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Motivation

We’d like to do aggressive code 
transformations, specification 
checking and analysis of large 
object-oriented programs. 
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The problem

Java programs are difficult to analyze, 
transform, and reason about (in part) 
due to mutable state.
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Surprising result:  substantial mostly-
functional behavior in Java!



Forecast

• A simple object-oriented effects system

• Initializers and initialization effects

• Final fields and eventual immutability

• Inferring quiescing fields

• Evaluating quiescing field inference
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// method1: List<T> → int
int method1(List<T> l) {
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}
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// method2: List<T> → int
int method2(List<T> l) {

int i = 0;
while (! l.isEmpty() ) {

l.remove(0);  i++;
}
return i;

}

Type systems:
“what?”

Effect systems:
“how?”

READS state of l

READS, WRITES state of l

“How” consists of an 
effect (READ or WRITE) 

in some region.



Object-oriented effect systems
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• Classic effect systems typically feature 
lexically-scoped regions

• Object-oriented effect systems better 
support classes, fields, &c.

• See Greenhouse & Boyland (ECOOP 99) or 
Bierman & Parkinson (WOOD 03)
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class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

IntBox factory(int j) {
IntBox r =

new IntBox(j);
return r;

}

“Pure” methods can 
modify newly-allocated 
objects (Leavens et al.; 
Rugina and Cherem)
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class IntBox {
private int i;
IntBox(int j) {

this.i = j;
}

int get() {
return i;

}
}

An initialization effect is a 
WRITE to the state of an 
object during its creation.

An initializer is a method 
that executes on an object 
during the dynamic lifetime 
of its constructor.
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this

this

this

this

A constructor is an 
initializer on its 
receiver object.

TWO A constructor is 
an initializer on its 
receiver object.

A method that is only 
invoked via this-edges 
from an initializer is 
also an initializer on its 
receiver object.



Inferring initialization effects

15

Initialization effects are writes to fields of 
this that occur within an initializer.  
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class IntBox {
private final int i;
IntBox(int j) {

init(i);
}

int get() {
return i;

}

private void init(int j) {
this.i = j;

}
}

Final fields must be assigned 
exactly once on every path 
through each constructor 
and may only be assigned in 
the constructor.



Final fields and immutability
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• Java definition of final is restrictive, 
designed for simple verification

• Many fields that represent run-time 
constants are not declared final

• Several groups have developed analyses 
to find such fields



One example:  stationary fields

• Unkel and Lam (2008):  stationary fields 
are never written after they are read

• About 50% of fields in open-source Java 
programs can be inferred stationary; a 
much smaller percentage are final

• Their analysis is based on flow- and 
context-sensitive points-to analysis
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Quiescing fields

• A field is quiescing if it is initialized but 
never written; all final fields are quiescing

• Inference algorithm for these is 
straightforward:  consider only fields 
that aren’t implicated in a WRITE effect
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Comparing kinds of fields

• All final fields are quiescing fields

• Some quiescing fields are not stationary

• Some stationary fields are not quiescing

• The inference algorithm for quiescing 
fields runs in seconds on substantial Java 
programs
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Evaluation

• Medium-sized Java programs from the 
DaCapo benchmark suite

• Soot and DIMPLE for bytecode analysis, 
performed on workstation hardware

• Executed benchmarks under 
instrumented Jikes RVM

24



Benchmarks
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statements classes fields methods

antlr 1.39 M 3729 14082 37209

bloat 1.41 M 3827 14524 33609

eclipse 1.38 M 3895 15161 33408

hsqldb 1.59 M 4190 17566 38504

jython 1.45 M 4058 14737 35604

luindex 1.35 M 3903 14511 32759

pmd 1.51 M 4265 15489 36393



Static prevalence of 
final and quiescing fields
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Conclusion
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• Three novel features improve the 
precision of type-and-effect systems

• A significant portion of Java field reads 
are from fields with unchanging values

• It is possible to efficiently infer quiescing 
fields with type-based analyses



Thanks!
willb@acm.org

http://www.cs.wisc.edu/~willb/
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