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Abstract
Path-sensitivity is often a crucial requirement for verifying safety
properties of programs. As it is infeasible to enumerate andana-
lyze each path individually, analyses compromise by soundly merg-
ing information about executions along multiple paths. However,
this frequently results in a loss of precision. We present a program
analysis technique that we callSatisfiability Modulo Path Programs
(SMPP), based on a path-based decomposition of a program. Itis
inspired by insights that have driven the development of modern
SMT (Satisfiability Modulo Theory) solvers. SMPP symbolically
enumerates path programs using a SAT formula over control edges
in the program. Each enumerated path program is verified using an
oracle, such as abstract interpretation or symbolic execution, to ei-
ther find a proof of correctness or report a potential violation. If a
proof is found, then SMPP extracts a sufficient set of controledges
and corresponding interference edges, as a form of proof-based
learning. Blocking clauses derived from these edges are added back
to the SAT formula to avoid enumeration of other path programs
guaranteed to be correct, thereby improving performance and scal-
ability. We have applied SMPP in the F-Soft program verification
framework, to verify properties of real-world C programs that re-
quire path-sensitive reasoning. Our results indicate thatthe preci-
sion from analyzing individual path programs, combined with their
efficient enumeration by SMPP, can prove properties as well as in-
dicate potential violations in the large.
Categories and Subject Descriptors:D.2.4(Software/Program
Verification):Assertion checkers, F.3.1(Specifying and Verifying
and Reasoning about Programs):Assertions, F.3.2(Semantics of
Programming Languages):Program analysis.
Terms: Languages, Verification

Keywords: Program Analysis, Abstract Interpretation, Path Pro-
grams, Symbolic Execution, SATisfiability Solvers, SMT solvers.

1. Introduction
Path-sensitivity is often a crucial requirement for verifying safety
properties of programs. As it is infeasible to enumerate andanalyze
each path individually, analyses compromise by soundly merging
information about executions along multiple paths. However, this
results in a loss of precision, which may lead the analysis todeter-
mine falsely that a violation is possible. We present theSatisfia-
bility Modulo Path Programs(SMPP) approach to program anal-
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ysis for property verification. Our approach decomposes theveri-
fication of a given program to verification of its componentpath
programs[4]. A path program represents a set of program execu-
tions, all of which traverse the same set of edges in a controlflow
graph, but may vary in the number of iterations of loops/recurrences
encountered. Each path program in a given Control Flow Graph
(CFG) is associated with a simple path in the MSCC (Maximal
Strongly Connected Component) decomposition of the CFG, ob-
tained by compacting loops and recurrences in the program into
components [9]. Whereas the number of control paths in the origi-
nal CFG may be infinite (due to loops and recurrences), the MSCC
decomposition is acyclic with finitely may control paths. Never-
theless, this number can be prohibitively large for real-world pro-
grams. In our experiments, we have observedmillions of path pro-
grams even for moderate-sized CFGs with about 500 control edges.
Thus an explicit enumeration of path programs is not feasible.

We therefore proposea SAT-based symbolic encodingof the
set of control paths associated with path programs. Starting from
a SAT formula that represents all unexplored control paths in the
MSCC graph that can reach an error location, we enumerate a con-
trol path and use anoracle to verify the corresponding path pro-
gram. Each enumerated path program can be analyzed using “proof
techniques” such as abstract interpretation [11, 12], or “falsifica-
tion techniques” such as bounded model-checking that search for
concrete error traces of violations [5]. We assume (w.l.o.g.) that a
verification oracle presents Floyd-Hoare style proofs in the form of
inductive invariants, or concrete witnesses upon violation.

We present aproof-based learningtechnique that avoids enu-
merating a large set of “related” path programs by reusing the proof
of a single path program. The proof-based learning technique ex-
tracts a set ofsufficient edgesfrom a given path program and an
associated set ofinterference edges. Our technique guarantees that
any other path program that also traverses the same set of suffi-
cient edges and none of the interference edges is also correct. As
a result, our approach extends thecore reasonsfor the proof of
a given path program to apply to a large number of closely related
path programs. The sufficient and interference edges are encoded as
blocking clausesand added back to our SAT formula. We continue
to enumerate solutions to this SAT formula until no more solutions
can be found. Using proof-based learning significantly reduces the
total number of path programs enumerated in SMPP, in the most
dramatic case frommillions to hundreds.

Our SAT encoding can be viewed as a control-flow abstrac-
tion with refinement performed by proof-based learning of suffi-
cient/interference edges in the CFG. We do not encode or directly
abstract data values. Reasoning over data is performed by the veri-
fication oracles. Note also that our enumeration operates over path
programs and not program traces.

We present an instantiation of our approach that utilizes the ab-
stract interpretation framework as the oracle of choice to prove
properties over path programs. The inductive invariants obtained
through abstract interpretation are used to extract sets ofsufficient



edges. We also present the use of over-approximate symbolicexe-
cution as another oracle that is efficient over path programswithout
loops or wherein the property to be proved is independent of the
loops. It is possible to use other known techniques as oracles, such
as lazy abstraction with interpolants [26] or predicate abstraction
refinement [2, 3, 17].

We implemented the SMPP technique in the F-Soft program
verification framework [21]. The implementation uses a symbolic
execution engine based on Yices [16], and abstract interpretation
engines using a succession of numerical domains — intervals[10],
octagons [27], symbolic intervals [30] and polyhedra [13].We eval-
uated our implementation by using it to verify array overflowand
string library usage properties for C programs. We used publicly
available benchmarks – smaller programs in Zitser et al. [34], and
larger open source programs such asopenssh, thttpdandxvidcore.
Our evaluation shows that SMPP can derive proofs of properties
that are beyond the reach of path-insensitive static analysis (already
implemented in F-Soft), and it also identifies numerous potential
violations. In comparison to the BLAST tool (using predicate ab-
straction with interpolant-based refinement [3]), SMPP canprove
a majority of the properties proved by BLAST and identify addi-
tional violations in these programs, within a fraction of the time
taken by BLAST.

Analogy with SMT Solvers:To prove safety properties, SMPP
integrates program analysis oracles that prove propertiesabout
individual path programs with a SAT solver, which is used to
enumerate over a Boolean abstraction of the control-flow of the
program. This is similar in spirit toSatisfiability Modulo Theory
(SMT) solvers [15, 16, 29]. To check the satisfiability of a given
formula, an SMT solver integrates theory solvers (that check the
satisfiability of conjunctive formulas over a theory) with aSAT
solver that enumerates over a Boolean abstraction of the entire
formula.

To solve a particular conjunctive formula, an SMT procedure
employs theory solvers as oracles. Similarly, SMPP uses verifica-
tion techniques over path programs as oracles. In fact, we may use
different oracles for different path programs, based on observed
characteristics (e.g. whether or not a backward slice w.r.tthe prop-
erty contains loops). Furthermore, the characteristics ofthe oracles
affect the characteristics of our overall scheme (soundness, com-
pleteness, performance, etc.).

Theory-based learning in SMT solvers addsconflict clauses
back to the SAT solver to refine the Boolean abstraction. Analo-
gously, SMPP utilizes proof-based reasoning to derive sufficient
edges and interference edges. These are added as blocking clauses
to a SAT formula to block other enumerations by the SAT solver.
By relying on a Boolean formula abstraction, we can apply SAT-
based decision heuristics and blocking clauses that can drive the
symbolic search over control paths in a property-driven manner.
This is potentially advantageous compared to ana priori fixed
search order on the CFG such as depth-first search (as in typical
symbolic execution based approaches) or breadth-first search (as in
typical BMC-based approaches).

The main contributions of this paper are: (a) SMPP: An ap-
proach for symbolic enumeration of path programs, using a SAT
solver and proof-generating oracles for verifying path programs.
(b) Proof-based learning techniques to identify and re-usea set
of sufficient edges that serve as proofs of correctness. (c) Acon-
crete instantiation of the SMPP approach, where we use abstract
interpretation over different abstract domains and symbolic execu-
tion as oracles. (d) An experimental evaluation of the implementa-
tion, which shows that SMPP can prove more properties than path-
insensitive static analysis and improve performance over predicate
abstraction refinement. In particular, SMPP avoids the costof an

Algorithm 1 : Satisfiability Modulo Path Programs.

Input : Π : Program CFG,Ψ : 〈nf , ϕ〉 assertion to be
verified.

Result: Alarms : Set of possible path programs violating
property.

begin
ΠD := MSCCDecomposition(Π)1

ΛΠ := SatEncodePaths(ΠD, n
D
0 , n

D
f )2

while ( IsSatisfiable(ΛΠ) ) do3
π := SolveAndObtainPathProgram(ΛΠ)4

η := AnalyzePathProgram(π,ϕ) /* Oracle */5

if (η(n) |= ϕ) then /* Proof obtained */6
(Sπ, Iπ) := ExtractSufficientSet(π, η)7

else /* violation obtained */
(Sπ, Iπ) := PathSlice(π, n, ϕ)8

Alarms := Alarms ∪ {Sπ}9

ΛΠ := ΛΠ ∧ BlockingClause(Sπ, Iπ)10

11

end

expensive data abstraction-refinement process and divergences on
loops, while fully utilizing advances in SAT/SMT solvers.

1.1 SMPP Approach At a Glance

Algorithm 1 presents the main steps of the SMPP algorithm. We
now step through it with an example. Fig. 1 presents a simple
imperative program fragment that computes a buffer lengthbLen
based on an input pointerp, its lengthpLen, and an extra flagmode.
The CFG representation is also given (also Cf. Example 2.1).The
goal is to prove the unreachability of the CFG node labeled15
corresponding to the program assertion at line15. Fig. 2 depicts the
major steps in the application of SMPP to the program, described
as follows.

Extract an unexplored path program:SMPP first constructs the
MSCC decompositionΠD of the program and encodes the set of
all paths inΠD (Algo. 1 lines 1 – 2). It then chooses an unexplored
path from this set (line 4), from which it constructs path program
(A), illustrated as the path program highlighted in Fig. 2(A). Con-
sidering just the nodes and edges that lie on this path program, the
unreachability of15 can be proved by aConstants-domain analysis
(Algo. 1 lines 5–6).

Extract a set of sufficient edges:The proof of unreachability of
node15 for path program (A) involves theinvariant p = 0 that is
valid at node13 along the path program (A) (the invariantdoes not,
in fact, hold for the program as a whole). SMPP applies a technique
(detailed in Sec. 3.2) that pinpoints the key “reason” for the invari-
ant. Such a “reason” takes the form of a set ofsufficient (control-
flow) edges. The set of sufficient edges (denotedS1) corresponding
to the proof in the first path program is shown in Fig. 2(B).

Any path program from1 to 15 that traverses all of the edges
in setS1 will satisfy the property. Note that this includes paths that
traverse the loops in the program arbitrarily many times as well.
Computing sufficient sets therefore allows us to extend our proof
along a single path program to multiple path programs. This step
corresponds to Algo. 1 line 7.

Extract another path program:SMPP now seeks a path program
that visits edgesE such thatS1 6⊆ E. The search for such a path
program is performed using a SAT solver (Algo. 1 lines 10, 3),and
yields the second path program, as shown in Fig. 2(C). Now, the
analysis must directly reason about the loop in this path program



0: proc. foo (int * p, int pLen, int mode)
1: int o, L := 1,bLen := 0;
2: if (pLen < 1) return ;
3: if (p == NULL)
4: pLen := -1;
5: end-if
6: if (mode)
7: o := 1;

else
8: o := 0;
9: end-if
10: while( L ≤ pLen )
11: if (o > 0)
12: bLen := L - o;
13: L := 2 * L;
14: end-while
15: ASSERT ( !p || bLen ≤ pLen);
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15 (err) 13

L = 1

bLen = 0

pLen ≥ 1
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bLen := L − o

o ≤ 0
L := L ∗ 2

Figure 1. A simple imperative program and its CFG representation.
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Figure 2. Path programs enumerated on running example by SMPP.A: Initial path program;B: Sufficient edges for (A);C: Second path
program; andD: Sufficient (shaded) and interference (zigzag) edges for (C).

to prove unreachability of node15. It can do so automatically by
using theoctagon domain analyzer[27] to establish the invariant
bLen ≤ pLen at node14 (Algo. 1 lines 5 – 6). This invariant proves
correctness of this path program. The loop invariantbLen ≤ pLen
computed at node10 suffices to prove the property at node15. Note
that this invariant is independent of the variableo.

SMPP then extracts a set of sufficient edgesS2 for the invariant
(detailed in Sec. 3.2), shown in Fig. 2(D). It also performs an
interference analysis forS2 over the entire program, to discover
that the assignment topLen on edge4 → 6 may cause some paths
that traverse all edges inS2 not to preserve the property. This edge
thus forms theinterference setfor sufficient setS2, denoted as
I2 = {4 → 6} (Cf. Sec. 3.4). Any path program that traverses



all the edges inS2 but not the interference edge4 → 6 satisfies the
property.

Termination: SMPP has now computed sufficient-interference
pairs of sets(S1, ∅) and (S2, I2) , extracted from the two path
programs considered.Everypath program is covered by these sets,
i.e, each program path must either traverse every edge inS1 , or
traverse every edge inS2 while traversing no edge inI2. Recall
that the edges that are part of the loop10  10 are part of an
MSCC and thus not considered in enumerating path programs. As
a result, by examining2 out of the4 possible path programs, SMPP
has established the property. This computation occurs overAlgo. 1
lines 10, 3, 11.

Symbolic Encoding: Fig. 2 consists of a small program with a
few path programs. In practice, we have observed CFGs with as
few as500 edges that exhibitmillionsof path programs. Therefore,
reasoning about sets of path progams explicitly is not feasible.

We overcome this difficulty by means of a symbolic encoding
of control paths associated with path programs. The analysis uses
a succinct propositional (Boolean) encoding that supportsthe fol-
lowing operations efficiently:

1. Encode all of the control paths between two nodes (in the
MSCC graph) as a Boolean formula. Such an encoding is linear
in the size of the CFG. Sec. 3.1 details this encoding.

2. Given a setP of unexplored control paths, represented as a
Boolean formulaΛP , and a sufficient-interference pair of edge
sets(S, I), subtract all of the paths fromP that traverse all the
edges inS and none of the edges inI . Subtraction is performed
by addingblocking clausesto the formulaΛP .

3. Determine that there are no control paths left to examine,or
produce an unexplored path. This is equivalent to checking the
satisfiability of the updated Boolean SAT formulaΛP .

SAT solvers have made impressive advances in the past decade,
enabling them to support these operations for formulas withhun-
dreds of thousands of variables and clauses. In this respect, our
encoding is empirically shown to be quite amenable to existing
solvers such as ZChaff [28], even for large programs.

2. Preliminaries
We first present our approach on single-procedure programs with-
out function calls. We assume that all variables are of typeinteger.
The handling of function calls (including recursion), non-integer
types (especially pointers) and other features present in aprogram-
ming language such as C is discussed in Sec. 4. Control-flow graphs
(CFG) are used to represent imperative programs.

Control-Flow Graph A CFG Π = 〈N,E, V, ρ, n0, nf ,Θ〉 is a
tuple whereN is a set of nodes,E ⊆ N × N is a set of edges,
n0 ∈ N is an initial location,nf ∈ N is a final location, andV
is a set of program variables. Each edgee ∈ E is labeled by a
transition relationρe(V, V

′), a first-order assertion overcurrent-
state variablesV and next-statevariables denoted byV ′. The
first-order assertionΘ specifies the initial values of the program
variables.

An execution of the CFG starts at the initial location withinitial
values to the program variables that satisfyΘ, and terminates when
it reaches the final location. Aprogram assertion〈n, ψ〉 for n ∈ N
and assertionψ over the program variables, requires thatψ hold
whenever control reaches the noden.

Example 2.1.Fig. 1 shows a CFG of a program over integer-
valued and pointer variables (note that for this example, weare
only interested in the integer value of the pointer itself).The nodes

in the CFG are numbered according to the corresponding labels in
the program. We wish to prove the unreachability of node15 which
corresponds to thefailureof the assertion in the corresponding line
of the program. However, apath-insensitiveanalysis is unable to
prove the property. The join operation at line 5 may lose the relation
betweenp andpLen.

2.1 Path Programs

Given a graphG : 〈N,E〉, a strongly connected component
(SCC) consists of a subset of nodesC ⊆ N such that for each
n1, n2 ∈ C, there exists a path fromn1 to n2 and vice-versa. A
strongly connected componentC is maximal(MSCC) iff no strict
superset ofC is a strongly connected component. The MSCC-
decomposition of a graphG is a directed, acyclic graphGD whose
nodesN = {nd

1 , . . . , n
d
m} correspond to each of the MSCCsC1,

. . . , Cm of G and whose edges connectnd
i andnd

j if and only if
some node inCi connects to some node inCj by an edge inE.
The MSCC decomposition of a graph can be computed in linear
time [9]. The CFG in Fig. 1 contains a non-trivial MSCC consisting
of the nodes{10, 11, 12, 13}.

Def. 2.1 (Path Program [4]).LetΠD be the MSCC decomposition
of a CFGΠ. A path programπ : nd

0  nd is a simple path inΠD

from the initial nodend
0 to a nodend. The path programπ naturally

corresponds to a subset of nodes and edges inΠ, obtained as the
union of the MSCCs traversed byπ and the edges that connect
them.

2.2 Inductive Invariants

Let Σ denote the universe of concrete program states andΓ be a
domain of assertions over the program variables ordered by the
logical implication|=. Each assertionϕ ∈ Γ represents a set of
states[[ϕ]] ∈ 2Σ. An example of an assertion language used in
practice is linear arithmetic formulae over the integer variables of a
program.

Inductive Map For a setN of nodes in a control-flow graph, a
flow-sensitivemapη : N → Γ maps each node to a set of program
states, represented as a formula. Such a map isinductive iff the
following conditions hold:

Initiation : Θ |= η(n0)
Consecution : foreach edgee : ni → nj ,

η(ni) ∧ ρe(V, V
′) |= η(nj)[V 7→ V ′]

In order to establish a property〈n, ϕ〉 for a given program, we
seek an inductive mapη such thatη(n) |= ϕ.

2.3 Abstract Interpretation

Abstract Interpretation is a powerful and general framework for
systematically computing inductive maps for a given program. An
inductive map is a fixed point of a monotone operator in a suitable
abstract domain. An abstract domain is a lattice〈Γ, |=〉 that usually
denotes an assertion language used to represent sets of states. The
abstraction functionα : 2Σ 7→ Γ and concretization function
γ : Γ 7→ 2Σ link elements of the abstract lattice to concrete sets of
states. They are assumed to form aGalois Connection[12].

To compute an inductive map for the setN of control-flow
nodes, with initial noden0, we start from an initial mapη0 : N →
Γ and iterate to produce a sequence of mapsη1, η2, . . ., wherein

η
0(n) :



⊤, n = n0,
⊥, else

η
i+1(nb) :

8

<

:

⊤, nb = n0,
F

na→nb
post

(ηi(na),
na → nb)

The iteration terminates when∀n ∈ N. ηi+1(n) |= ηi(n). Conver-
gence is guaranteed if the domainL satisfies theascending chain



condition. Failing this,wideningandnarrowing operators can be
used to guarantee convergence. Ifη is the fixed point obtained upon
convergence, thenγ ◦ η is an inductive invariant map.

Abstract domains such as theinterval domain[10], octagon do-
main [27], symbolic intervals[30] andpolyhedra[13] can be used
to compute useful invariants over the program variables in order to
prove properties of interest. Together, these domains represent vari-
ous levels of trade-off between the strength of the invariants against
the complexity of the analysis.

3. Path Program Enumeration
Let Π = 〈N,E, V, ρ, n0, nf ,Θ〉 be a control flow graph with
MSCC decompositionΠD : 〈ND, ED〉. Let Ψ : 〈n, ϕ〉 be a prop-
erty under verification. We present a procedure for symbolically
enumerating all control paths fromn0 to nf , verifying Ψ along
each associated path program.

Consider Algorithm 1, which shows the overall verification
algorithm. The major steps of the algorithm are (a) encodingthe
set of (unexplored) control paths as a Boolean formulaΛΠ (line 2),
(b) iterating over the solutions ofΛΠ (line 3), (c) analyzing each
path program associated with the current solution (line 5) ,(d)
extracting sufficient sets, if correct (line 7), otherwise handling
violations (line 8). The rest of this section presents the key steps
in detail1.

3.1 SAT Encoding

Path programs are represented bysimple pathsin the MSCC graph
ΠD of the CFGΠ. We now present a Boolean SAT-based encoding
of all control paths inΠD. This encoding corresponds to an imple-
mentation ofSatEncodePaths andSolveAndObtainPathPrograms
used in Algo. 1.

For each edgee in ΠD, the propositional variablepe indicates
if e belongs to the path program. Letout(m) denote the outgoing
edges inED for a nodem ∈ ND andin(m) denote the incoming
edges. Letsrc(e) andtgt(e) denote the source and target nodes of
an edgee ∈ ED, respectively. For a setEs ⊆ ED, the formula
exactlyOne(Es) denotes that exactly one edge fromEs occurs in
a path:exactlyOne(Es) :

W

e∈Es
pe ∧

V

e,f∈Es,e6=f
pe ⇒ ¬pf .

The formulaΛΠ is the conjunction of all Boolean constraints given
in Table 1. The constraints shown in the table enforce that any
path program has (a) a visit to the initial noden0, (b) a visit to the
final nodenf , (c) exactly one incoming edge to each noden visited
(with the exception ofn0), and (d) exactly one outgoing edge from
a noden that is visited (with the exception ofnf ).

Theorem 3.1.The Boolean formulaΛΠ encodes all paths between
n0 andnf in the MSCC decompositionΠD of Π.

3.2 Extracting Sufficient Sets

We now describeAnalyzePathPrograms andExtractSufficientSet
as used in Algo. 1. LetΠ be the original CFG,n0 be the initial node
and〈nf , ϕ〉 be the property we wish to establish. Given a path pro-
gramπ : nD

0  nD
f , SMPP analyzesπ using a proof-generating

oracle. If the property holds overπ, we extract a set of sufficient
edges. Otherwise, failure to prove the property indicates apotential
violation – details of handling violations are provided in Sec. 3.6.
We now present the extraction of sufficient edges from proofs.

Let Ππ : 〈Nπ, Eπ〉 represent the subset of the original CFG
induced by the path programπ. The proof-generating oracle yields
a proof of safety in the form of an inductive invariant map (fixed-
point) η : Nπ 7→ Γ overGπ. The mapη maps each noden ∈ Nπ

to an invariantη(n), valid over all executions alongπ. If η(n) |= ϕ,

1 Proofs of key results are provided in the extended version ofthis paper
available from the authors upon request.

then none of the executions leading fromn0 to nf along the nodes
and edges inπ lead to a violation.

We extract sufficient edges which form the “core reason” be-
hind our proof as follows: (A) we first prune awayunnecessary
invariantsfrom the mapη using the notion of a minimal support-
ing set. Removing such invariants is essential to obtain a compact
set of sufficient edges. (B) We then compute an inductive mapη′

that supports this set. (C) Fromη′, we directly extract a sufficient
set of edges.

Example 3.1 (Unnecessary Invariants).Consider the “second”
path programπ2 shown in Fig. 2(C):

1 → 3 → 6 → 8 → {10, 11, 12, 13}∗ → 14 → 15 .

A polyhedral domain abstract interpreter computes the follow-
ing invariant:

η(14) :

2

4

p 6= 0 ∧ pLen ≥ 1 ∧
2 · bLen ≤ L ∧ bLen ≤ pLen ∧
mode 6= 0 ∧ o = 1

3

5 .

This invariant establishes the required unreachability ofnode15
for the path programπ2. Nevertheless, the entire invariant isnot
required for the proof. The sole invariantbLen ≤ pLen (underlined
above) suffices. The remaining invariants are extraneous.

In principle, we can use other techniques that (attempt to) gen-
erate minimal sets of invariants required to prove a given prop-
erty [6, 18, 19]. These techniques can generate strong invariants for
small but complex loops. However, they are currently unsuitable
for generating simple global invariants for large path programs. We
provide a generic scheme described below utilizing a fixed point,
wherein the fixed point can be computed in any way (including
predicate abstraction over path programs).

Note. Removing unnecessary conjuncts just at the property
node does not suffice. The removal of conjuncts fromη(13) in
the example above now permits us to remove conjuncts from its
predecessor node invariantη(12), in turn spreading through the
entire CFG.

Generalizing Invariants

To describe how to generalize an invariant map, we first describe
the computation ofminimal support sets, a key primitive. LetQ :
{q1, . . . , qm} andq be assertions over program variables in a suit-
able logical theory, such thatq1 ∧ q2 ∧ . . . ∧ qm |= q.

Def. 3.1 (Minimal Support Set).A subsetQ′ ⊆ Q supportsthe
inference

V

qi∈Q qi |= q iff
V

qj∈Q′ qj |= q. A support setQ′ is

minimal iff no proper subset ofQ′ can support the inference.

Forψ1 |= ψ2, let MinSupport(ψ1, ψ2) denote the set of mini-
mal supporting conjuncts inψ1 that implyψ2. An implementation
of MinSupport (throughunsatisfiable cores) is available in existing
solvers for many useful theories such as linear arithmetic.

Example 3.2.The assertionsq1 : i ≥ j, q2 : j ≥ k + 1,
q3 : i ≥ k + 1, q4 : k ≥ 1 together imply the assertionq : i ≥ 2
in the theory of linear arithmetic over integers. Note that the subset
{q1, q2, q4} by itself (and no proper subset thereof) suffices to
establishq and is thus a minimal support set. The minimal support
set is not unique. The set{q3, q4} also forms a minimal support set.

We assume that the abstract domainΓ is a “Moore-closed domain.”
Specifically, each invariantϕ is a finite conjunction of a set of
atomic predicates that are negation closed:ϕ : q1 ∧ q2 · · · ∧qm. In-
ductive invariants that consist of only conjunctive assertions suffice,
in general, to prove any given property. Proofs involving disjunc-
tions of conjunctions can be transformed into purely conjunctive
proofs on a suitableelaborationof the original program [31].



Table 1. Boolean encoding of the set of all path programs (i.e, paths through the MSCC DAG).
Fact Encoding
n0 should be visited exactlyOne(out(n0))
nf should be visited exactlyOne(in(nf ))
Source of each edge has exactly one predecessor (except forn0)

V

e∈ED , src(e) 6=n0
[pe ⇒ exactlyOne(in(src(e)))]

Target of edge has exactly one successor (except fornf )
V

e∈ED , tgt(e) 6=nf
[pe ⇒ exactlyOne(out(tgt(e)))]

Let η be a fixed-point map that establishes a property〈nf , ϕ〉,
i.e.,η(nf ) |= ϕ. Sinceη is a fixed-point, for every edgee : n1 →
n2 ∈ Eπ, the following consecution condition holds:

η(n1) ∧ ρe(V, V
′) |= η(n2)[V 7→ V

′] .

Our overall strategy to generalizeη is to construct a finite sequence
of mapsµ0, . . . , µN , wherein the initial map is defined as:

µ
0(m) =

(

MinSupport(η(nf ), ϕ) m = nf

true m 6= nf

.

The initial mapµ0 : Nπ 7→ L maps the nodenf to the mini-
mal support set that enablesη(nf ) to prove the required property
〈nf , ϕ〉 and maps all other nodes totrue . The iterative process
µ0 . . . , µN will converge onto a final mapµN that establishes the
property〈nf , ϕ〉, contains no redundant invariants, and generalizes
η.

The intermediate mapsµi for i < N need not be inductive.
For instance, the mapµ0 could fail the consecution property for the
incoming edges to the nodenf . The mapsµi, i ∈ [0, N ] have the
following properties:

(a) µN is inductive and proves the property〈nf , ϕ〉.

(b) For eachµi, and for each nodem, the assertionµi(m) consists
of a subset of conjuncts fromη(m). As a resultη(m) |=
µi(m).

(c) Each successive map incorporates at least as many conjuncts
from η as the previous, i.e,∀ i < j,m ∈ Nπ. µ

j(m) |=
µi(m).

We propose a process calledlocal repair to derive the mapµi+1

from µi.

Local Repair: We address the failure ofµi for i < N to be an
inductive invariant by means oflocal repair. To perform the lo-
cal repair ofµi, we strengthenµi(a) for some nodea to address
the failure of consecution along an edgee : a → b: µi(a) ∧
ρa→b(V, V

′) 6|= µi(b). However,η(a) ∧ ρe(V, V
′) |= µi(b) 2.

Let Qa be a minimal subset of conjuncts fromη(a) that sup-
ports this implication. Thelocal repair of µi(a) w.r.t a → b is
µi+1(a) = MinSupport(η(a), pre(µi(b), e : a → b). The appli-
cation ofMinSupport removes redundant conjuncts from the asser-
tion ηi(a). Thusµi+1(a) minimally supports consecution across
the edgea → b. Strengtheningµi(a) for some nodea may in-
validate the consecution condition for some of its incomingedges.
A new repair iteration is then required to address this failure. This
process converges whenµi is inductive, thus needing no further
iteration.

Theorem 3.2.The process of repeated local repair terminates in
finitely many steps yielding a fixed-point mapµ, s.t.η(b) |= µ(b)
for all b ∈ Nπ .

Example 3.3.Consider again the pathπ from Ex.3.1. Abstract
interpretation computes an invariant relating program variables,

2
∵ η(a) ∧ ρe(V, V ′) |= η(b) |= µi(b)

including pLen, bLen, p, andL. The result of the repair iteration
for the invariantbLen ≤ pLen at node14 leads to the mapµ
partially depicted as:

n 3 10 11 13&14
µ(n) bLen = 0 bLen ≤ pLen L ≤ pLen bLen ≤ pLen

pLen ≥ 1 bLen ≤ pLen

L = 1

The resultµ of the repair iteration is used to extract a set of
sufficient edges, Sπ ⊆ Eπ that are sufficient for the proof ofΨ.

Def. 3.2 (Sufficient Edges).An assignmente : a
x := e
−−−−→ b is a

supportingedge w.r.tµ if µ(b) contains an invariant assertion

involving the variablex 3. A conditione : a
q(e)
−−→ b is a supporting

edge ifµ(a) 6|= q(e) andµ(b) |= q(e).

A sufficient setfor µ is the set of all such edges. The definition
of sufficient edges immediately implies a method of derivingsuch
a set of edges from a mapµ.

Example 3.4.Continuing Ex.3.3, the sufficient edges correspond-
ing to the proof overπ consist of the assignments1 → 3, 12 → 13
and 13 → 10 along with conditions10 → 11, 10 → 14 and
14 → 15.

3.3 Over-Approximate Symbolic Execution

In many cases, the path program may not contain loops, or the
loops present do not affect the property of interest. In suchcases,
we propose to use symbolic execution along the path program as
an oracle. The power of symbolic execution lies in the ability of
fast SMT solvers to reason about the feasibility of large formulae
in theories such as linear arithmetic or bit-vectors, and incase of
infeasibility to quickly extract minimal unsatisfiable cores. Note
that standard symbolic execution in general cannot reason about
all paths through a program loop. Therefore, we use anover-
approximate symbolic execution(described below). If it succeeds
in proving the property, we directly obtain a sufficient set.If it
fails, then we resort to a more general proof technique like abstract
interpretation.

An over-approximate symbolic execution of the path programπ
constructs a formulaψπ in a suitable logical theory. This formula
is derived by composing the transition relations along the edges in
the path programπ. Assignments belonging to loops are treated as
assigning a non-deterministic value, and conditions present in loops
are treated as nondeterministic choices. Finally, for the property
〈n, ϕ〉, we assert¬ϕ as a condition encountered at the noden.

Theorem 3.3. If the over-approximate symbolic execution of a
path programπ yields an unsatisfiable formulaψπ, then any exe-
cution of the path programπ satisfies〈n, ϕ〉.

Example 3.5.Symbolic execution of the “first” path programπ1 :
1 → 3 → 4 → 6 → 7 → {10, 11, 12, 13}∗ → 14 → 15, shown
in Fig. 2(A) (originally from Ex.2.1) yields the following formula

3 Alternatively, the consecutionpost(µ(a), e) |= µ(b) shouldceaseto hold
if the assignment is made non-deterministic.



obtained by composing the transition relations of the individual
edges:

2

6

6

4

ρ1,3 : (bLen0 = 0 ∧ pLen1 ≥ 1 ∧ pLen1 ≥ pLen0) ∧
ρ3,4 : (p0 = 0) ∧ ρ4,6 : (pLen1 = −1) ∧
ρ6,7 : (mode0 = 0) ∧ ρ7,10 : (i0 = 0) ∧
ρ10,14 : (L > pLen1)∧
ρ14,15 : (p0 6= 0 ∧ bLen1 > pLen1)

3

7

7

5

The subscripts on the variables occurring in the transitions are
derived from an SSA-form of the programξ or using a use-def chain
analysis. Note thatψξ is infeasible, proving that the pathξ satisfies
Ψ.

Let ψ : ρ1 ∧ · · · ∧ ρm be an infeasible formula obtained from
a path programπ. Furthermore, letR = {ρi1 , . . . , ρik

} be an
unsatisfiable corefor the formulaψ andS = {ei1 , . . . , eik

} be
the subset of edges that yield the transitions in the setR. The setS
forms a sufficient set for the infeasibility ofπ.

Example 3.6.Returning to Ex.3.5, the unsatisfiable core consists
of the transition relationρ3,4 along with ρ14,15. This yields the
sufficient setS = {3 → 4, 14 → 15}.

3.4 Interference Analysis

Thus far, we have focused on the analysis of a single path pro-
gram. Interference analysis extends the learning due to sufficient
edges extracted from a given path program, to consider otherpath
programs. Thus, interference analysis operates on the entire CFG.

For a path programπ, the sufficient setSπ ⊆ Eπ represents
edges relevant to the proof of the property alongπ. UsingSπ, we
seek to characterize the set of path programs inthe original CFG
that are also guaranteed to satisfy the propertyΨ and are proven
by the same sufficient set. To do so, we also need to reason about
potentially interfering assignmentsin the CFG. This corresponds
to the component ofExtractSupportSet from Algo. 1 that yields
Iπ.

Example 3.7. In Ex.3.4, the process of local repair over the path
programπ2 in Fig. 2(C) yields a sufficient set

S2 : {1 → 3, 10 → 14, 10 → 11, 12 → 13, 13 → 10, 14 → 15} .

The pathπ1 shown in Fig. 2(A) traverses all of the edges in the set
S2, yet the proof of the property obtained along the sufficient set
S2 does not apply for this path. The reason is that the assignment
pLen := −1 along the edge4 → 6 invalidates the value of the
variablepLen that is initially defined in1 → 3. Therefore the proof
in Ex.3.4 does not apply to this path.

This assignment disrupts the criticaluse-defchain between
edges1 → 3 where the variablepLen is defined and10 → 11,
where it is used. Our approach is to identify a set of interference
edges that can invalidate the use-def chains in the sufficient set.

Def. 3.3 (Interfering Edge).An assignment edgee 6∈ Eπ assign-
ing variablex is an interference edgefor a sufficient setSπ ⊆ Eπ

iff there exist edgese1, e2 ∈ Sπ whereine1 definesx, e2 usesx,
and a path of the forme1  e e2 exists in the original CFG.

Returning to Ex.3.7, we verify that the edge4 → 6 interferes
with the def-use chaine1 : 1 → 3 and the conditione2 : 10 →
11. Given a path programπ and the sufficient edgesSπ, a set
of interfering edgesIπ can be computed using a use-def chain
computation and a control reachability analysis on the original
CFG. In principle, a finer semantic criterion for interference can
be formulated that checks whether an interfering edge preserves
the invariants related to the sufficient set.

However, in our implementation, the syntactic criterion pre-
sented here is used due to its simplicity.

Theorem 3.4. If a propertyΨ : 〈n, ϕ〉 holds on a path programπ
then it holds on any path programξ : n0  n visitingall the edges
in Sπ andnone of the edgesin Iπ.

3.5 Blocking Clauses

We apply the oracles described in Secs. 3.3 and 3.2, in sequence, to
a path programπ in an attempt to obtain a sufficient setSπ. If the
oracle obtains a proof, then the interference analysis described in
Sec. 3.4 yields a sufficient-interference pair(Sπ, Iπ) consisting of
the sufficient edges and their corresponding interference edges. We
now describeBlockingClause from Algo. 1 that applies these sets
to rule out other paths with the same proofs of correctness.

In general, propositions in our Boolean encoding describe path
program edges. However, our sufficient or interference edgesets
may contain edges inside loops (as in Ex.3.7). Following ourin-
terpretation of path programs, a path program that visits the rep-
resentative noden of an MSCC also traverses all the edges inside
the MSCC. Therefore, for the sake of convenience, we introduce a
propositional formulaϕe : pe ≡

W

e′:n′→n∈ED
pe′ for every edge

e occurring inside an MSCC represented by noden. Note thatpe

can be used as a proposition that models a visit to the representative
noden with the addition of a Boolean formulaϕe above, relating
pe to the other propositions in our encoding.

The formulaBlockPaths(Sπ, Iπ) :
W

e∈Sπ
¬pe ∨

W

f∈Iπ
pf ,

encodes paths that either (a) do not visit every node ofSπ, or
(b) visit some node ofIπ. Adding this formula as ablocking
clauseto ΛΠ avoids revisiting the same set of sufficient edges. This
provides proof-based learning to avoid the enumeration of related
path programs.

3.6 Handling Violations

We now describe how to handle violations as depicted in Algo.1
lines 8 – 9. One could halt the enumeration upon encounteringa
violation, but it may be desirable to continue the search forerrors
that stem from a different cause. To this end, SMPP obtains apath
slicefor a violation along the lines of Jhala and Majumdar [24]. As
a result of path slicing, the analysis obtains a setSπ ⊆ Eπ of edges
that cause the error a setIπ of edges that may interfere with the
use-def chains inSπ. Our treatment of the pair(Sπ, Iπ) obtained
from a potential violation is identical to that obtained from a proof
through repair iteration.

Theorem 3.5 (Jhala and Majumdar [24]).Let Sπ, Iπ be as com-
puted by the path slicing technique. For any pathξ that visits all
the nodes inSπ and none of the nodes inIπ, the pathξ violates the
property〈n, ϕ〉 iff π does.

3.7 Expanding Loops

A path program, corresponding to a control path in the MSCC
decomposition, treats loops monolithically. A given loop is entirely
part of a path program wherein arbitrarily many iterations are
considered, or alternatively no iterations are considered. In the
case when the entire program consists of a single while loop (as
is the case with control programs), our technique is equivalent to
running the oracle over the entire program. This imprecision can
be remedied by unwinding and unrolling a given loop, so that our
techniques can reason about specific paths in the loop. Furthermore,
our choice of an MSCC decomposition was intended to create an
acyclic graph related to the CFG. Our approach can be generalized
to use other schemes for creating an acyclic graph such that the
paths in this graph are related to fragments in the original CFG.



4. Implementation

We have implemented our approach as a part of the F-Soft pro-
gram verification platform for C programs [21, 22]. F-Soft checks
C programs for buffer overflows, string API usage, NULL pointer
dereferences, user-defined type-state properties, memoryleaks and
so on. For a detailed description of our modeling of structures,
pointers and arrays, see [22].

F-Soft Framework

The F-Soft front-endflattensstructure and union types into simple
types, constructs a memory model by providing magic number ad-
dresses to storage locations, and instruments the program for prop-
erties being checked. Pointer aliasing and arithmetic are handled
by modeling their effects over integer variables based on a flow-
insensitive points-to analysis.

Example 4.1.Fig. 3 illustrates the construction of a memory model
in F-Soft based on the results of a points-to analysis. Our model
replaces each local variablep in a functionf by a variablef : p
with global scope. Iff can be called in a recursive context then
such a variable is treated as asummary variable.

Corresponding to each pointer variablep, we introduce an in-
strumentation variable star(p) to track the contents of its store. The
value of star(p) is non-deterministic ifp does not point to a valid lo-
cation. The expression∗p is replaced by its representative star(p).
An assignment to theL-value∗p is rewritten into an assignment to
all the variablesx that p can potentially point to. Such an assign-
ment tox is guarded by a conditionp == &x that enforces the
points-to relationship. Further details and rationale areprovided
elsewhere [21, 22].

The initial CFG of the program is simplified considerably
through program slicing and constant folding. We then perform
a series of flow and context sensitive analyses such as constant
folding, interval analysis, and various numerical domain analy-
ses. F-Soft implements many abstract domains in a partiallypath-
sensitive abstract interpretation framework [1, 30]. The analysis
uses these domains in combination or in succession to attempt to
prove a property, each run of the analysis reusing the invariants
obtained by the previous runs. F-soft re-slices the programmodel
based on the properties proved by static analysis, reducingit fur-
ther. At the end of static analysis, the final CFG with its unproven
properties is provided as an input to the SMPP implementation.

SMPP Implementation

Our implementation follows the description in Algorithm 1 with
modifications to accommodate function calls. The treatmentof
function calls and returns ensures that the enumerated pathpro-
grams properly match calls and returns; and different pathsinside
a function can be traversed by a path program upon multiple vis-
its under different calling contexts. This is achieved bycontext
numberingthe function calls in the CFG. The context numbering
scheme described by Whaley and Lam is used [32]. Each CFG edge
e then yields multiple propositionsp(e, c) based on the different
calling contextsc that the edge may be visited in. The encoding for
incoming edges at call sites and outgoing edges at returns ensure
that enumerated calling block context with a return to the appropri-
ate call site. The rest of the encoding remains unchanged

Recursive calls are currently unwound up to a specified depth
and then replaced by a call to a function that returns a non-
deterministic value and has non-deterministic side-effects on vari-
ables passed by reference. In practice, this seems to have a minimal
impact on the checking of runtime errors.

The enumerated path programs are first analyzed using over-
approximate symbolic execution and then (if needed) by the ab-

Table 2. Legend for abbreviations used in Table 3.
Abbrv. Remark
Blk Number of blocks at start of SMPP.
Prp Number of properties (asserts).
Prf Number of Proofs.
PP tot Number of path programs total (estimated).
PP enum Number of path programs enumerated by SMPP.
PP Proofs Number of path programs proved correct.
SE Symbolic Execution
AI Abstract Interpretation
RI Repair Iteration

stract interpreter and a local repair iteration. Currently, the sup-
port set and unsatisfiable-core computation are performed using the
SMT solver Yices [16]. A failure to prove a property is currently
reported as apotential violation. In the future, we plan to integrate
our technique with a model checker or aconcolic executionengine
over path programs to concretize these potential violations.

5. Experimental Evaluation
We conducted experiments to address the following: (a) how ef-
ficiently SMPP can verify common safety properties that require
path-sensitive reasoning, (b) the effectiveness of proof-based learn-
ing for proving many program-paths safe with the analysis ofa few,
and (c) the power and efficiency of SMPP against another path-
sensitive analysis, predicate abstraction.

Fig. 4 presents our experimental setup using the F-Soft frame-
work. The experiments consist of processing the given C pro-
gram through our front-end which includes path-insensitive, flow-
and context-sensitive abstract interpretation through numerical do-
mains such asconstants, intervals, andoctagons. Properties proved
using these analyses areremovedfrom the CFG, followed by re-
slicing and simplification. Thus all properties on which SMPP is
tested require some degree of path-sensitive reasoning to validate.

Table 3 presents our experimental results on the Zitser et al.
benchmarks [34]. These programs consist of important buffer over-
flow bugs found in commonly used programs such aswu-ftpd,
bind, nslookup and so on, along with the fixes made to them.
Note, however, that F-Soft automatically instruments manymore
properties, as compared to the single line of code that is marked in
these benchmarks. The abbreviations used in Table 3 are expanded
in Table 2. Table 3 reports the size of each program at the start of
SMPP, number of properties, the number of proofs (per oracle), and
the time taken (total, percentage for stages of the analysis). Each
property that is not a proof is reported as a potential witness along
with a sliced path program. For some these potential witnesses, the
symbolic execution reported a path program slice that did not in-
clude a loop, indicating a concrete witness. The results demon-
strate that SMPP can prove a significant number of path-sensitive
properties and identify potential witnesses efficiently. Note that
symbolic execution is successful in proving a majority of the paths
efficiently, and that abstract interpretation is key for a significant
portion of properties that involve loops.

In Table 3, the Col.Path Programs (Tot) presents an estimate
of the total number of path programs, estimated using SAT (inmany
cases, the estimator timed out after an hour) whilePath Programs
(Enum) presents the number actually enumerated by SMPP. The
difference demonstrates the effectiveness of proof-basedlearning.

Table 4 compares the performance of SMPP against Blast
v2.5 [3]. To focus on the analyses (rather than on differences in
program modeling), we printed the CFG on which SMPP is applied
as a C program, using goto statements to enforce control flow.The
variables in this program are all integers (generated afterthe F-Soft



void allocM (int ** ptr, int n) {
1: ASSERT(ptr);
2: if (* ptr == NULL)
3: *ptr = malloc(n * sizeof(int));
4: ASSERT(*ptr);
}

void main() {
6: int a [100], * b =0;
7: if (rand())
8: b = & a;
9: allocM(&b,100);
11:ASSERT( LEN (b) == 100);

Points-To Graph

star(main : b) main : a alloc@3

main : b star(allocM : ptr)

allocM : ptr

global int alloc@3;
void allocM (int ** ptr, int n) {
1: ASSERT(ptr);
2: if (star(ptr) == 0){
3: *ptr = malloc(n * sizeof(int));
3-0: star(ptr) = alloc@3;
3-1: LEN(star(ptr)) = n;
3-2: if (ptr == & main : b ) {
3-4: main : b = alloc@3;
3-5: LEN(main : b) = n;

}
3-6: alloc@3 += n;

}
4: ASSERT(*ptr);

Figure 3. A simplified illustration of F-Soft’s memory modeling for a program with pointers.

Table 3. Experimental Evaluation on the Zitser et al. Benchmarks on CFG obtained after initial static analysis. The path countertimeout
was set to1hr. Table 2 explains the abbreviations used here.

Name LOC Blk Prp Prf Path-Programs PP Proofs Times (seconds)
Orig. (tot) (tot) Total Enum Tot SE AI Tot SE AI RI

% % sec % % %
SENDMAIL

s2-ok 1151 744 60 20 >1.2M 204 131 80 20 136.76 7 65 21
s2-bad 1132 721 58 21 >1.2M 259 195 86 14 139.17 10 77 3
s4-ok 776 263 12 6 12 12 6 0 100 10.98 2 95 1
s4-bad 713 284 30 15 30 30 15 0 100 30.29 1 96 0
s5-ok 837 179 14 13 14 2 1 100 0 0.5 40 0 0
s5-bad 810 182 17 16 17 2 1 100 0 0.5 40 0 0
s6-ok 317 121 8 3 8 8 3 0 100 13.18 0 98 0
s6-bad 315 121 8 3 8 8 3 0 100 14.91 0 98 0
s7-ok 1824 1357 174 59 >.5M 415 224 92 8 132.4 25 48 0
s7-bad 1816 1347 170 94 >.6M 412 271 92 8 135 24 53 0

BIND

b1-ok 2177 670 55 10 >.4M 214 168 96 4 179.6 9 85 0
b1-bad 2117 662 54 9 >.4M 181 135 95 5 171.79 9 86 0
b2-ok 2706 957 80 11 >.4M 285 216 97 3 282.23 23 69 0
b2-bad 2688 955 80 11 >.4M 289 220 97 3 230.14 33 59 0

WU-FTPD

f1-ok 628 144 13 4 188 28 14 71 29 11.81 2 88 8
f1-bad 562 178 21 9 481 71 52 92 8 25.14 3 91 4
f2-ok 1208 119 9 5 5637 17 13 100 0 0.25 68 20 0
f2-bad 936 114 8 4 2175 14 10 100 0 0.19 72 16 0

front
end

memory
modeler

abstract
interp.

property
slicing

Boolean
encoding

path-program
analyzer

CFG
simplifier

sufficient
analysis

Front-End SMPP

CFG

Figure 4. Experimental setup: Front-end includes path-insensitiveanalyses, followed by SMPP.

front-end process of instrumentation, memory modeling, simplifi-
cations, slicing and static property proofs). Blast had to be invoked
multiple times on the same program, each instance targetinga dif-
ferent property. This was needed to avoid the default aggregation of
properties in Blast which failed with errors in many instances. For
fair comparison, we ran SMPP multiple times with each instance

targeting a single property, recomputing the SAT encodingsand
the sufficient sets from scratch. The comparison in Table 4 shows
that while Blast can prove more properties than SMPP in some
cases, our coarser control-based abstraction can be much faster and
finds more violations in many cases. A majority of the failures by
Blast resulted from an explosion in the number of predicateson



Table 4. Comparison of SMPP with BLAST.Prp: number of prop-
erties (asserts),Wit: number of concrete witnesses, andFail: Blast
failures. Note that SMPP is run multiple times (once for eachprop-
erty) for fairer comparison.

Name Prp SMPP BLAST
Prf Time Prf Wit Fail Time

s2-ok 60 20 2m10s 35 0 25 2h 7 m
s2-bad 58 21 2m25s 35 0 23 1h50m
s4-ok 12 6 0m11s 11 1 0 0h1.3m
s4-bad 30 15 0m31s 17 1 12 2h 8 m
s5-ok 14 13 0m00.5s 6 0 8 0h55m
s5-bad 17 16 0m00.5s 9 0 8 1h32m
s6-ok 8 3 0m14s 4 0 4 0h17m
s6-bad 8 3 0m15s 4 0 4 0h17m
s7-ok 174 59 28m 135 1 38 17h22m
s7-bad 170 94 27m 134 1 35 15h55m

loops (termed “Gremlins”). Our abstract interpretation followed by
a proof-based learning seems to be adequate for many such cases.

Analysis of Larger Benchmarks.Table 5 summarizes our exper-
imental results on larger case studies. The experimental setup re-
mains the same as in Fig. 4. Program sources were downloaded
from the internet and first analyzed using our tool SpecTackle [22],
which infers likely preconditions and post-conditions correspond-
ing to pointer and array accesses in the functions4. F-Soft (with
SMPP) is then invoked for each function in the program. The pre-
conditions for the entry functions are assumed, whereas theprecon-
ditions for called functions are asserted. In order to control the CFG
size, calls to functions not reachable from the entry function within
a context of depth4 were replaced by non-deterministic choice.
Table 5 shows the results. The SMPP approach is invoked only
in those cases where there are unresolved properties from the ini-
tial path-insensitive analyses. This accounts for roughly40% of the
functions, on average. The total time taken by the SMPP approach
is of the same order as that taken by the initial model construction
and static analysis phases. In almost all cases, the overallanalysis
(initial+SMPP) terminates within the given time limit of45 min-
utes. Note that SMPP detects a significant number of extra proofs,
over and above sophisticated flow- and context-sensitive polyhedral
abstract interpretation techniques. We did not run Blast onthese
larger case studies, as it would have required significant manual
effort in instrumenting the CFGs generated by our front-end.

6. Related Work

Abstraction Refinement. Our technique fits broadly into the ab-
straction refinement paradigm. The Boolean formulae representing
all unexplored control paths is a coarse control-flow abstraction.
This abstraction is successively refined by eliminating thepath pro-
grams proved correct.

The main differences from typical abstraction refinement ap-
proaches are: (a) Our abstraction is based solely on controllo-
cations. This is a very inexpensive abstraction to compute,defer-
ring the heavier work to an oracle for checking correctness of a
path program corresponding to the enumerated control path.Other
approaches typically use an explicit representation of thecontrol
flow with data predicates, e.g. Boolean programs [2, 3]. Suchab-
stractions are more expensive to compute than our abstractions. (b)
Rather than a refinement loop over false error traces (counterexam-
ples) [2, 8], our refinement loop operates over path programsasso-
ciated with the enumerated control paths. (c) Our approach avoids

4 These benchmarks along with the inferred preconditions areavailable
upon request.

divergenceson loops in the program. This is because we enumerate
over an acyclic MSCC-based graph derived from the CFG, wherein
each control path corresponds to a path program that can poten-
tially capture infinitely many control paths on the originalCFG. It
is well known that effective handling of loops is a stumblingblock
for many abstraction refinement techniques. Abstract interpretation
techniques using widening have been well-optimized to prove com-
mon types of run-time properties, even in the presence of loops. (d)
The decomposition of the overall program into multiple pathpro-
grams allows flexibility in choosing a suitable oracle for individual
sub-problems. In our implementation, we use symbolic execution
to handle path programs without loops, and abstract interpretation
to handle path programs with loops. Other oracles, such as predi-
cate abstraction refinement, can also be used.

Our work is closely related to recent work by Heizmann et
al [20] . They propose an abstraction refinement scheme fortrace
abstractions. An over-approximation of the set of possible traces
is successively refined by means of aninterpolant automatonthat
recognizes a set of infeasible traces. The interpolant automata are
also derived from proof techniques that can generate Floyd-Hoare
style inductive invariants. The main differences include:(a) our
technique operates on path programs as opposed to error traces;
(b) we employ a symbolic encoding using SAT to keep track of
unexplored path programs, as opposed to an explicit representation.

Lazy abstraction with interpolants by McMillan [26] provides
a lazy scheme to refine an abstract model on demand, by utilizing
interpolants derived from refuting paths in the program. This work
also avoids the cost of an expensive abstraction. However, the
refinement is driven by error traces, the control flow is handled
explicitly, and details of proof-based learning are different from
our technique.

The notions of path programs in our work are directly inspired
by the work of Beyer et al. [4]. That work also employs path pro-
grams and invariants to avoid loop divergences. In contrast, (a)
we useBoolean formulaeabstracting just the control flow, as op-
posed topredicate abstraction(Boolean programs), and (b) we re-
fine throughblocking clausesrather than usinginvariants as pred-
icates. Using blocking clauses for refinement is potentially more
scalable than using invariants as predicates. First, invariant gener-
ation techniques typically generate a large set of invariants, a ma-
jority of which are redundant. Beyer et al. [4] do not attemptto
minimize the set of invariants. Our work provides this reduction
by means of thelocal repair iterationdiscussed in Section 3. Sec-
ond, each predicate added can potentially double the complexity
of model checking an abstraction, whereas our conflict clauses are
small and seem to have very little impact on the size of the Boolean
formula abstraction. Another approach is to use abstract interpreta-
tion to derive useful program invariants as a pre-processing step, to
avoid expensive refinement iterations over loops [23].

Bounded model checking of programs.Efficient SAT-based tech-
niques have been used for bounded model checking (BMC) [5] of
programs in tools such as CBMC [7], F-Soft [21], and for scalable
summary-based analysis in Saturn [33]. These techniques automat-
ically utilize SAT-based conflict analysis and learning forpruning
the search space. However, they suffer in the presence of loops,
which require deep unwindings that result in large SAT problems.
Furthermore, BMC typically handles all paths up to some bounded
length as a single monolithic problem. In contrast, we encode only
the control paths as a SAT formula, which is much smaller thana
typical BMC formula that encodes unwindings of a program.

Abstract interpretation and path-sensitive analysis.Other ap-
proaches to path sensitive analysis includeESP[14], trace parti-
tioning [25], elaborations[31], amongst many others. These tech-
niques employ heuristics to control the trade-off between perform-



Table 5. Results on Larger Open-Source Case-Studies
Name KLOC #Fun #Prec Front-End SMPP

Blk Time Prp Prf #Fun Blk #PP Prf. Time
avg sec tot tot tot timeout avg tot tot tot, sec

thttpd-2.25b 14.7 172 1901 263 5162 12161 11069 68 1 199 1622 512 1393
ssh-server-4.1 30.1 313 2047 190 7755 42773 41182 127 5 120 1681 564 1197
xvidcore 63.9 350 6127 520 13259 17219 12020 190 6 331 5220 2090 15728

ing a join operation or a logical disjunction at the merge points in
the CFG. However, the join vs. disjunction choice isinferred in
our SMPP scheme by the disjunction-based decomposition over
control paths.

7. Conclusion
We have presented the Satisfiability Modulo Path Programs (SMPP)
approach to program analysis, which lifts to the architecture of
SMT solvers to path-sensitive program analysis. We have demon-
strated it to be effective in analyzing real-world programs.
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