
William C. Benton
Red Hat Emerging Technologies and
University of Wisconsin

Charles N. Fischer
University of Wisconsin

Mostly-functional behavior
in Java programs

2

Motivation

We’d like to do aggressive code
transformations, specification
checking and analysis of large
object-oriented programs.

3

The problem

Java programs are difficult to analyze,
transform, and reason about (in part)
due to mutable state.

Our contribution

4

Type-and-effect system and
type-based analysis

Our contribution

4

Type-and-effect system and
type-based analysis

Initialization
effects

Our contribution

4

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Our contribution

4

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Our contribution

4

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Our contribution

4

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Surprising result: substantial mostly-
functional behavior in Java!

Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference

5

// method1: List<T> → int
int method1(List<T> l) {

return l.size();
}

Effect systems: motivation

6

// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty()) {

l.remove(0); i++;
}
return i;

}

// method1: List<T> → int
int method1(List<T> l) {

return l.size();
}

Effect systems: motivation

6

// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty()) {

l.remove(0); i++;
}
return i;

}

READS state of l

// method1: List<T> → int
int method1(List<T> l) {

return l.size();
}

Effect systems: motivation

6

// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty()) {

l.remove(0); i++;
}
return i;

}

READS state of l

READS, WRITES state of l

// method1: List<T> → int
int method1(List<T> l) {

return l.size();
}

Effect systems: motivation

6

// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty()) {

l.remove(0); i++;
}
return i;

}

Type systems:
“what?”

Effect systems:
“how?”

READS state of l

READS, WRITES state of l

// method1: List<T> → int
int method1(List<T> l) {

return l.size();
}

Effect systems: motivation

6

// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty()) {

l.remove(0); i++;
}
return i;

}

Type systems:
“what?”

Effect systems:
“how?”

READS state of l

READS, WRITES state of l

“How” consists of an
effect (READ or WRITE)

in some region.

Object-oriented effect systems

7

• Classic effect systems typically feature
lexically-scoped regions

• Object-oriented effect systems better
support classes, fields, &c.

• See Greenhouse & Boyland (ECOOP 99) or
Bierman & Parkinson (WOOD 03)

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

l = lh.ν lh.ν = l

method invocations

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

l = lh.ν lh.ν = l

method invocations

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

lh.ν = l

method invocations

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

lh.ν = l

method invocations

Regions we consider: ρthis, ρ0..n, and ⊤.

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

lh.ν = l

method invocations

Regions we consider: ρthis, ρ0..n, and ⊤.

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmapmethod invocations

Regions we consider: ρthis, ρ0..n, and ⊤.

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmapmethod invocations

Regions we consider: ρthis, ρ0..n, and ⊤.

Inferring effects for bytecodes

8

-
formal

rpt

-

rpt

-
formal pt

rpt

load rpt

store rpt

pmap

Regions we consider: ρthis, ρ0..n, and ⊤.

Extending the simple system

9

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Extending the simple system

9

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Extending the simple system

9

Type-and-effect system and
type-based analysis

Initialization
effects

Quiescing field
inference

Degrees of
method purity

Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference

10

Motivating initialization effects

11

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

Motivating initialization effects

11

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

reads IntBox.i from this

writes IntBox.i to this

Motivating initialization effects

11

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

These two effects
cannot interfere!

reads IntBox.i from this

writes IntBox.i to this

Motivating initialization effects

11

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

These two effects
cannot interfere!

reads IntBox.i from this

initializes IntBox.i of this

Motivating initialization effects

12

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

IntBox factory(int j) {
IntBox r =

new IntBox(j);
return r;

}

Motivating initialization effects

12

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

IntBox factory(int j) {
IntBox r =

new IntBox(j);
return r;

}

“Pure” methods can
modify newly-allocated
objects (Leavens et al.;
Rugina and Cherem)

Defining initialization effects

13

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

initializes IntBox.i field of this

Defining initialization effects

13

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

An initialization effect is a
WRITE to the state of an
object during its creation.

An initializer is a method
that executes on an object
during the dynamic lifetime
of its constructor.

Inferring initializer methods

14

Inferring initializer methods

14

Inferring initializer methods

14

this

this

this

this

Inferring initializer methods

14

this

this

this

this

A constructor is an
initializer on its
receiver object.

Inferring initializer methods

14

this

this

this

this

A constructor is an
initializer on its
receiver object.

TWO A constructor is
an initializer on its
receiver object.

A method that is only
invoked via this-edges
from an initializer is
also an initializer on its
receiver object.

Inferring initialization effects

15

Initialization effects are writes to fields of
this that occur within an initializer.

Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference

16

class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

Final fields

17

Final fields

17

class IntBox {
private final int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

Final fields

17

class IntBox {
private final int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

i is a run-time constant

Final fields

17

class IntBox {
private final int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

Final fields

17

class IntBox {
private final int i;
IntBox(int j) {

init(i);
}

int get() {
return i;

}

private void init(int j) {
this.i = j;

}
}

Final fields

17

class IntBox {
private final int i;
IntBox(int j) {

init(i);
}

int get() {
return i;

}

private void init(int j) {
this.i = j;

}
}

Final fields must be assigned
exactly once on every path
through each constructor
and may only be assigned in
the constructor.

Final fields and immutability

18

• Java definition of final is restrictive,
designed for simple verification

• Many fields that represent run-time
constants are not declared final

• Several groups have developed analyses
to find such fields

One example: stationary fields

• Unkel and Lam (2008): stationary fields
are never written after they are read

• About 50% of fields in open-source Java
programs can be inferred stationary; a
much smaller percentage are final

• Their analysis is based on flow- and
context-sensitive points-to analysis

19

Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference

20

Quiescing fields

• A field is quiescing if it is initialized but
never written; all final fields are quiescing

• Inference algorithm for these is
straightforward: consider only fields
that aren’t implicated in a WRITE effect

21

Comparing kinds of fields

• All final fields are quiescing fields

• Some quiescing fields are not stationary

• Some stationary fields are not quiescing

• The inference algorithm for quiescing
fields runs in seconds on substantial Java
programs

22

Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference

23

Evaluation

• Medium-sized Java programs from the
DaCapo benchmark suite

• Soot and DIMPLE for bytecode analysis,
performed on workstation hardware

• Executed benchmarks under
instrumented Jikes RVM

24

Benchmarks

25

statements classes fields methods

antlr 1.39 M 3729 14082 37209

bloat 1.41 M 3827 14524 33609

eclipse 1.38 M 3895 15161 33408

hsqldb 1.59 M 4190 17566 38504

jython 1.45 M 4058 14737 35604

luindex 1.35 M 3903 14511 32759

pmd 1.51 M 4265 15489 36393

Static prevalence of
final and quiescing fields

26

0

25

50

75

100

antlr bloat eclipse hsqldb jython luindex pmd

Final fields
Quiescing fields

0

20

40

60

80

100

antlr bloat eclipse hsqldb jython luindex pmd

Final and quiescing fields as a
percentage of all dynamic reads

27

Reads from final fields
Reads from quiescing fields

Conclusion

28

• Three novel features improve the
precision of type-and-effect systems

• A significant portion of Java field reads
are from fields with unchanging values

• It is possible to efficiently infer quiescing
fields with type-based analyses

Thanks!
willb@acm.org

http://www.cs.wisc.edu/~willb/

29

mailto:willb@acm.org
mailto:willb@acm.org
mailto:willb@acm.org
mailto:willb@acm.org

