, 27] provide esti-

mates of the percentage of the work that has been completed by a
query at regular intervals during the query’s execution. However,
it has been shown that in the worst case no progress indictor can
outperform a naive indicator simply saying the progress is between
0% and 100% [9]. Hence, information about uncertainty in the es-
timate of progress is desirable. Our work provides a natural build-
ing block that could be used to develop an uncertainty-aware query
progress indicator: the progress indicator could call our predictor
to make a prediction for the remaining query running time as well
as its uncertainty.

6.5.3 Database as a Service
The problem of predicting query running time is revitalized by

the recent move towards providing database as a service (DaaS).
Many important decision-making procedures, including admission
control [40], query scheduling [11], and system sizing [36], rely
on estimation of query running time. Distributional information
enables more robust decision procedures in contrast to point esti-
mates. Recent work [11] has shown the benefits in query schedul-
ing by leveraging distributional information. Similar ideas have
also been raised in [40] for admission control. Again, these work
did not address the fundamental issue of obtaining the distributions
without running the queries. It would be interesting to see the ef-
fectiveness of our proposed techniques in these DaaS applications.

7. RELATED WORK
The problem of predicting query execution time has been exten-

sively studied quite recently [4, 5, 16, 17, 25, 38, 39]. However,
none of this work considers the problem of measuring the degree
of uncertainty present in predictions. We have reused some tech-
niques developed in [39] for computing the means of selectivities
and cost units when viewed as random variables. However, [39]
focused on point estimates rather than distributional information,
and hence these techniques were insufficient. We have substan-
tially extended [39] by developing new techniques for computing

variances (and hence distributions) of selectivity and cost-unit es-
timates (Section 3), cost functions (Section 4), and, based on that,
distributions of likely running times (Section 5).

The idea of using samples to estimate selectivity goes back more
than two decades ago (e.g., [7, 8, 20, 21, 23, 26]). While we fo-
cused on estimators for selection and join queries [21], some es-
timators that estimate the number of distinct values might be fur-
ther used to refine selectivity estimates of aggregate queries [8, 20].
However, not only do we need an estimate of selectivity, we need an
estimated distribution as well. So far, we are not aware of any pre-
vious study towards this direction for aggregate queries. Regarding
the problem of estimating selectivity distributions for selection and
join queries, there are options other than the one used in this paper.
For example, Babcock and Chaudhuri [7] proposed a framework
to learn the posterior distributions of the selectivities based on join
synopses [3]. Unfortunately, this solution is restricted to SPJ ex-
pressions with foreign-key joins, due to the overhead of computing
and maintaining join synopses over a large database.

The framework proposed in this paper also relies on accurate
approximation of the cost models used by the optimizer. Du et
al. [15] first proposed the idea of using logical cost functions in
the context of heterogenous database systems. Similar ideas were
later on used in developing generic cost models for main memory
based database systems [28] and identifying robust plans in the plan
diagram generated by the optimizer [13]. Our idea of further using
optimization techniques to find the best coefficients in the logical
cost functions is motivated by the approach used in [13].

8. CONCLUSION
In this paper, we take a first step towards the problem of mea-

suring the uncertainty within query execution time prediction. We
quantify prediction uncertainty using the distribution of likely run-
ning times. Our experimental results show that the standard devia-
tions of the distributions estimated by our proposed approaches are
strongly correlated with the actual prediction errors.

The idea of leveraging cost models to quantify prediction un-
certainty need not be restricted to single standalone queries. As
shown in [38], Equation (2) can also be used to provide point esti-
mates for multiple concurrently-running queries. The key observa-
tion is that the selectivities of the operators in a query are indepen-
dent of whether or not it is running with other queries. Hence it is
promising to consider applying the techniques proposed in this pa-
per to multi-query workloads by viewing the interference between
queries as changing the distribution of the c’s. We regard this as a
compelling area for future work.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments.

This work was supported in part by a gift from Google.

10. REFERENCES
[1] http://arxiv.org/abs/1408.6589.
[2] Skewed tpc-h data generator. ftp://ftp.research.microsoft.com/

users/viveknar/TPCDSkew/.
[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for

approximate query answering. In SIGMOD, 1999.
[4] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Predicting completion times

of batch query workloads using interaction-aware models and simulation. In
EDBT, pages 449–460, 2011.

[5] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik.
Learning-based query performance modeling and prediction. In ICDE, pages
390–401, 2012.

[6] L. A. Aroian. The probability function of the product of two normally
distributed variables. Ann. Math. Statist, 18(2):265–271, 1947.

[7] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: A principled
and practical approach. In SIGMOD, 2005.

[8] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards
estimation error guarantees for distinct values. In PODS, pages 268–279, 2000.

[9] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can we trust progress
estimators for sql queries? In SIGMOD, 2005.

[10] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. Estimating progress of
execution for SQL queries. In SIGMOD, 2004.

[11] Y. Chi, H. Hacigümüs, W.-P. Hsiung, and J. F. Naughton. Distribution-based
query scheduling. PVLDB, 6(9):673–684, 2013.

[12] F. C. Chu, J. Y. Halpern, and P. Seshadri. Least expected cost query
optimization: An exercise in utility. In PODS, pages 138–147, 1999.

[13] H. D., P. N. Darera, and J. R. Haritsa. Identifying robust plans through plan
diagram reduction. PVLDB, 1(1):1124–1140, 2008.

[14] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring. Robust estimation and
outlier detection with correlation coefficients. Biometrika, 62(3):pp. 531–545,
1975.

[15] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimization in a
heterogeneous dbms. In VLDB, pages 277–291, 1992.

[16] J. Duggan, U. Çetintemel, O. Papaemmanouil, and E. Upfal. Performance
prediction for concurrent database workloads. In SIGMOD, 2011.

[17] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I. Jordan, and
D. A. Patterson. Predicting multiple metrics for queries: Better decisions
enabled by machine learning. In ICDE, 2009.

[18] G. Graefe. Robust query processing. In ICDE, page 1361, 2011.
[19] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,

pages 31–40, 2007.
[20] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based

estimation of the number of distinct values of an attribute. In VLDB, pages
311–322, 1995.

[21] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. Selectivity and cost
estimation for joins based on random sampling. J. Comput. Syst. Sci.,
52(3):550–569, 1996.

[22] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD
Conference, pages 171–182, 1997.

[23] W.-C. Hou, G. Özsoyoglu, and B. K. Taneja. Statistical estimators for relational
algebra expressions. In PODS, pages 276–287, 1988.

[24] C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate
query processing with the dbo engine. In SIGMOD Conference, pages 725–736,
2007.

[25] J. Li, A. C. König, V. R. Narasayya, and S. Chaudhuri. Robust estimation of
resource consumption for sql queries using statistical techniques. PVLDB,
5(11):1555–1566, 2012.

[26] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity
estimation through adaptive sampling. In SIGMOD, 1990.

[27] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Toward a progress
indicator for database queries. In SIGMOD, 2004.

[28] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic database cost models for
hierarchical memory systems. In VLDB, 2002.

[29] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh. Robust
query processing through progressive optimization. In SIGMOD Conference,
pages 659–670, 2004.

[30] J. L. Myers and A. D. Well. Research Design and Statistical Analysis.
Lawrence Erlbaum, 2 edition, 2003.

[31] R. Ramamurthy and D. J. DeWitt. Buffer-pool aware query optimization. In
CIDR, pages 250–261, 2005.

[32] N. Reddy and J. R. Haritsa. Analyzing plan diagrams of database query
optimizers. In VLDB, pages 1228–1240, 2005.

[33] S. Ross. A First Course in Probability. Prentice Hall, 8 edition, 2009.
[34] Scilab Enterprises. Scilab: Free and Open Source software for numerical

computation. Scilab Enterprises, Orsay, France, 2012.
[35] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann.

Predictable performance for unpredictable workloads. PVLDB, 2(1):706–717,
2009.

[36] T. J. Wasserman, P. Martin, D. B. Skillicorn, and H. Rizvi. Developing a
characterization of business intelligence workloads for sizing new database
systems. In DOLAP, 2004.

[37] A. Winkelbauer. Moments and absolute moments of the normal distribution.
arXiv preprint arXiv:1209.4340, 2012.

[38] W. Wu, Y. Chi, H. Hacigümüs, and J. F. Naughton. Towards predicting query
execution time for concurrent and dynamic database workloads. PVLDB,
6(10):925–936, 2013.

[39] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton.
Predicting query execution time: Are optimizer cost models really unusable? In
ICDE, pages 1081–1092, 2013.

[40] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacıgümüş. ActiveSLA: a
profit-oriented admission control framework for database-as-a-service
providers. In SOCC, 2011.

