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1. University of Wisconsin, 2. University of Colorado, Boulder, 3. NEC Laboratories America, Princeton.
wrharris@cs.wisc.edu, srirams@colorado.edu, {ivancic,agupta}@nec-labs.com

ABSTRACT
Path-sensitivity is often a crucial requirement for verifying
safety properties of programs. As it is infeasible to enumer-
ate and analyze each path individually, analyses compromise
by soundly merging information about executions along mul-
tiple paths. However, this frequently results in a loss of pre-
cision. We present a program analysis technique that we
call Satisfiability Modulo Path Programs (SMPP), based on
a path-based decomposition of a program. It is inspired by
insights that have driven the development of modern SMT
(Satisfiability Modulo Theory) solvers. SMPP symbolically
enumerates path programs using a SAT formula over con-
trol edges in the program. Each enumerated path program
is verified using an oracle, such as abstract interpretation
or symbolic execution, to either find a proof of correctness
or report a potential violation. If a proof is found, then
SMPP extracts a sufficient set of control edges and corre-
sponding interference edges, as a form of proof-based learn-
ing. Blocking clauses derived from these edges are added
back to the SAT formula to avoid enumeration of other path
programs guaranteed to be correct, thereby improving per-
formance and scalability. We have applied SMPP in the
F-Soft program verification framework, to verify properties
of real-world C programs that require path-sensitive reason-
ing. Our results indicate that the precision from analyzing
individual path programs, combined with their efficient enu-
meration by SMPP, can prove properties as well as indicate
potential violations in the large.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Assertion check-
ers; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Assertions; F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis

General Terms
Languages, Verification
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1. INTRODUCTION
Path-sensitivity is often a crucial requirement for verify-

ing safety properties of programs. As it is infeasible to enu-
merate and analyze each path individually, analyses com-
promise by soundly merging information about executions
along multiple paths. However, this results in a loss of pre-
cision, which may lead the analysis to determine falsely that
a violation is possible. We present the Satisfiability Modulo
Path Programs (SMPP) approach to program analysis for
property verification. Our approach decomposes the verifi-
cation of a given program to verification of its component
path programs [4]. A path program represents a set of pro-
gram executions, all of which traverse the same set of edges
in a control flow graph, but may vary in the number of
iterations of loops/recurrences encountered. Each path pro-
gram in a given Control Flow Graph (CFG) is associated
with a simple path in the MSCC (Maximal Strongly Con-
nected Component) decomposition of the CFG, obtained by
compacting loops and recurrences in the program into com-
ponents [9]. Whereas the number of control paths in the
original CFG may be infinite (due to loops and recurrences),
the MSCC decomposition is acyclic with finitely may con-
trol paths. Nevertheless, this number can be prohibitively
large for real-world programs. In our experiments, we have
observed millions of path programs even for moderate-sized
CFGs with about 500 control edges. Thus an explicit enu-
meration of path programs is not feasible.

We therefore propose a SAT-based symbolic encoding of
the set of control paths associated with path programs. Start-
ing from a SAT formula that represents all unexplored con-
trol paths in the MSCC graph that can reach an error loca-
tion, we enumerate a control path and use an oracle to ver-
ify the corresponding path program. Each enumerated path
program can be analyzed using “proof techniques” such as
abstract interpretation [12, 11], or “falsification techniques”
such as bounded model-checking that search for concrete
error traces of violations [5]. We assume (w.l.o.g.) that a
verification oracle presents Floyd-Hoare style proofs in the
form of inductive invariants, or concrete witnesses upon vi-
olation.

We present a proof-based learning technique that avoids
enumerating a large set of“related”path programs by reusing
the proof of a single path program. The proof-based learn-
ing technique extracts a set of sufficient edges from a given
path program and an associated set of interference edges.
Our technique guarantees that any other path program that
also traverses the same set of sufficient edges and none of
the interference edges is also correct. As a result, our ap-



proach extends the core reasons for the proof of a given path
program to apply to a large number of closely related path
programs. The sufficient and interference edges are encoded
as blocking clauses and added back to our SAT formula. We
continue to enumerate solutions to this SAT formula until
no more solutions can be found. Using proof-based learning
significantly reduces the total number of path programs enu-
merated in SMPP, in the most dramatic case from millions
to hundreds.

Our SAT encoding can be viewed as a control-flow ab-
straction with refinement performed by proof-based learning
of sufficient/interference edges in the CFG. We do not en-
code or directly abstract data values. Reasoning over data
is performed by the verification oracles. Note also that our
enumeration operates over path programs and not program
traces.

We present an instantiation of our approach that utilizes
the abstract interpretation framework as the oracle of choice
to prove properties over path programs. The inductive in-
variants obtained through abstract interpretation are used
to extract sets of sufficient edges. We also present the use of
over-approximate symbolic execution as another oracle that
is efficient over path programs without loops or wherein the
property to be proved is independent of the loops. It is pos-
sible to use other known techniques as oracles, such as lazy
abstraction with interpolants [26] or predicate abstraction
refinement [17, 2, 3].

We implemented the SMPP technique in the F-Soft pro-
gram verification framework [21]. The implementation uses
a symbolic execution engine based on Yices [16], and ab-
stract interpretation engines using a succession of numeri-
cal domains — intervals [10], octagons [27], symbolic inter-
vals [30] and polyhedra [13]. We evaluated our implemen-
tation by using it to verify array overflow and string library
usage properties for C programs. We used publicly avail-
able benchmarks – smaller programs in Zitser et al. [34],
and larger open source programs such as openssh, thttpd
and xvidcore. Our evaluation shows that SMPP can de-
rive proofs of properties that are beyond the reach of path-
insensitive static analysis (already implemented in F-Soft),
and it also identifies numerous potential violations. In com-
parison to the BLAST tool (using predicate abstraction with
interpolant-based refinement [3]), SMPP can prove a major-
ity of the properties proved by BLAST and identify addi-
tional violations in these programs, within a fraction of the
time taken by BLAST.

Analogy with SMT Solvers: To prove safety properties,
SMPP integrates program analysis oracles that prove prop-
erties about individual path programs with a SAT solver,
which is used to enumerate over a Boolean abstraction of
the control-flow of the program. This is similar in spirit
to Satisfiability Modulo Theory (SMT) solvers [29, 16, 15].
To check the satisfiability of a given formula, an SMT solver
integrates theory solvers (that check the satisfiability of con-
junctive formulas over a theory) with a SAT solver that enu-
merates over a Boolean abstraction of the entire formula.

To solve a particular conjunctive formula, an SMT pro-
cedure employs theory solvers as oracles. Similarly, SMPP
uses verification techniques over path programs as oracles.
In fact, we may use different oracles for different path pro-
grams, based on observed characteristics (e.g. whether or
not a backward slice w.r.t the property contains loops). Fur-
thermore, the characteristics of the oracles affect the char-

Algorithm 1: Satisfiability Modulo Path Programs.

Input: Π : Program CFG, Ψ : 〈nf , ϕ〉 assertion to be
verified.

Result: Alarms : Set of possible path programs
violating property.

begin
ΠD := MSCCDecomposition(Π)1

ΛΠ := SatEncodePaths(ΠD, n
D
0 , n

D
f )2

while ( IsSatisfiable(ΛΠ) ) do3

π := SolveAndObtainPathProgram(ΛΠ)4

η := AnalyzePathProgram(π,ϕ) /* Oracle */5

if (η(n) |= ϕ) then /* Proof obtained */6

(Sπ, Iπ) := ExtractSufficientSet(π, η)7

else /* violation obtained */

(Sπ, Iπ) := PathSlice(π, n, ϕ)8

Alarms := Alarms ∪ {Sπ}9

ΛΠ := ΛΠ ∧ BlockingClause(Sπ, Iπ)10

11

end

acteristics of our overall scheme (soundness, completeness,
performance, etc.).

Theory-based learning in SMT solvers adds conflict clauses
back to the SAT solver to refine the Boolean abstraction.
Analogously, SMPP utilizes proof-based reasoning to derive
sufficient edges and interference edges. These are added as
blocking clauses to a SAT formula to block other enumera-
tions by the SAT solver. By relying on a Boolean formula
abstraction, we can apply SAT-based decision heuristics and
blocking clauses that can drive the symbolic search over con-
trol paths in a property-driven manner. This is potentially
advantageous compared to an a priori fixed search order on
the CFG such as depth-first search (as in typical symbolic
execution based approaches) or breadth-first search (as in
typical BMC-based approaches).

The main contributions of this paper are: (a) SMPP: An
approach for symbolic enumeration of path programs, using
a SAT solver and proof-generating oracles for verifying path
programs. (b) Proof-based learning techniques to identify
and re-use a set of sufficient edges that serve as proofs of
correctness. (c) A concrete instantiation of the SMPP ap-
proach, where we use abstract interpretation over different
abstract domains and symbolic execution as oracles. (d) An
experimental evaluation of the implementation, which shows
that SMPP can prove more properties than path-insensitive
static analysis and improve performance over predicate ab-
straction refinement. In particular, SMPP avoids the cost of
an expensive data abstraction-refinement process and diver-
gences on loops, while fully utilizing advances in SAT/SMT
solvers.

1.1 SMPP Approach At a Glance
Algorithm 1 presents the main steps of the SMPP algo-

rithm. We now step through it with an example. Fig. 1
presents a simple imperative program fragment that com-
putes a buffer length bLen based on an input pointer p, its
length pLen, and an extra flag mode. The CFG represen-
tation is also given (also Cf. Example 2.1). The goal is to
prove the unreachability of the CFG node labeled 15 corre-
sponding to the program assertion at line 15. Fig. 2 depicts



0: proc. foo (int * p, int pLen, int mode)
1: int o, L := 1, bLen := 0;
2: if (pLen < 1) return;
3: if (p == NULL)
4: pLen := -1;
5: end-if

6: if (mode)
7: o := 1;

else
8: o := 0;
9: end-if

10: while( L ≤ pLen )
11: if (o > 0)
12: bLen := L - o;
13: L := 2 * L;
14: end-while
15: ASSERT ( !p || bLen ≤ pLen);
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15 (err) 13

L = 1

bLen = 0

pLen ≥ 1

p = 0
p 6= 0

pLen := −1

mode = 0 mode 6= 0

o := 0 o := 1

L > pLen

p 6= 0 &
bLen > pLen

L ≤ pLen

o > 0

bLen := L − o

o ≤ 0
L := L ∗ 2

Figure 1: A simple imperative program and its CFG representation.

the major steps in the application of SMPP to the program,
described as follows.

Extract an unexplored path program: SMPP first constructs
the MSCC decomposition ΠD of the program and encodes
the set of all paths in ΠD (Algo. 1 lines 1 – 2). It then chooses
an unexplored path from this set (line 4), from which it con-
structs path program (A), illustrated as the path program
highlighted in Fig. 2(A). Considering just the nodes and
edges that lie on this path program, the unreachability of
15 can be proved by a Constants-domain analysis (Algo. 1
lines 5–6).

Extract a set of sufficient edges: The proof of unreachabil-
ity of node 15 for path program (A) involves the invariant
p = 0 that is valid at node 13 along the path program (A)
(the invariant does not, in fact, hold for the program as a
whole). SMPP applies a technique (detailed in Sec. 3.2)
that pinpoints the key “reason” for the invariant. Such a
“reason” takes the form of a set of sufficient (control-flow)
edges. The set of sufficient edges (denoted S1) corresponding
to the proof in the first path program is shown in Fig. 2(B).

Any path program from 1 to 15 that traverses all of the
edges in set S1 will satisfy the property. Note that this in-
cludes paths that traverse the loops in the program arbitrar-
ily many times as well. Computing sufficient sets therefore
allows us to extend our proof along a single path program to
multiple path programs. This step corresponds to Algo. 1
line 7.

Extract another path program: SMPP now seeks a path
program that visits edges E such that S1 6⊆ E. The search
for such a path program is performed using a SAT solver
(Algo. 1 lines 10, 3), and yields the second path program,
as shown in Fig. 2(C). Now, the analysis must directly rea-
son about the loop in this path program to prove unreach-
ability of node 15. It can do so automatically by using
the octagon domain analyzer [27] to establish the invariant
bLen ≤ pLen at node 14 (Algo. 1 lines 5 – 6). This invariant
proves correctness of this path program. The loop invari-
ant bLen ≤ pLen computed at node 10 suffices to prove the
property at node 15. Note that this invariant is independent
of the variable o.

SMPP then extracts a set of sufficient edges S2 for the
invariant (detailed in Sec. 3.2), shown in Fig. 2(D). It also
performs an interference analysis for S2 over the entire pro-
gram, to discover that the assignment to pLen on edge 4 → 6
may cause some paths that traverse all edges in S2 not to
preserve the property. This edge thus forms the interfer-
ence set for sufficient set S2, denoted as I2 = {4 → 6} (Cf.
Sec. 3.4). Any path program that traverses all the edges in
S2 but not the interference edge 4 → 6 satisfies the property.

Termination: SMPP has now computed sufficient-interference
pairs of sets (S1, ∅) and (S2, I2) , extracted from the two
path programs considered. Every path program is covered
by these sets, i.e, each program path must either traverse
every edge in S1 , or traverse every edge in S2 while travers-
ing no edge in I2. Recall that the edges that are part of the
loop 10 ; 10 are part of an MSCC and thus not considered
in enumerating path programs. As a result, by examining 2
out of the 4 possible path programs, SMPP has established
the property. This computation occurs over Algo. 1 lines 10,
3, 11.

Symbolic Encoding: Fig. 2 consists of a small program with
a few path programs. In practice, we have observed CFGs
with as few as 500 edges that exhibit millions of path pro-
grams. Therefore, reasoning about sets of path progams
explicitly is not feasible.

We overcome this difficulty by means of a symbolic en-
coding of control paths associated with path programs. The
analysis uses a succinct propositional (Boolean) encoding
that supports the following operations efficiently:

1. Encode all of the control paths between two nodes (in
the MSCC graph) as a Boolean formula. Such an en-
coding is linear in the size of the CFG. Sec. 3.1 details
this encoding.

2. Given a set P of unexplored control paths, represented
as a Boolean formula ΛP , and a sufficient-interference
pair of edge sets (S, I), subtract all of the paths from P

that traverse all the edges in S and none of the edges in
I . Subtraction is performed by adding blocking clauses
to the formula ΛP .
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Figure 2: Path programs enumerated on running example by SMPP. A: Initial path program; B: Sufficient
edges for (A); C: Second path program; and D: Sufficient (shaded) and interference (zigzag) edges for (C).

3. Determine that there are no control paths left to exam-
ine, or produce an unexplored path. This is equivalent
to checking the satisfiability of the updated Boolean
SAT formula ΛP .

SAT solvers have made impressive advances in the past
decade, enabling them to support these operations for for-
mulas with hundreds of thousands of variables and clauses.
In this respect, our encoding is empirically shown to be quite
amenable to existing solvers such as ZChaff [28], even for
large programs.

2. PRELIMINARIES
We first present our approach on single-procedure pro-

grams without function calls. We assume that all variables
are of type integer. The handling of function calls (includ-
ing recursion), non-integer types (especially pointers) and
other features present in a programming language such as C
is discussed in Sec. 4. Control-flow graphs (CFG) are used
to represent imperative programs.

Control-Flow Graph A CFG Π = 〈N,E, V, ρ, n0, nf ,Θ〉
is a tuple where N is a set of nodes, E ⊆ N × N is a set
of edges, n0 ∈ N is an initial location, nf ∈ N is a final
location, and V is a set of program variables. Each edge
e ∈ E is labeled by a transition relation ρe(V, V

′), a first-
order assertion over current-state variables V and next-state
variables denoted by V ′. The first-order assertion Θ specifies
the initial values of the program variables.

An execution of the CFG starts at the initial location with
initial values to the program variables that satisfy Θ, and

terminates when it reaches the final location. A program
assertion 〈n, ψ〉 for n ∈ N and assertion ψ over the program
variables, requires that ψ hold whenever control reaches the
node n.

Example 2.1. Fig. 1 shows a CFG of a program over
integer-valued and pointer variables (note that for this exam-
ple, we are only interested in the integer value of the pointer
itself ). The nodes in the CFG are numbered according to
the corresponding labels in the program. We wish to prove
the unreachability of node 15 which corresponds to the fail-
ure of the assertion in the corresponding line of the program.
However, a path-insensitive analysis is unable to prove the
property. The join operation at line 5 may lose the relation
between p and pLen.

2.1 Path Programs
Given a graph G : 〈N,E〉, a strongly connected component

(SCC) consists of a subset of nodes C ⊆ N such that for each
n1, n2 ∈ C, there exists a path from n1 to n2 and vice-versa.
A strongly connected component C is maximal(MSCC) iff
no strict superset of C is a strongly connected component.
The MSCC-decomposition of a graph G is a directed, acyclic
graph GD whose nodes N = {nd

1 , . . . , n
d
m} correspond to

each of the MSCCs C1, . . . , Cm of G and whose edges con-
nect nd

i and nd
j if and only if some node in Ci connects to

some node in Cj by an edge in E. The MSCC decompo-
sition of a graph can be computed in linear time [9]. The
CFG in Fig. 1 contains a non-trivial MSCC consisting of the
nodes {10, 11, 12, 13}.



Def. 2.1 (Path Program [4]). Let ΠD be the MSCC
decomposition of a CFG Π. A path program π : nd

0 ; nd

is a simple path in ΠD from the initial node nd
0 to a node

nd. The path program π naturally corresponds to a subset of
nodes and edges in Π, obtained as the union of the MSCCs
traversed by π and the edges that connect them.

2.2 Inductive Invariants
Let Σ denote the universe of concrete program states and

Γ be a domain of assertions over the program variables or-
dered by the logical implication |=. Each assertion ϕ ∈ Γ
represents a set of states [[ϕ]] ∈ 2Σ. An example of an asser-
tion language used in practice is linear arithmetic formulae
over the integer variables of a program.

Inductive Map For a set N of nodes in a control-flow
graph, a flow-sensitive map η : N → Γ maps each node
to a set of program states, represented as a formula. Such a
map is inductive iff the following conditions hold:

Initiation : Θ |= η(n0)
Consecution : foreach edge e : ni → nj ,

η(ni) ∧ ρe(V, V
′) |= η(nj)[V 7→ V ′]

In order to establish a property 〈n, ϕ〉 for a given program,
we seek an inductive map η such that η(n) |= ϕ.

2.3 Abstract Interpretation
Abstract Interpretation is a powerful and general frame-

work for systematically computing inductive maps for a given
program. An inductive map is a fixed point of a monotone
operator in a suitable abstract domain. An abstract domain
is a lattice 〈Γ, |=〉 that usually denotes an assertion language
used to represent sets of states. The abstraction function
α : 2Σ 7→ Γ and concretization function γ : Γ 7→ 2Σ link
elements of the abstract lattice to concrete sets of states.
They are assumed to form a Galois Connection [12].

To compute an inductive map for the set N of control-
flow nodes, with initial node n0, we start from an initial
map η0 : N → Γ and iterate to produce a sequence of maps
η1, η2, . . ., wherein

η
0(n) :



⊤, n = n0,

⊥, else
η

i+1(nb) :

8

<

:

⊤, nb = n0,
F

na→nb
post

(ηi(na),
na → nb)

The iteration terminates when ∀n ∈ N. ηi+1(n) |= ηi(n).
Convergence is guaranteed if the domain L satisfies the as-
cending chain condition. Failing this, widening and narrow-
ing operators can be used to guarantee convergence. If η is
the fixed point obtained upon convergence, then γ ◦ η is an
inductive invariant map.

Abstract domains such as the interval domain [10], oc-
tagon domain [27], symbolic intervals [30] and polyhedra [13]
can be used to compute useful invariants over the program
variables in order to prove properties of interest. Together,
these domains represent various levels of trade-off between
the strength of the invariants against the complexity of the
analysis.

3. PATH PROGRAM ENUMERATION
Let Π = 〈N,E, V, ρ, n0, nf ,Θ〉 be a control flow graph

with MSCC decomposition ΠD : 〈ND, ED〉. Let Ψ : 〈n, ϕ〉
be a property under verification. We present a procedure for

symbolically enumerating all control paths from n0 to nf ,
verifying Ψ along each associated path program.

Consider Algorithm 1, which shows the overall verifica-
tion algorithm. The major steps of the algorithm are (a)
encoding the set of (unexplored) control paths as a Boolean
formula ΛΠ (line 2), (b) iterating over the solutions of ΛΠ

(line 3), (c) analyzing each path program associated with
the current solution (line 5) , (d) extracting sufficient sets,
if correct (line 7), otherwise handling violations (line 8). The
rest of this section presents the key steps in detail 1.

3.1 SAT Encoding
Path programs are represented by simple paths in the

MSCC graph ΠD of the CFG Π. We now present a Boolean
SAT-based encoding of all control paths in ΠD. This en-
coding corresponds to an implementation of SatEncodePaths
and SolveAndObtainPathPrograms used in Algo. 1.

For each edge e in ΠD, the propositional variable pe indi-
cates if e belongs to the path program. Let out(m) denote
the outgoing edges in ED for a node m ∈ ND and in(m)
denote the incoming edges. Let src(e) and tgt(e) denote
the source and target nodes of an edge e ∈ ED, respec-
tively. For a set Es ⊆ ED, the formula exactlyOne(Es)
denotes that exactly one edge from Es occurs in a path:
exactlyOne(Es) :

W

e∈Es
pe ∧

V

e,f∈Es,e6=f
pe ⇒ ¬pf . The

formula ΛΠ is the conjunction of all Boolean constraints
given in Table 1. The constraints shown in the table enforce
that any path program has (a) a visit to the initial node n0,
(b) a visit to the final node nf , (c) exactly one incoming
edge to each node n visited (with the exception of n0), and
(d) exactly one outgoing edge from a node n that is visited
(with the exception of nf ).

Theorem 3.1. The Boolean formula ΛΠ encodes all paths
between n0 and nf in the MSCC decomposition ΠD of Π.

3.2 Extracting Sufficient Sets
We now describe AnalyzePathPrograms and ExtractSufficientSet

as used in Algo. 1. Let Π be the original CFG, n0 be the
initial node and 〈nf , ϕ〉 be the property we wish to estab-
lish. Given a path program π : nD

0 ; nD
f , SMPP analyzes π

using a proof-generating oracle. If the property holds over
π, we extract a set of sufficient edges. Otherwise, failure to
prove the property indicates a potential violation – details of
handling violations are provided in Sec. 3.6. We now present
the extraction of sufficient edges from proofs.

Let Ππ : 〈Nπ, Eπ〉 represent the subset of the original
CFG induced by the path program π. The proof-generating
oracle yields a proof of safety in the form of an inductive
invariant map (fixed-point) η : Nπ 7→ Γ over Gπ. The map
η maps each node n ∈ Nπ to an invariant η(n), valid over all
executions along π. If η(n) |= ϕ, then none of the executions
leading from n0 to nf along the nodes and edges in π lead
to a violation.

We extract sufficient edges which form the “core reason”
behind our proof as follows: (A) we first prune away un-
necessary invariants from the map η using the notion of a
minimal supporting set. Removing such invariants is essen-
tial to obtain a compact set of sufficient edges. (B) We then
compute an inductive map η′ that supports this set. (C)
From η′, we directly extract a sufficient set of edges.

1Proofs of key results are provided in the extended version
of this paper available from the authors upon request.



Table 1: Boolean encoding of the set of all path programs (i.e, paths through the MSCC DAG).
Fact Encoding
n0 should be visited exactlyOne(out(n0))
nf should be visited exactlyOne(in(nf ))
Source of each edge has exactly one predecessor (except for n0)

V

e∈ED, src(e) 6=n0
[pe ⇒ exactlyOne(in(src(e)))]

Target of edge has exactly one successor (except for nf )
V

e∈ED, tgt(e) 6=nf
[pe ⇒ exactlyOne(out(tgt(e)))]

Example 3.1 (Unnecessary Invariants). Consider
the “ second” path program π2 shown in Fig. 2(C):

1 → 3 → 6 → 8 → {10, 11, 12, 13}∗ → 14 → 15 .

A polyhedral domain abstract interpreter computes the fol-
lowing invariant:

η(14) :

2

4

p 6= 0 ∧ pLen ≥ 1 ∧
2 · bLen ≤ L ∧ bLen ≤ pLen ∧
mode 6= 0 ∧ o = 1

3

5 .

This invariant establishes the required unreachability of node
15 for the path program π2. Nevertheless, the entire in-
variant is not required for the proof. The sole invariant
bLen ≤ pLen (underlined above) suffices. The remaining in-
variants are extraneous.

In principle, we can use other techniques that (attempt
to) generate minimal sets of invariants required to prove a
given property [6, 18, 19]. These techniques can generate
strong invariants for small but complex loops. However,
they are currently unsuitable for generating simple global
invariants for large path programs. We provide a generic
scheme described below utilizing a fixed point, wherein the
fixed point can be computed in any way (including predicate
abstraction over path programs).

Generalizing Invariants
To describe how to generalize an invariant map, we first
describe the computation of minimal support sets, a key
primitive. Let Q : {q1, . . . , qm} and q be assertions over
program variables in a suitable logical theory, such that
q1 ∧ q2 ∧ . . . ∧ qm |= q.

Def. 3.1 (Minimal Support Set). A subset Q′ ⊆ Q

supports the inference
V

qi∈Q
qi |= q iff

V

qj∈Q′ qj |= q. A

support set Q′ is minimal iff no proper subset of Q′ can
support the inference.

For ψ1 |= ψ2, let MinSupport(ψ1, ψ2) denote the set of
minimal supporting conjuncts in ψ1 that imply ψ2. An im-
plementation of MinSupport (through unsatisfiable cores) is
available in existing solvers for many useful theories such as
linear arithmetic.

Example 3.2. The assertions q1 : i ≥ j, q2 : j ≥ k+ 1,
q3 : i ≥ k + 1, q4 : k ≥ 1 together imply the assertion q :
i ≥ 2 in the theory of linear arithmetic over integers. Note
that the subset {q1, q2, q4} by itself (and no proper subset
thereof) suffices to establish q and is thus a minimal support
set. The minimal support set is not unique. The set {q3, q4}
also forms a minimal support set.

We assume that the abstract domain Γ is a “Moore-closed
domain.” Specifically, each invariant ϕ is a finite conjunction

of a set of atomic predicates that are negation closed: ϕ :
q1 ∧ q2 · · · ∧ qm. Inductive invariants that consist of only
conjunctive assertions suffice, in general, to prove any given
property. Proofs involving disjunctions of conjunctions can
be transformed into purely conjunctive proofs on a suitable
elaboration of the original program [31].

Let η be a fixed-point map that establishes a property
〈nf , ϕ〉, i.e., η(nf ) |= ϕ. Since η is a fixed-point, for every
edge e : n1 → n2 ∈ Eπ, the following consecution condition
holds:

η(n1) ∧ ρe(V, V
′) |= η(n2)[V 7→ V

′] .

Our overall strategy to generalize η is to construct a finite
sequence of maps µ0, . . . , µN , wherein the initial map is de-
fined as:

µ
0(m) =

(

MinSupport(η(nf ), ϕ) m = nf

true m 6= nf

.

The initial map µ0 : Nπ 7→ L maps the node nf to the min-
imal support set that enables η(nf ) to prove the required
property 〈nf , ϕ〉 and maps all other nodes to true . The it-
erative process µ0 . . . , µN will converge onto a final map µN

that establishes the property 〈nf , ϕ〉, contains no redundant
invariants, and generalizes η.

The intermediate maps µi for i < N need not be inductive.
For instance, the map µ0 could fail the consecution property
for the incoming edges to the node nf . The maps µi, i ∈
[0, N ] have the following properties:

(a) µN is inductive and proves the property 〈nf , ϕ〉.

(b) For each µi, and for each node m, the assertion µi(m)
consists of a subset of conjuncts from η(m). As a result
η(m) |= µi(m).

(c) Each successive map incorporates at least as many con-
juncts from η as the previous, i.e, ∀ i < j,m ∈ Nπ . µ

j(m) |=
µi(m).

We propose a process called local repair to derive the map
µi+1 from µi.

Local Repair: We address the failure of µi for i < N to be
an inductive invariant by means of local repair. To perform
the local repair of µi, we strengthen µi(a) for some node a
to address the failure of consecution along an edge e : a→ b:
µi(a) ∧ ρa→b(V, V

′) 6|= µi(b). However, η(a) ∧ ρe(V, V
′) |=

µi(b) 2. Let Qa be a minimal subset of conjuncts from η(a)
that supports this implication. The local repair of µi(a)
w.r.t a→ b is µi+1(a) = MinSupport(η(a),pre(µi(b), e : a→
b). The application of MinSupport removes redundant con-
juncts from the assertion ηi(a). Thus µi+1(a) minimally
supports consecution across the edge a → b. Strengthening

2
∵ η(a) ∧ ρe(V, V

′) |= η(b) |= µi(b)



µi(a) for some node a may invalidate the consecution condi-
tion for some of its incoming edges. A new repair iteration is
then required to address this failure. This process converges
when µi is inductive, thus needing no further iteration.

Theorem 3.2. The process of repeated local repair ter-
minates in finitely many steps yielding a fixed-point map µ,
s.t. η(b) |= µ(b) for all b ∈ Nπ.

Example 3.3. Consider again the path π from Ex.3.1.
Abstract interpretation computes an invariant relating pro-
gram variables, including pLen, bLen, p, and L. The result
of the repair iteration for the invariant bLen ≤ pLen at node
14 leads to the map µ partially depicted as:

n 3 10 11 13&14
µ(n) bLen = 0 bLen ≤ pLen L ≤ pLen bLen ≤ pLen

pLen ≥ 1 bLen ≤ pLen
L = 1

The result µ of the repair iteration is used to extract a set
of sufficient edges, Sπ ⊆ Eπ that are sufficient for the proof
of Ψ.

Def. 3.2 (Sufficient Edges). An assignment e : a
x := e
−−−−→

b is a supporting edge w.r.t µ if µ(b) contains an invariant

assertion involving the variable x 3. A condition e : a
q(e)
−−→ b

is a supporting edge if µ(a) 6|= q(e) and µ(b) |= q(e).

A sufficient set for µ is the set of all such edges. The
definition of sufficient edges immediately implies a method
of deriving such a set of edges from a map µ.

Example 3.4. Continuing Ex.3.3, the sufficient edges cor-
responding to the proof over π consist of the assignments
1 → 3 and conditions 10 → 14 and 14 → 15.

3.3 Over-Approximate Symbolic Execution
In many cases, the path program may not contain loops,

or the loops present do not affect the property of interest. In
such cases, we propose to use symbolic execution along the
path program as an oracle. The power of symbolic execution
lies in the ability of fast SMT solvers to reason about the fea-
sibility of large formulae in theories such as linear arithmetic
or bit-vectors, and in case of infeasibility to quickly extract
minimal unsatisfiable cores. Note that standard symbolic
execution in general cannot reason about all paths through
a program loop. Therefore, we use an over-approximate sym-
bolic execution (described below). If it succeeds in proving
the property, we directly obtain a sufficient set. If it fails,
then we resort to a more general proof technique like ab-
stract interpretation.

An over-approximate symbolic execution of the path pro-
gram π constructs a formula ψπ in a suitable logical theory.
This formula is derived by composing the transition relations
along the edges in the path program π. Assignments be-
longing to loops are treated as assigning a non-deterministic
value, and conditions present in loops are treated as non-
deterministic choices. Finally, for the property 〈n, ϕ〉, we
assert ¬ϕ as a condition encountered at the node n.

Theorem 3.3. If the over-approximate symbolic execu-
tion of a path program π yields an unsatisfiable formula ψπ,
then any execution of the path program π satisfies 〈n, ϕ〉.

3Alternatively, the consecution post(µ(a), e) |= µ(b) should
cease to hold if the assignment is made non-deterministic.

Example 3.5. Symbolic execution of the “first” path pro-
gram π1 : 1 → 3 → 4 → 6 → 7 → {10, 11, 12, 13}∗ →
14 → 15, shown in Fig. 2(A) (originally from Ex.2.1) yields
the following formula obtained by composing the transition
relations of the individual edges:

2

6

6

4

ρ1,3 : (bLen0 = 0 ∧ pLen1 ≥ 1 ∧ pLen1 ≥ pLen0) ∧
ρ3,4 : (p0 = 0) ∧ ρ4,6 : (pLen1 = −1) ∧
ρ6,7 : (mode0 = 0) ∧ ρ7,10 : (i0 = 0) ∧
ρ10,14 : (L > pLen1)∧
ρ14,15 : (p0 6= 0 ∧ bLen1 > pLen1)

3

7

7

5

The subscripts on the variables occurring in the transitions
are derived from an SSA-form of the program ξ or using a
use-def chain analysis. Note that ψξ is infeasible, proving
that the path ξ satisfies Ψ.

Let ψ : ρ1∧· · ·∧ρm be an infeasible formula obtained from a
path program π. Furthermore, let R = {ρi1 , . . . , ρik

} be an
unsatisfiable core for the formula ψ and S = {ei1 , . . . , eik

}
be the subset of edges that yield the transitions in the set
R. The set S forms a sufficient set for the infeasibility of π.

Example 3.6. Returning to Ex.3.5, the unsatisfiable core
consists of the transition relation ρ3,4 along with ρ14,15. This
yields the sufficient set S = {3 → 4, 14 → 15}.

3.4 Interference Analysis
Thus far, we have focused on the analysis of a single path

program. Interference analysis extends the learning due to
sufficient edges extracted from a given path program, to
consider other path programs. Thus, interference analysis
operates on the entire CFG.

For a path program π, the sufficient set Sπ ⊆ Eπ repre-
sents edges relevant to the proof of the property along π.
Using Sπ, we seek to characterize the set of path programs
in the original CFG that are also guaranteed to satisfy the
property Ψ and are proven by the same sufficient set. To do
so, we also need to reason about potentially interfering as-
signments in the CFG. This corresponds to the component
of ExtractSupportSet from Algo. 1 that yields Iπ.

Example 3.7. In Ex.3.4, the process of local repair over
the path program π2 in Fig. 2(C) yields a sufficient set S2 :
{1 → 3, 10 → 14, 14 → 15}. The path π1 shown in Fig. 2(A)
traverses all of the edges in the set S2, yet the proof of the
property obtained along the sufficient set S2 does not apply
for this path. The reason is that the assignment pLen := −1
along the edge 4 → 6 invalidates the value of the variable
pLen that is initially defined in 1 → 3. Therefore the proof
in Ex.3.4 does not apply to this path.

This assignment disrupts the critical use-def chain be-
tween edges 1 → 3 where the variable pLen is defined and
10 → 11, where it is used. Our approach is to identify a set
of interference edges that can invalidate the use-def chains
in the sufficient set.

Def. 3.3 (Interfering Edge). An assignment edge e 6∈
Eπ assigning variable x is an interference edge for a suffi-
cient set Sπ ⊆ Eπ iff there exist edges e1, e2 ∈ Sπ wherein
e1 defines x, e2 uses x, and a path of the form e1 ; e ; e2
exists in the original CFG.

Returning to Ex.3.7, we verify that the edge 4 → 6 inter-
feres with the def-use chain e1 : 1 → 3 and the condition



e2 : 10 → 11. Given a path program π and the sufficient
edges Sπ, a set of interfering edges Iπ can be computed us-
ing a use-def chain computation and a control reachability
analysis on the original CFG. In principle, a finer seman-
tic criterion for interference can be formulated that checks
whether an interfering edge preserves the invariants related
to the sufficient set. However, in our implementation, the
syntactic criterion presented here is used due to its simplic-
ity.

Theorem 3.4. If a property Ψ : 〈n, ϕ〉 holds on a path
program π then it holds on any path program ξ : n0 ; n

visiting all the edges in Sπ and none of the edges in Iπ.

3.5 Blocking Clauses
We apply the oracles described in Secs. 3.3 and 3.2, in

sequence, to a path program π in an attempt to obtain a
sufficient set Sπ. If the oracle obtains a proof, then the
interference analysis described in Sec. 3.4 yields a sufficient-
interference pair (Sπ, Iπ) consisting of the sufficient edges
and their corresponding interference edges. We now describe
BlockingClause from Algo. 1 that applies these sets to rule
out other paths with the same proofs of correctness.

The formula BlockPaths(Sπ, Iπ) :
W

e∈Sπ
¬pe ∨

W

f∈Iπ
pf ,

encodes paths that either (a) do not visit every node of Sπ, or
(b) visit some node of Iπ. Adding this formula as a blocking
clause to ΛΠ avoids revisiting the same set of sufficient edges.
This provides proof-based learning to avoid the enumeration
of related path programs.

3.6 Handling Violations
We now describe how to handle violations as depicted in

Algo. 1 lines 8 – 9. One could halt the enumeration upon
encountering a violation, but it may be desirable to continue
the search for errors that stem from a different cause. To
this end, SMPP obtains a path slice for a violation along the
lines of Jhala and Majumdar [24]. As a result of path slicing,
the analysis obtains a set Sπ ⊆ Eπ of edges that cause the
error a set Iπ of edges that may interfere with the use-def
chains in Sπ. Our treatment of the pair (Sπ, Iπ) obtained
from a potential violation is identical to that obtained from
a proof through repair iteration.

Theorem 3.5 (Jhala and Majumdar [24]). Let Sπ, Iπ

be as computed by the path slicing technique. For any path ξ
that visits all the nodes in Sπ and none of the nodes in Iπ,
the path ξ violates the property 〈n, ϕ〉 iff π does.

3.7 Expanding Loops
A path program, corresponding to a control path in the

MSCC decomposition, treats loops monolithically. A given
loop is entirely part of a path program wherein arbitrarily
many iterations are considered, or alternatively no itera-
tions are considered. In the case when the entire program
consists of a single while loop (as is the case with control
programs), our technique is equivalent to running the oracle
over the entire program. While this can lead to imprecision,
this problem can be addressed by unwinding and unrolling a
given loop, so that our techniques can reason about specific
paths in the loop. Furthermore, our choice of an MSCC de-
composition was intended to create an acyclic graph related
to the CFG. Our approach can be generalized to use other
schemes for creating an acyclic graph such that the paths in
this graph are related to fragments in the original CFG.

4. IMPLEMENTATION

We have implemented our approach as a part of the F-
Soft program verification platform for C programs [21, 22].
F-Soft checks C programs for buffer overflows, string API
usage, NULL pointer dereferences, user-defined type-state
properties, memory leaks and so on. For a detailed de-
scription of our modeling of structures, pointers and arrays,
see [22].

F-Soft Framework
The F-Soft front-end flattens structure and union types into
simple types, constructs a memory model by providing magic
number addresses to storage locations, and instruments the
program for properties being checked. Pointer aliasing and
arithmetic are handled by modeling their effects over integer
variables based on a flow-insensitive points-to analysis.

Example 4.1. Fig. 3 illustrates the construction of a mem-
ory model in F-Soft based on the results of a points-to anal-
ysis. Our model replaces each local variable p in a function
f by a variable f : p with global scope. If f can be called
in a recursive context then such a variable is treated as a
summary variable.

Corresponding to each pointer variable p, we introduce an
instrumentation variable star(p) to track the contents of its
store. The value of star(p) is non-deterministic if p does not
point to a valid location. The expression ∗p is replaced by its
representative star(p). An assignment to the L-value ∗p is
rewritten into an assignment to all the variables x that p can
potentially point to. Such an assignment to x is guarded by a
condition p == &x that enforces the points-to relationship.
Further details and rationale are provided elsewhere [22, 21].

The initial CFG of the program is simplified consider-
ably through program slicing and constant folding. We then
perform a series of flow and context sensitive analyses such
as constant folding, interval analysis, and various numeri-
cal domain analyses. F-Soft implements many abstract do-
mains in a partially path-sensitive abstract interpretation
framework [30, 1]. The analysis uses these domains in com-
bination or in succession to attempt to prove a property,
each run of the analysis reusing the invariants obtained by
the previous runs. F-soft re-slices the program model based
on the properties proved by static analysis, reducing it fur-
ther. At the end of static analysis, the final CFG with its
unproven properties is provided as an input to the SMPP
implementation.

SMPP Implementation
Our implementation follows the description in Algorithm 1
with modifications to accommodate function calls.

The overall goal of treating function calls and returns is
to ensure that (a) the enumerated path programs properly
match calls and returns; and (b) different paths inside a
function can be traversed by a path program upon multiple
visits under different calling contexts. This is achieved by
first performing a context numbering of the function calls
in the CFG. The context numbering scheme described by
Whaley and Lam can be used for such a purpose [32]. Each
CFG edge e then yields multiple propositions p(e, c) based
on the different calling contexts c that the edge may be vis-
ited in. The rest of the encoding remains unchanged with



void allocM (int ** ptr, int n) {
1: ASSERT(ptr);
2: if (*ptr == NULL)
3: *ptr = malloc(n * sizeof(int));
4: ASSERT(*ptr);
}

void main() {
6: int a [100], * b =0;
7: if (rand())
8: b = & a;
9: allocM(&b,100);
11: ASSERT( LEN(b) == 100);

Points-To Graph

star(main : b) main : a alloc@3

main : b star(allocM : ptr)

allocM : ptr

global int alloc@3;
void allocM (int ** ptr, int n) {
1: ASSERT(ptr);
2: if (star(ptr) == 0) {
3: *ptr = malloc(n * sizeof(int));
3-0: star(ptr) = alloc@3;
3-1: LEN(star(ptr)) = n;
3-2: if (ptr == & main : b ) {
3-4: main : b = alloc@3;
3-5: LEN(main : b) = n;

}
3-6: alloc@3 += n;

}
4: ASSERT(*ptr);

Figure 3: A simplified illustration of F-Soft’s memory modeling for a program with pointers.

Table 2: Legend for abbreviations used in Table 3.
Abbrv. Remark
Blk Number of blocks at start of SMPP.
Prp Number of properties (asserts).
Prf Number of Proofs.
PP tot Number of path programs total (estimated).
PP enum Number of path programs enumerated by SMPP.
PP Proofs Number of path programs proved correct.
SE Symbolic Execution
AI Abstract Interpretation
RI Repair Iteration

the exception of function calls and returns, which now match
the calling block context with a return to the appropriate
call site.

Recursive calls are currently unwound up to a specified
depth and then replaced by a call to a function that returns
a non-deterministic value and has non-deterministic side-
effects on variables passed by reference. In practice, this
seems to have a minimal impact on the checking of runtime
errors.

The enumerated path programs are first analyzed using
over-approximate symbolic execution and then (if needed)
by the abstract interpreter and a local repair iteration. Cur-
rently, the support set and unsatisfiable-core computation
are performed using the SMT solver Yices [16]. A failure
to prove a property is currently reported as a potential vi-
olation. In the future, we plan to integrate our technique
with a model checker over path programs to concretize these
potential violations.

5. EXPERIMENTAL EVALUATION
We conducted experiments to address the following: (a)

how efficiently SMPP can verify common safety properties
that require path-sensitive reasoning, (b) the effectiveness of
proof-based learning for proving many program-paths safe
with the analysis of a few, and (c) the power and efficiency
of SMPP against another path-sensitive analysis, predicate
abstraction.

Fig. 4 presents our experimental setup using the F-Soft
framework. The experiments consist of processing the given
C program through our front-end which includes path-insensitive,
flow- and context-sensitive abstract interpretation through
numerical domains such as constants, intervals, and octagons.

Properties proved using these analyses are removed from
the CFG, followed by re-slicing and simplification. Thus all
properties on which SMPP is tested require some degree of
path-sensitive reasoning to validate.

Table 3 presents our experimental results on the Zitser et
al. benchmarks [34]. These programs consist of important
buffer overflow bugs found in commonly used programs such
as wu-ftpd, bind, nslookup and so on, along with the fixes
made to them. Note, however, that F-Soft automatically
instruments many more properties, as compared to the sin-
gle line of code that is marked in these benchmarks. The
abbreviations used in Table 3 are expanded in Table 2. Ta-
ble 3 reports the size of each program at the start of SMPP,
number of properties, the number of proofs (per oracle), and
the time taken (total, percentage for stages of the analysis).
Each property that is not a proof is reported as a potential
witness along with a sliced path program. For some these
potential witnesses, the symbolic execution reported a path
program slice that did not include a loop, indicating a con-
crete witness. The results demonstrate that SMPP can
prove a significant number of path-sensitive properties and
identify potential witnesses efficiently. Note that symbolic
execution is successful in proving a majority of the paths
efficiently, and that abstract interpretation is key for a sig-
nificant portion of properties that involve loops.

In Table 3, the Col. Path Programs (Tot) presents an esti-
mate of the total number of path programs, estimated using
SAT (in many cases, the estimator timed out after an hour)
while Path Programs (Enum) presents the number actually
enumerated by SMPP. The difference demonstrates the ef-
fectiveness of proof-based learning.

Table 4 compares the performance of SMPP against Blast
v2.5 [3]. To focus on the analyses (rather than on differ-
ences in program modeling), we printed the CFG on which
SMPP is applied as a C program, using goto statements
to enforce control flow. The variables in this program are
all integers (generated after the F-Soft front-end process of
instrumentation, memory modeling, simplifications, slicing
and static property proofs). Blast had to be invoked mul-
tiple times on the same program, each instance targeting
a different property. This was needed to avoid the default
aggregation of properties in Blast which failed with errors
in many instances. For fair comparison, we ran SMPP mul-
tiple times with each instance targeting a single property,
recomputing the SAT encodings and the sufficient sets from
scratch. The comparison in Table 4 shows that while Blast



Table 3: Experimental Evaluation on the Zitser et al. Benchmarks on CFG obtained after initial static
analysis. The path counter timeout was set to 1hr. Table 2 explains the abbreviations used here.

Name LOC Blk Prp Prf Path-Programs PP Proofs Times (seconds)
Orig. (tot) (tot) Total Enum Tot SE AI Tot SE AI RI

% % sec % % %
sendmail

s2-ok 1151 744 60 20 >1.2M 204 131 80 20 136.76 7 65 21
s2-bad 1132 721 58 21 >1.2M 259 195 86 14 139.17 10 77 3
s4-ok 776 263 12 6 12 12 6 0 100 10.98 2 95 1
s4-bad 713 284 30 15 30 30 15 0 100 30.29 1 96 0
s5-ok 837 179 14 13 14 2 1 100 0 0.5 40 0 0
s5-bad 810 182 17 16 17 2 1 100 0 0.5 40 0 0
s6-ok 317 121 8 3 8 8 3 0 100 13.18 0 98 0
s6-bad 315 121 8 3 8 8 3 0 100 14.91 0 98 0
s7-ok 1824 1357 174 59 >.5M 415 224 92 8 132.4 25 48 0
s7-bad 1816 1347 170 94 >.6M 412 271 92 8 135 24 53 0
bind

b1-ok 2177 670 55 10 >.4M 214 168 96 4 179.6 9 85 0
b1-bad 2117 662 54 9 >.4M 181 135 95 5 171.79 9 86 0
b2-ok 2706 957 80 11 >.4M 285 216 97 3 282.23 23 69 0
b2-bad 2688 955 80 11 >.4M 289 220 97 3 230.14 33 59 0
wu-ftpd

f1-ok 628 144 13 4 188 28 14 71 29 11.81 2 88 8
f1-bad 562 178 21 9 481 71 52 92 8 25.14 3 91 4
f2-ok 1208 119 9 5 5637 17 13 100 0 0.25 68 20 0
f2-bad 936 114 8 4 2175 14 10 100 0 0.19 72 16 0

front
end

memory
modeler

abstract
interp.

property
slicing

Boolean
encoding

path-program
analyzer

CFG
simplifier

sufficient
analysis

Front-End SMPP

CFG

Figure 4: Experimental setup: Front-end includes path-insensitive analyses, followed by SMPP.

can prove more properties than SMPP in some cases, our
coarser control-based abstraction can be much faster and
finds more violations in many cases. A majority of the fail-
ures by Blast resulted from an explosion in the number of
predicates on loops (termed “Gremlins”). Our abstract in-
terpretation followed by a proof-based learning seems to be
adequate for many such cases.

Analysis of Larger Benchmarks. Table 5 summarizes our
experimental results on larger case studies. The experimen-
tal setup remains the same as in Fig. 4. Program sources
were downloaded from the internet and first analyzed using
our tool SpecTackle [22], which infers likely preconditions
and post-conditions corresponding to pointer and array ac-
cesses in the functions 4. F-Soft (with SMPP) is then in-
voked for each function in the program. The preconditions
for the entry functions are assumed, whereas the precondi-
tions for called functions are asserted. In order to control
the CFG size, calls to functions not reachable from the en-
try function within a context of depth 4 were replaced by
non-deterministic choice. Table 5 shows the results. The

4These benchmarks along with the inferred preconditions
are available upon request.

SMPP approach is invoked only in those cases where there
are unresolved properties from the initial path-insensitive
analyses. This accounts for roughly 40% of the functions,
on average. The total time taken by the SMPP approach
is of the same order as that taken by the initial model con-
struction and static analysis phases. In almost all cases, the
overall analysis (initial+SMPP) terminates within the given
time limit of 45 minutes. Note that SMPP detects a signif-
icant number of extra proofs, over and above sophisticated
flow- and context-sensitive polyhedral abstract interpreta-
tion techniques. We did not run Blast on these larger case
studies, as it would have required significant manual effort
in instrumenting the CFGs generated by our front-end.

6. RELATED WORK

Abstraction Refinement . Our technique fits broadly into
the abstraction refinement paradigm. The Boolean formulae
representing all unexplored control paths is a coarse control-
flow abstraction. This abstraction is successively refined by
eliminating the path programs proved correct.

The main differences from typical abstraction refinement
approaches are: (a) Our abstraction is based solely on con-



Table 5: Results on Larger Open-Source Case-Studies
Name KLOC #Fun #Prec Front-End SMPP

Blk Time Prp Prf #Fun Blk #PP Prf. Time
avg sec tot tot tot timeout avg tot tot tot, sec

thttpd-2.25b 14.7 172 1901 263 5162 12161 11069 68 1 199 1622 512 1393
ssh-server-4.1 30.1 313 2047 190 7755 42773 41182 127 5 120 1681 564 1197
xvidcore 63.9 350 6127 520 13259 17219 12020 190 6 331 5220 2090 15728

Table 4: Comparison of SMPP with BLAST. Prp:
number of properties (asserts), Wit: number of con-
crete witnesses, and Fail: Blast failures. Note that
SMPP is run multiple times (once for each property)
for fairer comparison.

Name Prp SMPP BLAST
Prf Time Prf Wit Fail Time

s2-ok 60 20 2m10s 35 0 25 2h 7 m
s2-bad 58 21 2m25s 35 0 23 1h50m
s4-ok 12 6 0m11s 11 1 0 0h1.3m
s4-bad 30 15 0m31s 17 1 12 2h 8 m
s5-ok 14 13 0m00.5s 6 0 8 0h55m
s5-bad 17 16 0m00.5s 9 0 8 1h32m
s6-ok 8 3 0m14s 4 0 4 0h17m
s6-bad 8 3 0m15s 4 0 4 0h17m
s7-ok 174 59 28m 135 1 38 17h22m
s7-bad 170 94 27m 134 1 35 15h55m

trol locations. This is a very inexpensive abstraction to com-
pute, deferring the heavier work to an oracle for checking
correctness of a path program corresponding to the enumer-
ated control path. Other approaches typically use an explicit
representation of the control flow with data predicates, e.g.
Boolean programs [2, 3]. Such abstractions are more expen-
sive to compute than our abstractions. (b) Rather than a
refinement loop over false error traces (counterexamples) [8,
2], our refinement loop operates over path programs associ-
ated with the enumerated control paths. (c) Our approach
avoids divergences on loops in the program. This is because
we enumerate over an acyclic MSCC-based graph derived
from the CFG, wherein each control path corresponds to a
path program that can potentially capture infinitely many
control paths on the original CFG. It is well known that
effective handling of loops is a stumbling block for many
abstraction refinement techniques. Abstract interpretation
techniques using widening have been well-optimized to prove
common types of run-time properties, even in the presence
of loops. (d) The decomposition of the overall program into
multiple path programs allows flexibility in choosing a suit-
able oracle for individual sub-problems. In our implemen-
tation, we use symbolic execution to handle path programs
without loops, and abstract interpretation to handle path
programs with loops. Other oracles, such as predicate ab-
straction refinement, can also be used.

Our work is closely related to recent work by Heizmann et
al [20] . They propose an abstraction refinement scheme for
trace abstractions. An over-approximation of the set of pos-
sible traces is successively refined by means of an interpolant
automaton that recognizes a set of infeasible traces. The in-
terpolant automata are also derived from proof techniques
that can generate Floyd-Hoare style inductive invariants.
The main differences include: (a) our technique operates
on path programs as opposed to error traces; (b) we employ

a symbolic encoding using SAT to keep track of unexplored
path programs, as opposed to an explicit representation.

Lazy abstraction with interpolants by McMillan [26] pro-
vides a lazy scheme to refine an abstract model on demand,
by utilizing interpolants derived from refuting paths in the
program. This work also avoids the cost of an expensive ab-
straction. However, the refinement is driven by error traces,
the control flow is handled explicitly, and details of proof-
based learning are different from our technique.

The notions of path programs in our work are directly
inspired by the work of Beyer et al. [4]. That work also
employs path programs and invariants to avoid loop diver-
gences. In contrast, (a) we use Boolean formulae abstract-
ing just the control flow, as opposed to predicate abstrac-
tion (Boolean programs), and (b) we refine through block-
ing clauses rather than using invariants as predicates. Using
blocking clauses for refinement is potentially more scalable
than using invariants as predicates. First, invariant genera-
tion techniques typically generate a large set of invariants,
a majority of which are redundant. Beyer et al. [4] do not
attempt to minimize the set of invariants. Our work pro-
vides this reduction by means of the local repair iteration
discussed in Section 3. Second, each predicate added can
potentially double the complexity of model checking an ab-
straction, whereas our conflict clauses are small and seem to
have very little impact on the size of the Boolean formula
abstraction. Another approach is to use abstract interpreta-
tion to derive useful program invariants as a pre-processing
step, to avoid expensive refinement iterations over loops [23].

Bounded model checking of programs. Efficient SAT-based
techniques have been used for bounded model checking (BMC) [5]
of programs in tools such as CBMC [7], F-Soft [21], and for
scalable summary-based analysis in Saturn [33]. These tech-
niques automatically utilize SAT-based conflict analysis and
learning for pruning the search space. However, they suffer
in the presence of loops, which require deep unwindings that
result in large SAT problems. Furthermore, BMC typically
handles all paths up to some bounded length as a single
monolithic problem. In contrast, we encode only the con-
trol paths as a SAT formula, which is much smaller than a
typical BMC formula that encodes unwindings of a program.

Abstract interpretation and path-sensitive analysis. Other
approaches to path sensitive analysis include ESP [14], trace
partitioning [25], elaborations [31], amongst many others.
These techniques employ heuristics to control the trade-off
between performing a join operation or a logical disjunc-
tion at the merge points in the CFG. However, the join vs.
disjunction choice is inferred in our SMPP scheme by the
disjunction-based decomposition over control paths.

7. CONCLUSION
We have presented the Satisfiability Modulo Path Pro-

grams (SMPP) approach to program analysis, which lifts to



the architecture of SMT solvers to path-sensitive program
analysis. We have demonstrated it to be effective in analyz-
ing real-world programs.
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