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Abstract
Can we learn the influence of a set of people
in a social network from cascades of informa-
tion diffusion? This question is often addressed
by a two-stage approach: first learn a diffusion
model, and then calculate the influence based on
the learned model. Thus, the success of this ap-
proach relies heavily on the correctness of the
diffusion model which is hard to verify for real
world data. In this paper, we exploit the in-
sight that the influence functions in many diffu-
sion models are coverage functions, and propose
a novel parameterization of such functions us-
ing a convex combination of random basis func-
tions. Moreover, we propose an efficient max-
imum likelihood based algorithm to learn such
functions directly from cascade data, and hence
bypass the need to specify a particular diffusion
model in advance. We provide both theoretical
and empirical analysis for our approach, showing
that the proposed approach can provably learn
the influence function with low sample complex-
ity, be robust to the unknown diffusion models,
and significantly outperform existing approaches
in both synthetic and real world data.

1. Introduction
Social networks are important in information diffusion,
which has motivated the influence maximization problem:
find a set of nodes whose initial adoptions of an idea can
trigger the largest number of follow-ups. This problem has
been studied extensively in literature from both modeling
and algorithmic point of view (Kempe et al., 2003; Chen
et al., 2010; Borgs et al., 2012; Rodriguez & Schölkopf,
2012; Du et al., 2013b). Essential to the influence maxi-
mization problem is the influence function of a set of nodes,
which is an estimate of the expected number of triggered
follow-ups from these nodes.
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In practice, the influence function is not given to us, and we
only observe the information diffusion traces, or cascades,
originating from these nodes. In order to model the cas-
cade data, many information diffusion models have been
proposed in the literature, such as the discrete-time inde-
pendent cascade model and linear threshold model (Kempe
et al., 2003), and more recently the continuous-time inde-
pendent cascade model (Gomez Rodriguez et al., 2011; Du
et al., 2013b). To estimate the influence, we can employ
a two-stage method: a particular diffusion model is first
learned from cascade data, and then the influence function
is evaluated or approximated from such learned model.

However, there still remain many challenges in these tradi-
tional two-stage approaches. First, real world information
diffusion is complicated, and it is not easy to determine the
most suitable diffusion model in practice. A chosen dif-
fusion model may be misspecified compared to real world
data and lead to large model bias. Second, the diffusion
network structure can be also hidden from us, so we need
to learn not only the parameters in the diffusion model,
but also the diffusion network structure. This often leads
to under-determined high dimensional estimation problem
where specialized methods need to be designed (Du et al.,
2012; 2013a). Third, calculating the influence based on
learned diffusion models often leads to difficult graphical
model inference problem where extra approximation algo-
rithms need to be carefully designed (Du et al., 2013b).

If the sole purpose is to estimate the influence, can we
avoid the challenging diffusion model learning and influ-
ence computation problem? In this paper, we provide a
positive answer to the question and propose an approach
which estimates the influence function directly from cas-
cade data. Our approach will exploit the observation that
the influence functions in many diffusion models are cov-
erage functions. Instead of learning a particular diffusion
model, we will aim to learn a coverage function instead,
which will then naturally subsume many diffusion models
as special cases. Furthermore, in the information diffusion
context, we show that the coverage function can be rep-
resented as a sum of simpler functions, each of which is
an expectation over random binary functions. Based on
these structures of the problem, we propose a maximum-
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likelihood based approach to learn the influence function
directly from cascade data. More precisely,

Direct and robust approach. Our algorithm does not rely
on the assumption of a particular diffusion model, and can
be more robust to model misspecification than two-stage
approaches. Furthermore, directly learning the coverage
function also allows us to avoid the difficulty involved in
diffusion model estimation and influence computation.

Novel Parameterization. We propose a parametrization
of the coverage function using a convex combination of
random basis function. Similar parameterization has been
used in classification and kernel methods setting (Rahimi
& Recht, 2008), but its usage in the information diffusion
and coverage function estimation context is novel.

Approximation guarantee. We show that our parameter-
ization using K random basis functions generates a rich
enough family of functions which can approximate the true
influence function within an error of O( 1√

K
). This allows

us to work with a small number of parameters without cre-
ating too much bias at the same time.

Efficient algorithm. We propose a maximum likeli-
hood based convex formulation to estimate the parameters,
which allows us to leverage existing convex optimization
techniques (Kivinen & Warmuth, 1997) to solve the prob-
lem efficiently. The time required to evaluate each gradient
is O(dmK), linear in the number of nodes d, the number
of cascades m, and the number of basis functions K.

Sample complexity. We prove that to learn the influence
function to an ε error, we only need O(d

3

ε3 ) cascades where
d is the number of nodes in the diffusion networks. This is
no obvious since the number possible source configurations
can be exponential in the number of nodes in the network.
Our approach is able to make use of the structure of the
coverage function and be able to generalize only after see-
ing a polynomial number of cascades.

Superior performance. We evaluate our algorithms using
large-scale datasets, and show that it achieves significantly
better performance in both the synthetic cases where there
is known model misspecification, and in real world data
where the true model is completely unknown in advance.

2. Diffusion Models and Influence Function
Several commonly used models exist for information dif-
fusion over networks. Interestingly, although these models
are very different in nature, the derived influence functions
belong to the same type of combinatorial functions — cov-
erage functions. Such commonality allows us later to ap-
proach the problem of learning influence functions directly
without assuming a particular diffusion model.

More specifically, a diffusion model is often associated

with a directed graph G = (V, E), and a cascade from a
model is just a set of influenced nodes according to the
model given a set of source nodes S ⊆ V . In general, we
have the following typical types of diffusion models :

Discrete-time independent cascade model (Kempe et al.,
2003). Each edge is associated with a weight in [0, 1].
When a cascade is being generated from the source nodes
S, independently for each edge according to the edge
weight, a binary random variable is sampled, indicating
whether the edge is included in a “live edge graph” or not.
The influenced nodes are those reachable from at least one
of the source nodes in the resulting “live edge graph”.

Discrete-time linear threshold model (Kempe et al.,
2003). Each edge is again associated with a weight in [0, 1],
but the sum of the incoming edge weights for each node
is smaller or equal to 1. When a cascade is being gener-
ated from the source nodes S, each node first independently
sample one of its incoming edges with probability propor-
tional to the edge weight. The chosen edges are then used
to form the “live edge graph”. The influenced nodes are
those reachable from at least one of the source nodes.

Continuous-time independent cascade model (Du et al.,
2013b). Being different from the discrete-time models, this
model associates each edge (j, i) with a transmission func-
tion, fji(τji), a density over time. The source nodes are
assumed to be initially influenced at time zero. Then a dif-
fusion time is sampled independently for each edge accord-
ing to the transmission function and is viewed as the length
of the edge. The influenced nodes are those within shortest
distance T from at least one of the source nodes.

Being common to these diffusion models, the influence
function, σ(S) : 2V 7→ R+, of a set of nodes S, is defined
as the expected number of influenced nodes with respect to
the generative process of each model. This influence func-
tion is a combinatorial function which maps a subset S of
V to a nonnegative number.

Although these diffusion models are very different in na-
ture, their corresponding influence functions belong to the
same type of functions — coverage functions, and share
very interesting combinatorial structures (Kempe et al.,
2003; Rodriguez & Schölkopf, 2012). This means that the
influence function can be written as

σ(S) =
∑

u∈
⋃
s∈S As

au, (1)

with three sets of objects :

(i) a ground set U which may be different from the set V
of nodes in the diffusion network,

(ii) a set of nonnegative weights {au}u∈U , each associ-
ated with an item in the ground set U ,

(iii) and a collection of subsets {As : As ⊆ U}s∈V , one
for each source node in diffusion network.



Direct Learning of Influence Function

Essentially, each source node s ∈ S covers a set As of
items from U , and the function value σ(S) is the weighted
sum over the union of items covered by all nodes in S.

The combinatorial structures of coverage functions allow
them to be potentially learned directly from cascades.
However, the problem of learning coverage functions is
very challenging for several reasons. First, there are an ex-
ponential number of different S from the power set of V ,
while one typically only observes a small number of cas-
cades polynomial in the number of nodes, d = |V|, in the
network. Second, both the ground set U , the weights {au}
and the subsets {As} are unknown, and one has to esti-
mate a very large set of parameters if one wants to use the
definition in (1) directly.

In fact, learning such combinatorial functions in general
settings has attracted many recent research efforts (Balcan
& Harvey, 2011; Badanidiyuru et al., 2012; Feldman &
Kothari, 2013; Feldman & Vondrak, 2013), many of which
show that coverage functions can be learned from just poly-
nomial number of samples. However, existing algorithms
are mostly of theoretical interest and impractical for real
world problem yet. To tackle this challenge, we will ex-
ploit additional structure of the coverage function in the in-
formation diffusion context which allows us to derive com-
pact parameterization of the function, and design a simple
and efficient algorithm with provable guarantees.

3. Structure of the Influence Function
Besides being coverage functions, the influence functions,
σ(S), in the diffusion models discussed in Section 2 share
additional structures. In all models, a random graph G is
first sampled from the distribution induced by a particular
diffusion model; and then a function is defined for com-
puting node reachability in the sampled graph; finally the
influence is the expectation of this function with respect to
the distribution of the random graphs.

3.1. Random reachability function
We represent each sampled random graph G as a binary
reachability matrixR ∈ {0, 1}d×d with (s, j)-th entry

Rsj =

{
1, j is reachable from source s,
0, otherwise.

(2)

Essentially, the s-th row of R, denoted as Rs:, records the
information that if s is the source, which node is reachable
given sampled graph G . Furthermore, the j-th column of
R, denoted as R:j , records the information that whether j
is reachable from each of the other nodes. Then given a
set S of sources, we can calculate whether a node j will
be influenced or not in graph G through a simple nonlinear
function φ defined below.

First, we represent the set S as an indicator vector χS ∈

{0, 1}d, with its i-th entry

χS(s) :=

{
1, s ∈ S,
0, otherwise.

(3)

Then the inner product χ>SR:j ∈ Z+ will give us an indi-
cation whether a target node j is reachable from any of the
sources in S. More specifically, χ>SR:j ≥ 1 if the target
node j is reachable, and 0 otherwise. Finally, using a con-
cave function φ(u) = min {u, 1} : Z+ 7→ {0, 1}, we can
transform χ>SR:j into a binary function of χS

φ
(
χ>S R:j

)
: 2V 7→ {0, 1} . (4)

We note that φ
(
χ>S R:j

)
itself is a coverage function where

(i) the ground set U contains a single item uj , (ii) the weight
on uj is 1, (iii) and the collection of subset is either As =
{uj} ifRsj = 1 and otherwise As = ∅ ifRsj = 0.

Then the influence of S in graph G is the number of target
nodes reachable from the source set S

#(S|R) :=
∑d

j=1
φ
(
χ>S R:j

)
. (5)

#(S|R) is also a coverage function where (i) the ground
set U contains d items u1, . . . , ud, (ii) the weight on each
uj is 1, (iii) and As = {uj |Rsj = 1}. Since the graph G
and the associatedR are random quantities, the Φ function
is a random function.

3.2. Expectation of random functions
Each diffusion model will induce a distribution over ran-
dom graph G and hence a distribution pR over the ran-
dom binary matrix R. Then the overall influence of a
source set S in a diffusion model is the expected value of
#(S|R), i.e.,

σ(S) := ER∼pR [#(S|R)] , (6)

which is also a coverage function, since non-negative com-
binations of coverage functions are still coverage functions
(See Appendix A).

Next we will manipulate expression (6) to expose its struc-
ture as a sum over a set of conditional probabilities

ER∼pR [#(S|R)] (7)

=ER∼pR

[∑d

j=1
φ
(
χ>S R:j

)]
(by definition (5))

=
∑d

j=1
ER∼pR

[
φ
(
χ>S R:j

)]
(sum⇔ expectation)

=
∑d

j=1
Pr
{
φ
(
χ>S R:j

)
= 1|χS

}︸ ︷︷ ︸
:=fj(χS)

(φ(·) is binary),

where fj(χS) is the conditional probability of φ
(
χ>S R:j

)
being 1 given the set indicator χS .

Strategy for learning: The form of the influence function
as a sum over conditional probabilities suggests a simple
strategy for learning the influence function:
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1. we learn each fj(χS) separately,
2. and then sum them together,

which we will elaborate in subsequent sections.

4. Random Basis Function Approximation
In this section, we will provide a novel parameterization of
function fj(χS) using random basis functions. Recall from
the derivation in (7) that

fj(χS) = Er∼pj(r)
[
φ(χ>S r)

]
(8)

where r := R:j and pj(r) is the marginal distribution of
column j of R induced by pR. Since fj(χS) is an ex-
pectation w.r.t. a distribution pj(r) over the binary vec-
tors {0, 1}d, we will use a convex combination of random
basis functions to parameterize fj(χS). A similar idea,
called random kitchen sinks (Rahimi & Recht, 2008), has
appeared in the classification and kernel methods context.
Our use of such parameterization is novel in the informa-
tion diffusion and coverage function learning context, and
our analysis is also different.

Specifically, consider drawing a set of K random binary
vectors (random features) {r1, r2, . . . , rK} from some dis-
tribution q(r) on {0, 1}n, and build functions of the form

fw(χS) =
∑K

k=1
wk φ(χ>S rk) = w>φ(χS), (9)

subject to
∑K

k=1
wk = 1, wk ≥ 0 (10)

where w := (w1, . . . , wK)> are parameters to be
learned, rk is the sampled random feature, and φ(χS) :=
(φ(χ>S r1), . . . , φ(χ>S rK))>. Since each random basis
function φ(χ>S rk) takes value either 0 or 1, the above com-
bination of such functions will qualify as a probability in
[0, 1]. We will denote the class of functions defined by
equations (9) and (10) as F̂w.

How well can the random basis function fw(χS) approxi-
mate the original function fj(χS)? We can show that there
exists some w such that fw(χS) approximates fj(χS) well
when K is sufficiently large. More specifically, let C be
the minimum value such that

pj(r) ≤ Cqj(r), ∀j ∈ [d], ∀r ∈ {0, 1}n .
Intuitively, C measures how far away the sampling distri-
bution qj(r) is from the true distribution pj(r).

Lemma 1. Let pχ(χS) be a distribution of χS . If K =

O(C
2

ε2 log C
εδ ) and r1, . . . , rK are drawn i.i.d. from qj(r),

then with probability at least 1−δ, there exists an fw ∈ F̂w
such that EχS∼pχ [(fj(χS)− fw(χS))2] ≤ ε2.

Alternatively, the lemma can also be interpreted as the ap-
proximation error ε scales as O( C√

K
). Note that we require

that w lie in a simplex, i.e., wk ≥ 0 and
∑K
k=1 wk = 1, and

it is slightly different from that in Rahimi & Recht (2008).

5. Efficient Learning Algorithm
After generating the random features, we can learn the
weights w = (w1, . . . , wK) by fitting fw(χS) to training
data. Since the target function fj(χS) is a conditional prob-
ability, l2 or l1 error metric may not be suitable loss func-
tions to optimize. A natural approach is maximum con-
ditional likelihood estimation. We use an efficient expo-
nentiated gradient algorithm for performing the estimation
for the weights in fw. Here, we describe the algorithm, and
then present the sample complexity analysis in the next sec-
tion.

Suppose we observe a dataset of m i.i.d. cascades

Dm := {(S1, I1), . . . , (Sm, Im)} , (11)

where each cascade is a pair of observation of the source set
Si and the corresponding set Ii of influenced nodes. Each
cascade (Si, Ii) in the dataset is obtained by first sampling
a source set Si from a distribution pχ(χS) (e.g., power
law), then sampling a random reachability matrix R from
pR, and finally calculating Ii :=

{
j : φ

(
χ>S R:j

)
= 1
}

.
We note thatR is an intermediate quantity which is not ob-
served in the dataset. In our setting, we let Si ⊆ Ii which
means the nodes in the source set are also considered as
influenced nodes.

For a particular cascade (Si, Ii) and a particular target
node j, we can define a binary variable indicating whether
the target node j is influenced in this cascade, yij :=
I {j ∈ Ii}. Then the conditional likelihood of the status of
node j (influenced or not) can be expressed using fj(χS)

fj(χSi)
yij (1− fj(χSi))

1−yij . (12)

So in the following, we will focus on learning individual
function fw which is an approximation of fj(χS).

5.1. Maximum conditional likelihood estimation
In a way very similar to logistic regression and conditional
random fields by Lafferty et al. (2001), we will maximize
the conditional log-likelihood the yij given the χSi . In con-
trast to logistic regression and conditional random fields
where the models usually take the exponential family form,
we will use a form of a convex combination of random ba-
sis function (fw). The additional challenge for this param-
eterization is that the conditional probability may be zero
for some S. To address this challenge, we will use a trun-
cated or Winsorized version of the function fw

fw,λ(χS) = (1− 2λ)fw(χS) + λ (13)

which squashes the function output to the range of [λ, 1 −
λ]. We will denote this new class of functions as F̂w,λ. Al-
though this transformation introduces additional bias to the
function class, we show in later analysis that it is fine if we
choose λ to be about the same level as the approximation
error. In practice, λ is selected via cross-validation.
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Then the log-likelihood of the data Dm can be written as

`j(w) :=
∑m

i=1
yij log fw,λ(χSi) (14)

+ (1− yij) log(1− fw,λ(χSi)),

and we can find w by maximizing the log-likelihood

ŵ := argmax
w

`j(w) (15)

subject to
∑K

k=1
wk = 1, wk ≥ 0.

One can easily show that the optimization problem in (15)
is a convex optimization problem over a probability
simplex. Hence we can leverage existing techniques
from convex optimization by Kivinen & Warmuth (1997)
and Schmidt et al. (2009) to find ŵ efficiently.

5.2. Exponentiated gradient algorithm
We describe a simple exponentiated gradient (EG) algo-
rithm, originally introduced by Kivinen & Warmuth (1997)
in the online learning context. The EG updates involve the
following simple multiplicative modification

wt+1
k =

1

Zt
wtk exp

(
−η∇k(wt)

)
(16)

where Zt =
∑K
k=1 w

t
k exp (−η∇k(wt)) is the normaliza-

tion constant, the parameter η > 0 is the learning rate, and
the gradient ∇(wt) is given by

∇(w) =(1− 2λ)

m∑
i=1

(
1− yij

1− λ− (1− 2λ)w>φ(χSi)
−

yij
λ+ (1− 2λ)w>φ(χSi)

)
φ(χSi) (17)

Algorithm 1 summarizes algorithm for learning the in-
fluence function. We first generate K random fea-
tures {r1, . . . , rK} from the given distribution qj(r).
Then, we precompute m feature vectors φ(χSi) =
(φ(χ>Sir1), . . . , φ(χ>SirK))>. Because χSi is usually very
sparse, this preprocessing costs O(K

∑m
i=1 |Si|), where

|Si| is the cardinality of the set Si. Then we use the ex-
ponentiated gradient algorithm to find the weight w that
maximizes the log-likelihood of the training data. Accord-
ing to Kivinen & Warmuth (1997), to get within ε of the
optimum, we need O( 1

εη ) iterations, where the main work
of each iteration is evaluating the gradient with complex-
ity O(dmK). The final estimate σ̂(S) is the sum of all the
functions learned for each node. The learning task for each
node is independent of those for the other nodes (except
that we use the same set of training data), so the algorithm
can be easily parallelized. We refer to our algorithm as IN-
FLULEARNER.

5.3. How to choose random basis function
By our analysis in Lemma 1, the number of random fea-
tures needed for node j depends on the sampling distribu-

Algorithm 1 INFLULEARNER

input training data {(Si, Ii)}mi=1, λ ∈ (0, 1
4 )

for each node j ∈ [d] do
sample K random features {r1, . . . , rK} from qj(r);
compute φ(χSi) = (φ(χ>Sir1), . . . , φ(χ>SirK)),∀i;
initialize w1 to a interior point of a K-simplex;
for t = 1, . . . , T do

calculate ∇(wt) using (17)
update wt+1 ∝ wt exp(−η∇(wt)) using (16)

end for
f̂w,λj (χS) = λ+ (1− 2λ)(wT )>φ(χS)

end for
output σ̂(S) =

∑d
j=1 f̂

w,λ
j (χS).

tion qj(r). More precisely, it has quadratic dependence on
C where pj(r) ≤ Cqj(r) for all r. If we know pj(r), then
by sampling random features from pj(r), we have C = 1
so that much fewer features are needed. However, in prac-
tice, pj(r) is often unknown, so we consider estimating
pj(r) by qj(r) using the following simple approach.

Inspired by the empirical success of Naı̈ve Bayes algorithm
in classification by Bishop (2006) and the mean field ap-
proximation in graphical model inference (Wainwright &
Jordan, 2003), we assume that qj(r) is fully factorized, i.e.,

qj(r) =
∏d

s=1
qj(r(s)).

where qj(r(s)) means the marginal distribution of the i-th
dimension of r. Given a training dataset Dm as in equa-
tion (11), we estimate each qj(r(s)) using the frequency of
node j being influenced by source node i, i.e., qj(r(s)) =

1
|Dms |

∑
i∈Dms

yij where Dms := {i : s ∈ Si}. Although
this qj(r) may be quite different from pj(r), by the ad-
ditional steps of drawing random features and adjusting the
corresponding weights, it leads to very good results, as il-
lustrated in our experiments.

A more intelligent approach for choosing qj(r) may be first
learning a diffusion model outlined in Section 2 and then
using samples from the diffusion model to generate the ran-
dom basis functions. This approach requires more compu-
tation and is left for future study.

6. Sample Complexity of MLE
Here we analyze Algorithm 1 and provide sample complex-
ity bounds for the number of random basis functions and
the size of the training data needed to get a solution close
to the truth. We describe our results here and provide the
proof in the appendix.

We note that existing analysis for random kitchen
sink (Rahimi & Recht, 2008) does not apply to the max-
imum likelihood estimation. Therefore, we use a general
framework by Birgé & Massart (1998) for maximum like-
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lihood estimation. Loosely speaking, the error of the max-
imum likelihood estimator f̂w,λj (χS) ∈ F̂w,λ is bounded
by the best possible in the hypothesis class plus a term
scale roughly as Õ(D/m), where D is the dimension of
the set of candidate models based on a covering approach.
Hence, to get sample complexity bounds for our problem,
we need to bound the dimension of F̂w,λ. We consider the
mapping from the weight w to the corresponding hypoth-
esis f ∈ F̂w,λ, and show that the distance between two
functions f and f ′ are approximately the distance between
their corresponding weights w and w′. Then a covering on
the space of w induces a covering on the function space
F̂w,λ, and thus the dimensions of the two spaces are ap-
proximately the same, which is O(K). Combined the di-
mension bound with Lemma 1, we arrive at the following:

Lemma 2. Assume the statement in Lemma 1 is true.
If m = Õ(Kε ), then the maximum likelihood estimator
f̂w,λj ∈ F̂w,λ satisfies

EDmEpχ
[
(f̂w,λj (χS)− fj(χS))2

]
≤ Õ

(
ε2 + λ2

λ

)
.

This means to get ε accuracy, it suffices to choose λ = ε
and choose K large enough to make sure that the l2 error
between the true function and the set of candidate functions
in F̂w,λ is at most ε2. The bound then follows by applying
the above argument on each node with accuracy O(ε/d).

Theorem 3. Suppose in Algorithm 1, we set λ = Õ( εd ),

K = Õ(C
2d2

ε2 ), and m = Õ
(
C2d3

ε3

)
. Then with probabil-

ity at least 1 − δ over the drawing of the random features,
the output of Algorithm 1 satisfies

EDmEpχ

[(∑d

j=1
f̂w,λj (χS)− σ(S)

)2
]
≤ ε.

Intuitively, the l2 error of the function
∑d
j=1 f̂

w,λ
j learned

is small if the number K of random features and the size
m of the training data are sufficiently large. Both quanti-
ties have a quadratic dependence on C, since if C is large,
then the difference between pj and qj could be large, and
thus we need more random features to approximate fj and
also more training data to learn the weights. K and m also
depend on the number d of nodes in the network, for the
reason that we need to estimate each fj up to accuracy ε/d
so that their sum is estimated to accuracy ε. This is far
too pessimistic, as we observe in our experiment that much
smaller K or m is needed.

7. Experiments
We evaluate INFLULEARNER in synthetic and real world
data. We compare it to the state-of-the-art two-stage ap-
proaches, as well as methods based on linear regression and
logistic regression, and show that INFLULEARNER is more
robust to model misspecification than these alternatives.

7.1. Competitors
Two-stage methods. Two-stage learning methods depend
on the diffusion model assumptions, families of pairwise
temporal dynamics, and whether network structures are
given or not. We design the following four representative
competitors :

1. Continuous-time Independent Cascade model with
exponential pairwise transmission function (CIC).

2. Continuous-time Independent Cascade model with
exponential pairwise transmission function and given
network Structure (CIC-S).

3. Discrete-time Independent Cascade model (DIC).
4. Discrete-time Independent Cascade model with given

network Structure (DIC-S).

For the methods CIC and CIC-S, we use NETRATE
(Gomez Rodriguez et al., 2011) to learn the structure and
parameters of the pairwise transmission functions. For
DIC and DIC-S, we learn the pairwise infection probability
based on the method of (Netrapalli & Sanghavi, 2012).

Approach based on logistic regression. Instead of using
random features, we represent fj(χS) using a modified lo-
gistic regression

fj(χS) =
2 exp (w>χS)

1 + exp (w>χS)
− 1, where w ≥ 0. (18)

Since the sigmoid function is concave in R+ and w>χS is
a linear function of χS , the representation in (18) is also a
submodular function of the set S. We learn w by maximiz-
ing the log-likelihood subject to the nonnegative constraint.
We also experimented with the original logistic regression
model which does not lead to a submodular function, and
thus does not perform as well as the representation in (18)
(and hence not reported).

Approach based on linear regression. We use the linear
regression model, w>χS+b, to directly regress from χS to
the cascade size |I|. This approach does use the knowledge
that the influence function is a coverage function.

7.2. Synthetic Data
We generate Kronecker type of synthetic networks with the
parameter matrix [0.9 0.5; 0.5 0.3], which mimics the infor-
mation diffusion traces in real world networks (Leskovec
et al., 2010). The generated networks consist of 1,024
nodes and 2,048 edges. Given a generated network struc-
ture, we apply the continuous-time independent cascade,
the discrete-time independent cascades and the linear-
threshold model to generate the cascades, respectively.

For the continuous-time diffusion model, we used both
Weibull distribution (Wbl) and exponential distribution
(Exp) for the pairwise transmission function, and set their
parameters at random to capture the heterogeneous tempo-
ral dynamics. For the Weibull distribution, f(t;α, β) =
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Figure 1. Over the generated synthetic networks with 1,024 nodes and 2,048 edges, we present the mean absolute error of the estimated
influence on the testing data by increasing the number of training data when the true diffusion model is (a) continuous-time independent
cascade with pairwise Weibull transmission functions, (b) continuous-time independent cascade with pairwise exponential transmission
functions, (c) discrete-time independent cascade model and (d) linear-threshold cascade model.

β
α

(
t
α

)β−1
e−(t/α)β , t > 0, where α > 0 is a scale param-

eter and β > 0 is a shape parameter. We choose α and β
from 1 to 10 uniformly at random for each edge in order
to have heterogeneous temporal dynamics. The true influ-
ence value range is from 1 to 235, and the average value is
15.78 with the time window T = 10. For the exponential
distribution, the average influence is 37.81.

For the discrete-time independent cascade model, the pair-
wise infection probability is chosen uniformly from 0 to
1. For the discrete-time linear-threshold model, we fol-
lowed Kempe et al. (2003) where the edge weight wuv be-
tween u and v is 1/dv , and dv is the degree of node v. We
run these generative models for 10 time steps. The average
influence values are 9.2 and 8.9 respectively.

The source locations are sampled uniformly without re-
placement from V , and the source set sizes conform to a
power law distribution with parameter 2.5. For the train-
ing set, we independently sample 1,024 source sets, and
independently generate 8 to 128 cascades for each source
set. The test set contains 128 independently sampled source
sets with the ground truth influence estimated from 10,000
simulated cascades.

7.3. Robustness to model misspecification
The cascades used in Figure 1(a) are generated from the
continuous-time independent cascade model with pairwise
Weibull transmission functions. We expect that the four
two-stage methods are not doing well due to model mis-
specification of one form or the other. Figure 1(a) shows
the MAE (Mean Absolute Error) between the estimated
value and the true value. Both CIC-S and CIC used the cor-
rect continuous-time diffusion model but the wrong family
of pairwise transmission functions, so their performance
lies in the middle. However, CIC-S has the prior knowl-
edge about the true network structure, so it is reduced to
a much simpler learning problem and is thus better than
CIC. DIC-S and DIC used the wrong diffusion model with
unit time step (which is hard to determine in practice), so
they have the lowest performance overall. In contrast, IN-
FLULEARNER does not explicitly make assumptions about

diffusion models or transmission functions but only learns
the influence function directly from the data. Thus, it is
much more robust and better than the two-stage methods.
Since INFLULEARNER has better representational power
than the logistic regression based approach, it is able to
better approximate the true influence function and thus can
achieve the best performance overall.

The cascades used in Figure 1(b) are generated from the
continuous-time independent cascade model with pairwise
exponential transmission functions. Note that in this case
we expect CIC-S and CIC to do well, since they have the
correct assumptions about both the diffusion model and
the family of transmission functions. Particularly, with the
prior knowledge of the true network structure, CIC-S sim-
ply fits the model parameters for each edge, and thus the
estimates converge to the true influence function quickly.
Still, we see that the performance of INFLULEARNER is
close to that of CIC-S and CIC. Figure 1(b) again show
that INFLULEARNER is robust to diffusion model changes.

In Figure 1(c, d), we generate cascades according to
discrete-time independent cascade model and linear thresh-
old model respectively. In Figure 1(c), DIC-S and DIC as-
sumes the correct model, so their performance improves a
lot. However, in Figure 1(d), because CIC-S, CIC, DIC-S,
and DIC all assume the wrong diffusion model, we observe
a similar trend as as in Figure 1(a): INFLULEARNER is ro-
bust and obtain the best results. Note that in this case, the
gap between different methods is not as big since the aver-
age influence value is small.

7.4. Scalability
Figure 2(a) reports the parallel runtime of INFLULEARNER
as we increase the number of training cascades per source
set. We arbitrarily divide the 1,024 independent learning
problems into 32 individual jobs running on a cluster of
32 cores (AMD Opteron(tm) Processor, 2.5GHz). It shows
that the runtime grows almost linearly as the number of
cascades increases.
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Figure 2. (a) Runtime in log-log scale; (b) MAE on seven sets of real cascade data; (c) The performance gain of using different number
of random features; (d) Maximized expected influence of different selected sources on the real hold-out testing data.

7.5. Influence estimation on real data
We further evaluate the performance of our proposed
method on the MemeTracker dataset which includes 300
million blog posts and articles collected from 5,000
active media sites between March 2011 and February
2012 (Leskovec et al., 2009). The flow of information was
traced using quotes which are short textual phrases spread-
ing through the websites. Because all published documents
containing a particular quote are time-stamped, a cascade
induced by the same quote like ‘apple and jobs’ is a col-
lection of times when the media site first mentioned it.
We have selected seven groups of cascades with the typ-
ical keywords like ‘apple and jobs’, ‘tsunami earthquake’,
‘william kate marriage’, ‘occupy wall-street’, ‘airstrikes’,
‘egypt’ and ‘elections’. We split each set of cascades into
60%-train and 40%-test. Because we do not have any prior
knowledge about either the diffusion structure or the under-
lying diffusion mechanism on the real cascades data, we
only compare INFLULEARNER with the Logistic regres-
sion, Linear regression, CIC and DIC.

We evaluate the performance on the held-out testing cas-
cades as follows : we randomly select 10 sources from the
testing cascades, which represents one particular source set
S. For each node u ∈ S, let C(u) denote the set of cascades
generated from u on the testing data. For each u ∈ S,
we uniformly sample one cascade from C(u). Thus, the
union of all sampled cascades is the set of nodes infected
by source set S. We repeat the process for 1,000 times
and take the average of the number of infected nodes as
the true influence of source set S. Finally, we have gener-
ated 100 source sets and report the MAE of each method
in Figure 2(b). We can see that the performance of IN-
FLULEARNER is robust and consistent across all groups of
testing cascades, and is significantly better than the other
competitors.

Moreover, Figure 2(c) demonstrates the effect of the
number of random features on the performance of IN-
FLULEARNER by showing the average MAE over the seven
sets of cascade data as the number of random features in-
creases. As the number of random features grows, IN-
FLULEARNER approximates the true influence better, and

thus the MAE decreases. It seems that 128 to 256 random
features are sufficient to achieve good performance overall.

7.6. Influence maximization on real data
Finally, we use the learned influence function (from IN-
FLULEARNER, Logistic, Linear, CIC and DIC) for solving
the influence maximization problem Kempe et al. (2003);
Du et al. (2013b). Here we want to find a set S∗ of C
source nodes which maximizes the influence, i.e., S∗ =
argmax|S|≤C σ(S). We will use a greedy algorithm frame-
work of Nemhauser et al. (1978) to solve the problem.
We use the held-out test cascade to estimate the influence
achieved by selected source nodes. The observation time
window used is T = 14.

Figure 2(d) shows the influence achieved in Meme group
1 (the rest of the testing groups has similar results as in
the Appendix). INFLULEARNER, Logistic and CIC per-
form consistently better than DIC and linear regression.
The source nodes selected by INFLULEARNER, Logistic
and CIC are very similar, though the estimated influence
value can be different. As a result, the influence value of
INFLULEARNER, Logistic and CIC are very close.

8. Conclusion
Based on the observation that the influence function in
many diffusion models are coverage functions, we propose
to directly learn the influence from cascade data. In this
paper, we provide a novel parameterization of the influ-
ence function as a convex combination of random basis
functions, and an efficient maximum likelihood based algo-
rithm for learning the weighting of the random basis func-
tions. Theoretically, we show that the algorithm can learn
the influence with low sample complexity, and our empir-
ical study also shows our method outperforms traditional
two-stage approaches.
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A. Proofs for Structure of the Influence Function
To prove that the influence function σ(S) is a coverage function, the key is that non-negative combinations of coverage
functions are still coverage functions. We state and prove the property for the case of combining two coverage functions,
while for the general case we can simply repeat the argument.
Lemma 4. Suppose c(1) and c(2) are two coverage functions mapping from 2V to R+. If α(1) ≥ 0 and α(2) ≥ 0, then∑2
`=1 α

(`)c(`) is also a coverage function mapping from 2V to R+.

Proof. By definition, for ` = 1, 2, there exists a universe U (`), a set of weights
{
a

(`)
u

}
u∈U(`)

, and a family of subsets{
A(`)
v : A(`)

v ⊆ U (`)
}
v∈V

such that for any S ⊆ V ,

c(`)(S) =
∑

u∈
⋃
v∈S A

(`)
v

a(`)
u .

Define a new universe U =
⋃2
`=1 U (`), where elements in U (`)(` = 1, 2) are treated as different elements. Define

the corresponding weights au for u ∈ U as follows: if u ∈ U (`), then au = α(`)a
(`)
u . Define a family of subsets

{Av : Av ⊆ U}v∈V where Av =
⋃2
`=1A

(`)
v . Then the corresponding coverage function is

c(S) =
∑

u∈
⋃
v∈S Av

au =
∑

u∈
⋃2
`=1

⋃
v∈S A

(`)
v

au =

2∑
`=1

∑
u∈

⋃
v∈S A

(`)
v

au =

2∑
`=1

∑
u∈

⋃
v∈S A

(`)
v

α(`)a(`)
u

=

2∑
`=1

α(`)
∑

u∈
⋃
v∈S A

(`)
v

a(`)
u =

2∑
`=1

α(`)c(`)(S).

Therefore, c(S) =
∑2
`=1 α

(`)c(`) is a coverage function.

Since Φ(S|R) is a coverage function for any fixedR, and the influence

σ(S) = ER∼pR [Φ(S|R)]

is a convex combination of Φ(S|R), we have the following corollary.
Corollary 5. The influence function σ(S) is a coverage function.

Note If we naively construct the universe for the influence function as in the proof of Lemma 4, this will lead to a universe
of size 2dd, which is exponential in d. It seems to imply that the function is difficult to learn. However, as shown
in (Badanidiyuru et al., 2012), there exists a coverage function that is a (1 + ε) multiplicative approximation to σ, and is
defined on a universe of size O

(
d2

ε2

)
. This suggests that there are structures in a coverage function that make learning

tractable, even if it is defined on an exponentially large universe. On the other hand, the proof in (Badanidiyuru et al., 2012)
does not immediately lead to an efficient learning algorithm, since the construction explicitly makes use of the weights of
the elements in the universe defining σ.

B. Proofs for Random Basis Function Approximation
In this section, we fix a node j and fj(χS) = Er∼pj(r)

[
φ(χ>S r)

]
. Suppose a set of K random features {rj1, . . . , rjK}

is drawn from the distribution qj(r) over {0, 1}n. We show that given sufficiently many random features, there exists a
convex combination of the random basis functions that approximates the truth fj .

The number of random features needed depends on how close the sample distribution qj is to the true distribution pj . The
“distance” between the two is formalized in the following definition.
Definition 6. Let C be the minimum value such that

pj(r) ≤ Cqj(r) for all j ∈ [d], r ∈ {0, 1}n .

We first introduce an intermediate class F̃w that depends on C, and show that there exists a function in F̃w that is close to
fj . We then utilize the structure of our problem to show that the same is true for a class F̂w that does not depend on C. In
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particular, define

F̃w :=

{
fw(χS) =

K∑
k=1

wkφ(χ>S rjk)

∣∣∣∣0 ≤ wk ≤ C

K

}
, (19)

F̂w :=

{
fw(χS) =

K∑
k=1

wkφ(χ>S rjk)

∣∣∣∣wk ≥ 0,

K∑
k=1

wk ≤ 1

}
. (20)

Lemma 7. Let pχ be any distribution of χS . If rj1, . . . , rjK are drawn i.i.d. from qj(r), then with probability at least 1−δ
over rj1, . . . , rjK , there exists f̃ ∈ F̃w such that

Pr
χS∼pχ

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≤ ε2/C2

when K = O(C
2

ε2 log C
εδ ). Consequently,

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ 5ε2.

Proof. Here we prove the first statement, which is stronger and implies the second one. Let fk(χS) =
p(rjk)
q(rjk)φ(χ>S rjk)

for k = 1, . . . ,K. Then Erjk∼qj(r)[fk] = fj . Let f̃(χS) = 1
K

∑K
i=1

p(rjk)
q(rjk)φ(χ>S rjk) be the sample average of these

functions. Then f̃ ∈ F̃w since 0 ≤ 1
K
p(rjk)
q(rjk) ≤

C
K .

By Hoeffding’s inequality, when K = O(C
2

ε2 log C
δε ), for any fixed S we have

Pr
r

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≤ δε2/C2

where Prr is over the random sample of rj1, . . . , rjK . This leads to

Pr
χS∼pχ

Pr
r

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≤ δε2/C2.

Exchanging PrχS∼pχ and Prr by Fubini’s theorem, and then by Markov’s inequality, we have

Pr
r

{
Pr

χS∼pχ

[∣∣∣f̃(χS)− fj(χS)
∣∣∣ ≥ ε] ≥ ε2/C2

}
≤ δ.

This means with probability at least 1− δ over the random sample of rj1, . . . , rjK , on at least 1− ε2/C2 probability mass
of the distribution of S, [f̃(χS)− fj(χS)]2 ≤ ε2. Since |f̃(χS)| ≤ C and |fj(χS)| ≤ 1,

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ ε2(1− ε2) + (C + 1)2ε2/C2 < 5ε2.

Note that for learning over F̃w, the parameter C needs to be determined. However, there are additional structures in our
problem that can be utilized to further restrict F̃w and get rid of the dependence on C.

Lemma 1. Let pχ be any distribution of χS . If K = O(C
2

ε2 log C
εδ ) and rj1, . . . , rjK are drawn iid from qj(r), then with

probability at least 1− δ over rj1, . . . , rjK , there exists f̂ ∈ F̂w such that

EχS∼pχ

[(
fj(χS)− f̂(χS)

)2] ≤ ε2.
Proof. Construct a distribution ∆1 that assigns probability 1 to χS = 1 and probability 0 to all other source sets. Note that
the definition of f̃ is independent of the distribution of χS , so that we can apply Lemma 7 for f̃ on both ∆1 and pχ.

Without loss of generality, assume rjk 6= 0 for any k, since otherwise we can remove rjk without changing f̃ . Then
1>rjk > 0 and thus f̃(1) =

∑K
k=1 wk. By Lemma 7 on ∆1, with probability 1− δ/2 we have√

EχS∼∆1

[(
fj(χS)− f̃(χS)

)2]
= |fj(1)− f̃(1)| =

∣∣∣∣∣fj(1)−
K∑
k=1

wk

∣∣∣∣∣ ≤ ε

2
.
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Then
∑K
k=1 wk ≤ fj(1) + ε

2 ≤ 1 + ε
2 . Define f̂ = f̃/(1 + ε/2). Then f̂ ∈ F̂w and

|f̂(χS)− f̃(χS)| = ε/2

1 + ε/2
f̃(χS) ≤ ε/2

1 + ε/2

K∑
k=1

wk ≤
ε

2
.

By Lemma 7 on pχ, with probability 1− δ/2 we have

EχS∼pχ

[(
fj(χS)− f̃(χS)

)2] ≤ ε2

4
.

Then we have

EχS∼pχ

[(
fj(χS)− f̂(χS)

)2] ≤ 2EχS∼pχ

[(
fj(χS)− f̃(χS)

)2
+
(
f̃(χS)− f̂(χS)

)2] ≤ 2
( ε

2

)2

+
2ε2

4
= ε2

which completes the proof.

C. Proofs for Sample Complexity
In this section, we provide the complete proof for the sample complexity of learning the weights of the random basis
functions by maximum likelihood estimation (MLE). We are not aware of any previous work providing the analysis of
MLE for the hypothesis class in our problem (the weighted sum of the random basis functions). Therefore, we adopt the
general framework in (Birgé & Massart, 1998), which analyzes the sample complexity based on a particular dimension
notion for the hypothesis class. Then we bound the dimension of our hypothesis class, which then leads to our sample
bound. The techniques used in bounding the dimension can be extended to other hypothesis classes, and thus may be of
independent interest.

In the following, we first review the framework and paraphrase their result for distributions over a discrete domain, since
this suffices for our purpose. We then apply the result to learning the conditional probability fj for an individual node j,
and finally prove the bound for the entire influence function.

C.1. Review of MLE for probability estimation

The MLE estimator is defined as follows. Suppose we observe m data points Z1, . . . , Zm independent identically dis-
tributed according to the true probability function p∗ over a discrete domainZ . The hypothesis classH is a set of functions,
each of which is the square root1 of a probability function. That is, for each h ∈ H, h =

√
ph where ph is a probability

over Z . The MLE estimator is ĥ = argmaxh∈H
∑m
i=1 log [h(Zi)]. More generally, an approximate MLE estimator is ĥ

such that
m∑
i=1

log
[
ĥ(Zi)

]
+ 1 ≥ sup

h∈H

m∑
i=1

log [h(Zi)] . (21)

The goal is to analyze how the difference between ĥ and the truth h∗ =
√
p∗ decreases with the sample size m.

Complexity of the hypothesis class To analyze the sample complexity, we need to introduce some metric over the hy-
potheses and some notion bounding the complexity of the hypothesis class based on the metric. Given h, h̃ that are the
square roots of two probabilities, the `2 distance is

d(h, h̃) := ‖h− h̃‖ =

√∑
Z∈Z

[h(Z)− h̃(Z)]2. (22)

Note that d(h, h̃)/
√

2 is just the Hellinger distance. Similar to the `2 distance, we can define `∞ distance:

d∞(h, h̃) := ‖h− h̃‖∞ = max
Z∈Z
|h(Z)− h̃(Z)|. (23)

Both the `2 and `∞ distances are bounded over all square roots of probabilities, so a hypothesis class with such metrics is
always a bounded metric space. To measure the complexity of such a metric space, a common notion is the following:

Definition 8. Given a set B equipped with metric d, and a real number ε > 0, T ⊆ B is an ε-covering of B if the following

1We will always talk about the square root of the probabilities. This is because the `2 distance over such hypotheses correspond to
the Hellinger distance, which plays a key role in the analysis of MLE and appears in the final bound.
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holds: for every h ∈ B there exists h̃ ∈ T such that d(h, h̃) < ε.

h̃

h
<ε

Figure 3. Illustration of ε-covering.

Intuitively, if we construct balls aroud points in T with radius ε, then these balls can cover all points in B. Note that the
dimension depends on the metric d. The result in (Birgé & Massart, 1998) actually depends on both the `2 and `∞ metrics
onH. More precisely, we introduce the following `2,∞ dimension2.
Definition 9 ((Birgé & Massart, 1998)). The `2,∞ dimension of H is the minimum D ≥ 1 such that there exist constants
c0 ≥ 1 and c1 ≥ 1 satisfying the following. For each ε > 0 and each ball B ⊆ H with radius R ≥ 5ε, one can find T with

|T | ≤ (c0R/ε)
D

that is an ε-covering of B for the `2 metric and a c1ε-covering for the `∞ metric.

The condition says that for any given distance threshold ε and any sufficiently large ball in H, we can find a finite O(ε)-
covering T that is simultaneously with respect to both the `2 metric and the `∞ metric, and the size of the covering depends
exponentially on the dimension D.

Sample complexity based on `2,∞ dimension The following result bounds the expected squred `2 distance between the
MLE estimator and the truth, by a constant times the best Kullback-Leibler divergence from the truth to any hypothesis,
plus a penalty term roughly Õ(D/m) where D is the dimension of H and m is the number of data points. The Kullback-
Leibler divergence between h, h̃ ∈ H is defined as

KL(h, h̃) := EZ∼ph(Z)

[
log

h2(Z)

h̃2(Z)

]
. (24)

Theorem 10 (Theorem 3 in (Birgé & Massart, 1998)). AssumeH has `2,∞ dimensionD ∈ [1,m]. Let ĥ be an approximate
MLE estimator, i.e., it satisfies (21). Then there is a constant c > 0 such that

EDm [d2(h∗, ĥ)] ≤ c inf
h∈H

KL(h∗, h) +
cD

m
(1 + log[c0(1 + c1)])

where EDm is with respect to the randomness in the data Z1, . . . , Zm generated from the true distribution (h∗)2.

On the right hand side of the bound is the Kullback-Leibler divergence, instead of the the squared distance as on the left.
The following lemma is useful for connecting the two.

Lemma 11 (Eqn. (7.5) and (7.6) in Lemma 5 in (Birgé & Massart, 1998)). If h and h̃ are the square roots of two proba-
bilities and ‖h/h̃‖∞ < +∞, then

d2(h, h̃) ≤ KL(h, h̃) ≤ 2[1 + log ‖h/h̃‖∞]d2(h, h̃).

C.2. Estimation for individual node

Here we consider learning fj for a fixed node j. Assume that the event stated in Lemma 1 happens, and fix the set of random
features rj1, . . . , rjK . We first formalize our hypothesis class for learning fj , and then analyze the sample complexity.

2The result (Birgé & Massart, 1998) actually depends on a covering property, which basically says that the `2,∞ dimension of H is
bounded by D. For our purpose, it is more convenient to introduce a definition of the dimension. Also note that in (Birgé & Massart,
1998), the covering property actually requires that T is simultaneously an ε-net of B for the `2 metric and a c1ε-net for the `∞ metric.
But in fact, this requirement can be relaxed to that T is a covering (instead of a net) as in our definition.
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Hypotheis class Recall that for learning fj , we get training data in the form Zi = (χSi , yij), where χSi ∈ {0, 1}
d is the

indicator vector of Si and yij ∈ {0, 1} indicates whether node j gets influenced by Si. Let p∗ denote the true distribution

p∗(χS , y) = pχ(χS)p(y|χ = χS)

where pχ is the distribution of χS , and p(y|χ = χS) is the conditional probability

p(y|χ = χS) = [fj(χS)]y[1− fj(χS)]1−y.

Similarly, given a function f , define the distribution induced as

p(χS , y|f) = pχ(χS)p(y|χ = χS , f) where p(y|χ = χS , f) = [f(χS)]y[1− f(χS)]1−y.

We could define our hypothesis class as the square roots of the probability distributions induced by functions in F̂w.
Unfortunately, there is some subtle technical difficulty: p(χS , y|f) can be arbitrarily close to 0, in which case our technique
for bounding the dimension of our hypothesis class fails (in particular, we cannot construct coverings for our hypotheses
based on coverings for the weights; see the proof of Lemma 15). Therefore, we add a small offset to functions in F̂w and
ensure that they are bounded away from 0. More precisely, define

F̂w,λ :=
{
fw,λ

∣∣ fw,λ = fw + λ, fw ∈ (1− 2λ)F̂w
}

(25)

where λ ∈ (0, 1) is a constant whose value will be determined later. For any fw,λ ∈ F̂w,λ, we have λ ≤ fw,λ(χS) ≤ 1−λ
for any χS . Then the probability p(χS , y|fw,λ) introduced by fw,λ satisfies that p(χS , y|fw,λ) ≥ λ for any χS and y,
which will allow us to use our technique.

Still, for F̂w,λ to be meaningful, we need to show there exists a function in F̂w,λ close to fj . The following lemma shows
that this is true as long as λ is small.

Lemma 12. Assume that the statement in Lemma 1 happens. Then there exists f̂w,λ ∈ F̂w,λ such that

EχS∼pχ

[(
fj(χS)− f̂w,λ(χS)

)2] ≤ 2ε2 + 2λ2.

Proof. Let f̂w ∈ F̂w be such that EχS∼pχ

[(
fj(χS)− f̂w(χS)

)2] ≤ ε2. Define f̂w,λ = (1 − 2λ)f̂w + λ. Then

|f̂w(χS)− f̂w,λ(χS)| = |λ− 2λf̂w(χS)| ≤ λ. The lemma then follows from

EχS∼pχ

[(
fj(χS)− f̂w,λ(χS)

)2] ≤ 2EχS∼pχ

[(
fj(χS)− f̂w(χS)

)2]
+ 2EχS∼pχ

[(
f̂w,λ(χS)− f̂w(χS)

)2]
.

Therefore, our hypothesis class is defined as

HK :=

{√
p(χS , y|fw,λ)

∣∣ fw,λ ∈ F̂w,λ} . (26)

In other words, HK is the square roots of the probabilities induced by F̂w,λ. Let h∗ =
√
p∗(χS , y) denote the element

corresponding to the true distribution. Note that we do not assume h∗ is inHK .

Sample complexity To bound the dimension ofHK and apply Theorem 10, the key is to construct coverings forHK based
on those for the weights, since the feasible set of weights is a subset of RK which has nice structure. We first relate the
topology of HK to that of the weights w in Lemma 14, which makes the construction possible. We then bound on the
dimension in Lemma 15, and subsequently bound the sample complexity in Lemma 2.

To begin with, let ∆ := {w|w ≥ 0, ‖w‖1 ≤ 1− 2λ} denote the feasible set of the weights w of the functions in F̂w,λ, and
consider a mapping π : ∆→ HK as follows:

π(w) :=
√
p(·|fw,λ), where fw,λ(χS) =

K∑
k=1

wkφ(χ>S rk) + λ.

Lemma 14 shows that the `2 distance between π(w) and π(w′) is approximately the `∞ distance between w and w′,
relating the topology ofHK to that of the weights w. The following quantity is useful in the process:

Definition 13. LetAj = ΣΦj where Σ is a 2n×2n diagonal matrix with entries ΣχS ,χS =
√
pχ(χS), and Φj is a 2n×K
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matrix with entries ΦjχS ,k
= φ(χ>S rjk). Define

Λj := min
w 6=0

‖Ajw‖
‖w‖

, Λ = min
j∈[d]

Λj .

Intuitively, Λ reflects how the change in w affects Ajw, which subsequently affects the corresponding hypothesis in HK .
This quantity thus goes into the relation between the distance on the set of w and the distance on HK , as shown in
Lemma 14.

Lemma 14. For an w,w′ ∈ ∆,
Λ

2
‖w − w′‖∞ ≤ ‖π(w)− π(w′)‖ ≤ K√

2λ
‖w − w′‖∞.

Proof. For simplicity, let f be a shorthand of fw,λ(χS) and f ′ be a shorthand of fw
′,λ(χS) in the proof.

(1) By definition of the norm in (22), we have

‖π(w)− π(w′)‖2 =
∑

(χS ,y)

(
√
p(χS , y|f)−

√
p(χS , y|f ′))2

=
∑
χS

pχ(χS)
∑
y

(
√
p(y|χ = χS , f)−

√
p(y|χ = χS , f ′))

2

=
∑
χS

pχ(χS)
[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
= Epχ

[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
.

This leads to

‖π(w)− π(w′)‖2 ≥ Epχ
[
(
√
f −

√
f ′)2

]
≥ 1

4
Epχ

[
(f − f ′)2

]
=

1

4

∑
χS

pχ(χS)(f − f ′)2

where the second inequality follows from Lemma 16. The right hand side expands to

1

4

∑
χS

pχ(χS)(f − f ′)2 =
1

4

∑
χS

pχ(χS)

[
K∑
k=1

φ(χ>S rjk)(wk − w′k)

]2

=
1

4
‖Ajw −Ajw′‖2.

where the last step follows from the definition of Aj . So

‖π(w)− π(w′)‖2 ≥ 1

4
‖Ajw −Ajw′‖2 ≥ Λ2

4
‖w − w′‖2 ≥ Λ2

4
‖w − w′‖2∞

where the second inequality follows from the definition of Λ.
(2) By definition we have

|f(χS)− f ′(χS)| ≤ ‖w − w′‖1 ≤ K‖w − w′‖∞
for any χS . Then

‖π(w)− π(w′)‖2 = Epχ
[
(
√
f −

√
f ′)2 + (

√
1− f −

√
1− f ′)2

]
≤ Epχ

[
(f − f ′)2

4λ
+

((1− f)− (1− f ′))2

4λ

]
≤ K2

2λ
‖w − w′‖2∞

where the first inequality follows from Lemma 16.(2) and the fact that λ ≤ f ≤ 1− λ and λ ≤ f ′ ≤ 1− λ.

Lemma 15. The `2,∞ dimension ofHK is at most K.

Proof. To bound the dimension, the key is to construct coverings of small sizes. By Lemma 14, the `2 metric on HK
approximately corresponds to the `∞ metric on the set of weights. So based on coverings for the weights with respect to
the `∞ metric, we can construct coverings forHK with respect to the `2 metric. We then show that they are also coverings
with respect to the `∞ metric. The bound on the dimension then follows from the sizes of these coverings.

More precisely, given ε > 0 and a ball B ⊆ HK with radius R > 5ε, we construct an ε-covering T as follows. Define
Bw = π−1(B). By Lemma 14, the radius of Bw is at most Rw = 2

ΛR (with respect to the `∞ metric). Now consider
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finding an εw-covering for Bw with respect to the `∞ metric, where εw = ( K√
2λ

)−1ε. Since Bw ⊆ RK , by taking the grid
with length εw/2 on each dimension, we can get such a covering T w with

|T w| ≤
(

4Rw

εw

)K
≤
(

8K√
2λΛ

R

ε

)K
.

Let T = π(T w), and for any h ∈ B find h̃ as follows. Suppose wh ∈ Bw satisfies π(wh) = h and wh̃ is the nearest
neighbor of wh in T w, then we set h̃ = π(wh̃). See Figure 4 for an illustration.

wh̃

wh

<εw

h̃

h
<ε

π

Bw B

Figure 4. Illustration of the mapping.

First, we argue that T is an ε-covering w.r.t. the `2 metric, i.e., d(h, h̃) < ε for any h ∈ B. It follows from Lemma 14:

d(h, h̃) ≤ K√
2λ
‖wh − wh̃‖∞ <

K√
2λ
εw = ε.

Second, we argue that T is also an O(ε)-covering w.r.t. the `∞ metric, i.e., d∞(h, h̃) = ‖h− h̃‖∞ = O(ε) for any h ∈ B.
We have ‖h− h̃‖ < ε, then ‖wh − wh̃‖∞ < 2

Λε by Lemma 14. Let fh := fwh,λ and fh̃ := fwh̃,λ. Then

|fh(χS)− fh̃(χS)| ≤ ‖ws − wt‖1 ≤ K‖ws − wt‖∞ <
2K

Λ
ε

for any χS , and thus

‖π(ws)− π(wt)‖∞ = max
χS

max
{
|
√
fh −

√
fh̃|, |

√
1− fh −

√
1− fh̃|

}
≤ max

χS
|
√
fh −

√
fh̃| ≤ max

χS

|fh − fh̃|
2
√
λ

<
K

Λ
√
λ
ε

where the second inequality follows from Lemma 16.(2).

So the conditions in the definition of the dimension are satisfied with D = K and c0 = c1 = O
(

K
Λ
√
λ

)
, and thus the

dimension ofHK is at most K.

Lemma 2. Assume the statement in Lemma 1 happens. Let ĥ be an approximate MLE estimator, i.e., it satisfies (21). Let
f̂w,λj be the corresponding function in F̂w,λ. Then when m = O(Kε log K

λΛ ),

EDm
[
Epχ [(f̂(χS)− fj(χS))2]

]
≤ 8c

(
ε+

ε2 + λ2

λ

[
1 + log

1

λ

])
where c is the constant in Theorem 10.
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Proof. The lemma follows from Theorem 10 and Lemma 15. On the left hand side of that bound in Theorem 10, we have

d2(h∗, ĥ) = Epχ

[(√
f̂w,λj −

√
fj

)2

+

(√
1− f̂w,λj −

√
1− fj

)2
]

≥ Epχ

[(√
f̂w,λj −

√
fj

)2
]
≥ 1

4
Epχ

[(
f̂w,λj − fj

)2
]

where the last inequality follows from Lemma 16.(1).

On the right hand side of the bound, the number of points m is sufficiently large so that the penalty term is at most ε. So
it suffices to show that infh∈HK KL(h∗, h) ≤ 2[1 + log 1

λ ] ε
2+λ2

λ . By Lemma 12, there exists f̂w,λ ∈ F̂w,λ such that

Epχ [(fj − f̂w,λ)2] ≤ 2ε2 + 2λ2. Let ĥw,λ =

√
p(·|f̂w,λ) denote the element inHK corresponding to f̂w,λ. Then

KL(h∗, ĥw,λ) ≤ 2

[
1 + log

∥∥∥∥ h∗

ĥw,λ

∥∥∥∥
∞

]
d2(h∗, ĥw,λ) ≤ 2

[
1 + log

1

λ

]
d2(h∗, ĥw,λ)

where the first inequality follows from Lemma 11, and the second inequality follows from the definition of h∗ and ĥw,λ,
and the fact that p(χS , y|f̂w,λ) ≥ λ for any χS and y. The proof is completed by noting

d2(h∗, ĥw,λ) = Epχ

[(√
fj −

√
f̂w,λ

)2

+

(√
1− fj −

√
1− f̂w,λ

)2
]

≤
Epχ [(fj − f̂w,λ)2]

4λ
+

Epχ [((1− fj)− (1− f̂w,λ))2]

4λ
≤ ε2 + λ2

λ

where the first inequality follows from Lemma 16.(2), and the last inequality follows from the choice of f̂w,λ as in
Lemma 12.

Below are some technical facts that are used in the analysis.

Lemma 16. (1) If f1, f2 ∈ [0, 1], then 4(
√
f1 −

√
f2)2 ≥ (f1 − f2)2.

(2) If f1 ≥ λ > 0 and f2 ≥ λ, then |
√
f1 −

√
f2| ≤ |f1−f2|2

√
λ

.

Proof. Both claims follow from the fact that f1 − f2 = (
√
f1 −

√
f2)(
√
f1 +

√
f2).

C.3. Estimation of the entire influence function

We now combine the bounds for individual nodes to get the sample complexity for learning the entire influence function.

Theorem 3. Let ε ∈ (0, 1/4) and λ = ε
c′d log d

ε

where c′ > 0 is a sufficiently large constant. If K =

O(C
2d2

ε2 log2 d
ε [log Cd

δ + log d
ε ]),

m = O

(
C2d3

ε3
log3 d

ε

[
log

1

Λ
+ log

Cd

ε
+ log

d

δ

])
then with probability 1− δ over the drawing of the random features,

EDm

Epχ

 d∑
j=1

f̂w,λj (χS)− σ(S)

2

 ≤ ε

where EDm is with respect to the randomness of {(χSi ,yi)}
m
i=1. The running time of the algorithm is O(dmK).

Proof. Let λ = ε0 and ε0 = ε
c′d log d

ε

where c′ > 0 is a sufficiently large constant, so that 8c
(
ε0 +

ε20+λ2

λ

[
1 + log 1

λ

])
≤

ε
2d where c is the constant in Lemma 2.

Apply Lemma 1 with error rate ε0 and confidence parameter δ/d. Then when K = O(C
2

ε20
log Cd

εδ ), with probability at least
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Figure 5. Expected influence vs. #sources on the real hold-out testing data.

1− δ, for each node j ∈ [d] there exists f̂ ′j ∈ F̂w satisfying

Epχ
[
(f̂ ′j(χS)− fj(χS))2

]
≤ ε20.

Then by Lemma 2, when m = O
(
K
ε0

log K
λΛ

)
, for each node j ∈ [d] we find f̂w,λj satisfying

EDm
[
Epχ

[
(f̂w,λj (χS)− fj(χS))2

]]
≤ ε

2d
.

The theorem follows from the fact that Epχ [(
∑d
j=1 f̂

w,λ
j (χS)− σ(S))2] ≤ 2

∑d
j=1 Epχ [(f̂w,λj (χS)− fj(χS))2].

Runtime. The maximum likelihood estimation only needs to be solved approximately. In particular, it suffices to get ĥ
such that

m∑
i=1

log[ĥ(Zi)] + 1 ≥ sup
h∈HK

m∑
i=1

log[h(Zi)].

By the convergence rate of EG (see Section 4.4 in (Kivinen & Warmuth, 1997)), we only need O(1/η) iterations, where
the learning rate η can be viewed as a constant. Each iteration takes time O(mK), and we need to use EG for each of the
d nodes. Hence, the total time is O(dmK).

C.4. Additional experimental results

We report the additional experimental evaluations on the application of the learnt influence functions to the continuous-
time influence maximization problem on the rest six groups of hold-out real testing cascades datasets. Compared to DIC
and Linear regression, Figure 5 verifies that the performance of INFLULEARNER, Modified Logistic and CIC are better
and more consistent with each other.


