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Abstract

Path-sensitivity is often a crucial requirement for veirfy safety
properties of programs. As it is infeasible to enumerate ama-
lyze each path individually, analyses compromise by squmairg-
ing information about executions along multiple paths. ideer,
this frequently results in a loss of precision. We presentogam
analysis technique that we c8latisfiability Modulo Path Programs
(SMPP), based on a path-based decomposition of a prograsn. It
inspired by insights that have driven the development of enod
SMT (Satisfiability Modulo Theory) solvers. SMPP symboliga
enumerates path programs using a SAT formula over contgg®d
in the program. Each enumerated path program is verifiedusin
oracle, such as abstract interpretation or symbolic exacuto ei-
ther find a proof of correctness or report a potential violatilf a
proof is found, then SMPP extracts a sufficient set of coretdgles
and corresponding interference edges, as a form of progdda
learning. Blocking clauses derived from these edges arechack
to the SAT formula to avoid enumeration of other path proggam
guaranteed to be correct, thereby improving performandesaal-
ability. We have applied SMPP in the F-Soft program verifaat
framework, to verify properties of real-world C programsathe-
quire path-sensitive reasoning. Our results indicate ttatpreci-
sion from analyzing individual path programs, combinedtfiteir
efficient enumeration by SMPP, can prove properties as weéti-a
dicate potential violations in the large.

Categories and Subject Descriptors:D.2.4(Software/Program
Verification):Assertion checkers, F.3.1(Specifying anerilying
and Reasoning about Programs):Assertions, F.3.2(Sersaofi
Programming Languages):Program analysis.

Terms: Languages, Verification

Keywords: Program Analysis, Abstract Interpretation, Path Pro-
grams, Symbolic Execution, SATisfiability Solvers, SMT\soik.

1. Introduction

Path-sensitivity is often a crucial requirement for veirfy safety
properties of programs. As it is infeasible to enumeratearalyze
each path individually, analyses compromise by soundlygimgr
information about executions along multiple paths. Howgtrgs
results in a loss of precision, which may lead the analysiteter-
mine falsely that a violation is possible. We present tBatisfia-
bility Modulo Path ProgramgSMPP) approach to program anal-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2010, Madrid, Spain.

Copyright(© 2010 ACM 978-1-60558-479-9/10/01. .. $10.00

Sriram Sankaranarayanan

University of Colorado, Boulder, CO.
srirams@colorado.edu

Franjo lvancic  Aarti Gupta

NEC Laboratories America, Princeton.
{ivancic,agupta}@nec-labs.com

ysis for property verification. Our approach decomposesvére
fication of a given program to verification of its compongaith
programs[4]. A path program represents a set of program execu-
tions, all of which traverse the same set of edges in a cofitnel
graph, but may vary in the number of iterations of loops/reences
encountered. Each path program in a given Control Flow Graph
(CFG) is associated with a simple path in the MSCC (Maximal
Strongly Connected Component) decomposition of the CFG, ob
tained by compacting loops and recurrences in the program in
components [9]. Whereas the number of control paths in tigg-or
nal CFG may be infinite (due to loops and recurrences), the MSC
decomposition is acyclic with finitely may control paths.vde
theless, this number can be prohibitively large for reaHd/@ro-
grams. In our experiments, we have obserm@lions of path pro-
grams even for moderate-sized CFGs with about 500 contgasd
Thus an explicit enumeration of path programs is not feasibl

We therefore proposa SAT-based symbolic encodiofj the
set of control paths associated with path programs. Staftom
a SAT formula that represents all unexplored control paththée
MSCC graph that can reach an error location, we enumerata-a co
trol path and use aoracle to verify the corresponding path pro-
gram. Each enumerated path program can be analyzed usioaf “pr
techniques” such as abstract interpretation [11, 12], alsifica-
tion techniques” such as bounded model-checking that Isdarc
concrete error traces of violations [5]. We assume (w.l)dltat a
verification oracle presents Floyd-Hoare style proofs anftirm of
inductive invariants, or concrete witnesses upon viotatio

We present groof-based learningechnique that avoids enu-
merating a large set of “related” path programs by reusiegptioof
of a single path program. The proof-based learning teclniu
tracts a set ofufficient edgefrom a given path program and an
associated set afterference edge®©ur technique guarantees that
any other path program that also traverses the same setfef suf
cient edges and none of the interference edges is also to®c
a result, our approach extends tbere reasondor the proof of
a given path program to apply to a large number of closelytedla
path programs. The sufficient and interference edges aogledas
blocking clausesand added back to our SAT formula. We continue
to enumerate solutions to this SAT formula until no more Bohs
can be found. Using proof-based learning significantly cediuthe
total number of path programs enumerated in SMPP, in the most
dramatic case frommillionsto hundreds

Our SAT encoding can be viewed as a control-flow abstrac-
tion with refinement performed by proof-based learning dfisu
cient/interference edges in the CFG. We do not encode otttlire
abstract data values. Reasoning over data is performecebyetit
fication oracles. Note also that our enumeration operatesmath
programs and not program traces.

We present an instantiation of our approach that utilizesativ
stract interpretation framework as the oracle of choice rove
properties over path programs. The inductive invariantsiold
through abstract interpretation are used to extract sessifitient



edges. We also present the use of over-approximate symbaic
cution as another oracle that is efficient over path prognaitieout
loops or wherein the property to be proved is independenhef t
loops. Itis possible to use other known techniques as @asleh
as lazy abstraction with interpolants [26] or predicateti@asion
refinement [2, 3, 17].

We implemented the SMPP technique in the F-Soft program
verification framework [21]. The implementation uses a sgtith
execution engine based on Yices [16], and abstract intexjioa
engines using a succession of numerical domains — intefi@]s
octagons [27], symbolic intervals [30] and polyhedra [18¢ eval-
uated our implementation by using it to verify array overfland
string library usage properties for C programs. We used iplybl
available benchmarks — smaller programs in Zitser et al}, [@4d
larger open source programs suchopensshthttpd andxvidcore
Our evaluation shows that SMPP can derive proofs of progeerti
that are beyond the reach of path-insensitive static aisa(gseady
implemented in F-Soft), and it also identifies numerous piidé
violations. In comparison to the BLAST tool (using predeaib-
straction with interpolant-based refinement [3]), SMPP peove
a majority of the properties proved by BLAST and identify add
tional violations in these programs, within a fraction oé ttime
taken by BLAST.

Analogy with SMT Solvers:To prove safety properties, SMPP
integrates program analysis oracles that prove propesissut
individual path programs with a SAT solver, which is used to
enumerate over a Boolean abstraction of the control-flowhef t
program. This is similar in spirit t@atisfiability Modulo Theory
(SMT) solvers [15, 16, 29]. To check the satisfiability of aem
formula, an SMT solver integrates theory solvers (that khbe
satisfiability of conjunctive formulas over a theory) withSAT
solver that enumerates over a Boolean abstraction of thesent
formula.

To solve a particular conjunctive formula, an SMT procedure
employs theory solvers as oracles. Similarly, SMPP usefioger
tion techniques over path programs as oracles. In fact, weusa
different oracles for different path programs, based oreoksd
characteristics (e.g. whether or not a backward slice the.pprop-
erty contains loops). Furthermore, the characteristidth®bracles
affect the characteristics of our overall scheme (sourgnesm-
pleteness, performance, etc.).

Theory-based learning in SMT solvers adctanflict clauses
back to the SAT solver to refine the Boolean abstraction. émnal
gously, SMPP utilizes proof-based reasoning to derive cefft
edges and interference edges. These are added as blockirsgs!
to a SAT formula to block other enumerations by the SAT solver
By relying on a Boolean formula abstraction, we can apply SAT
based decision heuristics and blocking clauses that cae the
symbolic search over control paths in a property-driven mean
This is potentially advantageous compared toaapriori fixed
search order on the CFG such as depth-first search (as iratypic
symbolic execution based approaches) or breadth-firstis¢as in
typical BMC-based approaches).

The main contributions of this paper are: (a) SMPP: An ap-
proach for symbolic enumeration of path programs, using & SA
solver and proof-generating oracles for verifying pathgoems.
(b) Proof-based learning techniques to identify and re-aiseet
of sufficient edges that serve as proofs of correctness. (@
crete instantiation of the SMPP approach, where we useaalbstr
interpretation over different abstract domains and syiatetecu-
tion as oracles. (d) An experimental evaluation of the imp@ata-
tion, which shows that SMPP can prove more properties thén pa
insensitive static analysis and improve performance ovedipate
abstraction refinement. In particular, SMPP avoids the obsin

Algorithm 1 : Satisfiability Modulo Path Programs.

Input: II : Program CFGY : (ny, ¢) assertion to be
verified.
Result Alarms : Set of possible path programs violating

property.

begin
IIp := MSCCDecomposition(II)
An = SatEncodePaths(HD,noD,n?)
while ( IsSatisfiable(Ar) ) do
m := SolveAndObtainPathProgram(Am)
n := AnalyzePathProgram(m, ) /* Oracle */
if (n(n) = ¢) then /* Proof obtained */
|  (Sx,Ix) := ExtractSufficientSet(r,n)
/* violation obtained

(S, Ir) := PathSlice(m, n, )
Alarms := Alarms U {Sx}

An := An A BlockingClause(Sx, Irx)

~No oA WN P

else */

11

end

expensive data abstraction-refinement process and diveggeon
loops, while fully utilizing advances in SAT/SMT solvers.

1.1 SMPP Approach At a Glance

Algorithm 1 presents the main steps of the SMPP algorithm. We
now step through it with an example. Fig. 1 presents a simple
imperative program fragment that computes a buffer lergttn
based on an input pointerits lengthpLen, and an extra flaghode.

The CFG representation is also given (also Cf. Example ZH¢.
goal is to prove the unreachability of the CFG node labelgd
corresponding to the program assertion at liieFig. 2 depicts the
major steps in the application of SMPP to the program, desdri

as follows.

Extract an unexplored path programSMPP first constructs the
MSCC decompositiodl, of the program and encodes the set of
all paths inllp (Algo. 1 lines 1 —2). It then chooses an unexplored
path from this set (line 4), from which it constructs pathgram
(A), illustrated as the path program highlighted in Fig. 2(&on-
sidering just the nodes and edges that lie on this path pmygite
unreachability ofl 5 can be proved by @onstantsdomain analysis
(Algo. 1 lines 5-6).

Extract a set of sufficient edgesthe proof of unreachability of
nodel5 for path program (A) involves thimvariant p = 0 that is
valid at nodel3 along the path program (A) (the invariashbes not
in fact, hold for the program as a whole). SMPP applies a tigcien
(detailed in Sec. 3.2) that pinpoints the key “reason” fer ithvari-
ant. Such a “reason” takes the form of a sesofficient (control-
flow) edgesThe set of sufficient edges (denot&g) corresponding
to the proof in the first path program is shown in Fig. 2(B).

Any path program froml to 15 that traverses all of the edges
in setS; will satisfy the property. Note that this includes pathstha
traverse the loops in the program arbitrarily many times afl.w
Computing sufficient sets therefore allows us to extend ooofp
along a single path program to multiple path programs. Ttep s
corresponds to Algo. 1 line 7.

Extract another path programSMPP now seeks a path program
that visits edges such thatS; Z E. The search for such a path
program is performed using a SAT solver (Algo. 1 lines 10 a8
yields the second path program, as shown in Fig. 2(C). Nog, th
analysis must directly reason about the loop in this patiyiam



0: proc. foo (int * p, int pLen, int mode)
1 into,L :=1,bLen :=0;
2 if (pLen < 1) return;
3: if (p ==NULL)
4. pLen := -1;
5: end-if
6 if (mode)
7 o :=1;
else
8: o =0
9: end-if
10: while( L < pLen)
11: if (0> 0)
12: bLen := L-o;
13: L=2*L,
14: end-while p#0&
15:  ASSERT(!p|| bLen < pLen); bLen > plLen

,

) L
L > pLen L < pLen
D

*o >0
~

p#[0 &

bLen ¥ pLen bLen ¥ pLen

1
p #[0 & :
1
1

Figure 2. Path programs enumerated on running example by SMPHRiitial path programB: Sufficient edges for (A)C: Second path
program; and: Sufficient (shaded) and interference (zigzag) edges far (C)

to prove unreachability of nodé5. It can do so automatically by SMPP then extracts a set of sufficient edgedor the invariant
using theoctagon domain analyzgR7] to establish the invariant  (detailed in Sec. 3.2), shown in Fig. 2(D). It also perfornms a
bLen < pLen at nodel4 (Algo. 1 lines 5 - 6). This invariant proves  interference analysis faf, over the entire program, to discover

correctness of this path program. The loop invarisingn < plLen that the assignment fo_en on edget — 6 may cause some paths
computed at nod&0 suffices to prove the property at notie Note that traverse all edges ish not to preserve the property. This edge
that this invariant is independent of the variable thus forms theinterference sefor sufficient setS», denoted as

I, = {4 — 6} (Cf. Sec. 3.4). Any path program that traverses



all the edges irb> but not the interference edge— 6 satisfies the
property.

Termination: SMPP has now computed sufficient-interference
pairs of sets(S1,0) and (S2, I2) , extracted from the two path
programs consideredEverypath program is covered by these sets,
i.e, each program path must either traverse every edds inor
traverse every edge if> while traversing no edge ifi;. Recall
that the edges that are part of the loop ~~ 10 are part of an
MSCC and thus not considered in enumerating path programs. A
a result, by examining out of the4 possible path programs, SMPP
has established the property. This computation occurs/Alger. 1
lines 10, 3, 11.

Symbolic Encoding: Fig. 2 consists of a small program with a

few path programs. In practice, we have observed CFGs with as nodesN = {n{,..

few as500 edges that exhibihillions of path programs. Therefore,
reasoning about sets of path progams explicitly is not Besi

We overcome this difficulty by means of a symbolic encoding
of control paths associated with path programs. The amsalysts
a succinct propositional (Boolean) encoding that supptbesfol-
lowing operations efficiently:

in the CFG are numbered according to the corresponding abel
the program. We wish to prove the unreachability of noSlevhich
corresponds to th&ailure of the assertion in the corresponding line
of the program. However, path-insensitiveanalysis is unable to
prove the property. The join operation at line 5 may lose #iation
betweerp andpLen.

2.1 Path Programs

Given a graphG : (N, E), a strongly connected component
(SCC) consists of a subset of nodeésC N such that for each
ni,n2 € C, there exists a path from; to n, and vice-versa. A
strongly connected compone6t is maxima{MSCC) iff no strict
superset ofC is a strongly connected component. The MSCC-
decomposition of a grap@ is a directed, acyclic grap¥ p whose
.,n%} correspond to each of the MSCC%,
...,Cm of G and whose edges conneet andn{ if and only if
some node irC; connects to some node @i; by an edge inE.
The MSCC decomposition of a graph can be computed in linear
time [9]. The CFG in Fig. 1 contains a non-trivial MSCC cotisig

of the node10, 11, 12, 13}.

Def. 2.1 (Path Program [4])LetII» be the MSCC decomposition

1. Encode all of the control paths between two nodes (in the of 3 CEGIL. Apath programr : ng ~» n? is a simple path idlp
MSCC graph) as a Boolean formula. Such an encoding is linear from the initial nodend to a noden®. The path programr naturally

in the size of the CFG. Sec. 3.1 details this encoding.

2. Given a setP of unexplored control paths, represented as a
Boolean formula\ p, and a sufficient-interference pair of edge
sets(.S, I), subtract all of the paths fromR that traverse all the
edges inS and none of the edges in Subtraction is performed
by addingblocking clause$o the formulaA p.

3. Determine that there are no control paths left to examine,
produce an unexplored path. This is equivalent to checlting t
satisfiability of the updated Boolean SAT formula.

corresponds to a subset of nodes and edgds,inbtained as the
union of the MSCCs traversed hyand the edges that connect
them.

2.2

Let X denote the universe of concrete program stateslabé a
domain of assertions over the program variables orderechby t
logical implication=. Each assertiop € T represents a set of
states[e] € 2. An example of an assertion language used in
practice is linear arithmetic formulae over the integeiialles of a

Inductive Invariants

SAT solvers have made impressive advances in the past decadeprogram.

enabling them to support these operations for formulas tith-
dreds of thousands of variables and clauses. In this respect
encoding is empirically shown to be quite amenable to exdsti
solvers such as ZChaff [28], even for large programs.

2. Preliminaries

We first present our approach on single-procedure prograitis w
out function calls. We assume that all variables are of tppeger.
The handling of function calls (including recursion), nioeger
types (especially pointers) and other features presenpingram-
ming language such as C is discussed in Sec. 4. Control-flaphgr
(CFG) are used to represent imperative programs.

Control-Flow Graph A CFGII = (N, E,V,p,no,ny¢, 0O) is a
tuple whereN is a set of nodesfy C N x N is a set of edges,
no € N is an initial locationny € N is a final location, and”

is a set of program variables. Each edgec E is labeled by a
transition relationp.(V, V'), a first-order assertion oveurrent-
state variables V' and next-statevariables denoted by’. The
first-order assertio® specifies the initial values of the program
variables.

An execution of the CFG starts at the initial location witftial
values to the program variables that sati®fyand terminates when
it reaches the final location. program assertior{n, ¢)) forn € N
and assertion) over the program variables, requires thahold
whenever control reaches the nade

Example 2.1.Fig. 1 shows a CFG of a program over integer-
valued and pointer variables (note that for this example,are
only interested in the integer value of the pointer itsdlf)e nodes

Inductive Map For a setN of nodes in a control-flow graph, a
flow-sensitivanapn : N — I" maps each node to a set of program
states, represented as a formula. Such a mapdisctiveiff the
following conditions hold:

© = n(no)
foreach edge : n; — nj,
n(ni) Ape(V, V') | n(ng)[V — V']
In order to establish a property:, ¢) for a given program, we
seek an inductive mapsuch that)(n) = ¢.

Initiation
Consecution :

2.3 Abstract Interpretation

Abstract Interpretation is a powerful and general framewimr
systematically computing inductive maps for a given pragran
inductive map is a fixed point of a monotone operator in a bieta
abstract domainAn abstract domain is a latti¢€’, =) that usually
denotes an assertion language used to represent setsesf Jtae
abstraction functiomr : 2 — T and concretization function
v : T — 2% link elements of the abstract lattice to concrete sets of
states. They are assumed to forr@alois Connectiofl12].

To compute an inductive map for the sit of control-flow
nodes, with initial nodex, we start from an initial map® : N —
I" and iterate to produce a sequence of mgps)?, . . ., wherein

n°(n) : {

The iteration terminates whem € N. n"+t!(n) = n(n). Conver-
gence is guaranteed if the domdinsatisfies theascending chain

T, ny = Nno,

Llnaﬂnb post

T, n = no,

i+1(
1, else

(772 (’I'La),

Ng — Np)

N (n)



condition Failing this,wideningand narrowing operators can be
used to guarantee convergence, i the fixed point obtained upon
convergence, thef o 7 is an inductive invariant map.

Abstract domains such as theerval domain10], octagon do-
main[27], symbolic interval§30] andpolyhedra[13] can be used
to compute useful invariants over the program variablegdeoto
prove properties of interest. Together, these domainesemt vari-
ous levels of trade-off between the strength of the invasiagainst
the complexity of the analysis.

3. Path Program Enumeration

LetII = (N, E,V,p,no,nys,0) be a control flow graph with
MSCC decompositiofilp : (Np, Ep). LetW : (n, ) be a prop-
erty under verification. We present a procedure for symbdiic
enumerating all control paths fromy to n¢, verifying ¥ along

each associated path program.

Consider Algorithm 1, which shows the overall verification
algorithm. The major steps of the algorithm are (a) encodireg
set of (unexplored) control paths as a Boolean formiuia(line 2),
(b) iterating over the solutions ofr (line 3), (c) analyzing each
path program associated with the current solution (line &),
extracting sufficient sets, if correct (line 7), otherwisantling
violations (line 8). The rest of this section presents the &eps
in detail®.

3.1 SAT Encoding

Path programs are representedsiimple pathsn the MSCC graph
IIp of the CFGII. We now present a Boolean SAT-based encoding
of all control paths i1 . This encoding corresponds to an imple-
mentation ofSatEncodePaths andSolveAndObtainPathPrograms
used in Algo. 1.

For each edge in IIp, the propositional variablg. indicates
if e belongs to the path program. Letit(m) denote the outgoing
edges inEp for a nodem € Np andin(m) denote the incoming
edges. Letrc(e) andtgt(e) denote the source and target nodes of
an edgee € Ep, respectively. For a sef; C Ep, the formula
exactlyOne(FE;) denotes that exactly one edge frdt occurs in
a pathiexactlyOne(Es) : V. cp Pe N A. jep, ey Pe = 7Pf-
The formulaAq is the conjunction of all Boolean constraints given
in Table 1. The constraints shown in the table enforce thgt an
path program has (a) a visit to the initial nodg, (b) a visit to the
final nodeny, (c) exactly one incoming edge to each nedésited
(with the exception ofi), and (d) exactly one outgoing edge from
a noden that is visited (with the exception afy).

Theorem 3.1. The Boolean formuld; encodes all paths between
ng andny in the MSCC decompositidip of IT.

3.2 Extracting Sufficient Sets

We now describénalyzePathPrograms andExtractSufficientSet
as used in Algo. 1. Ldil be the original CFGn be the initial node
and(ny, ¢) be the property we wish to establish. Given a path pro-
gramm : ng ~ ny, SMPP analyzes using a proof-generating
oracle. If the property holds over, we extract a set of sufficient
edges. Otherwise, failure to prove the property indicatestantial
violation — details of handling violations are provided iacS3.6.
We now present the extraction of sufficient edges from proofs
LetII. : (N,, Ex) represent the subset of the original CFG
induced by the path program The proof-generating oracle yields
a proof of safety in the form of an inductive invariant map éfix
point)n : N, — T overG.. The mapy maps each node € N
to an invariant(n), valid over all executions along. If n(n) = ¢,

1Proofs of key results are provided in the extended versiothisf paper
available from the authors upon request.

then none of the executions leading fremto n; along the nodes
and edges i lead to a violation.

We extract sufficient edges which form the “core reason” be-
hind our proof as follows: (A) we first prune awaynnecessary
invariantsfrom the mapn using the notion of a minimal support-
ing set. Removing such invariants is essential to obtainnapeat
set of sufficient edges. (B) We then compute an inductive niap
that supports this set. (C) From, we directly extract a sufficient
set of edges.

Example 3.1 (Unnecessary Invariants)Consider the ‘Second
path programm2 shown in Fig. 2(C):

1—-3—6—8—1{10,11,12,13}" — 14 — 15.

A polyhedral domain abstract interpreter computes theofell
ing invariant:

p#0 A pLen>1A
2-blLen < LA bLen < plLen A
mode#0 AN o=1

This invariant establishes the required unreachabilitynofle 15
for the path programrs. Nevertheless, the entire invariant st
required for the proof. The sole invariabten < pLen (underlined
above) suffices. The remaining invariants are extraneous.

n(14) :

In principle, we can use other techniques that (attemptéo} g
erate minimal sets of invariants required to prove a giveoppr
erty [6, 18, 19]. These techniques can generate strongamtarfor
small but complex loops. However, they are currently uradlé
for generating simple global invariants for large path pamgs. We
provide a generic scheme described below utilizing a fixedtpo
wherein the fixed point can be computed in any way (including
predicate abstraction over path programs).

Note. Removing unnecessary conjuncts just at the property
node does not suffice. The removal of conjuncts frg(3) in
the example above now permits us to remove conjuncts from its
predecessor node invarianf12), in turn spreading through the
entire CFG.

Generalizing Invariants

To describe how to generalize an invariant map, we first dascr
the computation ofminimal support setsa key primitive. LetQ :
{q1,...,qm} andq be assertions over program variables in a suit-
able logical theory, such that A g2 A ... A gm E q.

Def. 3.1 (Minimal Support Set)A subsetQ’ C ( supportsthe
inference/\ , .o ¢i = q iff /\quQ/ q; | q. A support se@Q’ is
minimal iff no proper subset af)’ can support the inference.

For 1 |= 2, let MinSupport(t)1, ¢2) denote the set of mini-
mal supporting conjuncts it; that imply2. An implementation
of MinSupport (throughunsatisfiable corgds available in existing
solvers for many useful theories such as linear arithmetic.

Example 3.2.The assertiongs : ¢ > j, q2 : j > k + 1,

gs: 1> k+1,qs : k> 1together imply the assertion: i > 2

in the theory of linear arithmetic over integers. Note that subset
{q1,92,q4} by itself (and no proper subset thereof) suffices to
establishg and is thus a minimal support set. The minimal support
setis not unique. The séis, g4} also forms a minimal support set.

We assume that the abstract dom&iis a “Moore-closed domain.”
Specifically, each invarianp is a finite conjunction of a set of
atomic predicates that are negation clogedigi A g2 - - - Agm. IN-
ductive invariants that consist of only conjunctive asses suffice,
in general, to prove any given property. Proofs involvingjainc-
tions of conjunctions can be transformed into purely cocfive
proofs on a suitablelaborationof the original program [31].



Table 1. Boolean encoding of the set of all path programs (i.e, pattwigh the MSCC DAG).

Fact

Encoding

no should be visited
ny should be visited

Target of edge has exactly one successor (except fpr

Source of each edge has exactly one predecessor (excepf)for A

exactlyOne(out(no))
exactlyOne(in(ny))
[pe = exactlyOne(in(src(e)))]

e€Ep, src(e)#ng
[pe = exactlyOne(out(tgt(e)))]

e€Ep, tgt(e)#ny

Let n be a fixed-point map that establishes a propérty, ©),
i.e.,n(nys) E . Sincen is a fixed-point, for every edge: n, —
ng € Er, the following consecution condition holds:

n(na) A pe(V,V') E n(n2)[V = V']
Our overall strategy to generalizgs to construct a finite sequence

of mapsi’, ..., 1, wherein the initial map is defined as:
MinSupport(n(ny), m=mn
1O (m) = {t pport(n(ns),¢) I
rue m# ny

The initial mapu® : N, — L maps the node:; to the mini-
mal support set that enableén ) to prove the required property
(ny, ) and maps all other nodes toue. The iterative process
w10 ..., ™ will converge onto a final map” that establishes the
property(n¢, ¢), contains no redundant invariants, and generalizes
.

The intermediate mapg® for i« < N need not be inductive.
For instance, the map” could fail the consecution property for the
incoming edges to the noder. The maps:’, ¢ € [0, N] have the
following properties:

(@) ¢ is inductive and proves the property, ©).

(b) For eachy’, and for each node, the assertiop’ (m) consists
of a subset of conjuncts from(m). As a resultn(m) =
pt(m).

(c) Each successive map incorporates at least as many ctsjun
from 7 as the previous, i.e¥ i < j,m € Nr. /' (m) =
pt(m).

We propose a process calltmtal repair to derive the map.

from p*.

Local Repair: We address the failure i’ for i < N to be an
inductive invariant by means dbcal repair. To perform the lo-
cal repair of:?, we strengthenu(a) for some node: to address
the failure of consecution along an edge: a — b: u'(a) A
pa—s(V, V') = 1i'(b). However,n(a) A pe(V,V') = u'(b) 2.
Let Q. be a minimal subset of conjuncts froffa) that sup-
ports this implication. Thdocal repair of u(a) w.rta — bis
T (a) = MinSupport(n(a), pre(u’(b),e : a — b). The appli-
cation ofMinSupport removes redundant conjuncts from the asser-
tion n’(a). Thus k'™ (a) minimally supports consecution across
the edgen — b. Strengthening:‘(a) for some nodex may in-
validate the consecution condition for some of its incomeaiges.

A new repair iteration is then required to address this failThis
process converges wheit is inductive, thus needing no further
iteration.

Theorem 3.2. The process of repeated local repair terminates in
finitely many steps yielding a fixed-point maps.t.n(b) = wu(b)
forall b € N,.

Example 3.3.Consider again the pathr from Ex.3.1. Abstract
interpretation computes an invariant relating program iednles,

2 n(a) A pe(V, V') = n(b) = i (b)

including pLen, bLen, p, andL. The result of the repair iteration
for the invariantbLen < plLen at node14 leads to the map.
partially depicted as:

n 3 10 11 13&14
wu(n) | bLen =0 | bLen < pLen L < pLen bLen < pLen
pLen > 1 bLen < pLen
L=1

The resulty of the repair iteration is used to extract a set of
sufficient edgesS,: C E. that are sufficient for the proof of.

Def. 3.2 (Sufficient Edges)An assignment : « —— bis a
supportingedge w.r.ty if p(b) contains an invariant assertion

involving the variable: . A conditione : a 2, pisa supporting
edge ifu(a) I q(e) andu(b) = q(e).

A sufficient sefor p is the set of all such edges. The definition
of sufficient edges immediately implies a method of derivugh
a set of edges from a map

Example 3.4.Continuing Ex.3.3, the sufficient edges correspond-
ing to the proof overr consist of the assignments— 3,12 — 13
and 13 — 10 along with conditionsl0 — 11, 10 — 14 and

14 — 15.

3.3 Over-Approximate Symbolic Execution

In many cases, the path program may not contain loops, or the
loops present do not affect the property of interest. In stades,

we propose to use symbolic execution along the path progeam a
an oracle. The power of symbolic execution lies in the abitit

fast SMT solvers to reason about the feasibility of largerfolae

in theories such as linear arithmetic or bit-vectors, andame of
infeasibility to quickly extract minimal unsatisfiable es: Note
that standard symbolic execution in general cannot reabonta

all paths through a program loop. Therefore, we useowser-
approximate symbolic executigdescribed below). If it succeeds
in proving the property, we directly obtain a sufficient sktit
fails, then we resort to a more general proof technique |bsract
interpretation.

An over-approximate symbolic execution of the path program
constructs a formula . in a suitable logical theory. This formula
is derived by composing the transition relations along tthges in
the path programr. Assignments belonging to loops are treated as
assigning a non-deterministic value, and conditions prteisdoops
are treated as nondeterministic choices. Finally, for traperty
(n, ), we assertp as a condition encountered at the nede

Theorem 3.3.1f the over-approximate symbolic execution of a
path programr yields an unsatisfiable formula,, then any exe-
cution of the path program satisfies(n, ¢).

Example 3.5. Symbolic execution of the “first” path program :
1—-3—-4—6—7— {10,11,12,13}* — 14 — 15, shown
in Fig. 2(A) (originally from Ex.2.1) yields the followingrimula

3 Alternatively, the consecutiopost (ii(a), e) = u(b) shouldceaseo hold
if the assignment is made non-deterministic.



obtained by composing the transition relations of the idiial
edges:

p1,3 : (bleng = 0 A pLen; > 1 A plLen; > plLeng) A

p3,4: (Po =0) A pse : (pben; = —1) A

pe,7 : (modeg = 0) A p7,10 : (lo=0)A

010,14 : (L > pLenl)/\

p14,15 : (po # 0 A bLeny > plLen)
The subscripts on the variables occurring in the transisicare
derived from an SSA-form of the progrgror using a use-def chain
analysis. Note thap is infeasible, proving that the pathsatisfies
v,

Lety : p1 A--- A pm be an infeasible formula obtained from
a path programr. Furthermore, letR = {p;,,...,pi, } be an
unsatisfiable cordor the formulay and S = {e;,,..., e } be
the subset of edges that yield the transitions in théisdthe setS
forms a sufficient set for the infeasibility af.

Example 3.6.Returning to Ex.3.5, the unsatisfiable core consists
of the transition relationps,4 along with p14,15. This yields the
sufficient selS = {3 — 4,14 — 15}.

3.4 Interference Analysis

Thus far, we have focused on the analysis of a single path pro-

gram. Interference analysis extends the learning due fiaciurt
edges extracted from a given path program, to consider qiubr
programs. Thus, interference analysis operates on the &@EG.
For a path programr, the sufficient sefS, C FE. represents
edges relevant to the proof of the property alendJsing S, we
seek to characterize the set of path programthéoriginal CFG
that are also guaranteed to satisfy the propdrtgnd are proven

However, in our implementation, the syntactic criteriorepr
sented here is used due to its simplicity.

Theorem 3.4.1f a property U : (n, ) holds on a path program
then it holds on any path prograg: no ~ n visitingall the edges
in S; andnone of the edgeis 1.

3.5 Blocking Clauses

We apply the oracles described in Secs. 3.3 and 3.2, in segpin
a path programr in an attempt to obtain a sufficient s&t. If the
oracle obtains a proof, then the interference analysisrifestin
Sec. 3.4 yields a sufficient-interference p@t., I.) consisting of
the sufficient edges and their corresponding interferedges We
now describeBlockingClause from Algo. 1 that applies these sets
to rule out other paths with the same proofs of correctness.

In general, propositions in our Boolean encoding descrita p
program edges. However, our sufficient or interference esige
may contain edges inside loops (as in Ex.3.7). Followingiour
terpretation of path programs, a path program that visisrép-
resentative node of an MSCC also traverses all the edges inside
the MSCC. Therefore, for the sake of convenience, we intedu
propositional formulape : pe =V ./.,r e o, Per fOr every edge
e occurring inside an MSCC represented by nadéNote thatp.
can be used as a proposition that models a visit to the rapeae
noden with the addition of a Boolean formula. above, relating
pe to the other propositions in our encoding.

The formulaBlockPaths(Sx, Ix) : V cg —pe V V;cp Py
encodes paths that either (a) do not visit every nodes af or
(b) visit some node off.. Adding this formula as &locking
clauseto A avoids revisiting the same set of sufficient edges. This
provides proof-based learning to avoid the enumeratiorelaited

by the same sufficient set. To do so, we also need to reason aboupath programs.

potentially interfering assignments the CFG. This corresponds
to the component oExtractSupportSet from Algo. 1 that yields
Ir.

Example 3.7.In Ex.3.4, the process of local repair over the path
program, in Fig. 2(C) yields a sufficient set

Sy {1 —3,10 — 14,10 — 11,12 — 13,13 — 10,14 — 15} .

The pathmr; shown in Fig. 2(A) traverses all of the edges in the set
S, yet the proof of the property obtained along the sufficiext s
So does not apply for this path. The reason is that the assighmen
pLen := —1 along the edge — 6 invalidates the value of the
variablepLen that is initially defined inl — 3. Therefore the proof

in Ex.3.4 does not apply to this path.

This assignment disrupts the criticake-defchain between
edgesl — 3 where the variablelen is defined and0 — 11,
where it is used. Our approach is to identify a set of intefee
edges that can invalidate the use-def chains in the suffisiEn

Def. 3.3 (Interfering Edge).An assignment edge ¢ E. assign-
ing variablex is aninterference edgéor a sufficient seb. C Fx
iff there exist edges,, es € Sr whereine; definesr, e; usese,
and a path of the form; ~ e ~ e exists in the original CFG.

Returning to Ex.3.7, we verify that the edde— 6 interferes
with the def-use chair; : 1 — 3 and the conditiores : 10 —
11. Given a path programr and the sufficient edgeS., a set
of interfering edges/: can be computed using a use-def chain
computation and a control reachability analysis on theioaig
CFG. In principle, a finer semantic criterion for interfecencan
be formulated that checks whether an interfering edge prese
the invariants related to the sufficient set.

3.6 Handling Violations

We now describe how to handle violations as depicted in Algo.
lines 8 — 9. One could halt the enumeration upon encountexing
violation, but it may be desirable to continue the searchefoors
that stem from a different cause. To this end, SMPP obtapatta
slicefor a violation along the lines of Jhala and Majumdar [24]. As
a result of path slicing, the analysis obtains a%etC E. of edges
that cause the error a sét of edges that may interfere with the
use-def chains it$:. Our treatment of the paifSr, I) obtained
from a potential violation is identical to that obtainedrfr@ proof
through repair iteration.

Theorem 3.5 (Jhala and Majumdar [24])L.et S, I, be as com-
puted by the path slicing technique. For any pdtthat visits all
the nodes irb. and none of the nodes ify, the paths violates the
property(n, ) iff = does.

3.7 Expanding Loops

A path program, corresponding to a control path in the MSCC
decomposition, treats loops monolithically. A given loggntirely
part of a path program wherein arbitrarily many iterations a
considered, or alternatively no iterations are considetadthe
case when the entire program consists of a single while lasp (
is the case with control programs), our technique is eqeiviaio
running the oracle over the entire program. This imprecisian

be remedied by unwinding and unrolling a given loop, so that o
techniques can reason about specific paths in the loop.dforte,

our choice of an MSCC decomposition was intended to create an
acyclic graph related to the CFG. Our approach can be géredal
to use other schemes for creating an acyclic graph such tieat t
paths in this graph are related to fragments in the origi&GC



4. Implementation

We have implemented our approach as a part of the F-Soft pro-
gram verification platform for C programs [21, 22]. F-Sofecks
C programs for buffer overflows, string APl usage, NULL peint
dereferences, user-defined type-state properties, meleaky and
so on. For a detailed description of our modeling of struesyr
pointers and arrays, see [22].

F-Soft Framework

The F-Soft front-endlattensstructure and union types into simple
types, constructs a memory model by providing magic number a
dresses to storage locations, and instruments the prognapndp-
erties being checked. Pointer aliasing and arithmetic arelled
by modeling their effects over integer variables based ommwa-fl
insensitive points-to analysis.

Example 4.1.Fig. 3illustrates the construction of a memory model
in F-Soft based on the results of a points-to analysis. Oudeho
replaces each local variablg in a function f by a variablef : p
with global scope. Iff can be called in a recursive context then
such a variable is treated assummary variable

Corresponding to each pointer variabje we introduce an in-
strumentation variable stép) to track the contents of its store. The
value of stafp) is non-deterministic ip does not point to a valid lo-
cation. The expressiofp is replaced by its representative staj.
An assignment to thie-value *p is rewritten into an assignment to
all the variablesz that p can potentially point to. Such an assign-
ment tozx is guarded by a conditiop == &= that enforces the
points-to relationship. Further details and rationale gpeovided
elsewhere [21, 22].

The initial CFG of the program is simplified considerably
through program slicing and constant folding. We then penfo
a series of flow and context sensitive analyses such as obnsta
folding, interval analysis, and various numerical domairalg-
ses. F-Soft implements many abstract domains in a partiallly-
sensitive abstract interpretation framework [1, 30]. Timalgsis
uses these domains in combination or in succession to attemp
prove a property, each run of the analysis reusing the iamtsi
obtained by the previous runs. F-soft re-slices the prograodel
based on the properties proved by static analysis, redutiiog-
ther. At the end of static analysis, the final CFG with its ven
properties is provided as an input to the SMPP implementatio

SMPP Implementation

Our implementation follows the description in Algorithm litkv
modifications to accommodate function calls. The treatnent
function calls and returns ensures that the enumerated grath
grams properly match calls and returns; and different petsisle

a function can be traversed by a path program upon multige vi
its under different calling contexts. This is achieved dpntext
numberingthe function calls in the CFG. The context numbering

Table 2. Legend for abbreviations used in Table 3.

Abbrv. Remark

Blk Number of blocks at start of SMPP.

Prp Number of properties (asserts).

Prf Number of Proofs.

PP tot Number of path programs total (estimated).

PP enum Number of path programs enumerated by SMPP.
PP Proofs Number of path programs proved correct.

SE Symbolic Execution

Al Abstract Interpretation

RI Repair Iteration

stract interpreter and a local repair iteration. Currenthe sup-
port set and unsatisfiable-core computation are perforraid)the
SMT solver Yices [16]. A failure to prove a property is curtign
reported as @otential violation In the future, we plan to integrate
our technique with a model checker ocancolic executioengine
over path programs to concretize these potential violation

5. Experimental Evaluation

We conducted experiments to address the following: (a) hibw e
ficiently SMPP can verify common safety properties that nequ
path-sensitive reasoning, (b) the effectiveness of pbasied learn-

ing for proving many program-paths safe with the analysis fefw,

and (c) the power and efficiency of SMPP against another path-
sensitive analysis, predicate abstraction.

Fig. 4 presents our experimental setup using the F-Softdram
work. The experiments consist of processing the given C pro-
gram through our front-end which includes path-insensjtilow-
and context-sensitive abstract interpretation througherical do-
mains such asonstantsintervals andoctagons Properties proved
using these analyses armovedfrom the CFG, followed by re-
slicing and simplification. Thus all properties on which SRIR
tested require some degree of path-sensitive reasonirgitiate.

Table 3 presents our experimental results on the Zitser.et al
benchmarks [34]. These programs consist of important boffer-
flow bugs found in commonly used programs suchwasftpd,
bind, nslookup and so on, along with the fixes made to them.
Note, however, that F-Soft automatically instruments maroyre
properties, as compared to the single line of code that i&eadan
these benchmarks. The abbreviations used in Table 3 aredsgpa
in Table 2. Table 3 reports the size of each program at thé star
SMPP, number of properties, the number of proofs (per oypatel
the time taken (total, percentage for stages of the angly&iach
property that is not a proof is reported as a potential wireeng
with a sliced path program. For some these potential witseshe
symbolic execution reported a path program slice that didimo
clude a loop, indicating a concrete witness. The resultsatem
strate that SMPP can prove a significant number of pathtsensi
properties and identify potential witnesses efficientlyt® that

scheme described by Whaley and Lam is used [32]. Each CFG edgesymbolic execution is successful in proving a majority & laths

e then yields multiple propositiong(e, ¢) based on the different
calling contexts: that the edge may be visited in. The encoding for
incoming edges at call sites and outgoing edges at retusigen
that enumerated calling block context with a return to therapri-
ate call site. The rest of the encoding remains unchanged
Recursive calls are currently unwound up to a specified depth
and then replaced by a call to a function that returns a non-
deterministic value and has non-deterministic side-&ffea vari-
ables passed by reference. In practice, this seems to hawvéraah
impact on the checking of runtime errors.

efficiently, and that abstract interpretation is key for gndficant
portion of properties that involve loops.
In Table 3, the ColPath Programs (Tot) presents an estimate
of the total number of path programs, estimated using SAfm@any
cases, the estimator timed out after an hour) whideh Programs
(Enum) presents the number actually enumerated by SMPP. The
difference demonstrates the effectiveness of proof-bbseding.
Table 4 compares the performance of SMPP against Blast
v2.5 [3]. To focus on the analyses (rather than on differerioe
program modeling), we printed the CFG on which SMPP is agplie

The enumerated path programs are first analyzed using over-as a C program, using goto statements to enforce control Tibev.

approximate symbolic execution and then (if needed) by the a

variables in this program are all integers (generated #iteF-Soft



globalint alloc@3;

void allocM (int ** ptr, int n) {
1 ASSERTptr);

2:  if (star(ptr) == 0){

3

void allocM (int ** ptr, int n) {

1: ASSERTptr);

2: if (*ptr == NULL)

3: *ptr = malloc(n * sizeof(int));

: " . : *ptr = malloc(n * sizeof(int));
4: ASSERTC"ptr); 3-0: star(ptr) = alloc@3;
3-1: LEN(star(ptr)) =n;

. . 3-2: if (ptr ==& main : b) {
vglc;l main() { I 3-4: main : b = alloc@3;
6: inta [100], * b =0; 3-5: LEN(main : b) = n;

7: if (rand()) ' ’ '
8 b=&a; 36: alloc@3 += n;

9: allocM(&b,100);
11:ASSERT(_LEN (b) == 100);

}
4:  ASSERT*ptr);

Figure 3. A simplified illustration of F-Soft's memory modeling for aggram with pointers.

Table 3. Experimental Evaluation on the Zitser et al. Benchmarks &G ®@btained after initial static analysis. The path coutiteeout
was set talhr. Table 2 explains the abbreviations used here.

Name | LOC Blk Prp | Prf Path-Programs PP Proofs Times (seconds)
Orig. (tot) | (tot) Total Enum || Tot | SE | Al Tot SE| Al T RI
% % sec % | % | %
SENDMAIL
s2-ok 1151 744 60 | 20 | >1.2M 204 || 131 | 80 20 || 136.76 716521
s2-bad | 1132 721 58 | 21| >1.2M 259 || 195 | 86 14 || 139.17| 10 | 77 3
s4-ok 776 263 12 6 12 12 6 0 | 100 10.98 2| 95 1
s4-bad | 713 284 30| 15 30 30 15 0 | 100 30.29 1| 96 0
s5-ok 837 179 14 | 13 14 2 1| 100 0 0.5 | 40 0 0
sb-bad | 810 182 17 | 16 17 2 1| 100 0 0.5 | 40 0 0
s6-ok 317 121 8 3 8 8 3 0 | 100 13.18 0| 98 0
s6-bad | 315 121 8 3 8 8 3 0 | 100 14.91 0| 98 0
s7-ok 1824 || 1357 | 174 | 59 >.5M 415 || 224 | 92 8 132.4| 25 | 48 0
s7-bad | 1816 || 1347 | 170 | 94 >.6M 412 || 271 | 92 8 135 | 24 | 53 0
BIND

b1-ok 2177 670 55| 10 >.4M 214 || 168 96
bl-bad | 2117 662 54 9 >.4M 181 || 135 95
b2-ok 2706 957 80 | 11 >.4M 285 || 216 97
b2-bad | 2688 955 80 | 11 >.4M 289 || 220 97
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WU-FTPD

f1-ok 628 144 13 4 188 28 14 71 29 11.81 2| 88 8

f1-bad 562 178 21 9 481 71 52 92 8 25.14 3|91 4

f2-ok 1208 119 9 5 5637 17 13 | 100 0 0.25| 68 | 20 0

f2-bad 936 114 8 4 2175 14 10 | 100 0 019 | 72| 16 0
G- -+~ ----- === =- = mmmm e nnmoe s B . Rt

property
slicing

front memory abstract
end modeler interp.

Boolean path-program
encoding analyzer

sufficient

CFG
simplifier

analysis

Figure 4. Experimental setup: Front-end includes path-insensithadyses, followed by SMPP.

front-end process of instrumentation, memory modelingnpsifi- targeting a single property, recomputing the SAT encodiagd
cations, slicing and static property proofs). Blast hadedrvoked the sufficient sets from scratch. The comparison in Tableofvsh
multiple times on the same program, each instance targetify that while Blast can prove more properties than SMPP in some
ferent property. This was needed to avoid the default agdiegof cases, our coarser control-based abstraction can be msten fmd
properties in Blast which failed with errors in many instascFor finds more violations in many cases. A majority of the faituts/

fair comparison, we ran SMPP multiple times with each instan  Blast resulted from an explosion in the number of predicates



Table 4. Comparison of SMPP with BLASRrp: number of prop-
erties (asserts)Vit: number of concrete witnesses, drall: Blast
failures. Note that SMPP is run multiple times (once for ejip-
erty) for fairer comparison.

Name | Prp SMPP BLAST

Prf Time Prf | Wit | Fall Time
s2-ok 60 20 2m10s 35 0 25 2h 7
s2-bad| 58 21 2m25s 35 0 23 1h50
s4-ok 12 6 0mlils 11 1 0 0h1.3
s4-bad 30 15 0m31s 17 1 12 2h 8
s5-ok 14 13 0mO00.5s 6 0 8 0h55
sb-bad| 17 16 0mO00.5s 9 0 8 1h32
s6-ok 8 3 Om1l4s 4 0 4 0h17
s6-bad 8 3 0mi5s 4 0 4 0h17
s7-ok 174 59 | 28m 135 1 38 | 17h22
s7-bad| 170 94 | 27m 134 1 35 | 15h55

loops (termed “Gremlins”). Our abstract interpretatioiidaved by
a proof-based learning seems to be adequate for many sueh cas

Analysis of Larger BenchmarksTable 5 summarizes our exper-
imental results on larger case studies. The experimentap se-

divergence®n loops in the program. This is because we enumerate
over an acyclic MSCC-based graph derived from the CFG, vithere
each control path corresponds to a path program that cam-pote
tially capture infinitely many control paths on the origi@#G. It

is well known that effective handling of loops is a stumblisigck

for many abstraction refinement techniques. Abstractpmegation
techniques using widening have been well-optimized to@rmm-
mon types of run-time properties, even in the presence @dofal)
The decomposition of the overall program into multiple pptb-
grams allows flexibility in choosing a suitable oracle fadiwvidual
sub-problems. In our implementation, we use symbolic eecu
to handle path programs without loops, and abstract intésion

to handle path programs with loops. Other oracles, such edi-pr
cate abstraction refinement, can also be used.

Our work is closely related to recent work by Heizmann et
al [20] . They propose an abstraction refinement schem&doe
abstractions An over-approximation of the set of possible traces
is successively refined by means ofiaterpolant automatornhat
recognizes a set of infeasible traces. The interpolantaaita are
also derived from proof techniques that can generate Fldydre
style inductive invariants. The main differences inclué&} our
technique operates on path programs as opposed to errestrac
(b) we employ a symbolic encoding using SAT to keep track of

mains the same as in Fig. 4. Program sources were downloadedynexplored path programs, as opposed to an explicit repizsen.

from the internet and first analyzed using our tool SpecT&agRP],
which infers likely preconditions and post-conditions respond-
ing to pointer and array accesses in the functibng-Soft (with
SMPP) is then invoked for each function in the program. Thee pr
conditions for the entry functions are assumed, whereagrdwn-
ditions for called functions are asserted. In order to adritre CFG
size, calls to functions not reachable from the entry fuorctivithin
a context of deptht were replaced by non-deterministic choice.

Lazy abstraction with interpolants by McMillan [26] proesl
a lazy scheme to refine an abstract model on demand, by njlizi
interpolants derived from refuting paths in the programis®ork
also avoids the cost of an expensive abstraction. Howeler, t
refinement is driven by error traces, the control flow is haddl
explicitly, and details of proof-based learning are diffier from
our technique.

The notions of path programs in our work are directly insgire

Table 5 shows the results. The SMPP approach is invoked only py the work of Beyer et al. [4]. That work also employs path-pro

in those cases where there are unresolved properties frermith
tial path-insensitive analyses. This accounts for roughBi of the
functions, on average. The total time taken by the SMPP agpro
is of the same order as that taken by the initial model coostm
and static analysis phases. In almost all cases, the oas@lsis
(initial+SMPP) terminates within the given time limit é6 min-
utes. Note that SMPP detects a significant number of extrafqro
over and above sophisticated flow- and context-sensitilygpdral
abstract interpretation techniques. We did not run Blasthase
larger case studies, as it would have required significantuala
effort in instrumenting the CFGs generated by our front-end

6. Related Work

Abstraction RefinementOur technique fits broadly into the ab-
straction refinement paradigm. The Boolean formulae reasg
all unexplored control paths is a coarse control-flow alosima.
This abstraction is successively refined by eliminatingo pro-
grams proved correct.

The main differences from typical abstraction refinement ap
proaches are: (a) Our abstraction is based solely on colutrol
cations. This is a very inexpensive abstraction to compueéer-
ring the heavier work to an oracle for checking correctnefsa o
path program corresponding to the enumerated control @itrer
approaches typically use an explicit representation ofcthrrol
flow with data predicates, e.g. Boolean programs [2, 3]. Sakeh
stractions are more expensive to compute than our absiraciib)
Rather than a refinement loop over false error traces (coexdaen-
ples) [2, 8], our refinement loop operates over path prograsss-
ciated with the enumerated control paths. (c) Our approgolia

4These benchmarks along with the inferred preconditions aaeglable
upon request.

grams and invariants to avoid loop divergences. In conti@jt
we useBoolean formulaeabstracting just the control flow, as op-
posed tredicate abstractiofBoolean programs), and (b) we re-
fine throughblocking clausesather than usingnvariants as pred-
icates Using blocking clauses for refinement is potentially more
scalable than using invariants as predicates. First, imvagener-
ation techniques typically generate a large set of invésieen ma-
jority of which are redundant. Beyer et al. [4] do not attertpt
minimize the set of invariants. Our work provides this retitue
by means of théocal repair iterationdiscussed in Section 3. Sec-
ond, each predicate added can potentially double the cadtyple
of model checking an abstraction, whereas our conflict elaase
small and seem to have very little impact on the size of thd&oo
formula abstraction. Another approach is to use abstraetpreta-
tion to derive useful program invariants as a pre-processiap, to
avoid expensive refinement iterations over loops [23].

Bounded model checking of programgfficient SAT-based tech-
nigues have been used for bounded model checking (BMC) [5] of
programs in tools such as CBMC [7], F-Soft [21], and for sbida
summary-based analysis in Saturn [33]. These techniquematr
ically utilize SAT-based conflict analysis and learning founing
the search space. However, they suffer in the presence p&Jloo
which require deep unwindings that result in large SAT peaf.
Furthermore, BMC typically handles all paths up to some loieagh
length as a single monolithic problem. In contrast, we epcmaly
the control paths as a SAT formula, which is much smaller than
typical BMC formula that encodes unwindings of a program.

Abstract interpretation and path-sensitive analysi©ther ap-
proaches to path sensitive analysis incli®P[14], trace parti-
tioning [25], elaborationsg[31], amongst many others. These tech-
nigues employ heuristics to control the trade-off betweeriggm-



Table 5. Results on Larger Open-Source Case-Studies

Name KLOC | #Fun | #Prec Front-End SMPP
Blk | Time Prp Prf #Fun Blk | #PP [ Prf. Time
avg | sec tot tot tot | timeout | avg | tot tot | tot, sec
thttpd-2.25b 147 172 1901 || 263 | 5162 | 12161 | 11069 | 68 1]199| 1622 | 512 1393
ssh-server-4.1] 30.1 | 313 | 2047 | 190 | 7755 | 42773 | 41182 || 127 5| 120 | 1681 | 564 1197
xvidcore 63.9| 350 | 6127 || 520 | 13259 | 17219 | 12020 || 190 6 | 331 | 5220 | 2090 | 15728

ing a join operation or a logical disjunction at the mergent®in
the CFG. However, the join vs. disjunction choiceingerred in

[17] Sussane Graf and Hasan Saidi. Construction of absitatg graphs
with PVS. InCAV’'97, volume 1254 of NCS pages 72-83, 1997.

our SMPP scheme by the disjunction-based decomposition ove [18] Sumit Gulwani, Saurabh Srivastava, and Ramarathnankatesan.

control paths.

7. Conclusion

We have presented the Satisfiability Modulo Path Program()
approach to program analysis, which lifts to the architextof
SMT solvers to path-sensitive program analysis. We haveodem
strated it to be effective in analyzing real-world programs
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