
Lab: Image Inpainting using Online Dictionary Learning

Xiaomin Zhang, Jinyu Xia, Jinman Zhao

December 17, 2015

1 Introduction

Image inpainting [2] refers to the process of restoring missing or damaged areas in an image.
One efficient algorithm for image inpainting is to use the image signal sparse representation
over a redundant dictionary. It is assumed that the natural signal for an image can admit a
sparse decomposition over a redundant dictionary, and thus, finding out the dictionary would
be critical. In this lab, we apply an online optimization algorithm for dictionary learning,
based on stochastic approximation, which scales up gracefully to large datasets.

This lab is designed to help you use several machine learning tools to deal with image
inpainting problem. The problem of inpainting is encountered in various image processing ap-
plications: image restoration, editing (e.g., object removal), disocclusion in image-based ren-
dering, interpolation, loss concealment, texture synthesis or image resizing (e.g.,enlargement).
There are several approach dealing with the problem of image inpainting. One method called
patch sparse representation is related to the pattern recognition techniques we learn from
the class. Additionally, the type of image inpainting we choose to explore in this lab is image
restoration.

The image restoration problem is concerned with recovering an original image from var-
ious forms of degradations. In the restoration problem, the missing region is generally not
too large, hence, local diffusion and patch-based or global methods give satisfactory results.
Examples are shown in Fig. 1.

2 Overview

In this section, we will describe the basic concepts and introduces some of the Matlab tools
that we will use in this lab. First, make sure that the data file LennaDict.mat is in your
MATLAB current directory.

2.1 Lasso Regression

The sparse coding problem with fixed dictionary D is a Lasso linear regression. The main
reason of applying Lasso regression on the weights w here is that it yields a sparse solution

1



(a) original (b) text-embedded (c) mask

(d) original (e) contaminated (f) mask

Figure 1: Some example input for image inpainting.

for w, so that we can end up finding out a sparse representation over the learned dictionary
D.

ŵ = arg min
w

1

2
∥x −Dw∥

2
2 + λ ∥w∥1 (1)

Note that l1 regularizer do not have a closed-form solution. Iterative algorithms like the
Landweber iteration can be applied to this optimization. In dictionary learning problem,
for equation (1), we need to fix D, given a signal x, the optimize weights wi, which is the
weight corresponding to the ith observed entry from a data set X.

2.2 Sparse Dictionary Learning

To conduct dictionary learning, we need to use equation (2). A natural approach to solving
this problem is to alternate between the two variables, minimizing over one while keeping
the other one fixed. More specifically, given the data set X, the way of computing D is that
within each iteration, first with D fixed, we optimize w, and then with w fixed, we optimize
D. We need to keep doing these two regressions alternatively with an iteration time T.

D̂,Ŵ = arg min
D,W=[w1,...,wk]

1

2
∥X −DW∥

2
F + λ

k

∑
i=1

∥wi∥1 (2)

Note that generally, the iteration time T (which is also the number of selected image
patches n) should generally be much larger than the length of a weight vector wi m and the
number of atoms in dictionary D.

2



2.3 Missing data

One important thing to note is that in most cases, there would be missing data in the data
set X. To deal with this situation, the learning process of our dictionary D should only base
on the observed entries xi, where i is integer from 1 to n.

arg min
w

1

2
∥x −Dw∥

2
2 , where D should only learn from observed image patches. (3)

2.4 Image Inpainting

In image restoration problems, we want to recover the corrupted part of an image, such as
text, noise, scratches.

This seems like a totally different problem. But see it like this way: for an given image,
we can extract huge amount of small areas from it (called patches) and view each of them
as data point. Thus we can obtain a large redundant data set and can use them to learn a
dictionary for the sparse representation of the local structure of the given image. The idea
is also related to the so called wavelet method, where a carefully pre-designed dictionary (a
set of “wavelet” functions) is used to analyze, compress or process the image. However, the
advantage here is to learn a dictionary specialized for the given image itself and thus we may
be able to achieve better performance or gain some idea of its local structure.

The idea of restoration here is simple: treat the parts that need to be inpainted in the
image as missing data in some patches, impute them using the dictionary learned from other
intact patches until the parts is completely filled.

3 Warm-up

With basic concepts and theories introduced, in this section, we would like you to get familiar
with some building blocks for the lab.

3.1 Implement Lasso

Lasso is essentially a regularized least square question. See equation (1). Write your own
version of Lasso. What is parameter λ doing here?

Generate your own noised data using the following script and try to recover wtrue. Show
the resulting w and how it changes with different values of λ.

X = randn(100,5);

wtrue = [0;2;0;-3;0];

Y = X*wtrue + randn(100,1)*0.1; % small added noise

3.2 Image Operation

Try your hand at some basic operators on Image Processing using MATLAB. Table 1 refers
to some handy MATLAB functions that is useful in this lab. We also write some helper
functions specialized for our lab (Table 2).

3



Table 1: Some image related MATLAB functions

Name Functionality
imread load an image from file as a matrix
imwrite write a matrix as an image into a file
imshow show a matrix as an image

Table 2: Some helper functions we write for the lab

Name Functionality
imgData

(filename) load an image from file as a matrix and
automatically scale them into [0,1] scale

getPatch

(mat,sm,ipatch) take the ipatch-th patch (a sm × sm vector)
from matrix mat

getPatchMask

(r,c,sm,ipatch) a r × c (0,1)-matrix indicates the appearance
of the ipatch-th patch

getPatchNum

(r,c,sm) number of possible sm × sm patches in a
r × c image

getPatchPos

(r,c,sm,ipatch) the starting position of the ipatch-th patch in
a r × c image

Now try to load image LennaWithText.png (Fig. 2) as a matrix with each pixel ranges
between 0 and 1. Could you find where the bad pixels is? Show your work. We will use it
as a mask ([0,1]-matrix/image serves as an indicator that tells us where to be inpainted) for
inpainting later.

Try to fetch some patches with, say, 10 × 10 pixels. Can you pick some ones containing
eye, hair or something interesting within it? What is the 133295th patch p133295 looks like?

3.3 Play with dictionary

In this section, we will provide you a calculated dictionary for Lenna. We visualize it in Fig.
3, so you can get some intuition as for what a dictionary looks like. Later you can visualize
your own dictionary using showPlot.m.

Use the given dictionary and Lasso you just wrote. Try to learn sparse coding for each
patch you extracted in the previous section and use the sparse coding to reconstruct the
patches. What do they look like? Try to compare them with the original ones.

(extra) What if there are corrupted/unknown pixels in your patches? Can you propose
some approaches to reconstruct them?

4



Figure 2: LennaWithText.png.

3.4 lasso?

There is a MATLAB function lasso. As its name suggests, it should do the Lasso regression
for us. (optional) Try this MATLAB function lasso. Compare its result with your own
version of Lasso. Does it agree with your expectation? What is different? (Hint: MATLAB
lasso minimizes an objective function slightly different from what we learned from class.
You should be able to convert its results to what we want not-so-difficultly. Check MATLAB
documentation for details.)

In our case, the built-in lasso runs much faster than our own version of Lasso. If you
are in the similar case, feel free to use lasso in the rest to save some running time. =) Or
you can still use your own version for easy debug. (extra) What techniques does MATLAB
use to make it so fast? Let us know if you have some clue!

4 Main Lab

In this section you will see how to learn a dictionary and how to use it to recover some
images.

4.1 Dictionary Learning

Consider a signal x in Rm. We say that it admits a sparse approximation over a dictionary
D in Rm×k with k columns referred to as atoms, if one can find a linear combination of a

5



Figure 3: The dictionary of the first layer of Lenna.png (i.e., the red layer). This Dictionary has
100 × 200 atoms.

“few” atoms from D that is close to the signal x. The number of samples n is usually larger,
whereas the signal dimension m is relative small. In this lab, we choose m = 100 for 10 × 10
image patches, and n ≥ 100,000 for typical image processing application. Besides, since we
miss some data here, we extract T patches which only contain uncontaminated pixels. In
general, we also have k ≪ T (e.g. k = 100 for T = 20,000), and each signal only uses a few
elements of D in its representation. The setting gives us freedom in the choice of dictionary
and at the same time helps capture some inherent structure of the data set..

As covered in the course lecture, the way of computing D is that within each iteration,
fixing D first, optimizing w, and then fixing w, and optimizing D. Both of the optimizations
are just regularized LS problems, and we keep doing these two steps alternatively.

The problem is that when we have huge amount of data point, it would be tedious to
optimize the equation involving the whole data matrix. So we turn to stochastic method
which focus on one data point at a time, which saves computational power and can give
handy approximate result at each update. Another similar example for the idea is gradient
descent compared to stochastic gradient descent.

6



4.2 Online Dictionary Learning

4.2.1 Algorithm Outline

The fundamental two-step optimization structure of dictionary learning remain the same,
but instead of optimizing for all the data points as a whole, we randomly pick a data point
within the data set and focus on it within the iteration. This is to say we learn ”sample” by
”sample”. Update the weight and the dictionary every time the new sample is drawed. To
acquire a good online learning method is not quiet easy. What we adopt here is Algorithm1
[4].

Algorithm 1 Online dictionary learning

Input: x ∈ Rm ∽ p(x), T (number of iterations), randomly initialized dictionary D, lambda
λ, stepsize τ , convergence difference shreshold ∆.

Output: learned dictionary
A0 ← 0,B0 ← 0,
for t = 1 to T do

Randomly draw xt from p(x)
Use Lasso regression to compute sparse coding:
min1

2∥xt −Dwt∥
2 + λ∥wt∥1

At ←At−1 +wtwT
t

Bt ← Bt−1 +xtwT
t

Compute Dt using Dictionary update:
Dt ≜ argmin

1
t ∑

1
2∥xi −Dwi∥

2 + λ∥wi∥
return DT

To facilitate the understanding of this online dictionary learning, we provide several
additional explanations regarding to it:

• Practically, we can see p(x) as a matrix P ∈ Rm×T consists of n columns, each corre-
sponding to the patched you randomly selected before. Every time during the iteration
we just pick the t-th column of P. Note the the image patches randomly selected are
√
m ×

√
m, so that you could transform each square patch into a column vector by

applying MATLAB function reshape().

• In order to preserve the current and previous information of weight w and training
data xi, we add current Lasso result and the current training data to matrices A and
B. Sometimes we probably want to give a trade off between current and previous
information. Then we could calculate A and B as At = βAt−1 + ∑i=1

ηwt,iwt,i
T , Bt =

βBt−1 + ∑i=1
ηxt,iwt,i

T , where β is the trade off parameter. If we do not want any
previous effect, we could just set β as 0. Besides, we also need attention that some
bad value of β could lead to not convergence.

7



4.2.2 Dictionary Update

As mentioned in the previous sections, we update w and dictionary D separately. This
section is to present how to update the dictionary. The algorithm we adopt here is introduced
in [4]. You can see A and B are created for the purpose of this algorithm.

Besides, using some simple algebra, we would yield the solution of the dictionary update
with respect to the j-th column dj and keep the constraint dTj dj ⩽ 1. If we do not have this
constraint to dj, dj will goes to very large, and then w will goes to really small. The specific
algorithm is shown as followed[4]:

Algorithm 2 Dictionary Update

Input: D = [d1, ...,dk] ∈ Rm×k (input dictionary),
A = [a1, ...,ak] ∈ Rk×k = ∑

t
i=1wiwi

T ,
B = [b1, . . . ,bk] ∈ Rk×k = ∑

t
i=1xiwi

T

Output: updated dictionary
repeat

for j ← 1tok do
Update the j-th column to optimize for
uj ←

1
Ajj

(bj −Daj) + dj.

dj ←
1

max(∥uj∥2,1)uj
.

until convergence
return DT

Try implement Algorithm1 and Algorithm2 and use it to learn a dictionary for Lenna.
Plot your learned dictionary to see if it appears good. (You can compare it with Fig. 3.).

4.3 Image Inpainting

Now that you have a dictionary, you can use it to do the inpainting. Here, we provide you
with the imgInpaint.m (see Appendix A for its idea). So you do not need to worry about
all the minor details of image processing. What you are expected to achieve is to write a
main.m function. First, call Algorithm above you have written to obtain the Dictionary.
Then, call the function imgInpaint.m to acquire the image whose mark should be removed.

Based on what we have introduced in previous sections, you should be able to recover
Lenna as some thing like Fig. 4. How does your dictionary perform? For ”Lenna” figure,
does the dictionary work well?

In addition, perform the whole process on your own to inpaint ThreePeopleWithM.png.
(We provide MShapeMask.png if you have some trouble extracting the mask.) Show your
work. Does this dictionary work as well as the former one? And why?

[4, 5, 2, 3, 1]

8



Figure 4: Restored Lenna

References

[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transac-
tions on, 54(11):4311–4322, 2006.

[2] Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and recent ad-
vances. Signal Processing Magazine, IEEE, 31(1):127–144, 2014.

[3] Boris Mailhé, Sylvain Lesage, Rémi Gribonval, Frédéric Bimbot, and Pierre Van-
dergheynst. Shift-invariant dictionary learning for sparse representations: extending
k-svd. In Signal Processing Conference, 2008 16th European, pages 1–5. IEEE, 2008.

[4] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learn-
ing for sparse coding. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 689–696. ACM, 2009.

[5] Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse learned representations for
image restoration. In Proc. of the 4th World Conf. of the Int. Assoc. for Statistical
Computing (IASC). Citeseer, 2008.

9



A imgInpaint.m

The idea of inpainting using a learned dictionary of the target image is to gradually fill in
small amount of unknown pixels close to good areas. If we look into patches at the border
of corrupted and intact area of the image, we can hopefully always find a certain number of
patches that only contains very few pixels to be recovered. For such patches, we can treat
the unknown pixels as missing data for a data point, use the rest of the entries to obtain a
sparse coding and then impute the missing data. The entire process can be performed until
all the area is filled. The psudocode is shown in Algorithm 3.

Algorithm 3 Inpainting with Dictionary

Input: X0 ∈ [0,1]r×c (the image to be inpainted), M0 ∈ {0,1}r×c (a mask indicates the
pixels to be inpainted), D = [d1, ...,dk] ∈ Rm×k (dictionary learned using good patches),
λgood (how important is pixels from the original image compared to inpainted pixels), λlasso
(how important is the sparsity in coding)

Output: inpainted image
t← 0
repeat

Ct+1 ← λgood(1 −Mt)

Xt+1 ←Xt∗̂Ct+1

for (i, j) ← enough positions of patches sampled in Xt do
p←RijXt

m←RijMt

if 0 < ∥m∥1 and is small then

α̂← arg minα ∥mp −mDα∥
2
+ λlasso ∥α∥1

p′ ←Dα̂
Ct+1 ←Ct+1 +R−1

ij 1
Xt+1 ←Xt+1 +R−1

ij p
′

Xt+1 ←Xt+1/̂Ct+1

t← t + 1
until All pixels are inpainted return Xt

* ∗̂, /̂ are element-wise multiplication and division; binary matrix Rij extracts the square
√
m ×

√
m patch of coordinates [i, j]

10


