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ABSTRACT
This article provides a survey on top k paths algorithms, es-
pecially focusing on how to apply these algorithms to finite-
state transducers (FST). I would compare 3 algorithms that
relate to the tree of paths, and 2 of them are implemented.

1. PROBLEM DEFINITION
Our task is to enumerate top k shortest paths of a given
FST as fast as possible. Before we actually look at the
algorithms that find top k paths on a given graph, we should
be aware of that an FST is a directed acyclic graph (DAG)
with extra input and output labels attached to each edge,
and it also has multiple edges between 2 nodes. Given this,
we should not pay too much attention to algorithms that
do more work to avoid loops in the output paths, which are
presumably slower than the ones that do not consider loops
at all. Therefore, in this article, our problem comes down to
enumerate top k paths in a given DAG (allowing multiple
edges between 2 nodes) efficiently.

2. ALGORITHMS
The introduction section of [4] is a rather comprehensive
description of some top-k-path algorithms.

Besides the theoretical results of algorithms, I also discuss
the details when implementing them and the time-space
tradeoff if some indexes are built.

2.1 Terminology
For a given FST G, let n be the number of states(nodes) in
G, d be the maximum number of out degree of any nodes in
G, and m be the number of edges in G. We have m = O(nd).
s and t are source and sink nodes of G, respectively. Let k
denote the k in the kth-shortest path problem, and Ak be the
kth-shortest path. The 3 following algorithms are discussed
in presence of the shortest path tree T from all the nodes
to the sink node, which can be computed using Dijkstra’s
algorithm with time complexity O(m + n log n).

2.2 Yen’s Algorithm without Guaranteed Loop-
lessness

2.2.1 Theoretical Analysis
Yen in [5] purposes an algorithm to enumerate k shortest
loopless paths. The time complexity is O(kn4).

[2] revises Yen’s algorithm that it does not consider loopless,
reducing the time complexity to be O(km).

2.2.2 Implementation on FST
The simplest desciption of this implementation is: if Ak is
available, find all the possible candidates of Ak+1, making
sure that Ak+1 would not be the same as Aj , j = 1, 2 · · · k
and put them in a heap, pop out the shortest one to be
Ak+1. There are 2 steps to accomplish this: 1) find n1 so
that any nodes before the n1th node in Ak won’t be used to
generate candidates; 2) let n2 = n−n1, and iterate all edges
from each nodes from n1th to t and generate one candidate
for each node, and then put them into the heap.

At the beginning, I did not build the tree structure Tk to
represent all Aj , j = 1, 2 · · · k, so it takes O(kn1 log d)) to
do step 1; otherwise only O(1) needed, with O(n) time to
maintain Tk and construct Ak.

Before using Tk, step 2 takes O(n2d(n + log(n2k))). It can
be optimized as O(n2d log(n2k)) if Tk is maintained. As
for the log(n2k) term, a fibonacci heap can be used to get
rid of it, making the step 2 complexity as O(n2d) and the
total complexity as O(n) + O(n2d) = O(nd) = O(m) for
computing Ak+1, same as the theoretical result.

2.3 Using Reduced Cost
2.3.1 Theoretical Analysis
[2] makes use of the structure of reduced cost in [3] to slight
improve the above Yen’s algorithm without guaranteed loop-
lessness. They call this MPS algorithm. The reduced cost
structure can be used to sort edge in time O(m log m). Hav-
ing this, the time complexity of enumeration is O(kn).

2.3.2 Implementation on FST
Once T is computed, we can sort edges grouped by their
tails using reduced cost. Time complexity is O(nd log d).

During the enumeration process, it is very similar to Yen’s
algorithm above, having 2 steps. And the first step is exactly
the same. Time complexity is O(n).



Step 2 is a lot faster after the sorting. O(n log(nk) with
heap or balanced search tree, and O(n) with fibonacci heap.

2.3.3 Do Some Work Offline
In this algorithm, there are two things we need to do before
actually enumerating paths. One is to build shortest path
tree T , and the other is to sort the edges using reduced cost.

If no projection is considered, both of the above can be done
offline. T takes O(n(d+log n)) time and O(n) space. Sorting
takes O(nd log d) time and no space.

If we have to consider projection, I would guess sorting is not
doable offline. Let’s discuss an example. In Figure 1, edge

Figure 1: FST

(1, 3) is ordered before (1, 2) because it generates a shorter
path from node 1 to node 5. But if we perform a projection
between node 1 and node 4, the order should be changed.
In Figure 2, edge (1, 2) should be ordered before edge (1, 3),

Figure 2: FST after Projection

which means we cannot do the sorting offline if we don’t
know which portion of the FST projections may take.

Because a shortest path tree is rooted by the sink of the
DAG, projections that choose a different source but the
same sink should be easily handled by simply removing those
nodes. We have to store more information to support projec-
tions that choose a different sink as long as our FSTs have
any fan-outs in the shortest path tree. For instance, the
shortest path tree of Figure 1 should contain no path from
node 3 to node 4. Once we do the projection and the FST
becomes Figure 2, we need more information to build the
new shortest path tree. However, I notice that all the paths

in one shortest path tree are shortest paths between those
two nodes. Therefore, if our FSTs does not have too many
fan-outs, it is possible to store information in O(n) space for
constructing shortest path trees for any projections.

2.4 Implicit Path Representation
2.4.1 Theoretical Analysis
On computing top k paths, Eppstein [3] presents the asymp-
totically fastest algorithm. After using O(m + n) to build
some data structre representing all paths, we can get the
implicit representation of the kth path in time O(log k). Of
course, if we need to construct the kth path, we need O(n)
time, which is the same as the one uses reduced cost to im-
prove Yen’s algorithm.

3. EVALUATION
3.1 OpenFST
The ShortestPath operation in OpenFST [1] takes minutes
to enumerate top 100 paths, while all the implementations
discussed above run less than 100 milliseconds.

3.2 MPS v.s. YEN
I have implemented both Yen’s algorithm without consider-
ing loopless and MPS algorithm. The following figures give
time comparisons of two implementations on a FST with
about 100 states.

Figure 3: MPS v.s. YEN

Figure 3 shows MPS takes more time to build up the data
structure as we analyzed, and it runs faster to enumerate
each path. Although I have not used fibonacci heap, the
running time curves look like linear because the heap inser-
tion in step 2 is with a small constant factor compared to
step 1.

4. CONCLUSION
I would suggest we just take the YEN’s algorithm if we do
less than tens of enumerations on each FST. If we figure out
how to store the shortest path trees offline, top 10 paths can
be enumerated within 1 millisecond.



Otherwise, MPS offers a faster total running time on enu-
merating more than 100 paths. Also, we may consider to
guess the k in advance, and then pick the better one.
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