
Wallaby: A Scalable Semantic
Configuration Service for Grids and Clouds

William C. Benton
Red Hat, Inc.

willb@redhat.com

Robert H. Rati
Red Hat, Inc.

rrati@redhat.com

Erik J. Erlandson
Red Hat, Inc.

eerlands@redhat.com

Abstract
Job schedulers for grids and clouds can offer great generality
and configurability, but they typically do so at the cost of
increased administrator complexity. In this paper, we present
Wallaby, an open-source, scalable configuration service for
compute resources managed by the Condor high-throughput
computing system. Wallaby offers several notable advantages
over similar systems: it lets administrators write declarative
specifications of user-visible functionality on groups of nodes
instead of low-level configuration file fragments; it presents a
high-level semantic model of Condor features and their inter-
actions and dependencies; it validates configurations before
pushing them to nodes; it supports version control, “undo,”
and configuration differencing; and it includes a networked
API that enables extensions and advanced functionality. Wal-
laby allows administrators to extend pools to include more
physical, virtual, or cloud nodes with minimal explicit con-
figuration. Finally, it is scalable, supporting pools consisting
of thousands of nodes with hundreds of configuration param-
eters each.

1. Introduction
Distributed schedulers typically offer many configurable pa-
rameters, ranging from hostnames of machines running
system components to security mechanisms, and from
performance-tuning options to definitions for job-scheduling
policies. The Condor high throughput computing system [5]
is no exception: it is enormously flexible, but the depth and
scope of its runtime configurability can be daunting to com-
pute center administrators. In the recent 7.6 release series of
the Condor system, the bundled “generic” configuration file1

is 2,651 lines long and contains 592 parameter assignments.
Many of these assignments are commented out in order to
serve as documentation for users who might wish to enable
particular functionality, but many others are required for
proper operation of the system.

1This is src/condor_examples/condor_config.generic in the
Condor source repository.

Copyright is held by the authors/owners.
SC’11, November 12–18, 2011, Seattle, Washington, USA.
ACM 978-1-4503-0771-0/11/11

Some of the difficulties of configuring distributed applica-
tions are well-understood and even addressed in widely-used
systems: synthesizing configurations from multiple config-
uration snippets or imperative recipes, notifying nodes of
updated configurations, efficiently pushing updated config-
uration files to many nodes, and perhaps providing some
rollback functionality in the event of a spurious configura-
tion. However, no widely-used configuration management
system addresses one of the core difficulties in configuring
any application: managing the complexity of many poten-
tially interdependent low-level parameters in order to achieve
a coherent configuration enabling the administrator’s desired
application-level functionality.

In this paper, we present Wallaby, a configuration service
for Condor pools that was designed to solve both the me-
chanical problems and the semantic problems of distributed
configuration. By “mechanical problems,” we mean that Wal-
laby supports synthesizing node configurations from modular,
independent partial configurations; it efficiently notifies nodes
of changes to their configurations and deploys updated con-
figuration files as necessary; and it keeps all configurations
under an easy-to-use version control system that enables
rollback or “undo” of configurations as well as differenc-
ing of deployed and updated configurations. The “semantic
problems” that Wallaby solves are those related to actually
ensuring that a configuration is sensible and functional be-
fore it is deployed to nodes: specifically, it is based on a
semantic model of Condor configurations and can validate
that a configuration satisfies an expressive and useful set of
constraints before deploying it.

The capacity to model properties of valid and invalid Con-
dor configurations is a necessary but not sufficient condition
for solving the semantic problems of distributed configuration.
Wallaby also includes a comprehensive database of semantic
metadata for Condor parameters and interesting user-visible
pieces of functionality. By incorporating this database, devel-
oped by domain experts, Wallaby enables even administrators
who are Condor novices to develop sophisticated and correct
configurations quickly and easily.

Wallaby is a mature, real-world system that anyone can
download and use today. It has been a publicly-available
open-source project, released under the permissive Apache
license, for two years; its first public release was in December
2009. Red Hat has shipped a supported version of Wallaby
as the preferred way to manage Condor configurations in the
last two releases of the Red Hat Enterprise MRG product.2

2Red Hat Enterprise MRG is Red Hat’s Messaging, Realtime,
and Grid offering; the first two releases to include Wallaby were
Version 1.3, in October 2010, and version 2.0, in June 2011.

1.1 Overview of contributions
In this paper, we present the following contributions:

• A semantic model for characterizing and validating dis-
tributed application configurations,

• The Wallaby service, an efficient versioned configuration
store for Condor pools that supports declarative configu-
ration specifications that are validated against a semantic
model,

• An expressive network-accessible programming interface
to enable users to develop new configuration, inventory,
testing, and management tools using Wallaby as infras-
tructure, and

• Two novel methods for evaluating the scale of configura-
tion services.

The remainder of this paper includes background infor-
mation on the details of the Condor system that will be
helpful to understand Wallaby; an overview of the architec-
ture of the Wallaby system; details on the semantic model
of configuration and of the algorithms we use to check con-
figuration consistency; and a brief, broad presentation of the
Wallaby API and some notable API clients. We conclude by
presenting some observations from our experience using and
supporting Wallaby over the last two years and placing our
contributions in the context of related work.

2. Background
We begin by briefly reviewing some of the details of the well-
known Condor system that are relevant to our presentation
of Wallaby. This presentation is intended to make this paper
self-contained and is by no means exhaustive; for more details
on the architecture of Condor, please see chapters 2–4 of the
Condor manual [6].

Condor is essentially a distributed scheduler; at a high
level, its purpose is to match resources with requests for
resources. It does this by matching a classified advertisement
(ClassAd) expression representing a resource with one match-
ing a request. These expressions can express both require-
ments and preferences: for example, a ClassAd expression for
a request might specify that a job must run on an x86 Linux
machine with at least 8 GB of RAM or that a job would
prefer to run on a machine owned by the job owner’s research
group. It is important to note that an attempted match may
fail because a resource rejects a request or because a request
rejects a potential resource.

The most important machine in a Condor pool is the
central manager, which is a machine running the Condor
collector and negotiator processes. These maintain a live
store of resource information and match requests to resources,
respectively. There will only be one active central manager
in a pool at any time (although there may be several passive
replicas in high-availability settings). Condor submit nodes
are those that maintain a queue of submitted jobs in a
Condor schedd process, attempt to negotiate matches for
these jobs, and follow the activity of submitted jobs via
shadow processes. Finally, Condor execute nodes are those
that run a Condor startd process; these are advertised to
the Condor collector as resources.

Every Condor process runs under a watchdog daemon
called the Condor master. The master is responsible for
monitoring child processes and restarting them if they crash.
Condor is sufficiently flexible to allow administrators to
run other processes, including custom Condor components,

node 1

wallaby
service

data
store

QMF bus

configd

Condor
master

node 2

configd

Condor
master

node n

configd

Condor
master

wallaby
tools

AMQP
broker

. . .

wallaby
HTTP

gateway

other
nodes

Figure 1. Diagram of a Wallaby-managed Condor pool

under the Condor master; as we shall see in the next section,
Wallaby uses this capability to run its configuration daemon
on each machine in a Condor pool.

3. System architecture
Wallaby has several main components: a networked service
with an object-oriented API, a configuration daemon that
runs on each Condor node, and a collection of configuration
tools that run against the networked API. The networked
API uses the QMF managed objects framework running on
an AMQP messaging broker (see Vinoski [8] for an early
overview of the goals behind the AMQP project).3 Because
the Wallaby API uses AMQP as a transport, clients can both
make synchronous remote calls and receive asynchronous
notifications, for example, when a node’s configuration is
updated.

Figure 1 presents an overview of how these pieces fit
together. We shall now discuss each piece by presenting an
administrator’s typical interaction with the Wallaby system.
Our running example scenario consists of enabling Condor’s
power-management functionality for all of the nodes in a
particular rack of machines, which the administrator has
already placed in a group designated “On-demand workers.”

Because Wallaby uses a high-level, semantic description
of Condor configurations, the main user interaction in this
scenario will be altering the configuration of the “On-demand
workers” group, replacing the “Execute Node” feature, which
models a standard compute node, with the “Power-Managed
Node” feature, which includes hibernation and wakeup
policies. In order to do this, the administrator will use a
tool built on the Wallaby API.

The configuration tool communicates with the Wallaby
service and updates the working state of the service to
reflect changes; however, it does not automatically validate
configurations according to the semantic model or push
updated configuration files out to affected nodes without
user approval. This enables administrators to make several
changes at once without pushing out a new configuration.
Once the administrator is happy with his or her changes,
Wallaby validates the configuration (using the algorithms
we describe in Section 4) and broadcasts a notification
that updated configurations are available to affected nodes.
Because only the “On-demand workers” group has changed

3 Typically, the Wallaby service will run on the same machine as
the AMQP broker or the Condor central manager, but this is not
strictly necessary.

in our example, Wallaby only validates and notifies the nodes
in this group. Configuration validation may fail for several
reasons, which we discuss in Section 5.2; in the event that it
does, the Wallaby API returns a detailed, descriptive error
message describing the cause of the failure.

The configuration daemon is a process running on each
Condor node under the Condor master daemon. It responds
to notifications over the QMF bus and also checks in peri-
odically with the Wallaby service; as a result, missed noti-
fications delay adoption of a new configuration for a short
time but do not affect correctness. Once the configuration
daemon discovers a new configuration for its node, it checks
in with Wallaby in order to get the contents of the updated
configuration and a list of affected subsystems, or Condor
processes that will need to be reconfigured or restarted as a
result of the difference between the configuration the node is
currently running and the new configuration.

The configuration daemon then augments the supplied
configuration in two ways:

1. It ensures that the Condor master daemon is configured
to run on the node, and that the configuration daemon
is also set to run. This ensures that an administrator
cannot accidentally disable Wallaby control of a node,
which would require manual intervention to fix; and

2. It adds configuration entries so the node advertises the
names of the Wallaby features it has installed and the
Wallaby groups it is a member of, so that these values
may be used in Condor matchmaking.

Finally, the configuration daemon installs the new config-
uration files and restarts the affected Condor subsystems.

Figure 1 also mentions an alternative read-only interface
to configuration data for machines that cannot access the
same AMQP broker as the Wallaby service. The Wallaby
HTTP gateway is a Wallaby API client that presents a
read-only web service interface to configuration data. It
can be used with naïve configuration clients that pull down
configurations via HTTP GET.

We will now discuss the semantic model of configuration
Wallaby presents to pool administrators and employs for
configuration validation.

4. Semantic configuration
Wallaby supports semantic configuration of Condor func-
tionality and policy. By this, we mean that Wallaby users
deal with high-level entities, like user-visible features, rather
than with low-level configuration-file macros and parameter
settings. This approach has several benefits:

1. Individual user-visible features and policies can be defined
by Condor experts, insulating pool administrators from
the details of configuration files;

2. A semantic model of configuration allows Wallaby to
perform static configuration validation, both at a high
semantic level and at the level of generated configuration
files: Wallaby can verify that each node’s configuration
fulfills dependencies between features and parameters,
avoid installing conflicting features, and provide meaning-
ful, user-friendly feedback immediately after attempted
configuration changes that would introduce errors; and

3. Wallaby-managed nodes can automatically advertise the
high-level features they offer or their group memberships,
so that Condor jobs can choose to match against nodes

that have certain features enabled, or have been placed
in certain groups.

4.1 Nodes
The Wallaby semantic model of Condor configurations begins
with nodes. A node corresponds to a single physical or virtual
machine running the Condor master daemon on a given host.
Wallaby can configure a node to be partitioned into multiple
Condor-managed resources, but a node can have at most one
Wallaby configuration at a time. However, Wallaby does not
support directly applying configurations to nodes.

4.2 Groups
The basic configurable entity in Wallaby’s semantic model is
the group. Nodes can be members of arbitrarily many groups,
and these memberships are specified in priority order for
each node. In addition to explicit groups, whose membership
is specified as an explicit set of nodes, there are two kinds
of special groups: a single default group, which is the lowest-
priority membership for every node, and one identity group
for each node, which only contains that node and is its highest
priority membership. Because of these special groups, the
act of applying a configuration to a group is fully general.
That is, applying a configuration to the default group can
enable pool-wide functionality; applying a configuration to
an identity group enables it only on a single node. A group’s
configuration consists of an ordered sequence of features and
an optional set of parameter-value mappings.

4.3 Features
A feature models a user-visible piece of functionality or part of
a policy specification. At its simplest, a feature contains a set
of parameter-value mappings that could be directly inserted
into a Condor configuration file; in this case, it merely
supplies high-level documentation for configuration settings.
However, the feature concept is substantially more powerful
than a mere configuration file snippet; this power comes
from the relationships between features that Wallaby models.
Features may include other features, they may depend upon
other features, and they may conflict with other features.

Feature inclusion models an extension relationship; it is
analogous to implementation inheritance in object-oriented
programming languages. Inclusion allows a feature to special-
ize its included features by adding configuration parameters
to their configurations or overriding their settings. More con-
cretely, we can define the configuration C(F) for a given
feature F inductively as follows:

1. If F includes features F1, · · · , Fn, from highest to lowest
priority, then C(F) will include C(F1), · · · , C(Fn). In the
event that C(Fi) and C(Fj) both define a value for the
same parameter, the definition from the feature with the
higher priority will take precedence.

2. C(F) includes all of the parameter-value mappings im-
mediately defined in F , with any immediately-defined
parameter-value mapping taking precedence over map-
pings for the same parameter from an included feature’s
configuration.

The other two kinds of feature relationships are depen-
dences and conflicts. If some feature F depends on Fd, Wal-
laby’s configuration validation will ensure that any node
that has F installed will also have Fd installed. Likewise,
if F conflicts with Fc, Wallaby will ensure that any node
that has F installed does not also have Fc installed. The

relation defined by feature dependency, like that defined by
inclusion, is acyclic. The relation defined by feature conflict
is symmetric by definition; that is, it is sufficient to have
one of F conflicts-with Fc and Fc conflicts-with F , because
either will prevent both F and Fc from being installed on
the same node.

4.4 Parameters
Wallaby also models low-level Condor configuration parame-
ters, in order to ensure that they are given acceptable values,
to establish configuration-wide consistency properties, and
to provide user-level documentation about low-level settings.
For each parameter, Wallaby tracks a type, a documentation
string, an optional default value, sets of parameter depen-
dences and conflicts, a flag indicating whether or not Condor
processes must be restarted for a change in this parameter
to take effect, and a flag indicating whether or not the pa-
rameter must be changed from its default value. This flag is
useful for modeling parameters that must be set to provide
basic functionality, e.g., the hostnames of machines running
important services.

4.5 Subsystems
A subsystem corresponds to a Condor application process.
Wallaby models subsystems whose operation may be affected
by a configuration change in order to either restart these
processes or tell them to reread their configuration files. The
model of a subsystem consists of a unique name and a set
of parameters of interest. Since Wallaby models whether or
not parameter-value changes are visible without a restart,
it can notify nodes which processes need to reload their
configurations and which need to restart after a configuration
change.

5. The configuration algorithms
Now that we have discussed the semantic model of config-
urations, we can proceed to a more concrete view of how
Wallaby computes and validates configurations. We will begin
by presenting a basic version of the configuration generation
algorithm, which answers the question “what is the current
configuration for this node?” We will then discuss the prop-
erties that valid configurations must satisfy. Finally, we will
present improvements, as implemented in Wallaby, to the
expressivity and performance of the basic techniques.

5.1 Configuration generation algorithms
The basic idea behind Wallaby’s configuration generation
algorithm is that a node’s configuration is derived from the
groups it is a member of, and a group’s configuration is
derived from the features it has installed.

We define a node’s configuration by taking the configu-
rations for each group that it is a member of and merging
these together so that that conflicting bindings from different
groups take precedence in membership priority order (with
the default group at lowest precedence and the node’s identity
group at highest precedence, as special cases). The configura-
tion for a group is similarly defined as its explicit parameter
settings merged over the configurations for each feature it
has installed, with conflicts again resolved in priority order.
We will briefly defer discussion of how feature configurations
are calculated in order to examine the node-configuration
algorithm in more detail.

Figure 3 presents get-node-config, a procedure to calculate
the configuration for a node stored in node; we summarize

Name Description
new-dictionary() returns a newly-allocated

empty dictionary structure
reverse(l) returns the reverse of list l
memberships(n) returns a list of the group mem-

berships for node n, from high-
est to lowest priority

features-for-group(g) returns a list of the features in-
stalled on group g, from high-
est to lowest priority

params-for-group(g) returns the explicit parameter-
value mapping installed on
group g

features-included-by(f) returns a list of the features in-
cluded by feature f, from high-
est to lowest priority

params-for-feature(f) returns the explicit parameter-
value mapping immediately de-
fined by feature f

Figure 2. Auxiliary procedures called by configuration-
generation algorithms

1: config ← new-dictionary()
2: for group in reverse(memberships(node)) do
3: groupConfig ← new-dictionary()
4: for feature in reverse(features-for-group(group)) do
5: for p, v in get-feature-config(feature) do
6: groupConfig ← apply(groupConfig, p, v)
7: end
8: end
9: for p, v in params-for-group(group) do
10: groupConfig ← apply(groupConfig, p, v)
11: end
12: for param, value in groupConfig do
13: config ← apply(config, param, value)
14: end
15: end
16: return config

Figure 3. get-node-config, the procedure to calculate the
configuration for a node

the interfaces and behaviors of auxiliary procedures in Figure
2. Line 1 initializes the configuration for node to an empty
dictionary. In lines 2–15, the procedure repeatedly applies
the configuration of each group that node is a member of
to config. Note that the algorithm iterates over the reverse
of the memberships list in order to apply in inverse priority
order, so that higher-priority settings take precedence over
lower-priority ones.

Lines 4–8 and 9–11 calculate the configuration for a
group by repeatedly applying the configuration for each
feature installed on that group before merging in that group’s
explicit parameter settings. Note in particular the apply
procedure, which is defined in Figure 4; in this simple version
of the algorithm, it will merely update the configuration,
replacing preexisting bindings if they appear. We will discuss
extensions to the apply procedure that enable more expressive
configurations later.

The algorithm for calculating a feature’s configuration is
given in Figure 5. Wallaby calculates the configuration for
a feature by recursively merging the configurations of the

1: config[p]← v
2: return config

Figure 4. A simplified apply procedure, which introduces a
parameter-value mapping from p→ v to config.

1: config ← new-dictionary()
2: for f in reverse(features-included-by(feature)) do
3: for p, v in get-feature-config(f) do
4: config ← apply(config, param, value)
5: end
6: for p, v in params-for-feature(f) do
7: config ← apply(config, p, v)
8: end
9: end
10: return config

Figure 5. get-feature-config, the procedure to calculate the
configuration for a feature

features it includes in inverse priority order (analogously to
the configuration for nodes), and then merging the parameter-
value mappings immediately defined by the feature on top
of these.

Given these procedures, we can calculate the configura-
tion for each node in a pool. However, these procedures do
not guarantee that a configuration is valid given Wallaby’s
semantic model. In fact, a particular kind of invalid configura-
tion — one with circular feature inclusions — would prevent
the simple get-feature-config procedure given in Figure 5 from
terminating. We will now consider the properties that must
hold for a configuration to be valid and discuss how Wallaby
verifies these properties.

5.2 Configuration validation: properties and
algorithms

Recall that the Wallaby semantic model requires several
properties of a valid configuration:

1. The graph implied by the feature-inclusion relation must
be acyclic.

2. The graph implied by the parameter- and feature-
dependence relations must be acyclic.

3. If feature F conflicts with F ′, both features cannot be
installed on the same node. (Similarly, two conflicting
parameters cannot appear in the configuration for a node.)

4. If feature F depends on F ′, a node whose configuration
installs F must also install F ′. (This also applies in the
obvious way for parameters.)

5. Features cannot conflict with themselves. A feature cannot
include or depend upon a feature that it conflicts with.
(This applies for parameters as well, with the caveat that
there is no inclusion relation for parameters.)

6. If the must-change flag is set in the metadata for pa-
rameter P , indicating that it must have a value supplied
(rather than using its default value), any node setting P
in its configuration must also supply it a value.

Ensuring these properties is conceptually straightforward
but can be time-consuming on larger configurations. Group
and feature definitions are intended to be modular, compos-
able, and thus not necessarily complete; as a result, some
validity invariants must be established for each node. We

Name Description
features-for-node(n) returns a set of the features in-

stalled directly or transitively (viz.,
via feature inclusion) on every
group that n is a member of

conflicts(f) returns a set of features conflicting
with f

dependencies(f) returns a set of features that f
depends upon

Figure 6. Auxiliary procedures called by configuration-
validation algorithms

1: features ← features-for-node(node)
2: conflictHorizon ← ∅
3: for f in features do
4: conflictHorizon ← conflictHorizon ∪ conflicts(f)
5: end
6: return features ∩ conflictHorizon = ∅

Figure 7. A procedure to determine whether or not the
no-conflicting-features invariant is satisfied for a given node.

will first discuss basic procedures before presenting refined
procedures that perform more efficiently and provide better
user feedback in error cases. The algorithms we describe in
this section depend on the auxiliary procedures described in
Figure 6.

The first two properties are simple enough to establish.
The underlying problem of cycle detection is trivial, and these
properties need only be validated once for a configuration,
rather than once for each node. For reasons that we shall
discuss in Section 5.3, Wallaby ensures these properties hold
as a side effect of generating topological orderings of the
inclusion and dependency graphs for each entity.

Figure 7 presents the algorithm to ensure that a given
node does not install two conflicting features. It does so
by establishing a feature conflict horizon, or set of features
conflicted with by features installed on a node, and then
determining whether or not the node’s feature conflict horizon
has a non-empty intersection with the node’s feature set. If
this procedure is satisfied for every node, then it also trivially
guarantees that any feature that is used in the configuration
does not conflict with itself or include a feature that it
conflicts with. In practice, the vast majority of features and
parameters have few or no conflicts, so the performance of
this procedure is not critical.

The procedure to ensure that nodes installing features
with dependencies also install the features depended upon is
in Figure 8. It is very similar to the procedure in Figure 7,
with the exception that it accumulates dependencies across
every installed feature for each node and determines whether
or not the accumulated dependencies are a strict subset
of the installed features. Note that if this procedure and
the procedure in Figure 7 succeed for every node, that no
installed feature transitively depends upon or includes a
feature that it conflicts with.

Our final consideration is to ensure that parameters
that must receive a user-specified value have done so. The
procedure in Figure 9 returns the set of node, parameter pairs
where the configuration for node fails to provide a required
value for parameter. In the event that the configuration

1: features ← features-for-node(node)
2: depHorizon ← ∅
3: for f in features do
4: depHorizon ← depHorizon ∪ dependencies(f)
5: end
6: return depHorizon ∩ features = depHorizon

Figure 8. A procedure to determine whether or not the
installed-feature dependencies invariant is satisfied for a given
node.

1: nodes ← all node objects
2: failures ← ∅
3: mc-params ← all parameter objects for which the “must-

change” flag is true
4: for n in nodes do
5: n-config ← get-node-config(n)
6: for p in mc-params ∩ keys(n-config) do
7: if n-config[p] = nil then
8: failures ← failures ∪{(n, p)}
9: end if
10: end
11: end
12: return failures

Figure 9. A procedure to determine which nodes have failed
to set parameters that require user-provided values.

succeeds at this validation step, this procedure will return
the empty set.

5.3 Improvements and optimizations
The procedures we have described are straightforward (and
thus fairly easy to understand and trust), but they are partic-
ularly inefficient. Furthermore, the configuration-generation
procedures we presented don’t provide a way to compose
values from multiple features installed on a node, which can
make defining certain kinds of list-valued or policy expres-
sions difficult. In this section, we shall present some of the
improvements, refinements, and optimizations that we have
implemented in the Wallaby system.

More expressive apply
The simple apply procedure of Figure 4 handled redefinition
of parameters by replacing preexisting definitions. Since apply
was always used to introduce parameter bindings for a node in
inverse priority order, this behavior ensures that the highest
priority binding for a given parameter will be the one that
survives to the final configuration and that all other bindings
will be erased. This is perfectly acceptable for most cases, but
in certain cases, we might wish to compose new parameter
values with preexisting ones, if they exist. This is another
consequence of the Wallaby philosophy that features should
be modular and may be incomplete. We have identified two
primary use cases for composing values:

1. List-valued parameters. Condor has a parameter called
DAEMON_LIST, which is a comma-separated list of daemon
processes that should run under the Condor master. Fea-
tures that require new daemon processes should be able
to add the processes that they require to DAEMON_LIST
independently of changes made to DAEMON_LIST by other
features.

2. Policy expressions. Some Condor parameters specify
policy expressions, indicating that certain criteria must
be met, for example, for a machine to become available
for jobs, for a machine to choose to run a particular job,
or for a machine to choose to evict and kill a job. These
expressions often consist of conjunctions and disjunctions
of simpler expressions; Wallaby features should be able
to add a conjunct or disjunct to an expression defined in
another feature.

The apply procedure that is actually in Wallaby allows
users to define features that compose values when they are
applied to preexisting configurations. Currently, the code
treats several kinds of parameter values specially: those that
begin with >= indicate that their value should be appended
to an existing value as part of a comma-separated list, and
those that begin with &&= or ||= indicate that their value
should be appended to an existing value as a clause in a
conjunction or disjunction.

By way of example, consider two hypothetical features:
FooFeature and BarFeature. FooFeature contains one pa-
rameter binding: List = >= FOO. Likewise, BarFeature also
contains one parameter binding: List = >= BAR. A node
with no other configuration whose identity group installed
the features FooFeature, BarFeature would have the gen-
erated configuration List = BAR, FOO; since BarFeature is
installed at the lowest priority, >= BAR is the first value that
the parameter List gets. Because List is empty at first, BAR
becomes its value (it is not appended to anything). When
FooFeature is processed, applying the value >= FOO results
in appending FOO to the preexisting value for List.

Optimizations and refinements
The Wallaby system implements several refinements to the
basic algorithms presented above in order to provide better
performance and, in some cases, more user-friendly output.
In this section, we will present these improvements, roughly
in the order that they were implemented in Wallaby itself.

The first improvement is to only calculate configurations
for nodes whose configuration has changed since their last
recorded configuration. Wallaby accomplishes this by main-
taining dirty lists that record when an API call changes the
state of a configurable entity: a node, group, feature, or pa-
rameter. At activation time, then, it only need consider nodes
whose state may have changed as a result of API calls since
the last activation. This can be a substantial savings when
making simple, localized changes to large configurations.

The algorithms presented above calculate group configu-
rations once for each node that is a member of that group.
A better approach is to process each affected group once
and generate a partial configuration that can be applied to a
node’s configuration and will have the same results, at any
priority, as dynamically calculating the group’s configuration
and applying it to that node at that priority. In order to do
so, we will need a procedure that calculates the configuration
for a group; this is essentially similar to the inner loop of
get-node-config from Figure 3, with the exception that it
preserves parameter-value append markers like >=, so that
a value that is to be composed in the group’s configuration
will also be composed (instead of replaced) when the partial
configuration is applied.

Another effective improvement is to calculate each feature
configuration before processing any groups and then caching
these as applicable partial configurations. In fact, we can
exploit the inclusion relationship between features in order
to ensure that we calculate a partial configuration for any

given feature at most once. If we process features by visiting
them in a reverse topological ordering of the graph implied
by the inclusion relation, then we can guarantee that we will
have a cached partial configuration for a feature F before we
visit any feature F ′ such that F ′ includes F .

Many of the validity properties Wallaby enforces as
invariants can fail to continue to hold as the result of a
single change: introducing a cycle in the feature-inclusion
graph, causing a feature to conflict with a feature that it
includes or depends upon, etc. By checking these properties
proactively, we can amortize the cost of checking these
properties over every Wallaby API call that changes the
state of the configuration store. Wallaby is able to identify
certain changes that will always cause a valid configuration
store to become invalid. This refinement not only improves
performance at activation time, but it can also provide
more useful error feedback by presenting Wallaby users with
error messages immediately after a change that introduces
inconsistency.

The final improvement we will discuss relates to how
Wallaby stores versioned configurations for each node. These
must be stored indefinitely so that clients can request
the difference between old configurations, and should be
available quickly. Approaches to dealing with generated data
in network services typically fall on a spectrum between
“baking,” in which data is generated and cached whole, and
“frying,” in which data is generated on-demand. We have
found that, in the case of complex Wallaby configurations,
the best approach is what we have termed “parbaking”
configurations: by baking partial configurations for each
affected group at a given version and then storing a sequence
of memberships for each node, we can quickly regenerate
configurations on demand for a given node at a particular
version. Due to the nontrivial overheads involved with
serializing large node configurations, this can be a great
performance improvement. We have observed this technique
to perform twice as well as simply baking configurations for
each node in tests of complex configurations on large pools;
it will be the default in the next release of Wallaby.

6. The Wallaby API and tools
Wallaby is an efficient and expressive way to manage config-
urations for large Condor pools, but its real power subsists
is in its programmability through an elegant networked API.
In this section, we will discuss the API, the various config-
uration and monitoring tools that ship with Wallaby, and
Albatross, a testing framework for Condor pools and policies
that uses PyUnit and Wallaby.

The Wallaby API uses the Qpid Management Framework
(QMF) as a transport layer, which presents an object-
management interface and asynchronous event notification
over AMQP. It publishes the following kinds of objects, some
of which we discussed in greater detail in Sections 4.1–4.5:

1. Store, a single object corresponding to the main service,
which supports methods related to creating and destroy-
ing other configuration entities; configuration validation,
activation, and differencing; and snapshot loading and
storing,

2. Node, one object for each node, modeling its name, group
memberships, version number at last update, time of last
check-in, and whether it was explicitly configured or just
checked in and got the default configuration,

3. Group, one object for each group, modeling its name,
installed features, and custom-set parameters,

4. Feature, one object for each feature, modeling its name;
included, dependent, and conflicting features; and param-
eter settings,

5. Parameter, one object for each parameter, modeling its
name, type, documentation, default value, and whether
or not the user must supply an explicit value for this
parameter in configurations that use it,

6. Subsystem, one object for each Condor subsystem, mod-
eling the parameters that affect that subsystem,

7. Snapshot, one object for each user-created snapshot,
modeling its name and creation date, and allowing loading
of saved data into the store, and

8. NodeUpdatedNotice, an event object representing an asyn-
chronous notification of configuration changes for a set of
nodes.

The Wallaby QMF API is accessible in any language with
QMF bindings; currently, this includes C++, Python, and
Ruby, although the C++ implementation is designed to be
accessible from other languages via the swig foreign-function
interface. We provide idiomatic Python and Ruby client li-
braries that eliminate some of the complexity of dealing with
remote objects and are simpler to use than the bare QMF
interface. Finally, as we mentioned in Section 3, Wallaby
includes an API client that publishes a RESTful HTTP ser-
vice for reading configurations; a RESTful interface to all
of Wallaby’s functionality is under development. The API
has been largely stable for over a year as of this writing
and has proven flexible enough to support a wide range of
applications: guided and batch configuration tools; pool man-
agement and analysis tools; automated node “tagging” with
system information; and sophisticated, automatic functional-
ity, policy, and scale testing. We will discuss some of these
applications in the remainder of this section.

6.1 Guided Condor configuration tools
As part of the Wallaby project, we have built two types of
configuration tools. Both of these use Wallaby’s support for
semantic configuration modeling, as well as a database we
have compiled of Condor parameter metadata and high-level
functionalities represented as Wallaby features, in order to
ensure that generated configurations will be valid, sensible,
and functional. The first kind we will discuss are interactive,
guided tools with Condor-specific knowledge for simplifying
common tasks.

The guided tools present a textual, menu-driven interac-
tive interface. After each step, the guided tools present any
configuration errors and warnings along with suggestions for
how to resolve them, and prompt for the user’s direction as
to how to proceed. After any successful change, the tools
offer the user an opportunity to save a snapshot of the store’s
state, in order to restore to it later.

The guided tools also include functionality to inspect
features and parameters registered in the Wallaby service,
to examine the live configurations of every node, and to
list and inspect snapshots. Finally, these tools also include
specialized shortcuts for configuring Condor functionality
related to running virtual machines as jobs and running jobs
on Amazon’s Elastic Compute Cloud.

activate Activates pending changes to the pool con-
figuration.

add-feature Adds a feature to the store.
apropos Provides a list of parameters whose descrip-

tions contain a keyword or match a regular
expression.

console Provides an interactive wallaby environ-
ment.

dump Dumps a wallaby snapshot to a file.
explain Outputs an annotated display of a node’s

current configuration.
feature-import Imports a wallaby feature from a Condor

configuration file.
help Provides brief documentation for wallaby

shell commands.
http-server Provides a HTTP service gateway to wal-

laby node configurations.
inventory Lists (a subset of) wallaby-managed nodes.

list-snapshots Lists snapshots in the store.
load Loads a wallaby snapshot from a file.

load-snapshot Loads the snapshot with a given name.
make-snapshot Makes a snapshot with a given name.

modify-feature Alters metadata for a feature in the store.
new-command Generates Ruby files containing templates

for a new wallaby shell command.
remove-feature Deletes a feature from the store.

show-feature Displays the properties of a feature.

Table 1. Select Wallaby shell commands from the collection
that are included in the Wallaby source distribution.

6.2 Batch-oriented configuration tools
Interactive configuration is not suitable for every application
or installation, so Wallaby also provides batch-oriented tools
that accomplish a single task and are suitable for scripting.
These commands typically mirror API operations, exposing a
single operation in a single command invocation. For example,
there are commands to add a new feature with a certain
set of properties, to modify a feature’s properties, to show a
feature’s properties, and to delete a feature from the store.
Similarly, there are analogous commands to create, inspect,
delete, and update nodes and parameters. Each of these
commands is a simple, command-line interface atop the
Wallaby API, and each is implemented as part of the Wallaby
shell, which we shall discuss next.

6.3 The Wallaby shell
The Wallaby shell is a solution to avoiding the boilerplate in-
herent in writing client applications for networked APIs. The
Wallaby shell is an extensible command-line user interface to
Wallaby, consisting of two main parts. First is the wallaby
command, which handles common tasks like connecting to
the AMQP broker, authenticating the user, and initializing
the Wallaby client library before transferring control to a
task-specific subcommand, which is implemented as a plug-in.
The second part of the Wallaby shell is a library that makes
it trivial to develop new subcommand plug-ins, simply by
creating a Ruby class that satisfies a given interface. Wallaby
itself includes many shell subcommands, a sampling of which
are listed in Table 1. We will discuss some of these in greater
detail, after providing an overview of how a developer might
extend the Wallaby shell.

The interface that Wallaby shell command plug-ins must
implement is quite minimal. In fact, to extend the Wallaby
shell, a developer need only provide a Ruby class with the
following four methods:

FOO is set to BAR in feature ExecuteNode, which is
included in feature OverprovisionedNode, which is
installed on group HardWorkers, of which
node1.example.com is a member.
FOO = BAR

Figure 10. Example wallaby explain annotation

1. A method that returns the name of the new shell com-
mand as a string;

2. A method that returns a one-line description of the new
shell command;

3. init_option_parser, a method that returns an object
to process command-line options; and

4. act, a method to do the actual work of the commands. By
the time this method is invoked by the wallaby command,
the client library is initialized and connected to the AMQP
broker, with a reference to the Wallaby store client object
accessible from an instance variable in the plug-in class.

The Wallaby shell interface also allows (but does not
require) the developer to supply callbacks to run after sub-
command initialization or command-line option processing.
Wallaby shell command plug-ins can thus be very simple (on
the order of a dozen lines of code to implement genuinely
useful functionality), but are flexible enough to support so-
phisticated behavior. In fact, Wallaby includes a shell com-
mand to make it easier to define new commands: wallaby
new-command, which generates a skeleton Ruby class that
will work out of the box as a Wallaby command plug-in
and is ready for a developer to fill in with actual command
behavior.

6.4 Notable Wallaby shell commands
We now turn our attention briefly to a few interesting Wallaby
shell command plug-ins; we have selected these to show the
versatility and scope of the Wallaby API, as well as the
simplicity and power of the extension mechanism afforded
by the Wallaby shell.

We first consider wallaby feature-import, which turns
a snippet of a Condor configuration file into a Wallaby
feature definition and installs this feature in the Wallaby
store, creating missing parameters as necessary. The snippet
may contain specially-formatted comments to describe other
metadata. Because Condor ignores these comments, it is
possible to use the same file both as a Condor configuration
file and as a Wallaby feature description. In our experience
discussing the configuration needs of large Condor pools
with their administrators, many Condor installations rely
on customized systems for managing and deploying several
Condor configuration file snippets to nodes depending on that
node’s requirements; thus, the feature-import command
simplifies migration from such a legacy configuration tool to
semantic configuration with Wallaby.

Configuration can be confusing, even in light of the
semantic model Wallaby provides. The wallaby explain
command simulates the configuration-calculation algorithm,
producing a human- and machine-readable configuration file
in which each key-value pair is annotated with a comment
explaining how that value was calculated. An example
explanation for a single parameter is given in Figure 10.

Because managed nodes check in with Wallaby at regular
intervals even if they are not notified of configuration changes,
its database of node metadata is useful for pool management

and inventory as well. The wallaby inventory command is
designed to give a snapshot of the health of a Condor pool:
it shows the name of each node; whether it was an explicitly-
configured node or whether it checked in unconfigured and
received the default group configuration; and when it last
checked in. The inventory command can sort by most recent
check-in (in order to identify failed nodes) or node name. It
can also run with expressive constraints, such as:

memberships.size == 0 && name =~ /(foo|bar)[0-9]+/
which will list only nodes that have no group memberships
and that have names containing the substring foo or bar
followed by one or more digits, or

! last_checkin.is_never && last_checkin < 2.hours_ago
which will show nodes that have checked in at least once,
but not in the last two hours. Finally, the inventory sub-
command can produce machine-readable output, in order to
more easily write scripts combining its output with that of
Condor’s comprehensive status-inspection tools.

The last command we’ll examine is the simplest, but
also the most flexible. The wallaby console command just
provides an interactive Ruby environment with the Wallaby
client library loaded and connected to the broker — that is,
the very same environment that a new shell command would
have inside its act method. This is useful for interactive
experimentation with API methods, generating complex
and repetitive features, and prototyping new Wallaby API
clients. wallaby console can also be used as a UNIX script
interpreter, so it is possible to make so-called “shebang”
scripts that use the Wallaby console to handle connecting to
the AMQP broker.

6.5 Automated pool testing with Albatross
Albatross4 is an open-source unit testing framework for
generating and testing Condor configurations. Albatross uses
the Wallaby Python API to programmatically build Condor
configurations and then apply them to Wallaby-managed
nodes. By combining these Wallaby features with the Python
PyUnit testing library, Albatross enables developers, testers,
and administrators to run controlled, repeatable experiments
involving Condor pool configurations.

We have used Albatross and Wallaby internally at Red Hat
to systematically test Condor’s correctness and performance
with both default and customized configurations. We have
also used Albatross to test the performance of the Cumin
Condor management console5. We have evaluated both of
these workloads successfully with a range of test pool sizes
from fairly small — a single rack of modest servers — to
fairly large — a large private clouds of thousand of multicore
nodes. The Albatross framework enables the unit tests for
these configurations to be quite compact. The tests are all
less than 200 lines of code, and vary little with the scale of the
configuration; frequently tests differ only in their parameters.

Albatross has proven especially beneficial for simplifying
and automating the construction of large and repetitive fea-
tures such as over-provisioned execute node configurations,
in which a single node is configured with multiple Condor
startd daemons in order to simulate a number of nodes
that is larger than the number of physical machines avail-
able. (This capability is especially important for evaluating
throughput and scalability limits of Condor itself and of
the Cumin management console.) The number of Condor
startd daemons, the number of execute slots per startd

4 http://git.fedorahosted.org/git/grid/albatross.git
5 https://fedorahosted.org/grid/wiki/Cumin

and whether those slots can be partitioned dynamically are
all controlled by Albatross parameters. We used this facility
to automatically generate valid multi-startd configurations
of up to 1000 individual startd processes per physical ma-
chine, a task that would have been both labor intensive and
error-prone to accomplish manually. It is similarly easy to
generate multi-Scheduler configurations and multi-Collector
configurations of any size, and apply them to chosen nodes.

Albatross also uses the Wallaby API to automatically save
both pre-test and testing configurations, whose names are
logged to allow future reconstruction of testing configurations.
Pre-test configurations are automatically restored after a test
is run. Saved testing configurations can also be optionally
loaded by Albatross to run a unit test using a pre-defined
configuration. These features would be difficult or impossible
to support without the configuration versioning provided by
Wallaby.

Finally, Albatross is not merely a tool for Condor devel-
opers who wish to perform directed scale experiments and
correctness tests. It is also useful for administrators who
wish to evaluate and compare different scheduling policies.
We expect that, in the future, we will also use Albatross for
automated functional and regression testing suites, including
tests with random but valid configurations in order to explore
uncharted parts of the Condor test and configuration space.

7. Experience and evaluation
Wallaby is a mature open-source project that is also available
with commercial support as part of Red Hat Enterprise MRG
product. The current release of the Wallaby open-source
project6 consists of approximately 9,000 lines of Ruby, not in-
cluding support libraries like the custom object-management
and persistence libraries. It includes a comprehensive spec-
ification and test suite with over 500 executable examples
of correct application-level behavior and acceptable perfor-
mance under stress; these specifications and tests are derived
both from the application design and from defect reports
filed against earlier versions of Wallaby. This test suite has
given us the freedom to quickly evaluate the performance and
correctness of even fairly drastic implementation changes; for
example, all of the enhancements discussed in Section 5.3
were validated with the aid of the test suite.

Since the earliest stages of developing Wallaby, we have
used it internally to manage our development and testing
Condor pool. In fact, we started doing so even before
Wallaby had some useful functionality, like configuration
differencing. As a result, we were able to find scale and
correctness problems and clarify and improve the API even
before much outside adoption of the open-source Wallaby
project or the Red Hat-supported version. Unsurprisingly,
we found this approach was successful: having ourselves
and our coworkers as internal customers drove the quality
and expressiveness of the project. We also received regular,
valuable, and encouraging feedback from team members who
were new to Condor configuration and yet found it easy to
use Wallaby to configure the pool for special projects or
tests. In general, the open nature of the project has been a
huge boon: we have been able to incorporate suggestions and
implement feature requests originating from internal users,
Red Hat customers, and members of the open-source and
Condor communities.

We have evaluated the performance of the Wallaby store
under stressful conditions in three ways. First, via Albatross

6 Version 0.10.5, as of this writing

http://git.fedorahosted.org/git/grid/albatross.git
https://fedorahosted.org/grid/wiki/Cumin

experiments, which used Wallaby to configure test pools
ranging from a small pool of 64 8-core nodes managed by
1 scheduler up to a moderately large pool of 5000 8-core
nodes managed by 15 schedulers. Wallaby met these scale
demands and was able to support Albatross at these rea-
sonable scales. Because these experiments can overprovision
single physical machines in a way that most real-world in-
stallations would not, they are an especially good test of
unusually large per-node configurations. Our second perfor-
mance evaluation technique is part of the Wallaby test suite,
which includes a specially-generated stress test that must
complete with acceptable latency to succeed — that is, it
must run quickly enough that an API client would not time
out. This test repeatedly reconfigures and activates 2000
nodes that are each provisioned with 90 startd processes;
to configure 90 startds alone requires over 460 parameters.
(One author regularly runs this test successfully on a modest
portable computer.) Finally, we have developed a mechanism
for generating stress tests based on randomly-generated valid
Wallaby configurations that satisfy certain probability dis-
tribution characteristics: we can specify, for example, the
mean, variance, and distribution for the number of features
a typical feature will extend or conflict with, the number
of groups a node is a member of, the number of features a
group will have installed, and so on.

8. Related work
This paper has presented Wallaby, a special-purpose semantic
configuration system enabling configuration of Condor pools.
While there are many open-source and proprietary systems
for managing distributed application configurations without
semantic validation and several research systems for defining
constraints that must hold over application configurations,
Wallaby is the only system we know of to combine the
following desirable features:

1. It supports semantic configuration management and
validation;

2. It features a rich programmable API that has demon-
strated its usefulness for applications beyond configura-
tion management (including pool inventory and experi-
ment design);

3. It is scalable along two dimensions: we have demonstrated
its suitability for fairly large numbers of managed nodes
running particularly large and complex generated config-
urations; and

4. It is a robust system that is used in real-world applications
and is readily available as an open-source project.

We will now briefly examine some notable related efforts.
The Rocks Cluster project [7] provides a software distri-

bution, provisioning system, and configuration system for
compute clusters. This project targets a rather broader scope
(installation, provisioning, and multiple components) than
Wallaby, but its configuration model is rather more limited:
configuration parameters are defined in “rolls” which are
pushed out to machines as part of their provisioning. When
a machine is to be reconfigured, it is reprovisioned, which
could prove expensive in utility computing environments.
Rocks and Wallaby are complementary efforts, however —
certainly a Rocks system could use Wallaby for dynamic,
semantic Condor reconfiguration.

Widely-used open-source tools like Puppet, Chef, and
cfengine provide distributed configuration deployment ca-

pabilities and some (typically imperative) mechanism for
synthesizing configurations from smaller snippets. However,
these systems do not support the sort of semantic modeling
possible in Wallaby, meaning that per-subsystem reactivation,
a priori configuration validation, and other useful features
are unavailable. Like Rocks, though, these systems could
be used to manage other parts of a distributed system in
cooperation with Wallaby.

The PRESTO system of Enck et al. manages configura-
tions for network devices and services. PRESTO includes a
templating language that enables users to develop modular
pieces of configuration, called configlets. This language is sim-
ilar to dynamic-document template languages that allow, for
example, web pages to be generated from multiple container
templates, except it generates configuration files instead of
web pages and includes support for type-checking values like
IP addresses, netmasks, hostnames, and ranges of numbers.
The PRESTO system uses a two-phase approach to identify
potential errors in specified configurations and request cor-
rected meta-parameters from system administrators. Unlike
Wallaby, it can manage several different system components
(not merely Condor), but its model is, perhaps necessarily,
more complex and less declarative.

The PoDIM system [2] includes a configuration constraint
language and support for modeling configuration entities in
the Eiffel programming language. It is general-purpose and
can collaborate with an existing distributed configuration
deployment tool like cfengine or Puppet. The SmartFrog
system [4] manages distributed software systems of several
components; it also uses an object-oriented programming
language to specify configurations. The main difference
between these systems and Wallaby is that Wallaby provides
a simpler, declarative model for specifying configuration
entity constraints; Wallaby is able to do this easily because
it is a special-purpose system.

References
[1] 2001 IEEE International Conference on Cluster Computing

(CLUSTER 2001), 8-11 October 2001, Newport Beach, CA,
USA, 2001. IEEE Computer Society.

[2] T. Delaet and W. Joosen. Podim: a language for high-level
configuration management. In Proceedings of the 21st confer-
ence on Large Installation System Administration Conference,
pages 21:1–21:13, Berkeley, CA, USA, 2007. USENIX Associa-
tion.

[3] W. Enck, T. Moyer, P. Mcdaniel, S. Sen, P. Sebos, S. Spoerel,
A. G. Greenberg, Y. wei Eric Sung, S. G. Rao, and W. Aiello.
Configuration management at massive scale: system design
and experience. IEEE Journal on Selected Areas in Commu-
nications, 27:323–335, 2009.

[4] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft. The smartfrog configuration
management framework. SIGOPS Operating Systems Review,
43:16–25, January 2009. ISSN 0163-5980.

[5] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter
of idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[6] U. of Wisconsin Condor Team. Condor Version 7.6.0 Manual,
2011.

[7] P. M. Papadopoulos, M. J. Katz, and G. Bruno. Npaci rocks:
Tools and techniques for easily deploying manageable linux
clusters. In CLUSTER DBL [1], pages 258–.

[8] S. Vinoski. Advanced message queuing protocol. IEEE Internet
Computing, 10:87–89, November 2006.

	Introduction
	Overview of contributions

	Background
	System architecture
	Semantic configuration
	Nodes
	Groups
	Features
	Parameters
	Subsystems

	The configuration algorithms
	Configuration generation algorithms
	Configuration validation: properties and algorithms
	Improvements and optimizations

	The Wallaby API and tools
	Guided Condor configuration tools
	Batch-oriented configuration tools
	The Wallaby shell
	Notable Wallaby shell commands
	Automated pool testing with Albatross

	Experience and evaluation
	Related work

